Стохастические системы

© 2025 г. И.Р. БЕЛОВ, канд. физ.-мат. наук (ivbelov93@ipu.ru), А.Ю. КУСТОВ, канд. физ.-мат. наук (arkadiykustov@yandex.ru) (Институт проблем управления им. В.А. Трапезникова РАН, Москва)

АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ АНИЗОТРОПИЙНОГО РЕГУЛЯТОРА В ФОРМЕ ДИНАМИЧЕСКОЙ ОБРАТНОЙ СВЯЗИ ПО ВЫХОДУ ПРИ МАЛЫХ ЗНАЧЕНИЯХ СРЕДНЕЙ АНИЗОТРОПИИ ВНЕШНИХ ВОЗМУЩЕНИЙ¹

Получено асимптотическое представление оптимального анизотропийного регулятора для линейных дискретных стационарных систем и анизотропийной нормы системы, замкнутой подобным регулятором. Определен максимальный порог средней анизотропии внешнего возмущения, при котором с заданной точностью оптимальный анизотропийный регулятор аппроксимируется \mathcal{H}_2 -оптимальным регулятором.

Ключевые слова: анизотропийная теория, линейные системы, оптимальный регулятор, асимптотическое поведение.

DOI: 10.31857/S0005231025100044

1. Введение

Одной из наиболее актуальных в теории управления является задача оптимального управления. Она заключается в поиске закона управления, при котором достигается экстремальное значение некоторой функции от параметров системы и самого закона управления, называемой критерием качества системы. Критерий качества системы выбирается в зависимости от целей управления и условий функционирования самой системы. Одним из известных законов управления является регулятор в форме динамической обратной связи по выходу системы. Значения сигнала управления на выходе этого регулятора зависят от измерений текущих параметров системы, которые и составляют ее измеряемый выход. Для реальных систем практически всегда в данных измерений (равно как и в динамике самой системы) присутствуют случайные шумы, статистические параметры которых могут быть известными или нет. Если известно, что внешние случайные шумы, действующие на линейную систему, являются гауссовскими белыми шумами и используются квадратические критерии качества, то соответствующая задача управления называется линейно-квадратично-гауссовской (ЛКГ) задачей. Для подобной

¹ Работа выполнена при финансовой поддержке Российского научного фонда (грант № 24-21-20055).

постановки задачи управления существует огромное количество опубликованных работ для различных объектов [1–4]. Однако в случае реальных систем внешние шумы крайне редко являются аддитивными белыми шумами, для которых ЛКГ-регулятор наиболее эффективен в смысле среднеквадратичных критериев качества системы.

Позднее были разработаны методы теории \mathcal{H}_{∞} -оптимального управления для решения задач управления [5–8]. Суть данной теории заключается в синтезе оптимального регулятора на основе предположения, что на систему действует интегрируемое с квадратом внешнее возмущение и используется L_2 -индуцированная операторная норма системы. Однако методы теории \mathcal{H}_{∞} -управления приводят к консервативным (излишне перестраховочным) законам управления, с большими энергетическими затратами при функционировании получающихся регуляторов.

В середине 1990-х гг. И.Г. Владимировым была разработана анизотропийная теория управления как попытка объединения подходов \mathcal{H}_2 - и \mathcal{H}_{∞} -теорий [9] к описанию внешних возмущений. В рамках данной теории были введены такие фундаментальные понятия, как анизотропия случайного вектора, средняя анизотропия последовательности векторов и анизотропийная норма системы [10, 11]. Анизотропия вектора была введена как мера отклонения (в смысле относительной энтропии) распределения его направления от равномерного распределения на единичной сфере, а впоследствии [12] — для определения отклонения распределения самого вектора от изотропных гауссовских распределений. Впоследствии аппарат анизотропийной теории был применен для решения задач анализа, оптимального управления и фильтрации [13–16].

В [17] была рассмотрена задача асимптотического представления анизотропийной нормы фиксированной системы (с описанием в частотной области) при стремлении параметра средней анизотропии к нулю (так называемая левая асимптотика) и к бесконечности (соответственно, правая асимптотика). На основе упомянутой работы в [18] было получено асимптотическое представление оптимального анизотропийного фильтра (с описанием в пространстве состояний) в терминах отклонения от \mathcal{H}_2 -оптимального фильтра при малых значениях средней анизотропии. В той же работе представлено решение задачи определения максимального порога анизотропии, при которой \mathcal{H}_2 -фильтр с заданной точностью аппроксимирует анизотропийный фильтр. Впоследствии в [19] было представлено решение для частного случая аналогичной задачи анизотропийного управления. Полученные ранее результаты решения задач по левой асимптотике анизотропийных фильтра и регулятора являются основой научных результатов, представленных в настоящей статье.

В данной работе представлено решение общего случая задачи асимптотического представления оптимального анизотропийного регулятора для линейных дискретных детерминированных стационарных систем со случайны-

ми входными возмущениями. В первом разделе приведены краткие сведения об объекте исследования, об анизотропийной теории управления, а также о методах синтеза оптимальных \mathcal{H}_2 - и анизотропийного регуляторов. Во втором разделе представлено решение общего случая задачи оптимального анизотропийного управления. Третий раздел статьи посвящен решению задачи асимптотического представления анизотропийного регулятора в общем виде на основе результатов, описанных во втором разделе.

2. Предварительные сведения

2.1. Сокращения и обозначения

В данной работе используются следующие обозначения: \mathbb{R}^n — множество n-мерных вещественных векторов; $\mathbb{R}^{n \times m}$ — множество $(n \times m)$ -мерных вещественных матриц; \mathbb{C} — множество комплексных чисел; \mathbb{L}_2^n — множество n-мерных вещественно-значных интегрируемых с квадратом случайных векторов; $\mathcal{H}_{\infty}^{p \times m}$ — пространство Харди $(p \times m)$ -мерных комплексно-значных матричных функций, аналитических внутри единичного круга $\mathbb{C}_{\odot} = \{z \in \mathbb{C} : |z| < 1\}$ и имеющих ограниченную \mathcal{H}_{∞} -норму, определенную для $F \in \mathcal{H}_{\infty}^{p \times m}$ как $\|F\|_{\infty} = \sup_{|z| < 1} \overline{\sigma}(F(z)); \ \overline{\sigma}(X) = \sqrt{\lambda_{\max}(X^*X)}$ — максимальное сингулярное число матрицы $X; \ \lambda_{\max}(X)$ — наибольшее собственное число эрмитовой матрицы $X; \ X^* = \overline{X}^T$ — эрмитово сопряжение; $\mathcal{H}_2^{p \times m}$ — пространство Харди аналитических для всех $z \in \mathbb{C}_{\odot}$ матричных функций $F(z) = \sum_{k=0}^{+\infty} f_k z^k$ с ограниченной \mathcal{H}_2 -нормой, квадрат которой определяется выражением $\|F\|_2^2 = \sum_{k=0}^{+\infty} \operatorname{tr}(f_k f_k^T)$, где f_k — вещественные матрицы.

2.2. Класс рассматриваемых систем

Объектом исследования являются линейные дискретные стационарные системы ${\cal F}$ вида

(1)
$$x_{k+1} = Ax_k + B_w w_k + B_u u_k, \quad k = 0, 1, \dots,$$

где $x_k \in \mathbb{L}_2^{n_x}$ — вектор состояния, $x_0=0; w_k \in \mathbb{L}_2^{n_w}$ — вектор внешнего возмущения; $u_k \in \mathbb{L}_2^{n_u}$ — вектор управления. Регулируемый выход системы (1) в виде вектора $z_k \in \mathbb{L}_2^{n_z}$ определяется выражением

$$(2) z_k = C_z x_k + D_z u_k.$$

В качестве данных для определения управляющего входа u_k системы F используют данные измерений с датчиков на объекте. Эти данные представляются в виде последовательности векторов $y_k \in \mathbb{L}_2^{n_y}$ измеряемого выхода

$$(3) y_k = C_y x_k + D_y w_k.$$

Матрицы $A, B_w, B_u, C_z, D_z, C_y, D_y$ являются известными вещественными матрицами соответствующих размеров. Системе уравнений ви-

да (1), (2), (3) ставятся в соответствие передаточные функции: $T_{yw}(z) = D_y + C_y (z I_{n_x} - A)^{-1} B_w$, определяемая четверкой матриц

$$(4) T_{yw} \sim (A, B_w, C_y, D_y),$$

и $T_{zu}(z) = D_z + C_z (zI_{n_x} - A)^{-1} B_u$ с четверкой матриц

$$(5) T_{zu} \sim (A, B_u, C_z, D_z).$$

Общая постановка задачи управления: необходимо построить регулятор K вида

(6)
$$K \sim \begin{cases} h_{k+1} = \widehat{A}h_k + \widehat{B}y_k, \\ u_k = \widehat{C}h_k + \widehat{D}y_k \end{cases}$$

с состоянием $h_k \in \mathbb{L}_2^{n_x}$, входом $y_k \in \mathbb{L}_2^{n_y}$ и выходом $u_k \in \mathbb{L}_2^{n_u}$, чтобы обеспечить выполнение некоторого критерия качества. В (6) определению подлежат матрицы \widehat{A} , \widehat{B} , \widehat{C} и \widehat{D} . Далее представлены основные сведения о двух типах регуляторов в зависимости от критерия качества: о \mathcal{H}_2 -регуляторе с критерием качества в виде подлежащего минимизации следа ковариационной матрицы состояния или регулируемого выхода замкнутой системы и о анизотропийном регуляторе, для которого критерием качества является анизотропийная норма линейного оператора, связывающего регулируемый выход замкнутой системы с внешним возмущением.

2.3. \mathcal{H}_2 -оптимальное управление

Для удобства дальнейшего изложения введем матрицы

$$(7) \ \ U_L = (D_z^\mathrm{T} D_z + B_u^\mathrm{T} \widehat{P}_\star B_u)^{-1}, \quad U_R = -(D_z^\mathrm{T} C_z + B_u^\mathrm{T} \widehat{P}_\star A), \quad U_\star = U_L U_R,$$

$$(8) \ \ V_L = -(A\widehat{Q}_{\star}C_y^{\mathrm{T}} + B_wD_y^{\mathrm{T}}), \quad V_R = (D_yD_y^{\mathrm{T}} + C_y\widehat{Q}_{\star}C_y^{\mathrm{T}})^{-1}, \quad V_{\star} = V_LV_R.$$

Задача оптимального \mathcal{H}_2 -управления заключается в поиске регулятора, доставляющего минимум \mathcal{H}_2 -норме системы, замкнутой этим регулятором. Рассмотрим линейную дискретную стационарную систему с уравнением динамики вида (1), уравнением управляемого выхода (2) и уравнением измеряемого выхода (3) с внешним случайным возмущением в виде последовательности случайных независимых векторов w_k со стандартным нормальным распределением, т.е. гауссовским распределением с нулевым средним $\mathbf{E}[w_k] = 0$ и единичной ковариационной матрицей $\mathbf{E}[w_k w_k^{\mathrm{T}}] = I_{n_w}$. Пусть ищется \mathcal{H}_2 -оптимальный регулятор вида (6). Тогда имеем следующее решение поставленной задачи синтеза оптимального \mathcal{H}_2 -оптимального регулятора с учетом [2]:

$$\begin{split} \widehat{A}_{\star} &= A + B_{u}U_{\star} + V_{\star}C_{y} - B_{u}\widehat{D}_{\star}C_{y}, \\ \widehat{B}_{\star} &= B_{u}\widehat{D}_{\star} - V_{\star}, \\ \widehat{C}_{\star} &= U_{\star} - \widehat{D}_{\star}C_{y}, \\ \widehat{D}_{\star} &= -U_{L}(D_{z}^{\mathrm{T}}C_{z}\widehat{Q}_{\star}C_{y}^{\mathrm{T}} + B_{u}^{\mathrm{T}}\widehat{P}_{\star}A\widehat{Q}_{\star}C_{y}^{\mathrm{T}} + B_{u}^{\mathrm{T}}\widehat{P}_{\star}B_{w}D_{y}^{\mathrm{T}})V_{R}, \end{split}$$

где \widehat{P}_{\star} и \widehat{Q}_{\star} – стабилизирующие решения алгебраических уравнений Риккати (управления и фильтрации соответственно):

$$\begin{split} \widehat{P}_{\star} &= A^{\mathrm{T}} \widehat{P}_{\star} A + C_z^{\mathrm{T}} C_z - U_R^{\mathrm{T}} U_{\star}, \\ \widehat{Q}_{\star} &= A \widehat{Q}_{\star} A^{\mathrm{T}} + B_w B_w^{\mathrm{T}} - V_{\star} V_L^{\mathrm{T}}. \end{split}$$

Матрица V_* связана с матрицей коэффициентов фильтра Калмана (как части \mathcal{H}_2 -регулятора) по отношению к обновляющей последовательности, в то время как U_* отвечает за формирование управляющего воздействия по оценке этим фильтром текущего состояния объекта управления (в силу структуры принципа разделения фильтрации и управления, которой обладает ЛКГ-регулятор).

Далее рассмотрим основные понятия и принципы анизотропийной теории, на которых базируется решение поставленной в статье задачи.

2.4. Анизотропийная норма

В постановке задачи синтеза \mathcal{H}_2 -оптимального регулятора предполагается, что на вход рассматриваемой системы в качестве внешнего возмущения подается гауссовский белый шум. В реальных задачах чаще всего внешними возмущениями для систем выступают окрашенные (и не обязательно гауссовские) шумы, и не всегда точно известны статистические характеристики этих шумов. Предположим, что на вход рассматриваемой системы (1) поступает случайное возмущение в виде стационарной последовательности случайных независимых в совокупности векторов $W=(w_k)_{0\leqslant k<+\infty},\,w_k\in\mathbb{L}_2^{n_w},$ свойства которых отличаются от стандартного нормального распределения. Для характеристики отклонения распределения случайного вектора от нормального распределения будут использоваться понятия анизотропии случайного вектора и средней анизотропии последовательности случайных векторов.

Определение 1 [12]. Анизотропией ${\bf A}(w)$ n_w -мерного случайного вектора w называется неотрицательная величина, определенная по формуле

$$\mathbf{A}(w) = \min_{\lambda > 0} \mathbf{D}(f || p_{n_w, \lambda}),$$

еде $\mathbf{D}(f\|p_{n_w,\lambda})$ – относительная энтропия плотности распределения вероятности f вектора w относительно плотности нормального распределения вероятности $p_{n_w,\lambda}$ с нулевым математическим ожиданием и скалярной ковариационной матрицей λI_{n_w} , $\lambda>0$.

Для характеристики последовательности случайных векторов использование анизотропии согласно приведенному выше определению не представляется возможным ввиду стремления ее к бесконечности по мере увеличения количества элементов последовательности. Поэтому было введено понятие средней анизотропии последовательности случайных векторов.

Определение 2 [12]. Средней анизотропией (стационарной эргодической) последовательности $W=(w_k)_{0\leq k<+\infty}$ называют предел

$$\overline{\mathbf{A}}(W) = \lim_{N \to \infty} \frac{\mathbf{A}(W_{0:N-1})}{N},$$

где $W_{s:t} = (w_s^{\mathrm{T}}, \ w_{s+1}^{\mathrm{T}}, \ \dots, \ w_t^{\mathrm{T}})^{\mathrm{T}}$ – вектор, образованный векторами фрагмента последовательности $(w_k)_{s \leq k \leq t}$.

Как известно [20], векторы стационарной гауссовской последовательности случайного возмущения $W=(w_k)_{0\leqslant k<+\infty}$ могут быть представлены в виде

$$w_j = \sum_{k=0}^{+\infty} g_k v_{j-k},$$

где $V=(v_k)_{0\leqslant k<+\infty}$ — последовательность независимых n_w -мерных случайных векторов со стандартным нормальным распределением; g_k — импульсная переходная характеристика генерирующего фильтра, $G(z)\in\mathcal{H}_2^{n_w\times n_w}$ — передаточная функция генерирующего фильтра с последовательностью векторов V на входе и последовательностью W на выходе. Поскольку последовательность векторов W генерируется фильтром G, для средней анизотропии последовательности $\overline{\mathbf{A}}(W)$ может быть использовано обозначение $\overline{\mathbf{A}}(G)$. Показано (см. [11, формула (4) и Лемма 1]), что средняя анизотропия $\overline{\mathbf{A}}(G)$ последовательности случайных векторов W, генерируемой формирующим фильтром G, может быть вычислена по следующей формуле:

$$\overline{\mathbf{A}}(G) = -\frac{1}{4\pi} \int_{-\pi}^{\pi} \ln \det \left(\frac{n_w}{\|G\|_2^2} \widehat{G}(w) (\widehat{G}(w))^* \right) dw,$$

где

$$\widehat{G}(w) = \lim_{r \to 1-0} G(re^{iw}), \quad w \in [-\pi, \pi), \quad i^2 = -1.$$

Одной из мер отклика системы F вида (4) на входное возмущение в виде последовательности векторов W со средней анизотропией $\overline{\mathbf{A}}(G)\leqslant a$ является анизотропийная норма системы [11], которая определяется следующим образом:

(9)
$$|||F|||_a = \sup_{G \in \mathbf{G}_a} \frac{||FG||_2}{||G||_2},$$

где $\mathbf{G}_a = \{G \in \mathcal{H}_2^{n_w \times n_w} : \overline{\mathbf{A}}(G) \leqslant a\}$ — множество формирующих фильтров с ограниченной числом a средней анизотропией последовательности W.

Для вычисления анизотропийной нормы необходимо определить параметры формирующего фильтра G, при котором достигается супремум в выражении (9). Этот фильтр называется наихудшим формирующим фильтром и

имеет представление [11, формулы (32), (33)]

(10)
$$G \sim \left[\begin{array}{c|c} A + BL & B\Sigma^{1/2} \\ \hline L & \Sigma^{1/2} \end{array} \right]$$

с состоянием x_k , входом v_k и выходом w_k . Приведем формулировку леммы о вычислении анизотропийной нормы для линейной дискретной стационарной системы.

 \mathcal{J} емма 1 [11, \mathcal{J} емма 3]. \mathcal{J} ана устойчивая линейная дискретная стационарная система F вида (4), определяемая четверкой матриц A, B, C, D. \mathcal{J} ля любого a>0 существует, причем единственная, пара (q,R), где $q\in(0,\|F\|_{-2}^{-2})$ – скалярный параметр, удовлетворяющий уравнению

(11)
$$-\frac{1}{2} \ln \det \frac{n_w \Sigma}{\operatorname{tr}(LPL^{\mathrm{T}} + \Sigma)} = a,$$

а $R \in \mathbb{R}^{n_x \times n_x}$ – матрица, являющаяся стабилизирующим решением уравнения Pиккати

$$\begin{split} R &= A^{\mathrm{T}}RA + qC^{\mathrm{T}}C + L^{\mathrm{T}}\Sigma^{-1}L, \\ \Sigma &= (I_{n_w} - qD^{\mathrm{T}}D - B^{\mathrm{T}}RB)^{-1}, \\ L &= \Sigma(B^{\mathrm{T}}RA + qD^{\mathrm{T}}C). \end{split}$$

 Π ричем анизотропийная норма системы F вычисляется как

(12)
$$|||F|||_a = \left(\frac{1}{q}\left(1 - \frac{n_w}{\operatorname{tr}(LPL^{\mathrm{T}} + \Sigma)}\right)\right)^{1/2},$$

где матрица $P \in \mathbb{R}^{n_x \times n_x}$ удовлетворяет уравнению Ляпунова

(13)
$$P = (A + BL)P(A + BL)^{\mathrm{T}} + B\Sigma B^{\mathrm{T}}.$$

Приведенные выше понятия и принципы анизотропийной теории управления будут использоваться далее при решении задач определения асимптотического представления анизотропийного регулятора в общем виде и максимального порога анизотропии, при котором анизотропийный регулятор аппроксимируется \mathcal{H}_2 -регулятором с заданной точностью.

3. Оптимальный анизотропийный регулятор

Рассматривается задача синтеза оптимального анизотропийного регулятора вида (6) для линейной дискретной стационарной системы (5) с измеряемым выходом (3). В [19] приведено решение задачи асимптотического представления при близких к нулю значениях средней анизотропии a для статического регулятора по состоянию $u_k = Kx_k$. Решим по аналогии задачу асимптотического представления для динамического анизотропийного регулятора по выходу.

Для начала запишем представление исходной системы с динамическим регулятором как результат подстановки выражения регулятора (6) в систему (1)–(3):

(14)
$$\mathcal{L}(F,K) \sim \left[\begin{array}{c|c} \overline{A} & \overline{B} \\ \hline \overline{C} & \overline{D} \end{array} \right],$$

где матрицы $\overline{A}, \overline{B}, \overline{C}$ и \overline{D} имеют вид

$$\begin{split} \overline{A} &= \left(\begin{array}{cc} A + B_u \widehat{D} C_y & B_u \widehat{C} \\ \widehat{B} C_y & \widehat{A} \end{array} \right), \quad \overline{B} = \left(\begin{array}{cc} B_w + B_u \widehat{D} D_y \\ \widehat{B} D_y \end{array} \right), \\ \overline{C} &= \left(C_z + D_z \widehat{D} C_y & D_z \widehat{C} \right), \quad \overline{D} = D_z \widehat{D} D_y. \end{split}$$

Предполагается, что векторы w_k входного возмущения рассматриваемой системы являются выходом наихудшего формирующего фильтра вида (10) и представимы в виде

$$w_k = L_x x_k + L_h h_k + \Sigma^{1/2} v_k.$$

Уравнение Риккати из условия леммы о вычислении анизотропийной нормы (11)–(13) для системы (14) имеет вид

(15)
$$R = \overline{A}^{\mathrm{T}} R \overline{A} + q \overline{C}^{\mathrm{T}} \overline{C} + L^{\mathrm{T}} \Sigma^{-1} L,$$

(16)
$$\Sigma = (I_{n_{m}} - q\overline{D}^{\mathrm{T}}\overline{D} - \overline{B}^{\mathrm{T}}R\overline{B})^{-1},$$

(17)
$$L = (L_x \quad L_h) = \Sigma (\overline{B}^{\mathrm{T}} R \overline{A} + q \overline{D}^{\mathrm{T}} \overline{C}).$$

Таким образом, поставленная задача управления разделяется на две подзадачи — определение наихудшего формирующего фильтра для замкнутой системы (14) и синтез оптимального динамического анизотропийного регулятора в виде ЛКГ-регулятора, минимизирующего след ковариационной матрицы регулируемого выхода замкнутой системы (14), когда на ее вход поступает наиболее неблагоприятный шум. В [16] представлено решение подобной задачи управления для случая $\widehat{D}=0$. Если провести аналогичным образом рассуждения для случая регулятора (6), то получим, что матрицы \widehat{A} и \widehat{B} удовлетворяют формулам

(18)
$$\widehat{A} = A + B_w M + B_u \widehat{C} + (B_u \widehat{D} - \Lambda)(C_y + D_y M), \quad \widehat{B} = \Lambda,$$

где

$$(19) M = L_x + L_h,$$

(20)
$$S = (A + B_w L_x + B_u \widehat{D} D_y L_x) S (A + B_w L_x + B_u \widehat{D} D_y L_x)^{\mathrm{T}} + (B_w + B_u \widehat{D} D_y) \Sigma (B_w + B_u \widehat{D} D_y)^{\mathrm{T}} - \Lambda \Theta \Lambda^{\mathrm{T}},$$

(21)
$$\Theta = (C_y + D_y L_x) S(C_y + D_y L_x)^{\mathrm{T}} + D_y \Sigma D_y^{\mathrm{T}},$$

(22)
$$\Lambda = \left((A + B_w L_x + B_u \widehat{D} C_y + B_u \widehat{D} D_y L_x) S(C_y + D_y L_x) + (B_w + B_u \widehat{D} D_y) \Sigma D_y^{\mathrm{T}} \right) \Theta^{-1}.$$

Для определения неизвестных матриц \widehat{C} и \widehat{D} регулятора воспользуемся методологией решения задач синтеза динамических \mathcal{H}_2 -оптимальных регуляторов по выходу, представленной в [2]. Для этого необходимо записать исходную систему (1)–(3) с динамическим регулятором (6) и наихудшим формирующим фильтром (10) в виде

$$\begin{cases} \widetilde{x}_{k+1} = \widetilde{A}\widetilde{x}_k + \widetilde{B}_w v_k + \widetilde{B}_u u_k, \\ \widetilde{z}_k = \widetilde{C}_z \widetilde{x}_k + \widetilde{D}_z u_k, \\ \widetilde{y}_k = \widetilde{C}_y \widetilde{x}_k + \widetilde{D}_y v_k, \end{cases}$$

где вектор состояния \widetilde{x} включает в себя вектор состояния x_k исходной системы (1) и вектор состояния h_k регулятора (6), т.е. $\widetilde{x}=(x_k^{\rm T} \quad h_k^{\rm T})^{\rm T}, \ \widetilde{z}_k=z_k, \ \widetilde{y}=(y_k^{\rm T} \quad h_k^{\rm T})^{\rm T},$ а матрицы системы имеют вид

$$(24) \quad \widetilde{A} = \begin{pmatrix} A + B_w L_x & B_w L_h \\ \widehat{B} C_y + \widehat{B} D_y L_x & \widehat{A} + \widehat{B} D_y L_h \end{pmatrix}, \ \widetilde{B}_w = \begin{pmatrix} B_w \Sigma^{1/2} \\ \widehat{B} D_y \Sigma^{1/2} \end{pmatrix}, \ \widetilde{B}_u = \begin{pmatrix} B_u \\ 0 \end{pmatrix},$$

(25)
$$\widetilde{C}_z = (C_z \quad 0), \quad \widetilde{D}_z = D_z,$$

(26)
$$\widetilde{C}_y = \begin{pmatrix} C_y + D_y L_x & D_y L_h \\ 0 & I_{n_x} \end{pmatrix}, \quad \widetilde{D}_y = \begin{pmatrix} D_y \Sigma^{1/2} \\ 0 \end{pmatrix}.$$

В итоге получаем, что искомое управление u_k определяется по формуле

$$u_k = \widetilde{N}\widetilde{y}_k,$$

где
$$\widetilde{N} = (\widehat{D} \quad \widehat{C}).$$

Применив представленный в [2] метод решения задачи \mathcal{H}_2 -оптимального управления для системы (23), получим

$$(27) \hspace{1cm} \widetilde{N} = -\widetilde{U}_L(\widetilde{D}_z^{\mathrm{T}}\widetilde{C}_zQ_{\star}\widetilde{C}_y^{\mathrm{T}} + \widetilde{B}_u^{\mathrm{T}}P_{\star}\widetilde{A}Q_{\star}\widetilde{C}_y^{\mathrm{T}} + \widetilde{B}_u^{\mathrm{T}}P_{\star}\widetilde{B}_w\widetilde{D}_y^{\mathrm{T}})\widetilde{V}_R,$$

где матрицы \widetilde{U}_L и \widetilde{V}_R введены по аналогии с (7) и (8) путем замены соответствующих матриц на аналогичные с волнистой чертой и матриц \widehat{P}_\star , \widehat{Q}_\star на P_\star , Q_\star соответственно, а сами матрицы P_\star и Q_\star являются решениями уравнений

(28)
$$P_{\star} = \widetilde{A}^{\mathrm{T}} P_{\star} \widetilde{A} + \widetilde{C}_{z}^{\mathrm{T}} \widetilde{C}_{z} - \widetilde{U}_{R}^{\mathrm{T}} \widetilde{U}_{\star},$$

$$(29) Q_{\star} = \widetilde{A}Q_{\star}\widetilde{A}^{\mathrm{T}} + \widetilde{B}_{w}\widetilde{B}_{w}^{\mathrm{T}} - \widetilde{V}_{\star}\widetilde{V}_{L}^{\mathrm{T}}.$$

Из (27) следует, что для определения матриц \widehat{C} и \widehat{D} необходимо сделать следующие преобразования:

$$\widehat{C} = \widetilde{N} \left(\begin{array}{c} 0 \\ I_{n_{-}} \end{array} \right), \quad \widehat{D} = \widetilde{N} \left(\begin{array}{c} I_{n_{y}} \\ 0 \end{array} \right).$$

Таким образом, матрицы \widehat{A} , \widehat{B} , \widehat{C} и \widehat{D} искомого динамического анизотропийного регулятора по выходу однозначно определяются системой уравнений (18), (27)–(29).

В следующем разделе приведено решение задачи поиска асимптотического представления для полученного оптимального анизотропийного регулятора при $a \to 0+0$.

4. Асимптотическое представление регулятора

Следующим шагом решения поставленной задачи является вывод формул асимптотического представления полученного анизотропийного динамического регулятора. Для этого необходимо определить компоненты разложения матриц регулятора, системы (23) и всех сопутствующих матриц. Запишем формулы разложения в матричные ряды для матриц системы (23):

(30)
$$X(a) = \sum_{k=0}^{n} X_k a^{k/2} + o(a^{n/2}), \quad a \to 0 + 0,$$

где под X понимается *любая* из переменных, кроме матриц $A, B_w, B_u, C_z, C_y, D_z, D_y$ исходной системы, которые не зависят от a по постановке задачи (для примера, матрица Σ зависит от a, поэтому для нее справедливо представление (30), т.е. $\Sigma(a) = \Sigma_0 + \Sigma_1 \sqrt{a} + \Sigma_2 a + o(a)$, если положить n=2). Отметим, что $\widetilde{X}(\sqrt{a}) \doteq X(a)$ является достаточно гладкой функцией своего аргумента \sqrt{a} . Соответственно, подобное разложение будут иметь и все матрицы, полученные в результате сумм и произведений отдельных матриц, представимых в виде (30).

По аналогии с решением задачи синтеза статического регулятора для определения нулевых компонент разложений матричных функций необходимо определить значения функций при a=0 – этому случаю соответствуют матрицы \mathcal{H}_2 -регулятора. Для удобства введем вспомогательную матрицу $\Upsilon=-\widetilde{U}_L^{-1}\widetilde{N}\widetilde{V}_R^{-1}$. Все переменные X_0 , соответствующие случаю a=0, здесь не приводятся, так как получаются тривиально путем подстановки величин $q=0,\ L=0$ и $\Sigma=I_{n_m}$ во все необходимые формулы.

Используя приведенные в [18, 19] результаты, запишем вторые слагаемые разложений матричных функций R(a), $\Sigma(a)$, L(a) и q(a) следующим образом:

$$(31) \quad q_1^2 = 4n_w / \left(2n_w \operatorname{tr}(\overline{B}_0^{\mathrm{T}} \mathcal{Q} \overline{A}_0 \overline{P}_0 \overline{A}_0^{\mathrm{T}} \mathcal{Q} \overline{B}_0 + n_w (\overline{B}_0^{\mathrm{T}} \mathcal{Q} \overline{B}_0)^2) - \operatorname{tr}^2(\overline{B}_0^{\mathrm{T}} \mathcal{Q} \overline{B}_0) \right),$$

$$R_1 = q_1 \mathcal{Q}, \quad \Sigma_1 = \overline{B}_0^{\mathrm{T}} R_1 \overline{B}^0, \quad L_1 = \overline{B}_0^{\mathrm{T}} R_1 \overline{A}_0,$$

где матрицы \mathcal{Q} и \overline{P}_0 удовлетворяют уравнениям

$$\mathcal{Q} = \overline{A}_0^{\mathrm{T}} \mathcal{Q} \overline{A}_0 + \overline{C}_0^{\mathrm{T}} \overline{C}_0, \quad \overline{P}_0 = \overline{A}_0 \overline{P}_0 \overline{A}_0^{\mathrm{T}} + \overline{B}_0 \overline{B}_0^{\mathrm{T}}.$$

Сделав все необходимые преобразования, получим следующие выражения первых компонент для ненулевых (остальные будут нулевыми) матриц замкнутой системы (можно обратить внимание на зависимость этих матриц одновременно от различных X_0 и X_1):

$$\begin{split} \widetilde{A}_1 &= \left(\begin{array}{cc} B_w L_{x,1} & B_w L_{h,1} \\ \widehat{B}_1 C_y + \widehat{B}_0 D_y L_{x,1} & \widehat{B}_0 D_y L_{h,1} \end{array} \right), \quad \widetilde{B}_{w,1} = \left(\begin{array}{c} B_w \Sigma_1^{1/2} \\ \widehat{B}_1 D_y + \widehat{B}_0 D_y \Sigma_1^{1/2} \end{array} \right), \\ \widetilde{C}_{y,1} &= \left(\begin{array}{cc} D_y L_{x,1} & D_y L_{h,1} \\ 0 & 0 \end{array} \right), \quad \widetilde{D}_{y,1} = \left(\begin{array}{c} D_y \Sigma_1^{1/2} \\ 0 \end{array} \right). \end{split}$$

Проведя аналогичные выкладки для матриц анизотропийного регулятора, получим уравнения для первых компонент матриц анизотропийного регулятора:

$$\begin{split} \widehat{A}_1 &= B_w M_1 + B_u \widehat{C}_1 + B_u \widehat{D}_1 C_y - \Lambda_1 C_y + (B_u \widehat{D}_0 - \Lambda_0) D_y M_1, \quad \widehat{B}_1 = \Lambda_1, \\ \widehat{C}_1 &= \widetilde{N}_1 \left(\begin{array}{c} 0 \\ I_{n_x} \end{array} \right), \quad \widehat{D}_1 = \widetilde{N}_1 \left(\begin{array}{c} I_{n_y} \\ 0 \end{array} \right). \end{split}$$

Хотя выражения для вторых слагаемых разложения (30) различных матриц-переменных устроены достаточно сложно, все они получаются одинаковым способом и устроены очень похоже, поэтому для экономии места приведем лишь общий принцип их вывода на примере матрицы Υ . Согласно введенным обозначениям,

$$\Upsilon = \widetilde{D}_z^{\mathrm{T}} \widetilde{C}_z Q_{\star} \widetilde{C}_y^{\mathrm{T}} + \widetilde{B}_u^{\mathrm{T}} P_{\star} \widetilde{A} Q_{\star} \widetilde{C}_y^{\mathrm{T}} + \widetilde{B}_u^{\mathrm{T}} P_{\star} \widetilde{B}_w \widetilde{D}_y^{\mathrm{T}},$$

где все матрицы, формирующие ее, зависят от a. Значит, для первого слагаемого ее разложения по формуле (30) справедливо представление

$$\Upsilon_0 = \widetilde{D}_{z,0}^{\mathrm{T}} \widetilde{C}_{z,0} Q_{\star,0} \widetilde{C}_{y,0}^{\mathrm{T}} + \widetilde{B}_{u,0}^{\mathrm{T}} P_{\star,0} \widetilde{A}_0 Q_{\star,0} \widetilde{C}_{y,0}^{\mathrm{T}} + \widetilde{B}_{u,0}^{\mathrm{T}} P_{\star,0} \widetilde{B}_{w,0} \widetilde{D}_{y,0}^{\mathrm{T}},$$

а для второго - представление

$$(34) \quad \Upsilon_{1} = \sum_{\substack{i,j,k,l \geqslant 0 \\ i+j+k+l=1}} \widetilde{D}_{z,i}^{\mathrm{T}} \widetilde{C}_{z,j} Q_{\star,k} \widetilde{C}_{y,l}^{\mathrm{T}} +$$

$$+ \sum_{\substack{i,j,k,l,m \geqslant 0 \\ i+j+k+l+m=1}} \widetilde{B}_{u,i}^{\mathrm{T}} P_{\star,j} \widetilde{A}_{k} Q_{\star,l} \widetilde{C}_{y,m}^{\mathrm{T}} + \sum_{\substack{i,j,k,l \geqslant 0 \\ i+j+k+l=1}} \widetilde{B}_{u,i}^{\mathrm{T}} P_{\star,j} \widetilde{B}_{w,k} \widetilde{D}_{y,l}^{\mathrm{T}}.$$

Несложно заметить общий принцип формирования матрицы Υ_1 : из всех возможных индексов формирующих ее матриц в каждом из матричных произведений лишь один принимает значение, равное 1. По аналогии, для того, чтобы выписать третье слагаемое Υ_2 , понадобится рассмотреть всевозможные комбинации индексов, сумма которых равна 2 (общее число слагаемых

в этом случае будет равно 35). Таким образом, можно считать, что все необходимые матрицы в представлении (30) выписаны, т.е. с заданной точностью определено асимптотическое представление динамического анизотропийного регулятора при $a \to 0+0$. Полученные результаты запишем в виде следующего утверждения.

Tе о p е м а 1. Даны линейная стационарная система вида (1)–(3) и динамический регулятор вида (6) в форме обратной связи по выходу. При малых значениях средней анизотропии $a \to 0+0$ входных возмущений для матриц \widehat{A} , \widehat{B} , \widehat{C} и \widehat{D} регулятора справедливы асимптотические разложения, заданные формулой (30), где слагаемые ряда определяются по аналогии с формулами (32)–(34) для матрицы Υ , а зависимость их от числа а задается формулой (11).

В следующем разделе представлено решение задачи нахождения асимптотического представления анизотропийной нормы для замкнутой найденным регулятором системы.

5. Асимптотическое представление анизотропийной нормы

Следующим этапом решения задачи является получение асимптотического представления анизотропийной нормы системы, замкнутой полученным регулятором, и определение максимального уровня средней анизотропии $a_{\rm max}$, при котором соответствующий оптимальный анизотропийный регулятор аппроксимируется \mathcal{H}_2 -оптимальным регулятором с заданным уровнем точности ε . Для этого необходимо определить первые компоненты матриц \overline{A} , \overline{B} , \overline{C} и \overline{D} . Определив частные производные этих матричных функций по \sqrt{a} и подставив в них значение a=0, легко получаем нужные первые компоненты разложения матриц \overline{A} , \overline{B} , \overline{C} и \overline{D} .

Для асимптотического представления анизотропийной нормы необходимо определить вторые компоненты матричных функций R(a) и $\Sigma(a)$. Определив вторые частные производные матриц (15)–(17) по \sqrt{a} и подставив в них нулевое значение средней анизотропии a, имеем

$$R_2 = \overline{A}_0^{\mathrm{T}} R_2 \overline{A}_0 + Y_{R_2} + Y_{R_2}^{\mathrm{T}},$$

$$\Sigma_2 = \overline{B}_0^{\mathrm{T}} R_2 \overline{B}_0 + Y_{\Sigma_2} + Y_{\Sigma_2}^{\mathrm{T}},$$
(35)

где $Y_{R_2}=q_1\left(\overline{A}_1^{\rm T}\mathcal{Q}\overline{A}_0+\overline{C}_1^{\rm T}\overline{C}_0\right), Y_{\Sigma_2}=q_1\left(\overline{B}_1^{\rm T}\mathcal{Q}\overline{B}_0+\overline{D}_1^{\rm T}\overline{D}_0\right).$ Подставив полученные разложения в ряд матричных функций $R,\ \Sigma,\ L$ и P в формулу (12) анизотропийной нормы, получим асимптотическое представление анизотропийной нормы системы (14) при $a\to 0+$ следующего вида:

$$\begin{split} & \|\mathcal{L}(F, K_{\star})\|_{a} = \\ & = \frac{\|\mathcal{L}(F, K_{\star,0})\|_{2}}{\sqrt{n_{w}}} \left(1 + \left(\sqrt{\frac{\Xi}{n_{w}}} + \frac{\operatorname{tr}(\Sigma_{2})}{2q_{1}\|\mathcal{L}(F, K_{\star,0})\|_{2}^{2}}\right)\sqrt{a}\right) + o(\sqrt{a}), \end{split}$$

где $\mathcal{L}(F,K_{\star,0})$ представляет собой систему вида (14), замкнутую оптимальным регулятором при уровне средней анизотропии a=0, а Ξ имеет вид

(37)
$$\Xi = \frac{n_w \|\mathcal{L}(F, K_{\star,0})\|_4^4 - \|\mathcal{L}(F, K_{\star,0})\|_2^4}{\|\mathcal{L}(F, K_{\star,0})\|_2^4}.$$

Формулы для $\|\cdot\|_4^4$ и $\|\cdot\|_2^4$ известны и могут быть найдены в [17].

Последним шагом будет определение максимального уровня средней анизотропии для заданного уровня точности $\varepsilon = \overline{o}(\|\mathcal{L}(F,K_{\star,0})\|_2)$, с которым \mathcal{H}_2 -оптимальный регулятор аппроксимирует анизотропийный регулятор. Это условие имеет вид $a\leqslant a_{\max}$, где a_{\max} удовлетворяет неравенству

(38)
$$\left| \| \mathcal{L}(F, K_{\star}) \|_{a_{\max}} - \frac{\| \mathcal{L}(F, K_{\star,0}) \|_{2}}{\sqrt{n_{w}}} \right| < \varepsilon \frac{\| \mathcal{L}(F, K_{\star,0}) \|_{2}}{\sqrt{n_{w}}}.$$

Подставив формулу (36) асимптотического представления анизотропийной нормы в неравенство (38), имеем

(39)
$$a \leqslant a_{\max} = \varepsilon^2 \left(\sqrt{\frac{\Xi}{n_w}} + \frac{\operatorname{tr}(\Sigma_2)}{2q_1 \|\mathcal{L}(F, K_{\star,0})\|_2^2} \right)^{-2}.$$

Приведенные выше результаты решения задачи асимптотического представления анизотропийной нормы запишем в виде следующей теоремы.

Tе о p е м а 2. Дана линейная стационарная система вида (1)–(3) и динамический регулятор вида (6) в форме обратной связи по выходу. При малых значениях средней анизотропии $a \to 0+0$ входных возмущений анизотропийная норма системы, замкнутой регулятором (6), имеет асимптотическое представление (36), а максимальный уровень средней анизотропии, при котором относительное отклонение анизотропийной нормы $\|\mathcal{L}(F,K_\star)\|_a$ от масштабированной \mathcal{H}_2 -нормы замкнутой системы не превышает заданного порогового числа ε , определяется по формуле (39), где q_1 , Σ_2 и Ξ задаются в соответствии с формулами (31), (35) и (37).

Очевидно, что максимальный уровень средней анизотропии определяется матрицами исходной системы. В более ранних работах по левой асимптотике анизотропийного фильтра [18] и статического анизотропийного регулятора [19] было наглядно показано, что их \mathcal{H}_2 -оптимальные аналоги достаточно эффективно аппроксимируют соответственно анизотропийные фильтр и регулятор при малых значениях средней анизотропии входного возмущения.

6. Заключение

В данной статье рассмотрены задача синтеза динамического оптимального анизотропийного регулятора для линейных дискретных стационарных систем и задача определения максимального порога средней анизотропии,

при котором с заданным уровнем точности анизотропийный регулятор может быть аппроксимирован \mathcal{H}_2 -оптимальным регулятором. В процессе решения поставленных задач были получены асимптотические представления всех матриц анизотропийного регулятора, матриц замкнутой системы и ее анизотропийной нормы при малых значениях средней анизотропии. Дальнейшие исследования могут быть посвящены аналогичной задаче анизотропийного управления для правой асимптотики, получению асимптотического представления анизотропийного регулятора и нормы замкнутой системы при средней анизотропии, стремящейся к бесконечности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kwakernaak H., Sivan R. Linear optimal control systems. New York, Wiley, 1972.
- 2. Trentelman H.L., Stoorvogel A.A. Sampled-data and discrete-time \mathcal{H}_2 -optimal control // Proc. 32nd IEEE Conf. Decision and Control. 1993. V. 1. P. 331–336.
- 3. Saberi A., Sannuti P., Stoorvogel A.A. \mathcal{H}_2 -optimal controllers with measurement feedback for discrete-time systems: flexibility in closed-loop pole placement // Proc. 35th IEEE Conf. Decision and Control. 1996. V. 2. P. 2330–2335.
- 4. Dragan V., Toader M., Stoica A.-M. \mathcal{H}_2 -optimal control for linear stochastic systems // Automatica. 2004. V. 40(7). P. 1103–1113.
- 5. Doyle J.C., Glover K., Khargonekar P.P., Francis B.A. State-space solutions to standard \mathcal{H}_2 and \mathcal{H}_{∞} -control problems // IEEE Trans. AC. 1989. V. 34. P. 831–847.
- 6. Green M., Limebeer D.J.N. Linear robust control. Englewood Cliffs. N.J: Prentice Hall, 1995.
- 7. Iglesias P.A., Glover K. State-space approach to discrete-time \mathcal{H}_{∞} -control // Int. J. Control. 1991. V. 54. P. 1031–1073.
- 8. Yaesh I., Shaked U. A transfer function approach to the problems of discrete-time systems: \mathcal{H}_{∞} -optimal linear control and filtering // IEEE Trans. Autom. Control. 1991. V. 36. P. 1264–1271.
- 9. Semyonov A.V., Vladimirov I.G., Kurdjukov A.P. Stochastic approach to \mathcal{H}_{∞} -optimization // Proc. 33rd Conf. Decision and Control. 1994. V. 3. P. 2249–2250.
- 10. Владимиров И.Г., Курдюков А.П., Семенов А.В. Анизотропия сигналов и энтропия линейных стационарных систем // ДАН. 1994. Т. 342. № 5. С. 583–585.
- 11. Vladimirov I.G., Kurdjukov A.P., Semyonov A.V. On computing the anisotropic norm of linear discrete-time-invariant systems // Proc. 13 IFAC World Congress. 1996. P. 179–184.
- 12. Владимиров И.Г., Даймонд Ф., Клоеден П.Е. Анизотропийный анализ робастного качества линейных нестационарных дискретных систем на конечном временном интервале // AuT. 2006. № 8. С. 92–111.
- 13. Diamond P., Vladimirov I.G., Kurdjukov A.P., Semyonov A.V. Anisotropy-based performance analysis of linear discrete time invariant control systems // Int. J. Control. 2001. V. 74. No. 1. P. 28–42.
- 14. Timin V.N., Kurdjukov A.P. Synthesis of a robust control system for airplane landing under wind shear conditions // J. Comput. Syst. Sci. Int. 1995. V. 33. P. 146–154.

- 15. *Tchaikovsky M.M.* Static Output Feedback Anisotropic Controller Design by LMI-Based Approach: General and Special Cases // American Control Conference. 2012. P. 5208–5213.
- 16. Vladimirov I.G., Kurdjukov A.P., Semyonov A.V. State-space solution to anisotropy-based shochastic \mathcal{H}_{∞} -optimization problem // Proc. 13th IFAC World Congress. 1996. V. H, Paper IFAC-3d-01.6. P. 427–432.
- 17. Владимиров И.Г., Курдюков А.П., Семенов А.В. Асимптотика анизотропийной нормы линейных стационарных систем // АиТ. 1999. № 3. С. 78–87.
- 18. Belov I.R., Kustov A.Yu. On the application of Kalman filter in the estimation problem in slightly coloured noise conditions // Large-scale Syst. Control. 2023. V. 103. P. 94–120.
- 19. $Belov\ I.R.$ On the approximation of anisotropic controller by \mathcal{H}_2 -optimal controller // Proc. 32th Mediterranean Conf. Control and Automation. IEEE Xplore. 2024. P. 891–895.
- 20. Розанов Ю.А. Стационарные случайные процессы. М.: Наука, 1990.

Статья представлена к публикации членом редколлегии П.С. Щербаковым.

Поступила в редакцию 18.12.2024

После доработки 13.06.2025

Принята к публикации 26.06.2025