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Abstract—This paper considers H2/H∞ control problems for dynamic plants described by
linear Itô stochastic equations with the drift and diffusion coefficients linearly dependent on
the state vector, control input, and an exogenous disturbance. The controlled plant has two
outputs, namely, the regulated z and the observed (noisy) y ones. The controller is optimized
by the quadratic H2 criterion under the boundedness condition for the induced norm of the
operator Hzυ relating the exogenous disturbance υ to the regulated output z : ‖Hzυ‖∞ < γ.
The conditional H2/H∞ optimization problem is solved using differential game theory.
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1. INTRODUCTION

In this paper, we present some results on the theory of H2/H∞ controllers for time-varying
plants described by Itô stochastic equations whose drift and diffusion coefficients depend linearly
on the state x, control u, and exogenous disturbance υ vectors. These are Itô equations of the form

dx(t) = ϕ(t)dt+Φ(t)dW (t), ϕ = Ax+B1u+B2υ, (1.1)

Φ dW = A0xdw0 +B01udw1 +B02υdw2.

Such a specific structure of the drift and diffusion coefficients gives a reason to call equation (1.1)
multiplicative in each of the three variables mentioned. By assumption, the stochastic pro-
cesses wi(t), i = 0, 1, 2, are scalar, which is actually not a restriction. The dependence of the
drift ϕ(t) and diffusion Φ(t)dW (t) on the same disturbance υ(t) is not a restriction as well. Finally,
the processes wi(t) are supposed to be statistically dependent, not necessarily with a unit intensity
matrix.

The plant has two outputs, i.e., the regulated z and observed y ones:{
z(t) = C1x(t) +D11u(t) +D12υ(t)

y(t) = C2x(t) +D21u(t) +D22υ(t), t ∈ [0, T ].
(1.2)

In the nonstationary case, the matrix coefficients depend on the time parameter t. We consider the
cases of finite (T < ∞) and infinite (T = ∞) horizons [0, T ]. Let x0 denote the initial condition of
equation (1.1).

In control theory, the presence of regulated and observed outputs is natural for practical problem
statements. Already at the initial stage of optimization theory, it was necessary to distinguish
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PROBLEMS IN THE THEORY OF H2/H∞ CONTROLLERS 135

between LQR problems (the design of linear quadratic regulators based on the full output z)
and LQG problems (the design of linear quadratic Gaussian regulators based on the information
contained in the partially observed output y). However, a well-known fact is that in the latter
case with disturbances, it is not always possible to ensure the required robustness of the regulator.
Generally speaking, the robustness property is one of the fundamental requirements for controller
design in the modern H2/H∞ control theory and especially in the theory of the so-called uncertain
systems. Note that in the presence of exogenous disturbances and endogenous perturbations,
inherent to an uncertain plant, robustness is the most important issue, not only in controller
design but also in filtering. However, filtering problems are not considered below, like control
optimization and filtering problems for discrete systems. Here, it seems appropriate to draw the
reader’s attention to the similarity of many results of the deterministic control theory with some
results of the stochastic H2/H∞ theory, especially those concerning plants with a state-feedback
controller in Section 2. The main topic of this paper is the stochastic theory of robust control of
systems (1.1)–(1.2).

The design of an H2/H∞ controller is a conditional (constrained) quadratic optimization prob-
lem under an upper bound γ > 0 imposed on the operator norm ‖Hzυ‖∞ of the operator Hzυ with
the domain and codomain defined by the functional spaces of all plant’s input disturbances υ(·)
and regulated outputs z(·), respectively. The controller must stabilize the closed-loop system and
ensure the boundedness condition ‖Hzυ‖∞ < γ for the induced norm. In the general H2/H∞ con-
trol theory, the description of such a class of controllers constitutes a subbranch designated by the
theory of H∞ controllers.

In the theory of time-invariant systems, it is conventional to consider a class of controllers of the
form u(t) = K(t, x(·)|t0), t > 0, where the function K is Borel measurable and Lipschitz continuous
in the second argument. If u(t) = Kx(t) and the matrix A+B1K is stable (in the Hurwitz sense),
then one operates a transfer function relating υ to z,

M(s) = (C1 +D1K)(sI − (A+B1K))−1B2,

letting ‖Hzυ‖∞ = supω∈R σ(M(jω)I), where σ(M(s)) is the largest singular number of the ma-
trix M(s). The number ‖Hzυ‖∞ defined in this way is also called the Hardy norm of the transfer
function. The bound ‖Hzυ‖∞ < γ reflects the peculiarity of the conditional (suboptimal) H2/H∞
control theory in comparison with the theory of unconditional LQR optimization by the energy, in
this case, optimality criterion.

In control theory, the concept of H∞ control was pioneered by G. Zames; see his paper [1]
published in 1981. The main results of the H2/H∞ control theory, first established for linear
lime-invariant systems, e.g., [2, 3], were further generalized to time-varying ones and formulated in
state-space terms [4, 5]. The most fruitful generalization of the H2/H∞ control theory was obtained
within differential game theory [6]; subsequently, it became possible to investigate, from a uniform
standpoint, time-varying deterministic and stochastic [7] systems defined on a finite horizon and
systems with non-zero initial conditions for the state vector. Moreover, it became possible to
study infinite-dimensional dynamic control systems and even some types of nonlinear systems. The
detailed bibliography on these generalizations of the H2/H∞ control theory was provided in the
monograph [8]; see the introduction to Section 3.2.

The transition from the theory of time-invariant systems to that of time-varying ones naturally
required generalizing many concepts from the frequency-domain language to state-space terms. For
example, as it turned out in several cases, the usual definition of a stable time-invariant system is
convenient to be replaced by the concept of an exponentially stable system, an input-output stable
system, or a system stable in some other suitable sense. Using any of these definitions, one can
generalize the concepts of stabilizable, observable, etc., time-invariant system to the nonstationary
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case. For example, in the nonstationary case, a system ẋ = A(t)x+B(t)u is said to be stabilizable
if there exists a bounded matrix function K(t) such that the system ẋ = (A(t) +B(t)K(t))x is
exponentially stable. Here is another example: given ẋ = A(t)x+B(t)u and y = C(t)x+D(t)υ,
the pair (A(t), C(t)) is said to be detectable if there exists a bounded matrix function L(t) such
that the system ẋ = (A(t)− L(t)C(t))x is exponentially stable. Note that in H∞ control theory,
the need for generalization also dictated the appearance of the concept of the induced H∞ norm of
an operator instead of the norm of the matrix transfer function Hzυ(s), Re s > 0.

For a class of nondynamic causal controllers based on the system state vector x(·), the H2/H∞
control problem in the multiplicative case was solved in [9]. In other words, the controller was
sought in the form u(t) = K(t, x(·)|t0), t � 0 and, more narrowly, in the form u(t) = K(t)x(t). The
controlled plant in [9] was supposed to be stochastic with the diffusion coefficient ΦdW, multiplica-
tive by the state, control, and exogenous disturbance vectors; the case of a purely deterministic
plant (with zero diffusion) was not excluded from the analysis. However, the case of simple linear
diffusion of the form (Φ dW )(t) = B(t)dW (t) was not addressed therein. In this paper, the plant
remains generally multiplicative, but the linear diffusion case is also considered. The assumptions
D12 = 0, D′

11C1 = 0, and D′
11D11 = I were accepted regarding the matrix coefficients of the for-

mula z = C1x+D11u+D12υ; in this paper, we relax these restrictions and designate D11 by D1

and D22 by D2 in (1.2).

There is an interesting connection between the stochastic theory of finite-dimensional multiplica-
tive systems and the deterministic theory of matrix Lie algebras. The applications of Lie groups
to ordinary differential equations are well known; for example, see [10]. But the mathematical
apparatus of Lie group theory can also be used to find the fundamental matrices of stochastic mul-
tiplicative equations and integral representations for the solutions of such equations [11]. In this
case, the fundamental matrix Φ(t, τ) is a random function, and the general solution of the equation
perturbed by the disturbance h(t) is given by

x(t) = Φ(t, t0)x0 +

t∫
t0

Φ(t, τ) ◦ dh(τ).

In this formula, ◦dh denotes the Fisk–Stratonovich differential; for example, see [12].

Now we provide a small list of publications thematically close to the problem of analyzing the
systems of multiplicative type under consideration. The numerical approximation of the solution
of the stochastic equation

dxt = (Axt + f(xt))dt+
n∑

i=1

(Bixt + gi(xt))dwi, x(0) = x0 ∈ Rdm

with nonlinear functions f, gi : R
d → Rd was considered in [13]; by assumption, the matri-

ces A,Bi ∈ Rd×d take values in a matrix Lie algebra g with commutator relations [A,B] = 0,
[Bi, Bj ] = 0 for all i, j. The analysis of numerical algorithms for finding the so-called exponential
integrators [14] is an active area of research in both multiplicative equations and equations with
additive noise [15, 16]. The mean-square stability of numerical methods for calculating exponential
integrators was investigated in [17]. Group-theoretic methods are effective for numerical integration
of stochastic partial differential equations as well [18]. Among the works by Russian researchers, we
note the study of an infinite-dimensional stochastic multiplicative equation with operators A and B
acting in a separable Hilbert space [19]. By assumption, the operator A induces here a semigroup of
operators S(t), t > 0, of the class C0, which guarantees the well-posedness of the Cauchy problem
for the unperturbed equation Ẋt = AX(t).
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PROBLEMS IN THE THEORY OF H2/H∞ CONTROLLERS 137

The remainder of this paper is organized as follows. Sections 2 and 3 summarize some known
results of the H2/H∞ control theory with state-feedback and output-feedback controllers, respec-
tively. Section 4 is devoted to the theory of an output-feedback controller for linear time-varying
stochastic systems with linear Gaussian diffusion. This is the LEQG problem of risk-sensitive
control, which generalizes the usual LQG problem. Section 5 presents results concerning the con-
trol of stochastic time-varying systems with a state-feedback controller; Section 6, information on
the theory of multiplicative systems with a dynamic output-feedback controller. In Section 7, we
describe some elements of the theory of robust stochastic systems. Concluding remarks are given
in Section 8.

2. ELEMENTS OF THE H2/H∞ CONTROL THEORY FOR PLANTS
WITH STATE-FEEDBACK CONTROLLERS

The standard problem of the deterministic H2/H∞ control theory of both time-invariant and
time-varying control systems is formulated as follows: for a given γ > 0, find a conditionally optimal
controller in the class of all admissible controllers. A controller is said to be admissible if the closed-
loop system with this controller is stable and satisfies the condition ‖Hzυ‖∞ < γ. In the simple case
of a time-invariant system without control,

ẋ = Ax+Bυ, z = Cx, x(0) = 0,

the admissibility requirement takes the following form [20]: the matrix A is stable and the
norm of the transfer function M(s) = C(sI −A)−1B is bounded: ‖M(s)‖∞ < γ. According to
the Kalman–Yakubovich–Popov (KYP) lemma, also known as the Bounded Real (BR) lemma in
the literature [21], the admissibility condition is equivalent to each of the following two statements:
(i) There exists a matrix P̃ � 0 such that A′P̃ + P̃A+ P̃BB′P̃ + C ′C ≺ 0. (ii) The Riccati equa-
tion A′P + PA+ PBB′P + C ′C = 0 has a stabilizing solution P � 0 (i.e., the matrix A+BB′P
is stable).

If conditions (i) and (ii) are equivalent, then P ≺ P̃ and, therefor, 0 � P ≺ P̃ . Thus, checking
the controller’s admissibility is reduced to checking the existence (and some properties) of the
solutions of Riccati inequalities and/or equations. In the case of linear time-varying systems, the
algebraic Riccati equation makes room for a differential equation, i.e., the time derivative Ṗ is
added to the left-hand side of the equation for P in (ii). Consider the game-theoretic formulation
of the conditionally optimal H2/H∞ control problem in the class of admissible controllers. It is
based on the following observation: for the closed-loop system with an initial condition x(0) = 0,
the constraint ‖Hzυ‖∞ < γ is valid iff there exists a number ε > 0 such that, for all υ(·) ∈ L2[0,∞),

Jγ(u, υ) :=

∞∫
0

(γ2‖υ(t)‖2 − ‖z(t)‖2)dt � γ2ε

∞∫
0

‖υ(t)‖2dt. (2.1)

In the dynamic game, the first player (the controller designer) seeks to minimize the loss Jγ(u, υ)
by choosing the best control u∗(·), whereas the second player seeks to maximize it by choosing the
least favorable (worst-case) exogenous disturbance υ∗(·). In the case u(t) = K(t, x(·)|t0), the optimal
value of the payoff functional Jγ(u, υ) at the saddle point is written as infu supυ∈L2[0,∞) Jγ(u, υ).
These are the basic concepts and notation of H∞ control theory with state-feedback controllers for
deterministic (time-invariant and time-varying) systems.

The algebraic Riccati equation for P and the differential equation with the derivative Ṗ on its
left-hand side will be called associated with each other. The differential equation is interesting in
the sense of solutions P (·) for which every matrix P (t) is nonnegative definite, P (t) � 0, t � 0,
and those for which the matrix function t �→ A(t)−BB′P (t) is exponentially stable. It is often
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138 SHAIKIN

useful to pass to new variables in the plant’s equation and assign both associated Riccati equations,
algebraic and differential, to this particular state equation in the new variables. As an illustration,
we give a simple example of a deterministic control system of the form

ẋ = Ax+B1u+B2υ, z = C1x+D1u, x(0) = 0. (2.2)

Let G := D′
1D1 � 0; then D′

1z = D′
1C1x+D′

1D1u, which implies u = ū−G−1D′
1C1x, where

ū := G−1D′
1z is the new control vector. Replacing u(·) with ū(·), we write system (2.2) as

ẋ = Ãx+B1ū+B2υ, z = C̃1x+D1ū, (2.3)

where Ã = A−B1G
−1D′

1C1 and C̃1 = (I −D1G
−1D′

1)C1. The matrix K solves the original
minimax controller problem iff K̃ := K +G−1D′

1C1 solves the game-theoretic problem for (2.3)
with the vector ū(·). The pair (A,B1) is stabilizable iff the pair (Ã, B1) is such. The main result of
the application of differential game theory to the design of an H∞ state-feedback controller for a
linear time-invariant plant is formulated below (Lemma 1). Consider the Riccati differential equa-
tion on an infinite horizon (t ∈ [0,∞)) with the condition X(T ) = M for some matrix M � 0 and
some T < ∞ :

Ẋ + (A−B1G
−1D′

1C1)
′X +X(A−B1G

−1D′
1C1)

+ C ′
1(I −D1G

−1D′
1)C1 +X(B1G

−1B′
1 − γ−2B2B

′
2)X = 0.

(2.4)

We denote by XT (t) the solution of equation (2.4) corresponding to M = 0.

Lemma 1. Let the pair (Ã, C̃1) be detectable. Then:

(i) For each fixed t, XT (t) is nondecreasing in T.

(ii) If there exists a solution X � 0 of the algebraic equation with which equation (2.4) is associ-
ated, then there exists also a minimal such solution, denoted below by X+. In addition, X+ � XT (t)
for all T � 0. Moreover, if the pair (Ã, C̃1) is observable, then each solution X � 0 of the algebraic
equation is positive definite, X � 0.

(iii) If the solution X+ � 0 exists, then the controller

u∗(t) = K∗x(t), K∗ = −G−1(B′
1X +D′

1C1) (2.5)

ensures the equality

sup
υ∈L2[0,∞)

Jγ(K
∗x, υ) = x′0X

+x0. (2.6)

For details, we refer to [22].

3. OUTPUT-FEEDBACK CONTROLLERS WITH THE DEPENDENCE
ON EXOGENOUS DISTURBANCE

Now we present the results of [21, 23] concerning the design of an H2/H∞-controller based on
the output y(·) for a plant described by

ẋ = Ax+B1u+B2υ, z = C1x+D1u, y = C2x+D2υ. (3.1)

Here, υ is an exogenous disturbance and D2 �= 0. Consider a dynamic controller with the state
vector xc of the form

ẋc = Acxc +Bcy, u = Ccxc +Dcy. (3.2)
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PROBLEMS IN THE THEORY OF H2/H∞ CONTROLLERS 139

This controller generates an augmented system with the state vector x̄ := (x′, x′c)′. If the plant and
the dynamic controller are time-invariant systems, then the augmented system is such as well, and
its transfer function H̃zυ(s) relating υ to z has the form

H̃zυ(s) = (C1 +D1DcC2 D1Cc)

×
(
sI −

(
A+B1DcC2 B1Cc

BcC2 Ac

))−1 (
B2 +B1DcD2

BcD2

)
+D1DcD2.

(3.3)

It generalizes the formula for the transfer function

HK
zυ(s) = (C1 +D1K)(sI −A−B1K)−1B2 (3.4)

of the closed-loop system, i.e., the plant (3.1) with the nondynamic controller u(t) = K(t)x(t).
The below presentation will also involve the concept of an injective mapping L of the output y(·),
in some way dual to that of the mapping K defining the controller u = Kx. First, we restrict the
analysis to the condition Dc = 0. Consider the system without control

ẋ = Ax+B2υ + Ly, z = C1x, y = C2x+D2υ. (3.5)

The mapping L generates the transfer function

HL
zυ(s) = C1(sI −A− LC2)

−1(B2 + LD2)

of system (3.5). As mentioned in the Introduction, the mapping L is closely related to the definition
of a detectable system in the nonstationary case. The introduced concepts are sufficient to formulate
solvability conditions for the design problem of an output-feedback H∞ controller.

Lemma 2. Assume that for the plant (3.1) with Dc = 0, there exists a controller of the form (3.2)

such that the state matrix

[
A B1Cc

BcC2 Ac

]
of the augmented system is stable and the Hardy norm of

the transfer function H̃zυ(s) in (3.3) is bounded: ‖H̃zυ(s)‖∞ < 1. Then:

1) There exist a matrix K of the state-feedback controller u = Kx and a matrix X � 0 satisfying
the Riccati equation (2.4); in addition, the matrix A+B1K is stable and the Hardy norm of the
transfer function HK

zυ(s) in (3.4) is bounded, i.e., ‖HK
zυ(s)‖∞ < 1.

2) There exist a matrix L of the injective mapping of the output and a matrix Y � 0 such that

(A+ LC2)
′Y + Y (A+ LC2) + Y C ′

1C1Y + (B2 + LD2)(B2 + LD2)
′ ≺ 0;

in addition, the matrix A+ LC2 is stable and the Hardy norm of the transfer function HL
zυ(s) is

bounded, i.e., ‖HL
zυ(s)‖∞ < 1. The matrix Y satisfies the Riccati equation

(A−B2D
′
2Γ

−1C2)Y + Y (A−B2D
′
2Γ

−1C2)
′ +B2(I −D′

2Γ
−1D2)B

′
2

−Y (C ′
2Γ

−1C2 − γ−2C ′
1C1)Y = 0, Γ := D2D

′
2 � 0.

(3.6)

Note that this equation is obtained, based on the duality principle, from (2.4) by replacing the
coefficients A′, B′

1, C
′
1, and D1 with A,C2, B2, and D′

2, respectively and, hence, replacing G = D′
1D1

with Γ = D2D
′
2. Under statements 1) and 2) of Lemma 2 and additional conditions (the detectability

of the pairs (A−B1G
−1D′

1C1, (I −D1G
−1D′

1)C1), and (A,C2) and the stabilizability of the pairs
(A,B1) and (A−B2D

′
2Γ

−1C2, B2(I −D′
2Γ

−1D2))), it can be asserted [23, 24] that if the Riccati
equations for X (2.4) and for Y (3.6) admit minimal solutions X+ � 0 and Y + � 0, respectively,
and ρ(Y +X+) < γ2, then the dynamic game with the system of equations (3.1) and the payoff
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functional Jγ(·, ·) (2.1) has the finite value infu supυ∈L2
Jγ(Kx, υ). And the optimal minimizing

controller is given by the equations [22]

˙̂x = Ax̂+B1u+B2υ̂ + (I − γ−2Y +X+)−1(Y +C ′
2 +B2D

′
2)Γ

−1(y − ŷ),

u∗ = −G−1(B′
1X

+ +D′
1C1)x̂,

where υ̂ = γ−2B′
2X

+x̂ and ŷ = C2x̂+D2υ̂.

Remark. The results provided by Lemma 2 are valid for Dc = 0. If Dc �= 0, then block (11)
in the state matrix Acl is replaced by A+B1DcC2, see (3.3); for Hzυ we have Hzυ =

Ccl(sI −Acl)
−1Bcl +Dcl, where Bcl =

[
B2 +B1DcD2

BcD2

]
, Ccl = [C1 +D1DcC2 D1Cc], and

Dcl = D1DcD2. Interestingly, for Dc �= 0, the optimal minimizing controller coincides with the
above one in the case Dc = 0, see [21, 23].

4. OUTPUT-FEEDBACK H∞ CONTROLLERS FOR TIME-VARYING PLANTS
WITH GAUSSIAN DIFFUSION

Systems with Gaussian (linear) diffusion are the simplest in the class of linear stochastic systems.
Let

dx(t) = (A(t)x(t) +B1(t)u(t))dt +B2(t)dW (t), x(0) = x0,

dy(t) = C2(t)x(t)dt +D2(t)dW (t), y(0) = y0, 0 � t � T

((x(0), y(0)) and W (t) are often supposed to be independent). If (x(0), y(0)) is a Gaussian vector,
then (x(t), y(t)) is a Gaussian process. The theory of the controller based on the output y(·) will
be constructed starting from its interpretation as the minimax theory of output-feedback LQG
control [25]. In this theory [26, 27], the exponent of a quadratic functional is taken as an optimality
criterion:

JT (u) = 2τ log E exp
1

2τ

⎡⎣x′(T )Mx(T ) +

T∫
0

F (x(t), u(t))dt

⎤⎦ ,
where F (x, u) is a quadratic form on the space of vector pairs (x, u). As usual, the problem is to
find infu(·) JT (u(·)). This is a risk-sensitive control problem, designated as the LEQG problem; in
the limit as τ → ∞, one obtains the standard LQG problem of risk-neutral control. For arbitrary τ ,
the controller has the form u(t) = Kx̂(t), where x̂ is the state vector of the filter estimating x(t)
from the measured output y(·).

We draw the reader’s attention to the analogy between the results of the previous and current
sections. However, note that Section 3 has presented mainly the results concerning the theory of
time-invariant systems defined on an infinite horizon 0 � t < ∞, whereas those below are related
to time-invariant systems defined on 0 � t < T , T < ∞. For this reason, the algebraic Riccati
equations of Section 3 should be replaced by the Riccati differential equations in this section when
comparing the results. Of course, a complete theory of systems of both types, deterministic and
stochastic Gaussian, covers stationary and nonstationary plants.

The control problem in this section is solved under the following assumptions. First, the matrix

of the quadratic form F (x, u), written as

(
R(t) Υ(t)
Υ(t)′ G(t)

)
, satisfies the condition R−ΥG−1Υ′ � 0.

If we define the regulated output z = C1x+D1u and let F (x, u) = z′z to clarify the analogy with
the previous section results, then R−ΥG−1Υ′ = C ′

1C1 − C ′
1D1G

−1D′
1C1 � 0. Suppose also that

M � 0 and τ = γ2. Second, we accept conditions (i)–(iii) below (see Lemma 3).
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Lemma 3. Assume that:

(i) The Riccati differential equation associated with the algebraic equation (3.6), with the initial
condition Y (0) = Y0, has a solution Y = Y ′ such that Y (t) � c0I for some c0 > 0 and all t ∈ [0, T ].

(ii) The Riccati differential equation associated with the algebraic equation (2.4), with the initial
condition X(T ) = M, has a solution X such that X(t) = X ′(t) � 0 for all t ∈ [0, T ].

(iii) For each t ∈ [0, T ], ρ(Y (t)X(t)) < τ, meaning that the matrix I − 1
τ Y (t)X(t) has only pos-

itive eigenvalues.

Then the optimal control is provided by the state-feedback controller

u∗(t) = −G−1(B′
1(t)X(t) + Υ′(t))x̂(t),

where the estimate x̂ of the state vector x from the observed output y(·) is given by the filter

dx̂(t) =

(
A−B1G

−1Υ′ −
(
B1G

−1B′
1 −

1

τ
B2B

′
2

)
X

)
x̂(t)dt

+

(
I − 1

τ
Y X

)−1

(Y C ′
2 +B2D

′
2)Γ

−1
(
dy(t)−

(
C2 +

1

τ
D2B

′
2X

)
x̂(t) dt

)
.

Lemma 3 was established in [22, 28].

A new aspect of the theory is the need to answer the following question: What is the class
of admissible controllers in this theory? It is required that in the notation e(t) := x(t)− x̂(t),
ε(t) := e(t) + 1

τ Y Xx̂(t), the process

α(t) := B′
2Y ε(t)−D′

2Γ
−1(C2Y +D2B

′
2)Y

−1e(t)

would generate the exponent

ζ(t) = exp

⎧⎨⎩
t∫

0

α′(s)dW (s)− 1

2

t∫
0

‖α(s)‖2ds
⎫⎬⎭ ,

which is known to be a martingale on [0, T ]; see [29]. This condition holds at least for the linear
controller [28]. Then it is easy to check the following fact: in the class of admissible controllers,
the infimum of the optimality criterion is ensured by the linear controller.

Also, some comments are needed to generalize the results of this section to the case of infinite-
horizon systems (T = ∞). The coefficients in the plant’s equations at T = ∞ should be supposed
to be independent of t, the condition y(0) = 0 should be imposed, and the cost functional should be
defined as J(u) := limT→∞ 1

T JT (u). Next, the Riccati differential equations should be replaced by
the algebraic ones, and assumptions (i)–(iii) of Lemma 3 should be further specified by replacing
the existence condition for a symmetric solution Y with two conditions:

(a) R−ΥG−1Υ′ � 0.

(b) The pair of matrices (A−B1G
−1Υ′, R−ΥG−1Υ′) is detectable, and the pair

(A−B2D
′
2Γ

−1C2, B2(I −D′
2Γ

−1D2)) is stabilizable.

In addition, the designations X and Y in Lemma 3 should be replaced by the commonly used
X∞ and Y∞, and the following assumptions should be made:

(i)′ The equation for Y admits a minimal solution Y∞ � 0.

(ii)′ The equation for X admits a minimal solution X∞ � 0.

Then it is proved that X∞ and Y∞ can be obtained from X = XT and Y = YT , respectively, by
passing to the limit as T → ∞. This result constitutes the next lemma.
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Lemma 4. Under the above conditions, the following statements are true:

(i) For M = 0, the differential equation associated with (2.4) has a solution XT (t) � 0 such that
XT (t) → X∞ as T → ∞.

(ii) If Y∞ � Y0 � 0, then for M = 0, the differential equation associated with (3.6) has a solution
Y (t;Y0) such that Y (t;Y0) → Y∞ as t → ∞.

(iii) For each T > 0 and t ∈ [0, T ], the matrices Y (t;Y0) and XT (t;M) satisfy the inequality
ρ(Y (t)X(t)) < τ.

See [22, 28].

Lemma 4 is proved as follows. First, we check that for M = 0, the solution XT (t) � 0 of
equation (2.4) converges to X∞ as T → ∞. To verify statement (ii) of Lemma 4, we consider the
system

η̇ = A′η + C ′
2ν +R1/2ω, η(0) = η0, ζ = B′

2η +D′
2ν,

where η ∈ Rn is the state vector, ν ∈ Rl is the control input, ω ∈ Rq is a disturbance, and ζ ∈ Rp

is the regulated output, and define the functionals

J̄T,Y0
τ (ν, ω) := η(T )′Y0η(T ) +

T∫
0

(‖ζ(t‖2 − τ‖ω(t)‖2)dt,

J̄τ (ν, ω) :=

∞∫
0

(‖ζ(t)‖2 − τ‖ω(t)‖2) dt, ω ∈ L2[0, T ].

(4.1)

Applying then differential game theory, we conclude that infν supω J̄τ (ν, ω) < ∞ on an infinite
horizon and there exists the limit Y∞ for equation (3.6) with the solutions YT for each T < ∞.
Thus, equation (3.6) has a minimal solution Y∞ � 0, and by Lemma 1 of Section 2,

inf
ν
sup
ω

J̄τ (ν, ω) = η′0Y∞η0. (4.2)

Finally, since the variables X+ and Y∞ are dual, the formula ν∗ = −Γ−1(D2B
′
2 + C2Y∞)η is dual to

formula (2.5), written as u∗ = K∗x(t), whereK∗ = −G−1(D′
1C1 +B′

1X
+). Similarly, formulas (2.6)

and (4.2) are dual as well. However, the inequality Y∞ � Y0 has no analog in Lemma 1. But
formula (4.1) and Y0 � Y∞ obviously imply J̄T,Y0

τ � J̄T,Y∞
τ for ν = ν∗, and we ultimately arrive

at (4.2). See [22, 28].

5. STATE-FEEDBACK H∞ CONTROLLERS FOR UNCERTAIN STOCHASTIC SYSTEMS

This section considers a general multiplicative stochastic system with a state-feedback controller.
The controlled plant is described by equations (1.1) and (1.2); the controller, by the formula
u(t) = Kx(t); the closed-loop system state, by the equation

dx = ((A+B1K)x+B2υ)dt+A0xdw0 +B01Kxdw1 +B02υdw2. (5.1)

System (5.1) is uncertain due to the dependence of its dynamics on the unknown parameter K to be
found. The coefficient at x in the diffusion component of this equation, equal to A0dw0+B01Kdw1,
can be written as

([A0 0] + [0 B01]K)dW1, dW1 :=

(
dw0

dw1

)
.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 2 2025



PROBLEMS IN THE THEORY OF H2/H∞ CONTROLLERS 143

Thereby, we replace the three Wiener processes w0, w1, and w2 in (5.1) with the two processes W1

and w2. In other words, keeping the same notation for the matrix coefficients, it is possible to let
w0 = w1 in (5.1):

dx = ((A+B1K)x+B2υ)dt+ (A0 +B01K)xdw1 +B02υdw2. (5.2)

Further, without loss of generality, we take

z(t) = C1x(t) +D1u(t), y(t) = C2x(t) +D2υ(t)

instead of the pair of equations (1.2). For t � s, where s is the initial time instant, the closed-loop
system

dx = (A+B1K)xdt+ (A0 +B01K)xdw1, x(s) = h, (5.3)

obtained from (5.2) with υ(t) ≡ 0, will be called nominal. This system is time-varying even under
constant matrix coefficients in (5.2), and its stability should be understood, e.g., as exponential
stability in mean square if the solution x(t) is desired to be an element of the space L2(s,∞) of all
functions for which

∫∞
s ‖x(t)‖2dt < ∞. In the nonstationary case, one should find a suitable analog

of the boundedness ‖Hzυ‖∞ < γ of the induced norm of the operator Hzυ. The following condition
is a suitable stochastic analog of norm boundedness: there exists a constant ε > 0 such that for
x(s) = 0,

E

∞∫
s

(
‖(C1 +D1K)x(t)‖2 − γ2‖υ(t)‖2

)
dt � −εγ2E

∞∫
s

‖υ(t)‖2dt (5.4)

for each υ ∈ L2(s,∞). Note that the exponential stability of the nominal system is a sufficient
condition for equation (5.2) to have solutions belonging to L2(s,∞) for any υ ∈ L2(s,∞).

Now we formulate the stochastic H∞ controller design problem solved in this section: for system
(5.2), find a matrix K such that the nominal system (5.3) is exponentially stable in mean square,
and the closed-loop system (5.2) satisfies the requirement (5.4) of the H∞ boundedness of the norm
of the transfer operator Hzυ. As in Section 2, the most fruitful approach for the stochastic case
is to apply the theory of linear-quadratic differential games associated with the Itô multiplicative
equation and the functional J(u, υ) =

∫∞
s E(z′(t)z(t) − γ2‖υ(t)‖2)dt. Here, the bridge between the

theory of H∞ controllers and game theory is the stochastic BR lemma; see the presentation below,
following the monograph [8].

Suppose that the system dx(t) = Ax(t)dt+A0x(t)dw1(t), x(s) = h, corresponding to the choice
u(·) ≡ 0 and υ(·) ≡ 0 in equation (5.2), is exponentially stable (and hence the matrix A is stable)
and there exists a constant ε2 such that J2(0, υ) � −ε2

∫∞
0 ‖υ(t)‖2dt for all υ ∈ L2(0,∞). Then the

following stochastic BR lemma is true.

Lemma 5. Part 1 (existence):

(a) For each s � 0 and h ∈ L2(Ω,Fs, P ), there exists a unique disturbance υs2(·) ∈ L2(s,∞) such
that J(0, υs2(·)) = supυ∈L2(s,∞) J(0, υ).

(b) There exists a matrix X2 � 0 such that supυ∈L2(s,∞) J(0, υ) = E〈h,X2h〉.
(c) For any T > 0, given X2T (T ) = 0, there exists a unique solution X2T (·) � 0 of the generalized

Riccati equation

Ẋ2T +A′X2T +X2TA+A′
0X2T +R+X2TB2(I −B′

02X2TB02)
−1B′

2X2T = 0.
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Part 2 (minimax solution):

(d) The worst-case disturbance υs2T (·) maximizing the functional

JT (u, υ) =

T∫
s

E(z′(t)z(t) − γ2‖υ(t)‖2)dt, s � T < ∞,

has the form

υs2T = (I −B′
02X2T (t)B02)

−1B′
2X2T (t)x

s
2T (t),

where xs2T (·) is the optimal trajectory representing the solution of the closed-loop system

dx(t) = (A+B2(I −B′
02X2T (t)B02)

−1B′
2X2T (t))x(t)dt+A0x(t)dw1(t)

+B02(I −B′
02X2T (t)B02)

−1B′
2X2T (t)x(t)dw2(t), x(s) = h.

(e) The matrix X2 in item (b) is also the minimal solution of the generalized Riccati equation

A′X2 +X2A+A′
0X2A0 +R+X2B2(I −B′

02X2B02)
−1B′

2X2 = 0,

with the property I −B′
02X2(t)B02 � 0.

We formulate the main theorem of Section 5 for the case of a multiplicative system on an infinite
horizon.

Theorem 1. Under the assumptions of the stochastic BR lemma, let ‖C1x+D1u‖2 > ε1‖u‖2 for
some ε1 > 0 and all x ∈ Rn, u ∈ Rm. Then:

(a) For h ∈ L2(Ω,Fs, P ) and all s � 0, there exists a unique minimax pair for the functional
J(u, υ).

(b) There exists a unique solution X � 0 of the algebraic Riccati equation

A′X +XA+A′
0XA0 +R+XB2(I −B′

02XB02)
−1B′

2X

− (XB1 +A′
0XB01 +Q)(G+B′

01XB01)
−1(XB1 +A′

0XB01 +Q)′ = 0
(5.5)

such that I −B′
02XB02 � 0 and V = E〈h,Xh〉.

(c) The minimax pair is given by u = F1x, υ = F2x, where

F1 =− (G+B′
01XB01)

−1(XB1 +A′
0XB01 +Q)′,

F2 = (I −B′
02XB02)

−1B′
2X).

(5.6)

(d) The closed-loop stochastic system

dx = (A+B1F1 +B2F2)xdt+ (A0 +B01F1)xdw1(t) +B02F2xdw2(t) (5.7)

with x(s) = h is exponentially stable in mean square.

It seems interesting to compare the conclusions in Theorem 1 with the results of solving the
same problem on a finite horizon [30]. Let

JT (u, υ) =

T∫
s

E(z′(t)z(t) − γ2‖υ(t)‖2)dt, s � T < ∞.
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Consider the standard stochastic control problem inf
u∈L2[s,T ]

JT (u, 0). The solution X1T � 0 of the

generalized Riccati equation

Ẋ1T +A′X1T +X1TA+A′
0X1TA0 +R− (X1TB1 +A′

0X1TB01 +Q)

× (G+B′
01X1TB01)

−1(X1TB1 +A′
0X1TB01 +Q)′ = 0, X1T (T ) = 0,

(5.8)

is associated with this problem. The equation has a unique solution X1T � 0 determining the
optimal controller

u1T = −(G+B′
01X1TB01)

−1(B′
1X1T +B′

01X1TA0 +Q′)x.

The solutions X1T and X2T of both Riccati differential equations allow solving the minimax control
problem with the general criterion JT (u, υ) on a finite horizon. The following result was established
in [8].

Theorem 2. Let F (x, u) > ε1‖u‖2 and J(0, υ) � −ε2
∫∞
0 ‖υ(t)‖2dt for all υ ∈ L2(0,∞). Then the

game-theoretic minimax problem with the criterion JT (u, υ) has a saddle point (uT (·), υT (·)). The
Riccati differential equation

ẊT +A′XT +XTA+A′
0XTA0 +R− (XTB1 +A′

0XTB01 +Q)(G+B′
01XTB01)

−1

×(XTB1 +A′
0XTB01 +Q)′ +XTB2(I −B′

02XTB02)
−1B′

2XT = 0, XT (T ) = 0
(5.9)

has a unique solution XT � 0. The saddle point of the game is given by uT = F1Tx, υT = F2Tx,
where

F1T = −(G+B′
01XTB01)

−1(B′
1XT +B′

01XTA0 +Q′),

F2T = (I −B′
02XTB02)

−1B′
2XT .

The proof of this theorem is quite complicated, it uses results from several works [31–33].

It is interesting to compare the Riccati equations (5.6) and (5.5): the last term on the right-
hand side of (5.6) vanishes in (5.5). Of course, this is because equation (5.5) is associated with the
criterion JT (u, 0) whereas equation (5.6) with the criterion JT (u, υ). The appearance of the term
XTB2(I−B′

02XTB02)
−1B′

2XT )
−1 seems quite natural in the problem of maximizing the functional

JT (u, υ) with respect to the second argument.

Also, it is interesting to represent the criterion JT (u, υ) through the functions uT and υT deter-
mining the saddle point (uT (·), υT (·)). Suppose that a solution XT of equation (5.6) exists on the
closed interval [T − α, T ], and let s be a point of this interval. Then, applying Itô’s formula to the
quadratic form x(t)′XTx(t), where x(t) satisfies equation (1.1) under the constraint w0 = w1, we
obtain

JT (u, υ) = E

T∫
s

‖(I −B′
02XTB02)

1
2 (υ(t) − F2Tx(t))‖2dt

+ E

T∫
s

‖(G+B′
01XTB01)

1
2 (u(t)− F1Tx(t))‖2dt.

Therefore, the saddle point satisfies the condition

JT (uT , υ) � JT (uT , υT ) = Eh′XT (s)h � JT (u, υT ).

For a sufficiently small parameter α, this condition is used to prove the existence of a solution of
the Riccati differential equation (5.6) on a finite interval t ∈ [s, T ].
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6. OUTPUT-FEEDBACK H∞ CONTROLLERS FOR STOCHASTIC SYSTEMS
WITH MULTIPLICATIVE DISTURBANCES

Consider an Itô stochastic differential equation of the form

Σ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx(t) = (Ax(t) +B1υ(t) +B2u(t))dt+A0x(t)dw0(t)

+ B01υ(t)dw1(t) +B02u(t)dw2(t), x0 ∈ Rn

z(t) = C1x(t) +D11υ(t) +D12u(t)

y(t) = C2x(t) +D21υ(t), t ∈ [0, T ].

(6.1)

The controller in the feedback loop is a deterministic dynamic system with a state vector x̂, de-
scribed by the equations

dx̂(t) = Akx̂(t)dt+Bk y(t)dt, u(t) = Ckx̂(t) +Dk y(t), (6.2)

where all matrix coefficients are to be determined.

We denote by x̄ the state vector of the closed-loop system and let x̄′ := (x′, x̂′). The stochastic
equation for x̄ is obtained by some cumbersome, albeit elementary, calculations. As is easily verified,
the functions t �→ x̄(t), t �→ z(t) must satisfy the equations

Σ2 :

⎧⎪⎪⎨⎪⎪⎩
dx̄(t) = Aclx̄(t) dt+Bclυ(t) dt+A0

clx̄(t)dw0(t)

+ B0
clυ(t)dw1(t) +A1

clx̄(t) dw2(t) +B1
clυ(t) dw2(t)

z(t) = Cclx̄(t) +Dclυ(t), t ∈ [0, T ].

(6.3)

The formulas expressing the coefficients of the equations of the closed-loop system Σ2 are directly
derived; for example, see [34].

The main result of the theory of the dynamic output-feedback controller is provided immediately
below.

Theorem 3. For system (6.1) and γ > 0, the following statements are equivalent:

(i) There exists a controller (6.2) such that the corresponding closed-loop system (6.3) is inter-
nally stable and ‖Hzυ‖∞ < γ.

(ii) There exists a matrix function P : t �→ P (t) ≺ 0 such that M(γ, P ) � 0 for all t ∈ [0, T ].

See [7, Theorem 3.3]. Here, M(γ, P ) is the block matrix of dimensions 2 × 2 for a quadratic
form in the space of vector pairs

(x̄
υ

)
.

For the further presentation, it is convenient to write the condition M(γ, P ) � 0 in equivalent
form, replacing the block diagonal matrix diag{M(γ, P ), I} with a block matrix TN (γ, P )T ′ � 0
of dimensions 3× 3, where

N (γ, P ) =

⎛⎜⎝PAcl +A′
clP + S11 PBcl + S12 C ′

cl

B′
clP + S21 γ2I + S22 D′

cl

Ccl Dcl I

⎞⎟⎠ , T =

⎛⎜⎝ I O −C ′
cl

O I −D′
cl

O O I

⎞⎟⎠ .

The matrices Sij were found in [34]. For the blocks (submatrices) Nij of the nonnegative definite
matrix N (γ, P ), the formulas presented therein are

N11 = P (A0 +BIMkC
I) + (A0 +BIMkC

I)′P + S11,

N12 = P (B0 +BIMkD
0
21 + S12), N13 = (C0 +D0

12MkC
I)′,

N22 = γ2I + S22, N23 = (D11 +D0
12MkD

0
21)

′, N33 = I,
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where Mk =

(
Ak Bk

Ck Dk

)
is the parameter matrix of the dynamic controller. The matrices

Acl, Bcl, Ccl, and Dcl are expressed affinely through the matrix Mk :

Acl = A0 +BIMkC
I , Bcl = B0 +BIMkD

0
21,

Ccl = C0 +D0
12MkC

I , Dcl = D11 +D0
12MkD

0
21,

with some matrix coefficients [30]. We represent the matrix N (γ, P ) as the sum of a matrix H,
independent ofMk, and two matrices that linearly depend onMk. As a result, H+Q′M ′

kR+R′MkQ
with some matrices Q and R and a nonnegative definite matrix H. According to the stochastic
generalization [7] of the projection lemma from the theory of linear matrix inequalities (LMIs,
see [35]), the LMI

H +Q′M ′
kR+R′MkQ � O

has a solution Mk iff the matrix H is positive definite on the null subspaces kerQ and kerR of the
matrices Q and R, respectively.

The projection lemma gives a necessary and sufficient condition for ‖Hzυ‖∞ < γ. The condition
is formulated in terms of LMIs instead of matrix differential equations. This lemma settles the
issue about the admissibility conditions of the controller Mk and, moreover, allows calculating the
parameters Ak, Bk, Ck, and Dk of the controller if they are unknown [7].

7. STOCHASTIC ROBUST ANALYSIS OF THE SYSTEM
WITH PARAMETRIC PERTURBATION

Let

dx(t) = Ax(t)dt+A0x(t)dw1(t), 0 < t < T, (7.1)

be a nominal stochastic system and

dx(t) = (A+BΔC)x(t)dt+A0x(t)dw1(t) +B0ΔCx(t)dw2(t) (7.2)

be its stochastic disturbance with a simultaneous parametric perturbation of the matrix parame-
ter A. In system (7.2), the perturbing parameter is an arbitrary matrix Δ from the set D = Rl×q

of all matrices of dimensions l × q. Being time-varying, the nominal system (7.1) is assumed to be
stable in the following sense: there exists a constant c > 0 such that E

∫∞
0 ‖x(t)‖2dt � c‖x0‖2, where

x(·) = x(·, x0) is the trajectory of equation (7.1) starting at x0 ∈ Rn. The Wiener processes w1 and
w2 are independent, the perturbing force is a state-multiplicative process, and the uncertainty of
system (7.2) is measured by the norm ‖Δ‖ of the matrix Δ.

Assume that ρ > 0 is a small number. For small ‖Δ‖ < ρ, system (7.2) is close to the unperturbed
one (7.1) and is probably stable as well. What is the value ρmax of the parameter ρ under which
the stability of system (7.2) is ensured for each Δ from the set D = {Δ : ‖Δ‖ < ρmax}? It is natural
to call the number ρmax the robust stability radius of system (7.1) with respect to uncertainties
Δ ∈ D. Accordingly, we introduce the following definition: the number rD = inf{‖Δ‖ : system (7.2)
with the uncertainty Δ is unstable} is called the robust stability radius of system (7.1).

Below, to relate robust stability to H∞ control analysis (based on the stochastic BR lemma),
let us address the standard plant of the bilinear stochastic H∞ control theory:{

dx(t) = Ax(t)dt+Bυ(t)dt+A0x(t)dw1(t) +B0υ(t)dw2(t)

z(t) = Cx(t).
(7.3)
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Interpreting υ as a control action, we consider a block with the input z and output υ = Δz in the
feedback loop. Then the closed-loop system becomes the perturbed system (7.2). In H∞ control
theory, the operator associated with this system is a disturbance operator L : υ �→ z, specifying the
effect of an exogenous disturbance (here, control) υ on the output z. The operator L acts from the
space of functions υ(·) into the space of functions z(·) = Cx(·), where x(·) = x(·, υ, x0)|x0=0. Thus,
L : υ(·) �→ Cx(·, υ, 0).

The above definition of the robust stability radius is generalized to nonstationary and non-
linear uncertainties. For each t ∈ R+, let Δ(t, ·) be a linearly bounded mapping Rq → Rl,
i.e., ‖Δ(t, y)‖ � K‖y‖ for some K > 0 and all t ∈ R+ and y ∈ Rq. In addition, assume that
this mapping is Lipschitz bounded: for any T > 0 there exists a constant L(T ) such that
‖Δ(t, y1)−Δ(t, y2)‖ � L(T )‖y1 − y2‖ for all y1, y2 ∈ Rq and all t ∈ [0, T ]. The uncertainty Δ of
this kind is nonlinear and nonstationary. Its value is found as the smallest K in the definition of
linear boundedness, and the equation associated with such uncertainty has the form

dx(t) = (Ax(t) +BΔ(t, Cx(t)))dt+A0x(t)dw1(t) +B0Δ(t, Cx(t))dw2(t). (7.4)

Let Dtn be the set of all such uncertainties. We denote by xΔ(·, x0) the solution of equa-
tion (7.4), which is assumed to be unique in the class of random functions L2([0, T ];L2(Ω, Rn)),
and call system (7.4) stable if its solutions satisfy the condition

∫∞
0 E‖xΔ(t, x0)‖2dt � c‖x0‖2 for

some constant c. In H∞ control theory, it is required to ensure the inequality ‖Lzυ‖ < γ; in ro-
bust systems theory, the inequality ‖Δυz‖ < ρ. We choose γ as small as possible and ρ as large as
possible.

Due to the linear and Lipschitz boundedness conditions of the function Δ, equation (7.4) has
a unique solution xΔ(·, x0), which is a stochastic process with bounded second moments [36]. In
integral form, equation (7.4) is written as

xΔ(t) = x0 +

t∫
0

(AxΔ(s) +BυΔ(s))ds +

t∫
0

[A0xΔ(s) B0υΔ(s)]dw(s), t ∈ [0, T ],

for each T > 0, where υΔ(·) = Δ(·, CxΔ(·)), w(s) = [w1(s), w2(s)]
′. Let ‖Δ‖ < ‖Lzυ‖−1, then there

exists a number γ > ‖Lzυ‖ such that γ‖Δ‖ < 1. In H∞ control theory, the functional

JT (x
0, υ) =

T∫
0

E[γ2‖υ(t)‖2 − ‖z(t)‖2]dt

is given by the well-known formula

JT (x
0, υ) = 〈x0, P (0)x0〉 − E〈x(T ), P (T )x(T )〉 +

T∫
0

E

〈(
x(t)

υ(t)

)
,M(P (t))

(
x(t)

υ(t)

)〉
dt. (7.5)

According to the stochastic BR lemma, for any γ > 0 the following statements are equivalent:

(i) There exists a matrix P ≺ 0 such that M(P ) � 0.

(ii) The equation for x(·) is internally stable, with ‖Lzv‖ < γ.

The relation M(P ) � 0 implies M(P ) � δ2I for some number δ > 0. Calculating JT (x
0, υ) (7.5)

for x(·) = xΔ(·, x0) and υ(·) = υΔ(·) yields

JT (x
0, υΔ) =

T∫
0

E[γ2‖Δ(t, CxΔ(t))‖2 − E‖CxΔ(t)‖2]dt. (7.6)

To proceed, we formulate an important result on the stability of the uncertain system (7.4).

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 2 2025



PROBLEMS IN THE THEORY OF H2/H∞ CONTROLLERS 149

Theorem 4. Assume that system (7.1) with Δ = 0 is stable and the uncertainty Δ,Δ �= 0, satis-
fies the condition ‖Δ‖ = sup{‖Δ(t, y)‖�‖y‖ : t > 0, y ∈ Rq, y �= 0} < ‖L‖−1, where L = Lzυ. Then
the perturbed (uncertain) system (7.4) is stable. In particular, rDtn � ‖L‖−1.

Indeed, since

γ2‖Δ(t, CxΔ(t)‖2 � γ2‖Δ‖2‖CxΔ(t)‖2 � γ2‖CxΔ(t)‖2

by the condition ‖L‖‖Δ‖ < γ‖Δ‖ < 1, from (7.6) it follows that JT (x
0, υΔ) � 0. By analogy, letting

x(·) = xΔ(·, x0), υ(·) = υΔ(·), and M(P ) � δ2I, we estimate the integral in (7.5) as

T∫
0

δ2E{‖xΔ(t)‖2 + ‖υΔ(t)‖2}dt �
T∫
0

δ2E‖xΔ(t)‖2dt.

Thus, for x(·) = xΔ(·, x0) and υ(·) = υΔ(·), formula (7.5) leads to the inequality

E〈xΔ(T ), (−P )xΔ(T )〉 � 〈x0, (−P )x0〉 −
T∫
0

δ2E‖xΔ(t)‖2dt

for any T > 0. The left-hand side of this inequality is positive due to −P � 0; therefore,∫ T
0 δ2E‖xΔ(t)‖2dt � ‖P‖‖x0‖2/δ2. This proves the stability of system (7.4).

As is easily verified, the perturbed closed-loop system obtained by substituting υ = Δz into
equation (7.3) can be reduced to

dx̄(t) = (Acl +BclΔCcl)x̄(t)dt+
(
A0

cldw1(t) +B0
clΔCcldw2(t)

)
x̄(t),

where x̄ := (x, x̂). Its coefficients with the cl subscript are calculated straightforwardly. In combi-
nation with Theorems 3 and 4, this result gives the following fact.

Lemma 6. Let γopt be the infimum of those γ � 0 for which there exists a dynamic controller
ensuring the internal stability of the closed-loop system (7.4) and the condition ‖Lcl‖ < γ. Then for
any γ > γopt, there exists a controller Δ such that the corresponding closed-loop system (7.4) has a
robust stability radius rD(Acl, Bcl, Ccl, A

0
cl, B

0
cl) > γ−1.

For details, we refer to [7].

8. CONCLUSIONS

The topic of this paper has been the H2/H∞ branch of general control theory for technical
systems (plants). This branch deals with, first, the problems of controller analysis and, second,
the problems of controller design, i.e., optimization in the class of admissible controllers identified
at the analysis stage. Note that H∞ control theory solves the problem of rejecting an exogenous
disturbance acting on a plant in the closed loop with an admissible controller. An admissible
controller ensures that, first, the closed-loop system (plant + controller) is stable and, second, the
H∞ norm of the transfer operator relating an exogenous disturbance υ to a regulated output z is
below a threshold γ > 0, set a priori by the designer: ‖Hzυ‖∞ < γ. The controller is defined as a
functional mapping K : y �→ u of an observed output y (measured by a noisy sensor) into a control
action u. In this problem statement, the system must have two inputs υ and u as well as two
outputs z and y. Further, the system must be stochastic, given by an Itô stochastic equation whose
diffusion term is not arbitrary but of a partial (multiplicative) structure; however, it is not the same
as the structure in the linear Itô equation. The stochastic nature of the system is due to that of,
first, the exogenous disturbance and /or observed output and, second, the nominal (unperturbed)
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system with zero exogenous disturbance. The standard model of a stochastic system in H∞ control
theory is a perturbed system. And the nominal system is perturbed by two stochastic forces: the
force B1υdt (which may be deterministic) and the stochastic force B0υdw2. The presence of both
types of disturbances is an essential point of the most complete generalization of H∞ control theory.
This is the case for the H∞ controller design problem in the statistical H2/H∞ control theory.

On the other hand, robust control theory deals with uncertain systems, their robust stability,
and calculation of the stability radius of closed-loop systems. The question arises: What is the
relation between the theories of controllers for stochastic systems in robust control and H∞ control
theory? A detailed answer to this question has been provided in Section 7 of the paper. As it
turned out, in H∞ control theory, of interest are the operator Hzυ : υ �→ z and its induced norm;
in robust control theory, the operator Δ : z �→ υ and its norm ‖Δ‖, which plays a crucial role when
determining the stability radius of an uncertain system. Various aspects of the linear theory of
stochastic robust systems were reflected in the monograph [37].

The theory of multiplicative stochastic systems presented in the review is some generalization of
the linear theory since the diffusion term in the state equation is taken here as multiplicative instead
of linear. An unconventional approach to the theory of Gaussian systems has been described in
Section 4. Also, note interesting results of the stochastic theory of controllers based on the observed
output y, also discussed in the review. Here, we have to pass to an augmented system with the
state vector x̄ = (x, x̂), where x̂ is the controller’s state vector calculated from the output y. After
that, it seems interesting to compare the theory of such controllers with those of deterministic ones
and controllers based on the state vector x.

Finally, let us emphasize possible lines to develop further the stochastic H2/H∞ control theory
and its generalizations. In this context, we mention works on control theory for time-invariant
systems with bounded spectral characteristics [38], some classes of nonlinear systems [39], both
robust [40] and nonrobust, and systems with non-Gaussian uncertainties [41] and incomplete in-
formation about the state vector [42, 43]. Research into the control theory of discrete systems
continues as well.
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