Стохастические системы

© 2025 г. Р.С. БИРЮКОВ, канд. физ.-мат. наук (ruslan.biryukov@itmm.unn.ru), E.C. БУБНОВА (bubnova@itmm.unn.ru)

(Нижегородский государственный университет им. Н.И. Лобачевского)

ОБОБЩЕННОЕ \mathcal{H}_2 -УПРАВЛЕНИЕ ЛИНЕЙНОЙ НЕПРЕРЫВНОЙ СИСТЕМОЙ С МАРКОВСКИМИ ПЕРЕКЛЮЧЕНИЯМИ НА КОНЕЧНОМ ГОРИЗОНТЕ 1

Для линейной непрерывной нестационарной системы с марковскими переключениями вводится понятие обобщенной \mathcal{H}_2 -нормы как максимальное значение максимального по времени математического ожидания квадрата евклидовой нормы целевого выхода при условии, что сумма квадрата энергии внешнего возмущения и квадратичной формы начального состояния системы равна единице. Обобщенная \mathcal{H}_2 -норма характеризуется как в терминах системы матричных дифференциальных уравнений Риккати, так и в терминах линейных матричных неравенств. Показано, что задача синтеза управлений в классе линейных нестационарных обратных связей по состоянию, при которых обобщенная \mathcal{H}_2 -норма замкнутой системы не превосходит заданной положительной величины, сводится к решению задачи полуопределенного программирования. Эффективность предложенного подхода продемонстрирована результатами численных экспериментов.

Kлючевые слова: обобщенная \mathcal{H}_2 -норма, линейные матричные неравенства, однородные цепи Маркова, многокритериальное управление.

DOI: 10.7868/S2413977725120049

1. Введение

В современных задачах управления широкое распространение получили системы со случайной структурой, в частности, системы с марковскими переключениями [1–6]. Такие системы имеют конечное число различных режимов функционирования, в каждом из которых динамика описывается своей системой дифференциальных уравнений. Между режимами в случайные моменты времени происходят скачкообразные переходы, определяемые эволюцией однородной марковской цепи (марковские переключения). Простейшие задачи, приводящие к системам со случайной структурой, это задачи управления с нарушениями и отказами [2], задачи синхронизации в сетях переменной топологии [3, 4], задачи многоагентного управления [5, 6] и др.

 $^{^1}$ Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (проект FSWR-2023-0034) и научно-образовательного математического центра «Математика технологий будущего».

Задача устойчивости систем со случайной структурой впервые была рассмотрена Кацем И.Я. и Красовским Н.Н. [7]. Позднее в работах [8–10] рассматривались различные постановки задач управления подобными системами, в частности, была решена задача линейно-квадратичного управления. В [1, 11–14] решались задачи \mathcal{H}_{∞} - и \mathcal{H}_2 -управления системами с марковскими переключениями. \mathcal{H}_{∞} - и \mathcal{H}_2 -нормы позволяют оценить качество переходных процессов в среднем. Однако часто необходимо гарантировать, что максимальное значение переходного процесса (целевого выхода) не превзойдет некоторой величины, т.е. требуется оценить максимальное значение целевого выхода системы. Один из возможных подходов к решению такой задачи основан на использовании обобщенной \mathcal{H}_2 -нормы.

Понятие обобщенной \mathcal{H}_2 -нормы, отвечающее максимальному уклонению при внешнем возмущении ограниченной энергии и нулевых начальных условиях, для систем непрерывного времени было введено в [15]. Обобщенная \mathcal{H}_2 -норма характеризует коэффициент усиления системы, на вход которой поступает сигнал с ограниченной L_2 -нормой, а выходной сигнал измеряется L_{∞} -нормой, которая есть максимальное по времени значение евклидовой нормы целевого выхода. Для линейной непрерывной нестационарной системы в [16, 17] было введено понятие максимального уклонения как естественное расширение обобщенной \mathcal{H}_2 -нормы на системы с ненулевым начальным состоянием и показан алгоритм вычисления. Кроме этого, в [16, 17] было показано, что задачи многокритериального управления, когда в качестве целевых функционалов выступают обобщенные \mathcal{H}_2 -нормы, могут быть эффективно решены с использованием аппарата линейных матричных неравенств.

В [18] для линейных систем непрерывного времени с марковскими переключениями на бесконечном горизонте вычислена оценка обобщенной \mathcal{H}_2 -нормы, в [19] для данных систем построено субоптимальное обобщенное \mathcal{H}_2 -управление. Другое определение обобщенной \mathcal{H}_2 -нормы, отличное от классического, используется в [20], где построены оценки на первый абсолютный момент компонент выхода системы при возмущениях ограниченной энергии. В [21] рассмотрена задача обобщенной \mathcal{H}_2 -фильтрации для полумарковских систем. Задачи обобщенной \mathcal{H}_2 -фильтрации и управления для дискретных систем с марковскими переключениями рассмотрены в [22–24]. Во всех указанных работах рассматриваются системы, которые в каждом режиме функционирования описываются стационарными системами.

В данной работе понятие обобщенной \mathcal{H}_2 -нормы для линейных непрерывных систем с марковскими переключениями рассматривается на конечном горизонте, а системы в каждом режиме функционирования предполагаются в общем случае нестационарными. Для вычисления данной характеристики предложено несколько алгоритмов, а также показано как можно достаточно просто вычислить верхнюю оценку, что позволяет синтезировать субоптимальное обобщенное \mathcal{H}_2 -управление в случае доступного для регулятора состояния марковской цепи.

Статья организована следующим образом. В разделе 2 дается понятие обобщенной \mathcal{H}_2 -нормы для линейных непрерывных систем с марковскими переключениями на конечном горизонте, приводятся алгоритмы ее вычисления. Раздел 3 содержит решение задачи синтеза субоптимального обобщенного \mathcal{H}_2 -управления в случаях доступного и недоступного для регулятора состояния марковской цепи. В разделе 4 решается задача многокритериального управления. Численные эксперименты, демонстрирующие полученные результаты, описаны в разделе 5.

2. Обобщенная \mathcal{H}_2 -норма

Пусть $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [t_s, t_f]}, \mathsf{P})$ — вероятностное пространство с фильтрацией $(\mathcal{F}_t)_{t \in [t_s, t_f]}$. Обозначим через $L_2^{\Omega}([t_s, t_f], \mathbb{R}_2^{n_v})$ пространство \mathcal{F}_t -согласованных процессов $v = \{v(t) \in \mathbb{R}_2^{n_v}, t \in [t_s, t_f]\}$ таких, что

$$\mathbb{E}\|v\|_2^2 = \mathbb{E}\int_{t_r}^{t_f} v^{\top}(t)v(t)dt < \infty,$$

где $\mathbb{E}(\cdot)$ — оператор математического ожидания.

Рассмотрим на конечном фиксированном временном промежутке $[t_s,t_f]$ непрерывную линейную систему со случайной структурой, меняющейся в соответствии с эволюцией стационарной марковской цепи

(1)
$$\dot{x} = A_{\theta(t)}(t)x + B_{\theta(t)}(t)v, \qquad x(t_s) = x_0,$$
$$z = C_{\theta(t)}(t)x,$$

здесь $x \in \mathbb{R}_2^{n_x}$ – состояние объекта, $v \in L_2^{\Omega}([t_s,t_f],\mathbb{R}_2^{n_v})$ – внешнее возмущение, $z \in \mathbb{R}_2^{n_z}$ – целевой выход, $\theta(t)$ – однородная цепь Маркова с непрерывным временем, которая определяется начальным распределением $\pi_j = \mathsf{P}\{\theta(t_s) = j\}$ и матрицей вероятностей переходов $P(\tau) = (p_{ij}(\tau)), i, j \in \mathfrak{S} = \{1, \dots, S\}$, где $p_{ij}(\tau)$ – вероятность того, что система, находящаяся в некоторый момент времени t в состоянии i, за время τ перейдет из него в состояние j, т.е. $p_{ij}(\tau) = \mathsf{P}\{\theta(t+\tau) = j | \theta(t) = i\}$. Будем полагать, что

$$P\{\theta(t+\tau) = j | \theta(t) = i\} = \begin{cases} \lambda_{ij}\tau + o(\tau), & i \neq j, \\ 1 + \lambda_{ij}\tau + o(\tau), & i = j, \end{cases}$$

где λ_{ij} – элементы стационарной матрицы интенсивности Λ , обладающие следующими свойствами:

$$\sum_{j=1}^{S} \lambda_{ij} = 0, \quad \lambda_{ij} \geqslant 0, \quad \lambda_{ii} < 0.$$

Отметим, что однородную марковскую цепь с непрерывным временем можно задать с использованием матрицы интенсивности, связанной с матрицей вероятностей переходов соотношением $P(\tau) = e^{\Lambda \tau}$ [1].

Пусть целевой выход системы представлен в виде

$$z = \operatorname{column}(z_1, z_2, \dots, z_M), \quad z_m = C_{m,\theta(t)}(t)x, \quad m = 1, \dots, M.$$

Определим обобщенную ∞-норму целевого выхода соотношением

(2)
$$||z||_{g\infty}^2 = \sup_{t \in [t_s, t_f]} \max_{m=1,\dots,M} \mathbb{E}\{|z_m(t)|_2^2\}, \quad |z_m(t)|_2^2 = z_m^\top(t)z_m(t).$$

Система (1) порождает линейный оператор, отображающий начальные условия и внешнее возмущение в целевой выход $S:(x_0,v)\mapsto z$. Определим обобщенную \mathcal{H}_2 -норму системы (1) как норму оператора S следующим образом:

(3)
$$\|\mathcal{S}\|_{g2}^2 = \sup_{(x_0, v) \neq 0} \frac{\|z\|_{g\infty}^2}{\mathbb{E}\|v\|_2^2 + x_0^\top R x_0},$$

где $R = R^{\top} \succ 0$ — заданная весовая матрица, отражающая относительную важность учета неопределенностей начальных условий и внешних возмущений.

 $Teopema\ 1.$ Обобщенная \mathcal{H}_2 -норма линейной системы с марковскими переключениями (1) на конечном горизонте $[t_s,t_f]$ может быть вычислена как

$$\|\mathcal{S}\|_{g2} = \sup_{T \in [t_s, t_f]} \gamma(T),$$

где $\gamma(T)$ есть решение следующей задачи полуопределенного программирования относительно неизвестных матриц $Q_l(t)=Q_l^\top(t)\succcurlyeq 0$

$$\begin{split} &\inf \gamma^2 \\ & \begin{bmatrix} \dot{Q}_l(t) + A_l^\top(t)Q_l(t) + Q_l(t)A_l(t) + \sum\limits_{j=1}^S \lambda_{lj}Q_j(t) & Q_l(t)B_l(t) \\ & B_l^\top(t)Q_l(t) & -I \end{bmatrix} \preccurlyeq 0, \quad t \in [t_s, T], \end{split}$$

$$\sum_{l=1}^{S} \pi_l Q_l(t_s) - R \leq 0, \quad \begin{bmatrix} Q_l(T) & C_{m,l}^{\top}(T) \\ C_{m,l}(T) & \gamma^2 I \end{bmatrix} \geq 0, \quad m = 1, \dots, M, \quad l \in \mathfrak{S}.$$

 $\Pi ycmb$

$$t^* = \arg\sup_{T \in [t_s, t_f]} \gamma(T),$$

а при решении неравенств (4) на отрезке $[t_s,t^*]$ получены матричные функции $Q_{\theta(t)}(t)$, тогда наихудшие внешнее возмущение $v^*(t)$ и вектор начальных условий x_0^* имеют вид

(5)
$$x_0^* = e_{\max} \left(R^{-1} \sum_{l=1}^S \pi_l Q_l(t_s) \right), \quad v^*(t) = \begin{cases} B_{\theta(t)}^\top(t) Q_{\theta(t)}(t) x(t), & t \in [t_s, t^*], \\ 0, & t \in (t^*, t_f], \end{cases}$$

где x(t) – решение задачи Коши для системы

(6)
$$\dot{x} = (A_{\theta(t)} + B_{\theta(t)} B_{\theta(t)}^{\top}(t) Q_{\theta(t)}(t)) x(t), \quad x(t_s) = x_0^*.$$

3амечание 1. Отметим, что в случае детерминированных внешних возмущений $v \in L_2([t_s,t_f],\mathbb{R}_2^{n_v})$ для обобщенной \mathcal{H}_2 -нормы справедлива оценка

(7)
$$\sup_{(x_0,v)\neq 0} \frac{\|z\|_{g\infty}^2}{\|v\|_{L_2}^2 + x_0^\top R x_0} \leqslant \|\mathcal{S}\|_{g2},$$

так как происходит сужение области, по которой вычисляется точная верхняя грань. Таким образом, вычисляя значение обобщенной \mathcal{H}_2 -нормы при стохастических возмущениях (3), получим верхнюю оценку на случай детерминированных возмущений (7).

Для вычисления обобщенной \mathcal{H}_2 -нормы с помощью матричных неравенств (4) выполним дискретизацию. Введем сетку, например, равномерную с шагом h:

(8)
$$t_0 = t_s, t_k = t_{k-1} + h, k = 1, \dots, K; h = \frac{T - t_s}{K},$$

и запишем дискретный аналог неравенств (4):

(9)
$$\begin{bmatrix} Q_{l,k+1} - Q_{l,k} + h \left(A_{l,k}^{\top} Q_{l,k} + Q_{l,k} A_{l,k} + \sum_{j=1}^{S} \lambda_{lj} Q_{j,k} \right) & h Q_{l,k} B_{l,k} \\ h B_{l,k}^{\top} Q_{l,k} & -hI \end{bmatrix} \leq 0,$$

$$\sum_{l=1}^{S} \pi_{l} Q_{l,0} - R \leq 0, \quad \begin{bmatrix} Q_{l,K} & C_{m,l,K}^{\top} \\ C_{m,l,K} & \gamma^{2}I \end{bmatrix} \geq 0, \quad m = 1, \dots, M, \quad l \in \mathfrak{S},$$

где
$$A_{l,k} = A_l(t_k)$$
, $B_{l,k} = B_l(t_k)$, $C_{m,l,k} = C_{m,l}(t_k)$, $Q_{l,k} = Q_l(t_k)$, $k = 0, \dots, K-1$.

C ледствие 1. Обобщенная \mathcal{H}_2 -норма линейной системы с марковскими переключениями (1) на конечном горизонте $[t_s,t_f]$ может быть вычислена как

$$\|\mathcal{S}\|_{g2} = \sup_{T \in [t_s, t_f]} \gamma(T),$$

где $\gamma(T)$ есть решение следующей задачи полуопределенного программирования

(10)
$$\begin{aligned}
&\inf \gamma^{2} \\
&\begin{bmatrix} -\dot{Y}_{l}(t) + A_{l}(t)Y_{l}(t) + Y_{l}(t)A_{l}^{\top}(t) + B_{l}(t)B_{l}^{\top}(t) + \lambda_{ll}Y_{l}(t) & V_{l}(t) \\
& V_{l}^{\top}(t) & -W_{l}(t) \end{bmatrix} \preceq 0, \\
&\begin{bmatrix} Y_{l}(T) & Y_{l}(T)C_{m,l}^{\top}(T) \\ C_{m,l}(T)Y_{l}(T) & \gamma^{2}I \end{bmatrix} \succeq 0, \quad m = 1, \dots, M, \quad l \in \mathfrak{S}, \quad t \in [t_{s}, T], \\
&\mathcal{L}(Y_{1}(t_{s}), \dots, Y_{S}(t_{s})) \succeq 0,
\end{aligned}$$

где

$$V_{l}(t) = \begin{bmatrix} \sqrt{\lambda_{l1}} Y_{l}(t) & \dots & \sqrt{\lambda_{l,l-1}} Y_{l}(t) & \sqrt{\lambda_{l,l+1}} Y_{l}(t) & \dots & \sqrt{\lambda_{l,S}} Y_{l}(t) \end{bmatrix},$$

$$W_{l}(t) = \operatorname{diag}(Y_{1}(t), \dots, Y_{l-1}(t), Y_{l+1}(t), \dots, Y_{S}(t)),$$

$$(11)$$

$$\mathcal{L}(Y_{1}(t_{s}), \dots, Y_{S}(t_{s})) = \begin{bmatrix} R & \sqrt{\pi_{1}} I & \dots & \sqrt{\pi_{S}} I \\ \sqrt{\pi_{1}} I & Y_{1}(t_{s}) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \sqrt{\pi_{S}} I & 0 & \dots & Y_{S}(t_{s}) \end{bmatrix}.$$

Для вычисления обобщенной \mathcal{H}_2 -нормы системы (1) с помощью следствия 1 необходимо решить задачу (10) для каждого момента времени $T \in [t_s, t_f]$, что является вычислительно трудоемким процессом. Сформулируем теорему, с помощью которой можно достаточно легко вычислить верхнюю оценку обобщенной \mathcal{H}_2 -нормы системы (1), что в дальнейшем также позволит синтезировать субоптимальное обобщенное \mathcal{H}_2 -управление в случае доступного для регулятора состояния марковской цепи.

Tе о р е м а 2. Обобщенная \mathcal{H}_2 -норма линейной системы с марковскими переключениями (1) на конечном горизонте $[t_s, t_f]$ удовлетворяет неравенству

$$\|\mathcal{S}\|_{q^2} \leqslant \gamma$$
,

где γ есть решение следующей задачи полуопределенного программирования относительно неизвестных матриц $Y_l = Y_l^\top \succcurlyeq 0, \ l \in \mathfrak{S}$:

(12)
$$\begin{aligned}
&\inf \gamma^{2} \\
& \begin{bmatrix} -\dot{Y}_{l}(t) + A_{l}(t)Y_{l}(t) + Y_{l}(t)A_{l}^{\top}(t) + B_{l}(t)B_{l}^{\top}(t) + \lambda_{ll}Y_{l}(t) & V_{l}(t) \\
& V_{l}^{\top}(t) & -W_{l}(t) \end{bmatrix} \leq 0, \\
& \begin{bmatrix} Y_{l}(t) & Y_{l}(t)C_{m,l}^{\top}(t) \\ C_{m,l}(t)Y_{l}(t) & \gamma^{2}I \end{bmatrix} \geq 0, \quad m = 1, \dots, M, \quad l \in \mathfrak{S}, \quad \in [t_{s}, t_{f}], \\
& \mathcal{L}(Y_{1}(t_{s}), \dots, Y_{S}(t_{s})) \geq 0,
\end{aligned}$$

 $r \partial e V_l(t) u W_l(t)$ определены ранее формулой (11).

3. Синтез законов управления

Рассмотрим линейный управляемый объект со случайной структурой, динамика которого описывается уравнениями

(13)
$$\dot{x} = A_{\theta(t)}(t)x + B_{\theta(t)}(t)v + B_{\theta(t)}^{u}(t)u, \qquad x(t_s) = x_0, \\ z = C_{\theta(t)}(t)x + D_{\theta(t)}(t)u,$$

где $x\in\mathbb{R}_2^{n_x}$ — состояние объекта, $v(t)\in\mathbb{R}_2^{n_v}$ — стохастическое внешнее возмущение, $z\in\mathbb{R}_2^{n_z}$ — целевой выход, $u\in\mathbb{R}_2^{n_u}$ — управление, $\theta(t)$ — однородная

цепь Маркова с непрерывным временем, которая определяется начальным распределением $\pi_j = P\{\theta(t_s) = j\}$ и матрицей вероятностей переходов $P(\tau) = (p_{ij}(\tau)), i, j \in \mathfrak{S}$.

3.1. Обратная связь с учетом состояния марковской цепи

Поставим задачу синтеза управления в виде линейной обратной связи по состоянию системы с учетом состояния марковской цепи

(14)
$$u(t) = \Theta_{\theta(t)}(t)x(t), \quad \theta(t) \in \mathfrak{S},$$

минимизирующего обобщенную \mathcal{H}_2 -норму системы (13), замкнутой регулятором (14):

(15)
$$\dot{x} = (A_{\theta(t)}(t) + B_{\theta(t)}^{u}(t)\Theta_{\theta(t)}(t))x + B_{\theta(t)}(t)v, \quad x(t_s) = x_0, \\ z = (C_{\theta(t)}(t) + D_{\theta(t)}(t)\Theta_{\theta(t)}(t))x.$$

Подставим матрицы замкнутой системы (15) в неравенства (10), в результате чего приходим к следующему утверждению.

Teopema 3. Матрицы $\Theta(t) = (\Theta_1(t), \dots, \Theta_S(t))$ законов управления (14), минимизирующих обобщенную \mathcal{H}_2 -норму системы (13), находятся при решении следующей задачи:

(16)
$$\|\mathcal{S}\|_{g2} = \inf_{\boldsymbol{\Theta}(t), t \in [t_s, t_f]} \sup_{T \in [t_s, t_f]} \gamma_{\boldsymbol{\Theta}}(T),$$

где $\gamma_{\mathbf{\Theta}}(T)$ есть решение следующей задачи полуопределенного программирования

(17)
$$\begin{aligned}
&\inf \gamma^{2} \\
& \begin{bmatrix} -\dot{Y}_{l} + A_{l}Y_{l} + Y_{l}A_{l}^{\top} + B_{l}^{u}\Theta_{l}Y_{l} + Y_{l}\Theta_{l}^{\top}B_{l}^{u\top} + B_{l}B_{l}^{\top} + \lambda_{ll}Y_{l} & * \\
& V_{l}^{\top} & -W_{l} \end{bmatrix} \leq 0, \\
& \begin{bmatrix} Y_{l}(T) & * \\
C_{m,l}(T)Y_{l}(T) + D_{m,l}(T)\Theta_{l}Y_{l}(T) & \gamma^{2}I \end{bmatrix} \geq 0, \\
& \mathcal{L}(Y_{1}(t_{s}), \dots, Y_{S}(t_{s})) \geq 0, \quad t \in [t_{s}, T], \quad m = 1, \dots, M, \quad l, \in], \mathfrak{S}.
\end{aligned}$$

Для краткости в первом неравенстве у матричных функций опущен аргумент t, а через * обозначен симметричный элемент.

Задача (16) не может быть решена с использованием имеющегося аппарата, так как необходимо организовать поиск инфинума по всевозможным параметрам регулятора $\Theta(t)$. Эта проблема исчезает в условиях теоремы 2, с помощью которой параметры обратной связи могут быть вычислены внутри задачи полуопределенного программирования (12). В этом случае представляется оправданным искать регулятор, минимизирующий оценку нормы, так называемый субоптимальный обобщенный \mathcal{H}_2 -регулятор.

Tе о р е м а 4. Матрицы $\Theta_l(t)$ законов управления (14), минимизирующих оценку обобщенной \mathcal{H}_2 -нормы системы (13), имеют вид $\Theta_l(t) = Z_l(t)Y_l^{-1}(t)$, где $Y_l = Y_l^{\top} \succcurlyeq 0$ и Z_l находятся при решении следующей задачи полуопределенного программирования

(18)
$$\begin{aligned}
&\inf \gamma^{2} \\
& \begin{bmatrix} -\dot{Y}_{l} + A_{l}Y_{l} + Y_{l}A_{l}^{\top} + B_{l}^{u}Z_{l} + Z_{l}^{\top}B_{l}^{u\top} + B_{l}B_{l}^{\top} + \lambda_{ll}Y_{l} & * \\
& V_{l}^{\top} & -W_{l} \end{bmatrix} \leq 0, \\
& \begin{bmatrix} Y_{l}(t) & * \\
C_{m,l}(t)Y_{l}(t) + D_{m,l}(t)Z_{l}(t) & \gamma^{2}I \end{bmatrix} \geq 0, \\
& \mathcal{L}(Y_{1}(t_{s}), \dots, Y_{S}(t_{s})) \geq 0, \quad t \in [t_{s}, t_{f}], \quad m = 1, \dots, M, \quad l \in \mathfrak{S}.
\end{aligned}$$

3.2. Обратная связь не зависит от состояния марковской цепи

Далее рассмотрим задачу синтеза регулятора, параметры которого не зависят от состояния марковского процесса, т.е. управление имеет вид

(19)
$$u(t) = \Theta(t)x(t).$$

В этом случае система (13), замкнутая регулятором (19), имеет вид:

(20)
$$\dot{x} = \left(A_{\theta(t)}(t) + B_{\theta(t)}^{u}(t)\Theta(t)\right)x + B_{\theta(t)}(t)v, \qquad x(t_s) = x_0,$$
$$z = \left(C_{\theta(t)}(t) + D_{\theta(t)}(t)\Theta(t)\right)x.$$

Teopema 5. Обобщенная \mathcal{H}_2 -норма системы (20) удовлетворяет неравенству $\|\mathcal{S}\|_{g^2} \leqslant \gamma$ для некоторого положительного γ , если существует $\rho > 0$ такое, что выполняются линейные матричные неравенства для матриц $P(t) = P^\top(t), \ Z(t), \ Y_l(t) = Y_l^\top \succcurlyeq 0, \ l \in \mathfrak{S}$:

$$\begin{bmatrix} -\dot{Y}_{l} + A_{l}Y_{l} + Y_{l}A_{l}^{\top} + B_{l}^{u}Z + Z^{\top}B_{l}^{u\top} + B_{l}B_{l}^{\top} + \lambda_{ll}Y_{l} & * & * \\ V_{l}^{\top} & -W_{l} & * \\ \rho Z^{\top}B_{l}^{u\top} + Y_{l} - P & 0 & -2\rho P \end{bmatrix} \preceq 0,$$

$$(21) \begin{bmatrix} Y_{l}(t) & * & * \\ C_{m,l}(t)Y_{l}(t) + D_{m,l}(t)Z(t) & \gamma^{2}I & * \\ P - Y_{l} & \rho Z^{\top}(t)D_{m,l}^{\top}(t) & 2\rho P \end{bmatrix} \succcurlyeq 0,$$

$$\mathcal{L}(Y_{1}(t_{s}), \dots, Y_{S}(t_{s})) \succcurlyeq 0, \quad t \in [t_{s}, t_{f}], \quad m = 1, \dots, M, \quad l \in \mathfrak{S},$$

npu этом $\Theta(t) = Z(t)P^{-1}(t)$.

4. Многокритериальное управление

Рассмотрим линейный управляемый объект со случайной структурой, динамика которого описывается уравнениями

(22)
$$\dot{x} = A_{\theta(t)}(t)x + B_{\theta(t)}(t)v + B_{\theta(t)}^{u}(t)u, \qquad x(t_s) = x_0, \\ z^{(k)} = C_{\theta(t)}^{(k)}(t)x + D_{\theta(t)}^{(k)}(t)u, \qquad k = 1, \dots, N,$$

где $x \in \mathbb{R}_2^{n_x}$ — состояние объекта, $v(t) \in \mathbb{R}_2^{n_v}$ — стохастическое внешнее возмущение, $z^{(k)} \in \mathbb{R}_2^{n_{z_k}}$ — целевые выходы, $u \in \mathbb{R}_2^{n_u}$ — управление, $\theta(t)$ — однородная цепь Маркова с непрерывным временем, которая определяется начальным распределением $\pi_j = \mathsf{P}\{\theta(t_s) = j\}$ и матрицей вероятностей переходов $P(\tau) = (p_{ij}(\tau)), i, j \in \mathfrak{S}.$

Каждый векторный целевой выход $z^{(k)}, k=1,\ldots,N,$ представлен в виде набора векторов

$$z^{(k)} = \operatorname{column}(z_1^{(k)}, z_2^{(k)}, \dots, z_{M_k}^{(k)}),$$

$$z_m^{(k)} = C_{m,\theta(t)}^{(k)}(t)x + D_{m,\theta(t)}^{(k)}(t)u, \qquad m = 1, \dots, M_k.$$

Предположим, что влияние внешнего возмущения на k-й целевой выход характеризуется функционалом

(23)
$$J_k^2 = \sup_{(x_0, v) \neq 0} \frac{\|z^{(k)}\|_{g\infty}^2}{\mathbb{E}\|v\|_2^2 + x_0^\top R x_0},$$

т.е. представляет собой обобщенную \mathcal{H}_2 -норму, следовательно, можно поставить и решить задачу многокритериального управления: $\min\{J_1,\ldots,J_N\}$. Следуя [16], определим вспомогательный функционал J_{α} , тогда согласно теореме 4.1 [16] оптимальные по Парето решения поставленной многокритериальной задачи могут быть найдены как решение задачи

(24)
$$\min_{u} J_{\alpha}, \quad J_{\alpha} = \max_{k=1,\dots,N} \frac{J_{k}}{\alpha_{k}},$$

$$\alpha \in \mathcal{A} := \left\{ \alpha = (\alpha_{1},\dots,\alpha_{N}) : \alpha_{k} > 0, \sum_{k=1}^{N} \alpha_{k} = 1 \right\},$$

где функционал J_{α} представляет собой свертку Гермейера, кроме этого, является обобщенной \mathcal{H}_2 -нормой следующей системы:

(25)
$$\dot{x} = \left(A_{\theta(t)}(t) + B_{\theta(t)}^{u}(t)\Theta_{\alpha,\theta(t)}(t)\right)x + B_{\theta(t)}(t)v, \qquad x(t_s) = x_0,$$
$$\zeta = \left(\mathcal{C}_{\theta(t)}(t) + \mathcal{D}_{\theta(t)}(t)\Theta_{\alpha,\theta(t)}(t)\right)x,$$

где

$$\zeta = \operatorname{column} \left(\alpha_1^{-1} z_1^{(1)}, \dots, \alpha_1^{-1} z_{M_1}^{(1)}, \alpha_2^{-1} z_1^{(2)}, \dots, \alpha_2^{-1} z_{M_2}^{(2)}, \dots, \alpha_N^{-1} z_1^{(N)}, \dots, \alpha_N^{-1} z_{M_N}^{(N)} \right),$$

$$\mathcal{C}_{\theta(t)} = \operatorname{column} \left(\alpha_1^{-1} C_{\theta(t)}^{(1)}, \dots, \alpha_N^{-1} C_{\theta(t)}^{(N)} \right), \quad \mathcal{D}_{\theta(t)} = \operatorname{column} \left(\alpha_1^{-1} D_{\theta(t)}^{(1)}, \dots, \alpha_N^{-1} D_{\theta(t)}^{(N)} \right).$$

Назовем регулятор вида $u(t) = \Theta_{\alpha,\theta(t)}(t)x(t)$, $\alpha \in \mathcal{A}$, многокритериальным оптимальным обобщенным \mathcal{H}_2 -регулятором, если он обеспечивает минимально возможные значения обобщенной \mathcal{H}_2 -нормы системы (25). С учетом теоремы 4 приходим к следующему утверждению.

Теорема 6. Матрицы параметров субоптимальных по Парето регуляторов $\Theta_{\alpha,l}(t)$ относительно критериев J_k , $k=1,\ldots,N$, имеют вид $\Theta_{\alpha,l}(t)=Z_l(t)Y_l^{-1}(t)$, где $Y_l=Y_l^{\top}\succcurlyeq 0$ и Z_l находятся при решении следующей задачи полуопределенного программирования

(26)
$$\begin{aligned}
&\inf \gamma^{2} \\
& \left[-\dot{Y}_{l} + A_{l}Y_{l} + Y_{l}A_{l}^{\top} + B_{l}^{u}Z_{l} + Z_{l}^{\top}B_{l}^{u\top} + B_{l}B_{l}^{\top} + \lambda_{ll}Y_{l} \quad * \\
& V_{l}^{\top} \quad -W_{l} \right] \leq 0, \\
& \left[\begin{array}{c} Y_{l}(t) & * \\ C_{m,l}^{(k)}(t)Y_{l}(t) + D_{m,l}^{(k)}(t)Z_{l}(t) & \alpha_{k}^{2}\gamma^{2}I \end{array} \right] \geq 0, \\
\mathcal{L}(Y_{1}(t_{s}), \dots, Y_{S}(t_{s})) \geq 0, \quad t \in [t_{s}, t_{f}], \quad l \in \mathfrak{S}.
\end{aligned}$$

5. Численное моделирование

В качестве иллюстрации полученных результатов рассмотрим линейную непрерывную систему с марковскими переключениями между двумя состояниями

(27)
$$\dot{x} = A_{\theta(t)}(t)x + B_{\theta(t)}(t)v + B_{\theta(t)}^{u}(t)u, \qquad x(t_s) = x_0, \\ z^{(k)} = C_{\theta(t)}^{(k)}(t)x + D_{\theta(t)}^{(k)}(t)u, \qquad k = 1, 2,$$

матрицы которой имеют вид

$$A_{1} = \begin{bmatrix} 1,2 & -2,0 \\ 0,1 & 1,1 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 0,2 & 0,0 \\ 2,0 & 0,3 \end{bmatrix}, \quad B_{1} = B_{1}^{u} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad B_{2} = B_{2}^{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$C_{1}^{(1)} = C_{2}^{(1)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{1}^{(1)} = D_{2}^{(1)} = 0, \quad C_{1}^{(2)} = C_{2}^{(2)} = 0, \quad D_{1}^{(2)} = D_{2}^{(2)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Система рассматривается на временном промежутке [0,2], параметры марковской цепи и весовая матрица имеют вид

$$\pi = \begin{bmatrix} 0.3 \\ 0.7 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} -10 & 10 \\ 5 & -5 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Введем два функционала J_1 и J_2 , являющихся обобщенными \mathcal{H}_2 -нормами системы относительно целевых выходов $z^{(1)}$ и $z^{(2)}$ соответственно:

(28)
$$J_1^2 = \sup_{(x_0, v) \neq 0} \frac{\|z^{(1)}\|_{g\infty}^2}{\mathbb{E}\|v\|_2^2 + x_0^\top R x_0}, \qquad J_2^2 = \sup_{(x_0, v) \neq 0} \frac{\|z^{(2)}\|_{g\infty}^2}{\mathbb{E}\|v\|_2^2 + x_0^\top R x_0}.$$

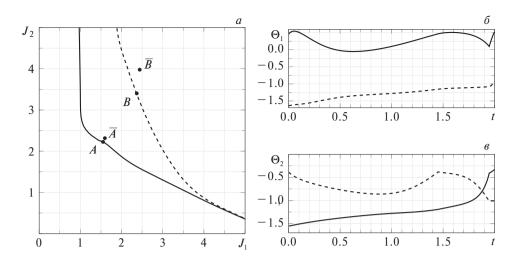


Рис. 1. Множество Парето на плоскости критериев (J_1, J_2) .

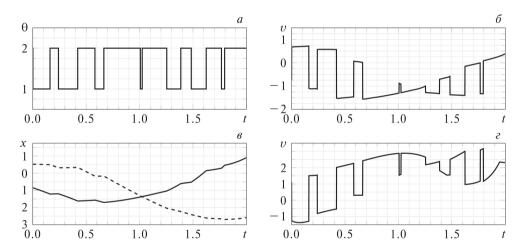
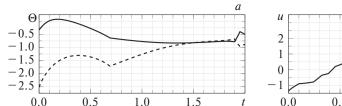


Рис. 2. Пример реализации марковского процесса.

Проведем дискретизацию на отрезке [0,2] с шагом h=0,001 и вычислим обобщенную \mathcal{H}_2 -норму системы (27), когда управление отсутствует. Так как целевой выход $z^{(2)}=0$, обобщенная \mathcal{H}_2 -норма системы совпадет с критерием J_1 . При решении неравенств (10) получено значение $\|\mathcal{S}\|_{g2}=5,7882$.

С использованием теоремы 4 синтезированы регуляторы $\Theta_{\alpha,l}(t) = [\Theta^1_{\alpha,l},\Theta^2_{\alpha,l}],\ l=1,2,$ и с помощью следствия 1 вычислены соответствующие им значения критериев J_1 и J_2 . На рис. 1,a сплошной линией изображена оптимальная по Парето кривая на плоскости критериев (J_1,J_2) . Точка A(1,5509,2,2492) соответствует значению сверточного параметра $\alpha=0,4$. На рис. 1,6 и 1,6 приведены графики оптимальных по Парето коэффициентов обратной связи $\Theta_{\alpha,l}(t)$ в зависимости от времени: сплошная кривая соответствует коэффициенту $\Theta^1_{\alpha,l}(t)$, а штриховая – коэффициенту $\Theta^2_{\alpha,l}(t)$.



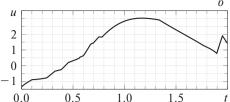


Рис. 3. Коэффициенты матрицы обратной связи $\Theta(t)$ и управление u(t).

На рис. 2 представлен пример реализации марковского процесса: графики изменения состояния марковской цепи (рис. 2,a), наихудших возмущений (рис. $2,\delta$), компонент вектора состояния системы x_1 (сплошная кривая) и x_2 (пунктирная кривая), управления (рис. $2,\delta$ и $2,\epsilon$).

Отметим, что коэффициенты обратной связи можно считать слабо меняющимися на выбранном промежутке времени, поэтому представляет интерес сравнить значения функционалов при субоптимальном регуляторе и стационарном регуляторе, отвечающем средним значениям $\overline{\Theta}_1(t) \equiv [0,2402; -1,2928]$ и $\overline{\Theta}_2(t) \equiv [-1,2366; -0,6797]$, которым на рис. 1,a соответствует точка $\overline{A}(1,5959;2,3158)$. Как следует из приведенных данных, потери в качестве управления можно считать допустимыми, и они компенсируются сравнительно простым в реализации стационарным регулятором.

5.1. Управление, не зависящее от состояния марковской цепи

Далее рассмотрим задачу синтеза регулятора, параметры которого не зависят от состояния марковского процесса (19). Для решения неравенств (21) выберем параметр $\rho=0,2$, остальные параметры моделирования оставим прежними. На рис. 1,a верхняя оценка Парето оптимального фронта изображена пунктирной кривой, точка B(2,3697;3,4030) соответствует значению критериев при $\alpha=0,4$. На рис. 3,a при выбранном α приведены графики оптимальных по Парето коэффициентов обратной связи $\Theta_{\alpha}(t)$ в зависимости от времени (сплошная кривая соответствует коэффициенту $\Theta_{\alpha}^{1}(t)$, а штриховая – коэффициенту $\Theta_{\alpha}^{2}(t)$). На рис. 3, δ представлен график управления для одной из реализаций марковского процесса.

Также как и в предыдущем случае рассмотрим, что произойдет с функционалами, если заменить нестационарный регулятор на стационарный, отвечающий средним значениям $\overline{\Theta}(t) \equiv [-0.5538; -1.2106]$, которым на рис. 1,a соответствует точка $\overline{B}(2,4413;3,9778)$. Видно, что получающиеся значения функционалов хуже, но стационарный регулятор проще в реализации, поэтому такой подход можно считать оправданным.

6. Заключение

Для линейных систем со случайной структурой на конечном горизонте введено понятие обобщенной \mathcal{H}_2 -нормы, приведены алгоритмы ее вычисления, основанные как на решении системы матричных дифференциальных уравнений Риккати, так и на решении систем линейных матричных неравенств. Построено субоптимальное обобщенное \mathcal{H}_2 -управление в виде нестационарной линейной обратной связи по состоянию системы как зависящей, так и независящей от состояния марковской цепи. Также показано, что могут быть решены задачи многокритериального управления в случае, если критерии представляют собой обобщенные \mathcal{H}_2 -нормы.

ПРИЛОЖЕНИЕ

Прежде чем переходить к доказательствам сформулированных теорем, для удобства введем обозначения

(II.1)
$$\mathbf{X} = (X_1, X_2, \dots, X_S), \qquad X_l(t) = X_l^{\top}(t) \geq 0, \qquad l \in \mathcal{S},$$

$$\mathcal{R}_l(\mathbf{X}) = \dot{X}_l(t) + A_l^{\top}(t)X_l(t) + X_l(t)A_l(t) +$$

$$+ X_l(t)B_l(t)B_l^{\top}(t)X_l(t) + \sum_{i=1}^{S} \lambda_{lj}X_j(t),$$

и докажем вспомогательное утверждение.

 \mathcal{I} емма 1. Пусть $\mathbf{X} = (X_1, X_2, \dots, X_S)$ – решение уравнений

(II.3)
$$\mathcal{R}_l(\mathbf{X}) + M_l = 0, \quad X_l(t_f) = X_l^0, \quad l \in \mathcal{S}, \quad t \in [t_s, t_f],$$

 $\mathbf{Y} = (Y_1, Y_2, \dots, Y_S)$ – решение уравнений

(
$$\Pi$$
.4) $\mathcal{R}_l(\mathbf{Y}) + N_l = 0, \quad X_l(t_f) = Y_l^0, \quad l \in \mathcal{S}, \quad t \in [t_s, t_f],$

где
$$0 \preccurlyeq M_l(t) \preccurlyeq N_l(t), \ 0 \preccurlyeq X_l^0 \preccurlyeq Y_l^0, \ l \in \mathcal{S}, \ t \in [t_s, t_f], \ morda$$

(II.5)
$$X_l(t) \preccurlyeq Y_l(t), \quad l \in \mathcal{S}, \quad t \in [t_s, t_f].$$

Доказательство леммы 1. Рассмотрим систему уравнений Ляпунова

(II.6)
$$\dot{P}_l + (A_l + B_l B_l^{\top} X_l)^{\top} P_l + P_l (A_l + B_l B_l^{\top} X_l) + \sum_{j=1}^{S} \lambda_{lj} P_j + (X_l - Y_l) B_l B_l^{\top} (X_l - Y_l) + N_l - M_l = 0$$

на временном промежутке $[t_s,t_f]$ с граничными условиями $P_l(t_f)=Y_l^0-X_l^0$, $l\in\mathcal{S}$. Данное уравнение имеет единственное решение $P_l(t),\ l\in\mathcal{S}$, причем $P_l(t)\succcurlyeq 0$, так как $(X_l-Y_l)B_lB_l^\top(X_l-Y_l)+N_l-M_l\succcurlyeq 0$ и $P_l(t_f)\succcurlyeq 0$ [1, 25]. Заметим, что $P_l(t)=Y_l(t)-X_l(t)$ является решением уравнения (П.6), откуда получаем (П.5).

 \mathcal{A} оказательство теоремы 1. Запишем функционал (3) в следующем виде:

$$\|\mathcal{S}\|_{g^2} = \sup_{T \in [t_s, t_f]} \max_{m=1,\dots,M} \gamma_m(T), \qquad \gamma_m^2(T) = \sup_{(x_0, v) \neq 0} \frac{\mathbb{E}|z_m(T)|_2^2}{\mathbb{E}\|v\|_2^2 + x_0^\top R x_0}.$$

В силу линейности оператора ${\mathcal S}$ последнее равенство может быть записано как

(II.7)
$$\sup_{(x_0,v)\neq 0} \mathbb{E}\left\{ |z_m(T)|_2^2 - \gamma^2 (||v||_2^2 + x_0^\top R x_0) \right\} = 0,$$

здесь и далее для краткости опущен аргумент и индекс $\gamma_m(T)$. Введем в рассмотрение функцию Беллмана в момент времени t

$$(\Pi.8) \ V(t,x_t,l) = \sup_v \mathbb{E} \left\{ z_m^\top(T) z_m(T) - \gamma^2 \int_t^T v^\top(\tau) v(\tau) d\tau \, \Big| \, x(t) = x_t, \ \theta(t) = l \right\},$$

тогда соотношение (П.7) запишется в виде

(II.9)
$$\sup_{x_0 \neq 0} \mathbb{E} \left\{ V(t_s, x_0, \theta_0) - \gamma^2 x_0^{\top} R x_0 \right\} = 0, \qquad \theta_0 = \theta(t_s).$$

Вычислим $V(t_s, x_0, \theta_0)$, используя стохастическое уравнение Беллмана [26]:

(II.10)
$$\max_{v} \left\{ \mathcal{L}^{v} V(t, x(t), l) - \gamma^{2} v^{\top}(t) v(t) \right\} = 0, \\ V(T, x(T), l) = x^{\top}(T) C_{m,l}^{\top}(T) C_{m,l}(T) x(T),$$

где инфинитезимальный оператор \mathcal{L}^v имеет вид

$$(\Pi.11) \quad \mathcal{L}^{v}g(t,x,l) = \frac{\partial g(t,x,l)}{\partial t} + \left(A_{l}(t)x + B_{l}(t)v\right)^{\top} \nabla_{x}g(t,x,l) + \sum_{i=1}^{S} \lambda_{lj}g(t,x,j).$$

Будем искать решение в виде квадратичной формы $V(t,x(t),l) = x^{\top}(t)X_l(t)x(t), X_l(t) = X_l^{\top}(t) \succcurlyeq 0$. Для краткости в дальнейшем будем опускать аргументы функций x(t) и v(t). Подставляя вид инфинитезимального оператора (П.11) в уравнение (П.10), получим

$$\max_{v} \left\{ x^{\top} \dot{X}_{l}(t) x + 2(A_{l}(t)x + B_{l}(t)v)^{\top} X_{l}(t) x + \sum_{j=1}^{S} \lambda_{lj} x^{\top} X_{j}(t) x - \gamma^{2} v^{\top} v \right\} = 0.$$

Поскольку выражение, стоящее в фигурных скобках, является выпуклым вверх функционалом по переменной v, то решение задачи существует. Для его отыскания найдем стационарную точку v^* :

(II.13)
$$v^* = \gamma^{-2} B_l^{\top}(t) X_l(t) x.$$

Опустим аргументы у матричных функций и, подставляя найденное выражение $(\Pi.13)$ в соотношение $(\Pi.12)$ и упрощая, получим

$$(\Pi.14) x^{\top} \left(\dot{X}_l + A_l^{\top} X_l + X_l A_l + \gamma^{-2} X_l B_l B_l^{\top} X_l + \sum_{j=1}^{S} \lambda_{lj} X_j \right) x = 0.$$

С учетом того, что равенство (Π .14) должно выполняться при любом значении x, получаем дифференциальное матричное уравнение

$$(\Pi.15) \qquad \dot{X}_l + A_l^{\top} X_l + X_l A_l + \gamma^{-2} X_l B_l B_l^{\top} X_l + \sum_{i=1}^{S} \lambda_{lj} X_j = 0$$

с граничными условиями $X_l(T) = C_{m,l}^{\top}(T)C_{m,l}(T)$. Тогда в начальный момент времени имеем $V(t_s, x_0, \theta_0) = x_0^{\top} X_{\theta_0}(t_s) x_0$, и вычисление (П.9) сводится к

(II.16)
$$\sup_{x_0 \neq 0} x_0^{\top} \left(\sum_{l=1}^S \pi_l X_l(t_s) - \gamma^2 R \right) x_0.$$

Выражение представляет собой квадратичную форму по переменной x_0 и достигает своего наибольшего значения в точке

(
$$\Pi$$
.17)
$$x_0^* = e_{\max} \left(R^{-1} \sum_{l=1}^S \pi_l X_l(t_s) \right),$$

если справедливо условие

$$(\Pi.18) \qquad \sum_{l=1}^{S} \pi_l X_l(t_s) - \gamma^2 R \leq 0,$$

при этом значение γ находится как

(II.19)
$$\gamma = \lambda_{max}^{1/2} \left(R^{-1} \sum_{l=1}^{S} \pi_l X_l(t_s) \right).$$

Записав условие (П.19) с помощью линейного матричного неравенства при минимальном γ , после замены $X_l(t) = \gamma^2 Q_l(t)$ получим следующую задачу оптимизации на отрезке $[t_s, T]$ для вычисления $\gamma_m(T)$:

inf
$$\gamma^2$$
(II.20) $\mathcal{R}_l(\mathbf{Q}) = 0$, $\sum_{l=1}^{S} \pi_l Q_l(t_s) - R \leq 0$, $Q_l(T) = \gamma^{-2} C_{m,l}^{\top}(T) C_{m,l}(T)$, $l \in \mathfrak{S}$.

Далее покажем, что значение $\gamma_m(T)$ может быть найдено в результате решения следующей задачи полуопределенного программирования на отрезке $[t_s, T]$:

(II.21)
$$\mathcal{R}_l(\mathbf{Q}) \preceq 0, \quad \sum_{l=1}^S \pi_l Q_l(t_s) - R \preceq 0, \quad Q_l(T) \succcurlyeq \gamma^{-2} C_{m,l}^\top(T) C_{m,l}(T), \quad l \in \mathfrak{S}.$$

Пусть γ_1 является решением задачи (П.20), а γ_2 и $\mathbf{Q} = (Q_1, Q_2, \dots, Q_S)$ получены в результате решения (П.21). Решение задачи (П.20) является решением задачи (П.21), если соответствующие неравенства выполняются как равенства, поэтому $\gamma_2 \leqslant \gamma_1$.

Предположим, что $\gamma_2 < \gamma_1$. Пусть $\mathbf{X} = (X_1, X_2, \dots, X_S)$ – решение уравнений $\mathcal{R}_l(\mathbf{X}) = 0, \ l \in \mathfrak{S}$, на отрезке $[t_s, T]$ с граничными условиями $X_l(T) = \gamma_2^{-2} C_{m,l}^{\top}(T) C_{m,l}(T)$. Тогда по лемме 1 получаем

(II.22)
$$X_l(t) \preccurlyeq Q_l(t), \quad l \in \mathcal{S}, \quad t \in [t_s, T].$$

Так как $\pi_l \geqslant 0, l \in \mathfrak{S}$, то в начальный момент времени справедливы следующие соотношения:

(II.23)
$$\sum_{l=1}^{S} \pi_l X_l(t_s) \preccurlyeq \sum_{l=1}^{S} \pi_l Q_l(t_s) \preccurlyeq R,$$

откуда следует, что \mathbf{X} является решением (П.20) при $\gamma_2 < \gamma_1$, что противоречит условию $\gamma_1^2 = \inf \gamma^2$, а значит предположение $\gamma_2 < \gamma_1$ неверно, и $\gamma_1 = \gamma_2$.

Заметим, что при фиксированном m из решения задачи (П.21) находится $\gamma_m(T)$. Для того, чтобы найти $\max_{m=1,\dots,M} \gamma_m(T)$ необходимо в неравенства (П.21) добавить перебор по всем возможным значениям m, т.е. решить (П.21) при $m=1,\dots,M$. Применяя лемму о дополнении Шура к неравенствам (П.21), приходим к условиям (4). Теорема 1 доказана.

 \mathcal{A} оказательство следствия 1. В неравенствах (П.21) сделаем замену переменных $Y_l(t) = Q_l^{-1}(t), l \in \mathfrak{S}$, и умножим первое и третье неравенства на $Y_l(t)$ слева и справа, после чего, используя лемму о дополнении Шура, приходим к выражениям (10). Следствие 1 доказано.

 \mathcal{A} оказательство теоремы 2. Пусть обобщенная \mathcal{H}_2 -норма системы (1) равна $\|\mathcal{S}\|_{q^2}$ и достигается в момент времени t^* , т.е.

$$\|\mathcal{S}\|_{g2} = \sup_{T \in [t_s, t_f]} \gamma(T), \quad t^* = \arg \sup_{T \in [t_s, t_f]} \gamma(T),$$

где $\gamma(T)$ есть решение задачи (10). Таким образом, при $T=t^*$ в задаче (10) получаем inf $\gamma^2=\gamma^2(t^*)=\|\mathcal{S}\|_{q^2}^2$.

Пусть в результате решения задачи (12) получено значение $\widehat{\gamma}$ и матрицы $\widehat{Y}_l(t)$, $t \in [t_s, t_f]$. Предположим, что $\widehat{\gamma} < \|\mathcal{S}\|_{g2}$, тогда задача (10) при $T = t^*$, $Y_l(t) = \widehat{Y}_l(t)$, $t \in [t_s, t^*]$, имеет решение $\widehat{\gamma}^2 < \|\mathcal{S}\|_{g2}^2$, что противоречит условию inf $\gamma^2 = \|\mathcal{S}\|_{g2}^2$, а значит предположение $\widehat{\gamma} < \|\mathcal{S}\|_{g2}$ неверно, и $\|\mathcal{S}\|_{g2} \leqslant \widehat{\gamma}$. Теорема 2 доказана.

 \mathcal{A} оказательство теоремы 4. Подставим матрицы замкнутой системы (15) в неравенства (12) и сделаем замены $\Theta_l(t)Y_l(t) = Z_l(t)$, после чего неравенства становятся линейными. В результате данных преобразований получим неравенства (18). Теорема 4 доказана.

Доказательство теоремы 5. Воспользуемся подходом, изложенным в [27]. Умножая первое и второе неравенства (21) слева и справа соответственно на

$$\begin{bmatrix} I & 0 & \rho^{-1}(Y_l - P)P^{-1} \\ 0 & I & 0 \end{bmatrix}, \quad \begin{bmatrix} I & 0 & \rho^{-1}(Y_l - P)P^{-1} \\ 0 & I & 0 \end{bmatrix}^{\top},$$

получим следующие неравенства:

$$(\Pi.24) \begin{bmatrix} -\dot{Y}_{l} + \left(A_{l} + B_{l}^{u}\Theta\right)Y_{l} + Y_{l}\left(A_{l} + B_{l}^{u}\Theta\right)^{\top} + B_{l}B_{l}^{\top} + \lambda_{ll}Y_{l} & V_{l} \\ V_{l}^{\top} & -W_{l} \end{bmatrix} \leq 0,$$

$$\begin{bmatrix} Y_{l} & Y_{l}(t)\left(C_{m,l} + D_{m,l}\Theta\right)^{\top} \\ \left(C_{m,l} + D_{m,l}\Theta\right)Y_{l} & \gamma^{2}I \end{bmatrix} \geq 0,$$

которые вместе с третьим неравенством (21) являются условиями вычисления оценки обобщенной \mathcal{H}_2 -нормы системы (20) с использованием теоремы 2. Теорема 5 доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Costa O.L., Fragoso M.D., Todorov M.G. Continuous-Time Markov Jump Linear Systems. Springer, 2014.
- 2. Stoica A.M., Stoicu S.C. H_{∞} State-Feedback Control of Multi-Agent Systems with Data Packet Dropout in the Communication Channels: A Markovian Approach // Entropy. 2022. V. 24. No. 12. P. 1734.
- 3. Xiaowu M., Baojie Z., Kai L. $L_2 L_{\infty}$ containment control of multi-agent systems with Markovian switching topologies and non-uniform time-varying delays // IET Control Theory & Applications. 2014. V. 8. No. 10. P. 863–872.
- 4. Yan Z., Sang C., Fang M., Zhou J. Energy-to-peak consensus for multi-agent systems with stochastic disturbances and Markovian switching topologies // Transactions of the Institute of Measurement and Control. 2018. V. 40. No. 16. P. 4358–4368.
- 5. Abdollahi F., Khorasani K. A Decentralized Markovian Jump H_{∞} Control Routing Strategy for Mobile Multi-Agent Networked Systems // IEEE Transactions on Control Systems Technology. 2011. V. 19. No. 2. P. 269–283.

- 6. Wan H., Luan X., Karimi H. R., Liu F. Dynamic Self-Triggered Controller Codesign for Markov Jump Systems // IEEE Transactions on Automatic Control. 2021. V. 66. No. 3. P. 1353–1360.
- 7. *Кац И.Я.*, *Красовский Н.Н.* Об устойчивости систем со случайными параметрами // Прикл. математика и механика. 1960. Т. 27. № 5. С. 809–823.
- 8. *Казаков И.Е.*, *Артемьев В.М.* Оптимизация динамических систем случайной структуры. М.: Наука, 1980.
- 9. *Кац И.Я.* Метод функций Ляпунова в задачах устойчивости и стабилизации систем случайной структуры. Екатеринбург: Изд-во Уральской гос. академии путей сообщения, 1998.
- 10. Mariton M. Jump linear systems in automatic control. Taylor & Francis, 1990.
- 11. Hinrichsen D., Pritchard A.J. Stochastic H_{∞} // SIAM J. Control. 1998. V. 36. No. 5. P. 1504–153.
- 12. Petersen I.R., Ugrinovskii V.A., Savkin A.V. Robust Control Design Using H_{∞} Methods. London et al. Springer, 2000.
- 13. Costa O., Fragoso M. A separation principle for the H_2 -control of continuous-time infinite Markov jump linear systems with partial observations // J. Math. Anal. Appl. 2007. V. 331. P. 97–120.
- 14. De Oliveira A.M., Costa O.L.V. Mixed H_2/H_{∞} State-Feedback Control of Continuous-Time Markov Jump Systems with Partial Observations of the Markov Chain // IFAC-PapersOnLine. 2020. V. 53. No. 2. P. 2249–2254.
- 15. Wilson D.A. Convolution and Hankel Operator Norms for Linear Systems // IEEE Trans. Autom. Control. 1989. V. 34. P. 94–97.
- 16. *Баландин Д.В., Коган М.М.* Оптимальное по Парето обобщенное \mathcal{H}_2 -управление и задачи виброзащиты // АиТ. 2017. № 8. С. 76–90.
- 17. *Баландин Д.В.*, *Бирюков Р.С.*, *Коган М.М.* Оптимальное управление максимальными уклонениями выходов линейной нестационарной системы // AuT. 2019. № 10. С. 37–61.
- 18. De Oliveira A.M., Costa O.L.V., Gabriel G.W., Barros Dos Santos S.R. Energy-to-Peak Reduced Order Filtering for Continuous-Time Markov Jump Linear Systems With Partial Information on the Jump Parameter // IEEE Access. 2022. V. 10. P. 79124–79133.
- 19. Costa O.L.V., De Oliveira A.M., Gabriel G.W., Barros Dos Santos S.R. Energyto-Peak Static Output Control for Continuous-Time Hidden Markov Jump Linear Systems // IFAC-PapersOnLine. 2023. V. 56. No. 2. P. 8141–8146.
- 20. $Todorov\ M.G.$ A New Approach to the Energy-to-Peak Performance Analysis of Continuous-Time Markov Jump Linear Systems // IEEE Control Systems Letters. 2024. V. 8. P. 1024–1029.
- 21. Xu Z., Wu Z.-G., Su H., Shi P., Que H. Energy-to-Peak Filtering of Semi-Markov Jump Systems With Mismatched Modes // IEEE Transactions on Automatic Control. 2020. V. 65. No. 10. P. 4356–4361.
- 22. Liu H., Sun F., Sun Z. Reduced-order filtering with energy-to-peak performance for discrete-time Markovian jumping systems // IMA J. Math. Control Inform. 2004. V. 21. No. 2. P. 143–158.
- 23. Feng J., Han K. Robust full- and reduced-order energy-to-peak filtering for discrete-time uncertain linear systems // Signal Processing. 2015. V. 108. P. 183–194.

- 24. Zhang Z., Zhang Z., Yang S. Robust reduced-order $l_2 l_{\infty}$ filtering for network-based discrete-time linear systems // Signal Processing. 2015. V. 109. P. 110–118.
- 25. Fragoso M., Baczynski J. Lyapunov coupled equations for continuous-time infinite Markov jump linear systems // Journal of Mathematical Analysis and Applications. 2002. V. 274. P. 319–335.
- 26. Fragoso M.D., Hemerly E.M. Optimal control for a class of noisy linear systems with markovian jumping parameters and quadratic cost // Int. J. Syst. Sci. 1991. V. 22. No. 12. P. 2553–2561.
- 27. Zhou J., Park J.H., Ma Q. Non-fragile observer-based H_{∞} control for stochastic time-delay systems // Applied Mathematics and Computation. 2016. V. 291. P. 69–83.

Статья представлена к публикации членом редколлегии П.В. Пакшиным.

Поступила в редакцию 02.04.2025

После доработки 10.06.2025

Принята к публикации 30.06.2025