Управление в технических системах

© 2023 г. Н.В. ГРИГОРЬЕВ, канд. физ.-мат. наук (lab76@lii.ru) (Летно-исследовательский институт им. М.М. Громова, Жуковский)

СИНТЕЗ ТЕСТ-УПРАВЛЕНИЯ ДЛЯ ИДЕНТИФИКАЦИИ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Предлагается новый подход к решению проблемы планирования летного эксперимента для идентификации аэродинамических характеристик автоматически управляемых летательных аппаратов — синтез закона управления для отслеживания заданной информативной траектории. Приведены математическая постановка и метод решения задачи синтеза. В численном эксперименте показана возможность значительного повышения точности идентификации на синтезированном управлении по сравнению с точностью идентификации на оптимальном программном тест-сигнале.

Ключевые слова: аэродинамические характеристики, планирование тестовых сигналов, параметрическая идентификация, автоматическое управление.

DOI: 10.31857/S000523102308007X, EDN: HCKKCA

1. Введение

Задача планирования тест-сигналов для идентификации аэродинамических характеристик (АДХ) летательного аппарата (ЛА) заключается в формировании специально возмущенного движения ЛА в целях повышения точности идентификации АДХ. Возмущенное движение ЛА (тест-маневр) формируется подачей на органы управления ЛА так называемых тестовых входных сигналов (тест-сигналов). В качестве критериев выбора тест-сигнала, как правило, используются критерии, принятые в теории оптимального планирования эксперимента, характеризующие в той или иной мере ожидаемую точность идентификации.

Для задач активной идентификации АДХ ЛА характерно большое разнообразие математических постановок. Постановки задач, для которых в натурных или численных экспериментах получены решения, отличаются: размерностью тест-сигнала (скаляр [1–9], вектор [1, 4, 9–16]), классом функций, в котором оптимизируется тест-сигнал (непрерывных функций [9], дискретных функций [1, 2, 4, 8, 17], полигармонических функций [2, 10, 12, 15, 16, 18], управлений типа «bang-zero-bang» и близких к ним

управлений [2, 6, 8, 12, 14, 15], параметризованных управлений [2, 4, 7, 11], функций простой формы [5]), по типу ограничений (только на тест-сигнал [2, 3, 5, 9] на компоненты вектора состояния ЛА в возмущенном движении [1-4, 6, 7, 11, 14, 17]), критерием (число Тьюринга [1], L-, D-критерии [1-7, 9, 11, 12, 14, 15, 17, 18], пик-фактор [10, 12, 15, 16]). Обычно предполагается, что выбор тест-сигнала производится до проведения эксперимента, однако рассматривается и возможность поэтапной оптимизации тест-сигнала в ходе его проведения [3]. Оптимизация тест-сигналов производится чаще во временной области [1, 12, 14, 16], но также и в частотной [18] и во временной и частотной области одновременно [13, 17]. Для дальнейшего изложения важно отметить, что в известных постановках задачи активной идентификации АДХ ЛА ограничения на компоненты вектора состояния ЛА в возмущенном движении не учитывают (за исключением [6]) возможные отличия неизвестных АДХ от их априорных оценок, а выбор тест-сигналов производится в классе программных управлений, т.е. адаптивное управление в целях активной идентификации АДХ ЛА практически не рассматривается [2, 19].

Условия безопасности летного эксперимента, различные физические и методические ограничения определяют ограничения на возмущения компонент вектора состояния ЛА в тест-маневре. В ряде важных приложений учет данных ограничений является необходимым условием выполнения тест-маневра [11]. При нарушении ограничений тест-маневр не выполняется (прерывается системой автоматического управления ЛА). Выполнение ограничений нужно обеспечить априори — когда АДХ и начальные условия тест-маневра при выборе тест-сигнала известны приближенно.

В [6] предложен метод оптимизации тест-сигнала с учетом указанных ограничений в классе «bang-zero-bang» управлений. В [7] предложен метод оптимизации тест-сигнала с учетом указанных ограничений в классе параметризованных управлений, в частности, получено решение в классе кусочно-постоянных функций с малым временем постоянства, которое существенно отличается от «bang-zero-bang» управления. Полученный в [7] программный тест-сигнал обеспечивает выполнение заданных ограничений при всех априори возможных значениях АДХ. Но следствием этого положительного свойства тест-сигнала является его оптимальность «в среднем» на множестве всех ограничений, определяемом совокупностью возможных значений АДХ. А это означает, что в каждом конкретном случае (в частности, при истинных значениях АДХ) такой тест-сигнал будет заведомо неоптимальным. Очевидно, что в классе программных тест-сигналов нельзя выбрать тест-сигнал, который будет оптимален при всех возможных значениях АДХ. Однако можно улучшить информативные свойства выбранного тест-сигнала непосредственно в ходе летного эксперимента за счет получаемой информации о векторе состояния ЛА. В [20] был предложен метод приближенного решения данной задачи. Ниже излагается метод нахождения ее оптимального решения.

2. Постановка задачи

Предлагаемая математическая постановка задачи синтеза управления для идентификации АДХ содержит модель динамики объекта на тестовом режиме длительностью T секунд, описываемую линейным (линеаризованным относительно опорного движения ЛА) дифференциальным уравнением

(1)
$$\frac{dx}{dt} = A(b)x + Gu, \ t[0,T], \quad x(0) = x_0,$$

и модель дискретных измерений

(2)
$$z_i = z(x(t_i)) = Hx(t_i) + v_i, \quad i = \overline{1, N},$$

где: x - n-мерный вектор состояния ЛА; u = u(t, x) — оптимизируемый вектор управления размерности m; $z_i - p$ -мерный вектор измерений; v_i — вектор «белых» гауссовых шумов измерений, $E(v_i) = 0$, $E(v_i v_j^T) = 0$, $i \neq j$, $E(v_i v_i^T) = R$, $i = \overline{1, N}$, $j = \overline{1, N}$ (E — символ математического ожидания); A(b), G, H — матрицы соответствующих размерностей; t_i — моменты времени, в которые производятся измерения, $t_i = h(i-1)$, h = T/(N-1); N — количество измерений. Матрица A(b) зависит от подлежащего идентификации вектора неизвестных параметров b (искомых АДХ) размерности k. Истинные значения $b^{\text{ист}}$ параметров b не известны. Априорная оценка $b^{\text{апр}}$ вектора $b^{\text{ист}}$ содержит ошибку Δb , $b^{\text{апр}} = b^{\text{ист}} + \Delta b$, относительно которой известно, что компоненты Δb_i вектора Δb принадлежат интервалам $[-\Delta_i, \Delta_i]$: $\Delta b_i \in [-\Delta_i, \Delta_i], i = \overline{1, k}$. Множество возможных значений b обозначим символом B.

Будем предполагать, что движение ЛА перед началом тест-маневра должно быть квазистационарным. Это означает, что компоненты вектора x_0 в (1) близки к нулю, но могут быть отличны от нуля. Будем считать, что $x_0^{\text{ист}}$ принадлежит замкнутому ограниченному множеству X^0 , содержащему нулевой вектор. Возможные значения компонент векторов x_0 и *b* будем считать независимыми друг от друга.

Требуется выбором на интервале [0, T] вектор-функции u = u(t, x) из некоторого класса функций U (определен ниже):

- 1) обеспечить выполнение скалярных линейных ограничений на вектор состояния ЛА при всех априори возможных значениях *b* и *x*₀
 - (3) $|x_s(t, b, x_0, u)| \leq q_s(t), \quad b \in B, \quad x_0 \in X^0, \quad s = \overline{1, r},$

где: x_s — компоненты вектора x, на которые наложены ограничения; $q_s(t)$ — заданные функции; r — количество ограничений;

2) минимизировать по управлению и функционал

(4)
$$J = \operatorname{tr} \left(W M^{-1}(b^{\operatorname{anp}}, x_0, u) \right),$$

где tr
 — обозначение следа матрицы, W — неотрицательно определенная матрица ве
сов (как правило, диагональная), M — информационная матрица:

(5)
$$M(b, x_0, u) = \sum_{i=1}^{N} (\partial x(t_i, b, x_0, u) / \partial b)^T Q(\partial x(t_i, b, x_0, u) / \partial b).$$

В (5) матрица $Q = H^T R^{-1} H$; $x_0 = 0$; производные $S_j = \frac{\partial x(t, b, x_0, u)}{\partial b_j}$, $j = \overline{1, k}$ определяются из системы дифференциальных уравнений для функций чувствительности:

(6)
$$\begin{cases} \frac{dS_j}{dt} = A(b)S_j + \frac{\partial A(b)}{\partial b_j}x(t,b,x_0,u), \\ S_j(0) = 0, \quad j = \overline{1,k}. \end{cases}$$

Уравнения (6) и (1) решаются совместно.

Математическая постановка задачи планирования тест-сигнала в классе программных управлений отличается от приведенной постановки задачи только тем, что искомое управление ищется в заданном классе функций времени, т.е. u = u(t) (обычно в классе непрерывных или кусочно-непрерывных функций времени [1–18]).

Решение u = u(t, x) задачи (1)–(4) предлагается искать среди управлений, обеспечивающих отслеживание некоторой траектории системы (1), обладающей хорошей информативностью об идентифицируемых параметрах и удовлетворяющей ограничениям (3), а именно в классе функций, представимых в виде

(7)
$$u(t,x) = \mu u^{\text{anp}}(t) + L \left(\mu x^{\text{anp}}(t) - x(t)\right),$$

где $x^{\mathrm{anp}}(t) = x(t, b^{\mathrm{anp}}, 0, u^{\mathrm{anp}})$ — траектория системы (1) на оптимальном при $B = b^{\mathrm{anp}}, X^0 = 0$ программном тест-сигнале $u^{\mathrm{anp}}(t)$; коэффициент μ , $0 \leq \mu \leq 1$, и элементы L_{ij} матрицы L

(8)
$$|L_{i,j}| \leq C, \quad i = \overline{1,l}, \quad j = \overline{1,n}$$

подлежат определению из условия минимума критерия (4) при ограничениях (3). Константа C отражает ограничения на коэффициенты обратной связи системы автоматического управления (САУ). Для удобства дальнейших ссылок приведенную задачу будем называть задачей выбора тест-управления, а искомую функцию u(t, x(t)) — тест-управлением.

Система (1) при управлении (7) может быть записана в виде

(9)
$$\frac{dx}{dt} = (A(b) - GL)x + \mu G(u^{\text{anp}}(t) + Lx^{\text{anp}}(t)), \quad x(0) = x_0,$$

поэтому при достаточно малых значениях коэффициента μ ограничения (3) будут заведомо выполнены. Кроме того, из (4)–(6) и (9) следует, что для произвольной функции u = u(t) справедливо равенство $J(\mu u) = J(u)/\mu^2$, поэтому для минимизации функционала (4) значение μ должно выбираться максимально возможным при условии выполнения ограничений (3).

Уравнения для функций чувствительности S_j , $j = \overline{1, k}$ записаны в виде (6), так как предполагается, что в процедуре послеполетной оценки вектора *b* будет применен обычный в практике идентификации прием искусственного размыкания системы (9), когда на вход настраиваемой модели движения с исключенным контуром САУ подается сигнал $u_{\Sigma}(t) = \mu u^{\operatorname{anp}}(t) + L(\mu x^{\operatorname{anp}}(t) - x(t))$, известный из летного эксперимента. Если настраиваемая модель включает модель САУ, то матрицу *A* в (6) нужно заменить матрицей A - GL.

Достаточно полной характеристикой решения задачи (1)-(5) является плотность распределения значений функции $J(b, x_0) = \operatorname{tr} M^{-1}(b, x_0, u).$ Φ ункция $J(b, x_0)$ характеризует ожидаемую погрешность идентификации (нижнюю границу суммы дисперсий оценок параметров) на тест-управлении u(t, x(t)) (или на тест-сигнале u(t)) в случае, если $b^{\text{ист}} = b, x(0) = x_0$. Для построения оценки данной плотности распределения (полигона) достаточно вычислить значения функции $J(b, x_0)$ для достаточно большого числа N_P пар векторов b и $x_0, b \in B, x_0 \in X^0$, выбираемых случайным образом. Если плотности распределения компонент векторов b и x_0 на интервалах их возможных значений неизвестны, то в силу рекомендаций [21] их следует принять равномерными. Число N_P выбирается так, чтобы при его увеличении положение и форма полигона не изменялись. При малых затратах расчетного времени полигон ожидаемых значений погрешности идентификации представляет собой удобную для анализа интегральную характеристику качества тест-управления, позволяющую оценить вероятности получения тех или иных значений ожидаемой погрешности идентификации параметров.

3. Метод решения

Оптимальный в случае $B = b^{\text{anp}}$, $X^0 = 0$ программный тест-сигнал $u^{\text{anp}}(t)$ и соответствующая траектория $x^{\text{anp}}(t) = x(t, b^{\text{anp}}, 0, u^{\text{anp}})$ могут быть найдены, например, одним из методов, изложенных в [2, 7]. Ниже излагается метод оптимизации коэффициента и матрицы L в (7).

Объединим элементы матрицы L и коэффициент μ в один вектор $v \in V$, где V — гиперкуб, определяемый неравенствами (8) и неравенством $0 \leq \mu \leq \leq 1$. Размерность вектора v равна $N_v \leq nl + 1$ (некоторые элементы матрицы L могут быть положены равными нулю, чтобы исключить обратную связь по соответствующим компонентам и сократить количество настраиваемых коэффициентов). Для определенности $v_{N_v} = \mu$. Обозначим через $x(t, b, x_0, u^v)$ решение системы (1) на управлении (7) при заданном векторе v. Пусть N_C — положительное целое число. Разобьем интервал оптимизации [0,T] точками $t_i = \Delta_C(i-1), i = \overline{1, N_C}$ на подынтервалы одинаковой длины $\Delta_C = T/(N_C - 1)$. Выберем N_C настолько большим, что при выполнении ограничений

(10)
$$\begin{aligned} |x_s(t_i, b, x_0, u^v)| \leqslant q_s(t_i), \quad t_i = \Delta_C(i-1), \quad i = \overline{1, N_C}, \\ b \in B, \quad x_0 \in X^0, \quad s = \overline{1, r} \end{aligned}$$

ограничения (3) можно считать выполненными при всех $t \in [0, T]$ с достаточной точностью. Таким образом, для решения поставленной задачи достаточно решить задачу минимизации критерия (4) на множестве S векторов v, удовлетворяющих множеству ограничений (10).

Определим следующую вспомогательную задачу. Минимизировать по $v \in V$ критерий

(11)
$$J = \operatorname{tr} \left(W M^{-1}(b^{\operatorname{anp}}, 0, u^v) \right)$$

на некотором замкнутом, ограниченном множестве \check{S} векторов v, определяемом конечным числом ограничений

(12)
$$\begin{aligned} |x_s(t_i, b^j, x_0^j, u^v)| \leqslant q_s(t_i), \quad i = \overline{1, N_C}, \\ b^j \in B, \quad x_0^j \in X^0, \quad s = \overline{1, r}, \quad j = \overline{1, K}, \quad v \in V. \end{aligned}$$

Решение этой типовой задачи нелинейного программирования может быть найдено различными методами, например методом линеаризации [22]. Градиенты ограничений (12) по компонентам вектора v равны

$$S_{v_j} = \frac{\partial x(t, b, x_0, u^v)}{\partial v_j}, \quad j = \overline{1, N_v}.$$

Градиент функционала (11) может быть вычислен, если известны функции

$$S_{v_j}^{b_i} = S_{v_j}^{b_i}(t, b, x_0, u^v) = \frac{\partial}{\partial v_j} S_i, \quad i = \overline{1, k}, \quad j = \overline{1, N_v}.$$

Функции $S_{v_j}, S_{v_j}^{b_i}$ могут быть определены из решения следующих систем уравнений, которые должны решаться совместно с уравнениями (1) и (6):

$$\begin{cases} \frac{dS_{v_j}}{dt} = (A(b) - GL)S_{v_j} - G\frac{\partial L}{\partial v_j}x(t, b, x_0, u) + \mu G\frac{\partial L}{\partial v_j}x^{\mathrm{anp}}, & \text{при } j = \overline{1, N_v - 1}, \\ \frac{dS_{v_{N_v}}}{dt} = (A(b) - GL)S_{v_{N_v}} + G(u^{\mathrm{anp}} + Lx^{\mathrm{anp}}), \\ S_{v_j}(0) = 0, \quad j = \overline{1, N_v}; \end{cases}$$
$$\begin{cases} \frac{dS_{v_j}^{b_i}}{dt} = A(b)S_{v_j}^{b_i} + \frac{\partial A(b)}{\partial b_i}S_{v_j}, \\ S_{v_j}^{b_i}(0) = 0, \quad j = \overline{1, N_v}, \quad i = \overline{1, k}. \end{cases}$$

112

Решение исходной задачи минимизации по вектору v критерия (11) при ограничениях (8) и (10) может быть получено следующим итерационным алгоритмом:

Шаг 0. Установим счетчик числа итераций: iter = 0. Зададим произвольные $b^j \in B, x_0^j \in X^0, j = \overline{1, K}$ и определим множество S^{iter} как множество векторов v, удовлетворяющих неравенствам и условиям (12).

Шаг 1. Решим вспомогательную задачу, в которой $\check{S} = S^{iter}$. Обозначим решение через v^{iter} , соответствующее тест-управление (7) — через $u^{v^{iter}}$.

Шаг 2. Для проверки выполнения ограничений (10) на найденном управлении $u^{v^{iter}}$ для каждого $s = \overline{1, r}$ и $i = \overline{1, N_C}$ определим $\max_{b \in B, x_0 \in X^0} \left| x_s(t_i, b, x_0, u^{v^{iter}}) \right|$. Шаг 3. Если при всех $s = \overline{1, r}$, $i = \overline{1, N_C}$ окажется, что

$$\max_{b \in B, x_0 \in X^0} \left| x_s(t_i, b, x_0, u^{v^{iter}}) \right| \leqslant q_s(t_i),$$

то задача (11)–(10) решена — найдено тест-управление, удовлетворяющее ограничениям (10) и минимизирующее функционал (11). Далее переход на шаг 5.

Шаг 4. Если при некоторых s^* , i^* окажется, что

$$\max_{b \in B, x_0 \in X^0} \left| x_{s^*}(t_{i^*}, b, x_0, u^{v^{iter}}) \right| = \left| x_{s^*}(t_{i^*}, b^*, x_0^*, u^{v^{iter}}) \right| > q_{s^*}(t_{i^*}),$$

т.е. ограничения (10) нарушаются, то множество S^{iter} дополним ограничениями $|x_{s^*}(t_{i^*}, b^*, x_0^*, u^{v^{iter}})| \leq q_{s^*}(t_{i^*})$. Полученное таким образом множество снова обозначим через S^{iter} , предварительно положив iter = iter + 1. Далее переход на шаг 1.

Шаг 5. Строится полигон значений функции $J(b, x^0) = \operatorname{tr} (WM^{-1}(b, x_0, u^{opt}))$, где $u^{opt} = u^{v^{iter}}$. Способ построения полигона был описан в разделе 2.

Поясним: каждое последующее множество S^{i+1} векторов v уже содержится в предыдущем множестве S^i в силу того, что каждое добавляемое на шаге 4 ограничение сужает множество, на котором минимизируется критерий (11). Таким образом: $S^0 \supset S^1 \supset \ldots \supset S^i \supset \ldots \supset S$, где S — это множество векторов v, определяемое формулами (10). Следовательно, минимум критерия (11) на множестве S не меньше минимума на множестве S^i . Поэтому если на *i*-й итерации выполнены условия шага 3 алгоритма, то выполнены ограничения (10), а найденный на множестве S^i минимум есть минимум на множестве S.

Таким образом, решение задачи (4), (10) сведено к решению последовательности типовых задач нелинейного программирования, которые «аппроксимируют» исходную задачу в окрестности искомого минимума с возрастающей в ходе итераций точностью аппроксимации. Такой подход, разработанный ранее для оптимизации программных тест-сигналов [7], представляется более предпочтительным по сравнению с оптимизацией тест-сигналов методом динамического программирования [6, 14] в связи с «проклятием размерности».

Изложенный метод решения задачи может быть обобщен на случай зависимости матриц G и H от идентифицируемых параметров b.

4. Численное моделирование

Рассмотрим задачу построения на временном интервале длиной восемь секунд (T = 8) двухкомпонентного (m = 2) тест-управления u(t, x(t)) в целях идентификации коэффициентов b_i , $i = \overline{1,5}$ модели бокового движения самолета [9]

(13)
$$\begin{cases} \dot{\beta} = b_1 \beta + w_y + 0.0565\gamma + 0.0289\delta_N, \\ \dot{w}_x = b_2 \beta - 0.935w_x - 0.124w_y + 1.4\delta_N + 2.88\delta_e, \\ \dot{w}_y = b_3 \beta + 0.119w_x + b_4w_y + b_5\delta_N, \\ \dot{\gamma} = w_x, \end{cases}$$

дополненной простейшими моделями привода руля направления и элерона:

(14)
$$\begin{cases} \dot{\delta}_{N} = \omega_{N}, \\ \dot{\omega}_{N} = k(\delta_{N}^{3a, d} - \delta_{N}) - k_{2}\omega_{N}, \delta_{N}^{3a, d} = u_{1}(t, x(t)), \\ \dot{\delta}_{e} = \omega_{e}, \\ \dot{\omega}_{e} = k(\delta_{e}^{3a, d} - \delta_{e}) - k_{2}\omega_{e}, \delta_{e}^{3a, d} = u_{2}(t, x(t)), \\ k = \frac{0.456}{\tau^{2}}, \ k_{2} = \frac{0.8}{\tau}, \ \tau = 0.02. \end{cases}$$

В (13) и (14): β — угол скольжения самолета, w_x, w_y — угловые скорости крена и рысканья, γ — угол крена, δ_N , δ_e — углы отклонения руля направления и элерона, ω_N, ω_e — угловые скорости отклонения руля направления и элерона, k, k_2, τ — параметры приводов руля направления и элерона, коэффициенты b_1, b_2, b_3, b_4, b_5 — подлежащие идентификации производные боковой аэродинамической силы и аэродинамических моментов крена и рысканья по соответствующим компонентам вектора состояния ЛА: $\beta, w_x, w_y, \delta_N$. Размерность угловых скоростей — градус за секунду, углов — градус. Переменные $\beta, w_x, w_y, \gamma, \delta_N, \delta_e$ независимо измеряются с частотой 25 герц.

Таким образом, имеем вектор состояния ЛА $x = (\beta, w_x, w_y, \gamma, \delta_N, \delta_e, \omega_N, \omega_e)^T$, вектор идентифицируемых параметров $b = (b_1, b_2, b_3, b_4, b_5)^T$, вектор измерений $z_i = z(t_i) = Hx(t_i) + v_i$, $t_i = h(i-1)$, $i = \overline{1, N}$, где H — матрица с элементами $H_{ii} = 1$ при $i = \overline{1, 6}$, $H_{ij} = 0$ при $i = \overline{1, 6}$, $j = \overline{1, 8}$, $i \neq j$; v_i — вектор «белых» гауссовых шумов измерений, $E(v_i) = 0$, $E(v_i v_j^T) = 0$, $i \neq j$, $E(v_i v_i^T) = R$, $i = \overline{1, N}$, $j = \overline{1, N}$, h = 0,04c, N = 201. Среднеквадратичные погрешности измерений ($\sqrt{R_{ii}}$, $i = \overline{1, 6}$) составляют: для β — 1°, для w_x , $w_y - 0.71^\circ/c$, для δ_N , $\delta_e - 0.5^\circ$.

Априорная оценка истинных значений *b*^{ист} вектора *b*:

$$b^{\text{amp}} = (-0,119, -4,43, -2,99, 0,178, 1,55)^T.$$

Границы допусковых интервалов $[-\Delta_i, \Delta_i]$, таких что $\Delta b_i \in [-\Delta_i, \Delta_i]$, имеют вид: $\Delta_i = \pm 0.5 |b_i^{\text{anp}}|$, $i = \overline{1, 4}$, $\Delta_5 = \pm 0.2 |b_5^{\text{anp}}|$. Таким образом, априорная неопределенность первых четырех компонент вектора *b* составляет $\pm 50\%$ от номинальных значений. Совокупность возможных значений вектора *b* определяет параллелепипед с центром в точке b^{anp} — множество *B*. Тест-маневр должен начинаться из квазистационарного состояния:

(15)
$$\begin{aligned} |\omega_x(0)| &\leq 0.5^{0/c}, \quad |\beta(0)| \leq 1^0, \quad |\omega_N(0)| \leq 0.05^{0/c}, \quad |\delta_N(0)| \leq 0.5^0, \\ |\omega_y(0)| &\leq 0.5^{0/c}, \quad |\gamma(0)| \leq 0.5^0, \quad |\omega_e(0)| \leq 0.05^{0/c}, \quad |\delta_e(0)| \leq 0.5^0. \end{aligned}$$

Совокупность возможных значений начальных условий тест-маневра $x_0 = x(0)$ определяет многогранник — множество X^0 . Интервалы $I_6 = \pm 0,5^{0/c}$, $I_7 = \pm 1^0$, $I_8 = \pm 0,05^{0/c}$, $I_9 = \pm 0,5^0$, $I_{10} = \pm 0,5^{0/c}$, $I_{11} = \pm 0,5^0$, $I_{12} = \pm 0,05^{0/c}$, $I_{13} = \pm 0,5^0$, определяющие возможные значения x_0 , а также допусковые интервалы $I_i = [-\Delta_i, \Delta_i], i = \overline{1,5}$ далее будем называть интервалами априорной неопределенности.

При построении полигонов значений $J(b, x_0)$ будем предполагать, что компоненты априорной оценки вектора b и компоненты вектора x_0 равномерно распределены на интервалах априорной неопределенности $I_i = [-\Delta_i, \Delta_i],$ $i = \overline{1, 13}$ и независимы друг от друга. Матрица W в (4) принималась единичной.

На допустимые возмущения каждой из компонент вектора *x* в тестманевре наложим ограничения:

$$\begin{aligned} |\omega_N(t,b,x_0,u)| &\leq 30^{0/c}, \quad |\omega_e(t,b,x_0,u)| \leq 30^{0/c}, \quad |\beta(t,b,x_0,u)| \leq 3^0, \\ (16) \qquad |w_x(t,b,x_0,u)| \leq 5^{0/c}, \quad |w_y(t,b,x_0,u)| \leq 5^{0/c}, \quad |\gamma(t,b,x_0,u)| \leq 5^0, \\ b \in B, \quad x_0 \in X^0, \quad t \in [0,8]. \end{aligned}$$

Первые два ограничения в (16) отражают физические ограничения скорости движения приводов, а остальные — ограничения для обеспечения безопасности тест-маневра. Дискретизация по времени (см. (10)) ограничений (16) производилась с параметром $\Delta_C = h$.

Задача состоит в определении такого тест-управления $u^A(t, x(t))$:

(17)
$$u_i^A(t, x(t)) = \mu u_i^{\operatorname{anp}}(t) + \sum_{j=1}^4 L_{i,j} \left(\mu x_i^{\operatorname{anp}}(t) - x_i(t) \right), \quad i = 1, 2,$$

на котором функционал (4) достигает минимального значения. Ограничение на элементы матрицы $L_{i,j}$ в тест-управлении (17) принимались в виде (8)

Рис. 1. Оптимальное решение задачи в классе программных управлений при $B = b^{\mathrm{anp}}, \ X^0 = 0.$

при C = 0,5, 1, 2. Оптимальное тест-управление $u^A(t, x(t))$ определялось в соответствии с алгоритмом раздела 3. Оптимизация программного тест-сигнала $u^{\operatorname{anp}}(t)$ при $B = b^{\operatorname{anp}}, x_0 = 0$ и замене ограничений (16) на ограничения

$$\begin{aligned} |\omega_N(t, b^{\mathrm{anp}}, 0, u)| &\leq 30^{0/c}, \quad |\omega_e(t, b^{\mathrm{anp}}, 0, u)| \leq 30^{0/c}, \quad |\beta(t, b^{\mathrm{anp}}, 0, u)| \leq 3^0, \\ |w_x(t, b^{\mathrm{anp}}, 0, u)| &\leq 5^{0/c}, \quad |w_y(t, b^{\mathrm{anp}}, 0, u)| \leq 5^{0/c}, \quad |\gamma(t, b^{\mathrm{anp}}, 0, u)| \leq 5^0, \quad t \in [0, 8] \end{aligned}$$

выполнялась методом, изложенным в [7], в классе параметризованных управлений, представимых в виде

$$u_j^{\text{amp}}(t) = \sum_{i=1}^{50} d_{i+50(j-1)} \sin(2\pi i t/T), \quad j = 1, 2,$$

где d_i , $i = \overline{1,100}$ — оптимизируемые параметры. На рис. 1 представлена траектория $x(t, b^{\text{anp}}, 0, u^{\text{anp}})$ системы (13)–(14), соответствующая оптимальному программному тест-сигналу $u^{\text{anp}}(t)$ для данной задачи. Компоненты оптимального программного тест-сигнала $u^{\text{anp}}(t)$ практически совпадают с приведенными на графике зависимостями $\delta_N(t)$, $\delta_e(t)$. Значение критерия на оптимальном тест-сигнале равно tr $(M^{-1}(b^{\text{anp}}, 0, u^{\text{anp}})) = 0,0036$.

Далее в соответствии с алгоритмом раздела 3 находились оптимальные значения μ и $L_{i,j}$, $i = 1, 2, j = \overline{1, 4}$ в (17). В качестве начальной выборки

Рис. 2. Поля траекторий системы (1) на оптимальном тест-управлении при C = 2. Компоненты траектории $x^{\operatorname{anp}}(t) = x(t, b^{\operatorname{anp}}, 0, u^{\operatorname{anp}})$ показаны жирными линиями.

значений $b^j \in B$, $x_0^j \in X^0$, $j = \overline{1,32}$ принимались все угловые точки куба В при $x_0^j = 0$. Для нахождения тест-управлений при каждом C = 0,5,1,2 потребовалось от пяти до восьми итераций алгоритма. Значения критерия tr $M^{-1}(b^{\mathrm{anp}}, 0, u^A(t, x(t)))$ на оптимальных тест-управлениях равны: 0,0089 при C = 2; 0,011 при C = 1 и 0,018 при C = 0,5.

На рис. 2 показаны поля значений компонент вектора x, вычисленных на тест-управлении $u^A(t, x(t))$ при C = 2 для 60 различных пар b^j , x_0^j из априори возможных (т.е. для 60 возможных решений системы (13)–(14)). При C = 1 и 0,5 поля компонент вектора x отличались в основном большей шириной «дорожек» значений. Из рисунка видно, что все заданные ограничения (16) удовлетворяются. Численная проверка выполнения ограничений (16) производилась для 20 000 различных пар b^j , x_0^j при каждом значении C = 0,5,1,2. Оптимальное значение μ при C = 2 равнялось $\mu = 0,75$. Отметим, что на программном тест-сигнале $u(t) = \mu u^{\rm anp}(t)$ ограничения (15) нарушались бы уже при $\mu = 0,1$.

Рис. 3. Полигоны ожидаемой погрешности идентификации на оптимальном программном тест-сигнале (1) и на тест-управлениях при C, равных: 0,5 (2), 1 (3), 2 (4).

Одновременно с проверкой ограничений проверялась устойчивость системы (9). Во всех указанных случаях все собственные числа матриц $A(b^j) - GL$ имели отрицательные действительные части.

На рис. 3 приведены полигоны ожидаемых погрешностей идентификации $J^A(b, x_0) = \operatorname{tr} M^{-1}(b, x_0, u^A(t, x(t)))$ на оптимальных тест-управлениях в сравнении с полигоном ожидаемых погрешностей идентификации $J^P(b, x_0) = \operatorname{tr} M^{-1}(b, x_0, u^P(t))$ на оптимальном программном тест-сигнале $u^P(t)$. Программный тест-сигнал $u^P(t)$ для задачи (13)–(16) находился методом, изложенным в [7]. Значение критерия на оптимальном программном тест-сигнале есть $\operatorname{tr} (M^{-1}(b^{\operatorname{anp}}, 0, u^P(t))) = 0,031$.

Ожидаемые погрешности идентификации $J^P(b, x_0)$ и $J^A(b, x_0)$ вычислялись на решениях одних и тех же систем уравнений (13)–(14) и (6), отличающихся только входными сигналами $u = u(t) = u^P(t)$ и $u = u_{\Sigma}(t) = u^A(t, x(t))$ соответственно. Количество точек для построения полигона равнялось $N_P = 20000$.

Из рис. 3 очевидно, что тест-управление существенно лучше программного тест-сигнала. Полигоны ожидаемых погрешностей идентификации на тест-управлениях находятся левее полигона ожидаемой погрешности идентификации на программном тест-сигнале в области меньших значений ожидаемых погрешностей идентификации. Разброс возможных значений ожидаемой погрешности идентификации на тест-управлениях существенно меньше. Правые «хвосты» полигонов, соответствующие большим значениям ожидаемой погрешности, на тест-управлениях заметно короче, чем у полигона на программном тест-сигнале. При C = 2 среднее значение (среднеквадратичное отклонение) ожидаемой погрешности идентификации на тест-управлении более чем в 3,2 (3,2) раза меньше, чем у ожидаемой погрешности на программном тест-сигнале, при C = 1 — более чем в 2,7 (2,2) раза, при C = 0,5 — более чем в 1,6 (1,2) раза. Из 20 000 реализаций значений *b* и x_0 , из априори возможных, доля реализаций, для которых соотношение ожидаемых погрешностей идентификации на тест-сигнале и тест-управлении составило более двух, равнялась: при C = 2 - 93%, при C = 1 - 78%, при C = 0,5 - 28%.

Отметим, что в рамках проведенного сравнения постановка задачи оптимизации программного тест-сигнала соответствовала благоприятным для идентификации условиям проведения тест-маневра: с разомкнутым контуром управления.

Оптимальные значения μ и $L_{i,j}$ в рассматриваемой задаче были таковы, что: $\max_{i,j} L_{i,j} = C$; $\mu = 0,75$ при C = 2, $\mu = 0,55$ при C = 1, $\mu = 0,45$ при C = 0,5. Можно предположить, что оптимальные (максимально достижимые) значения параметра μ в управлении (7) лимитируются значением параметра C в (8). Для подтверждения данного предположения критерий (4) в данной задаче был заменен на критерий $J = \mu$, который максимизировался по μ и L при тех же ограничениях (16), (8) и в том классе управлений (17). Полученные при C = 0,5,1,2 оптимальные для критерия $J = \mu$ значения μ и $L_{i,j}$ практически не отличались от соответствующих ранее полученных значений. Отметим, что задача максимизации μ существенно проще задачи минимизации нелинейного критерия (4).

Априорная неопределенность начальных условий тест-маневра заметно влияет на эффективность тест-управления. Влияние данной неопределенности можно ослабить, если обратную связь вводить в начале тест-маневра постепенно (см. [20]). В рассмотренном примере такой прием приводит к уменьшению средней ожидаемой погрешности идентификации на тест-управлении в 4,2 раза (при C = 2) по сравнению с погрешностью на программном тестсигнале $u^{P}(t)$.

5. Заключение

Рассмотрена задача планирования эксперимента для параметрической идентификации модели движения объекта при ограничениях на допустимые возмущения вектора состояния объекта в эксперименте и априорной неопределенности относительно начальных условий эксперимента. Предложены методы решения данной задачи в классе управлений с обратной связью, обеспечивающих отслеживание такой траектории движения объекта, которая удовлетворяет заданным ограничениям и обладает хорошей информативностью об идентифицируемых параметрах. Тем самым задача планирования эксперимента сведена к хорошо изученной задаче слежения. Область применения предложенных в статье методов ограничена задачами планирования экспериментов для уточнения характеристик автоматически управляемых объектов, в частности аэродинамических характеристик автоматически управляемых летательных аппаратов. Следует ожидать, что эффективность предложенных методов в таких задачах возрастает с ростом неопределенности априорных оценок идентифицируемых характеристик и ужесточением ограничений на допустимые возмущения вектора состояния объекта в эксперименте.

Управление, синтезированное для активной параметрической идентификации в классе управлений с обратной связью, предлагается назвать теступравлением по аналогии с тест-сигналами, выбираемыми в классе программных управлений.

Результатами статистического моделирования, проведенного при пятидесятипроцентной априорной неопределенности относительно истинных значений идентифицируемых параметров, подтверждено, что выбором теступравления погрешность идентификации может быть существенно уменьшена по сравнению с погрешностью идентификации на оптимальном программном тест-сигнале как в среднем, так и «по вероятности», — т.е. для большинства априори возможных траекторий движения объекта.

СПИСОК ЛИТЕРАТУРЫ

- 1. Касьянов В.А., Ударцев Е.П. Определение характеристик воздушных судов методами идентификации. М.: Машиностроение, 1988.
- 2. Овчаренко В.Н. Аэродинамические характеристики летательных аппаратов: Идентификация по полетным данным. М.: ЛЕНАД, 2019.
- Hosseini B., Diepolder J., Holzapfel F. Online Parameter Estimation and Optimal Input Design // MMSC. 2020. P. 128–139. CEUR-WS.org/vol-2783/paper-09.pdf.
- Licitra G., Burgerc A., Williamsa P., et al. Optimal Input Design for Autonomous Aircraft // Control Engineering Practice. 2018. V. 77. P. 15–27.
- Овчаренко В.Н. Планирование идентифицирующих входных сигналов в линейных динамических системах // АнТ. 2001. № 2. С. 75–87. Ovcharenko V.N. Planning of Identifying Input Signals in Linear Dynamic Systems // Autom. Remote Control. 2001. V. 62. No. 2. P. 236–247.
- Hosseini B., Botkin N., Diepolder J., Holzapfel F. Robust Optimal Input Design for Flight Vehicle System Identification // AIAA Scitech 2020 Forum, 2020. https://doi.org/10.2514/6.2020-0290
- 7. *Григорьев Н.В.* Планирование тестовых сигналов для идентификации аэродинамических характеристик автоматически управляемых летательных аппаратов с учетом неопределенности априорных данных // АиТ. 2022. № 4. С. 125–139.
- Jayanti E.B., Atmasari N., Mardikasari H., et al. Pengaruh Masukan Kendali Terhadap Hasil Identifikasi Parameter Pesawat Udara Konfigurasi Konvensional Matra Terbang Longitudinal // J. Techn. Sist. Comput. 2019. No. 7(1). P. 25–30. https://doi.org/10.14710/jtsiskom.7.1.2019.25-30
- 9. *Gupta N.K., Hall W.E. Jr.* Input Design for Identification of Aircraft Stability and Control Derivatives. NASA CR-2493. 1975.

- Белоконъ С.А., Золотухин Ю.Н., Филиппов М.Н. Метод формирования тестовых сигналов для оценивания аэродинамических параметров летательного аппарата // Автометрия. 2017. Т. 53. № 4. С. 59–65.
- 11. Григорьев Н.В., Нестеров В.Е. Активная идентификация АДХ возвращаемого ракетного блока в летных условиях на масштабируемом демонстраторе // Авиакосмическая техника и технология. 2014. № 1. С. 47–56.
- 12. Lichota P. Multi-Axis Inputs for Identification of a Reconfigurable Fixed-Wing UAV // Aerospace, 2020. 7. https://doi.org/10.3390/aerospace7080113
- Roeser M.S., Fezans N. Method for designing multi-input system identification signals using a compact time-frequency representation // J. CEAS Aeronaut. 2021. V. 12. P. 291–306. https://doi.org/10.1007/s13272-021-00499-6
- 14. Morelli E.A. Flight test of optimal inputs and comparison with conventional inputs // J. Aircr. 36(2), 389–397 (1999). https://doi.org/10.2514/2.2469
- Morelli E.A. Optimal Input Design for Aircraft Stability and Control Flight Testing // J. Optim. Theory Appl. 2021. 191. P. 415–439. https://doi.org/10.1007/s10957-021-01912-0
- Grauer J.A., Boucher M. Aircraft system identification from multisine inputs and frequency responses / AIAA Scitech 2020 Forum. Orlando. FL. USA (2020). https://doi.org/10.2514/6.2020-0287
- 17. Hosseini B., Holzapfel F. Optimal Input Design for Flight Vehicle System Identification in Frequency Domain // AIAA Scitech 2022 Forum, 2022. https://doi.org/10.2514/6.2022-2297
- 18. Берестов Л.М., Поплавский Б.К., Мирошниченко Л.Я. Частотные методы идентификации летательных аппаратов. М.: Машиностроение, 1985.
- Талалай А.М. Активная идентификация при адаптивном управлении // АиТ. 1986. № 9. С. 70–74. *Talalay A.M.* Active identification in the case of adaptive control // Autom. Remote Control, 1986. V. 47. No. 2. P. 1226–1230.
- 20. Григорьев Н.В. Активная идентификация аэродинамических характеристик: от тест-сигнала к тест-управлению // Полет. 2022. № 10. С. 3–11.
- 21. Кан Ю.С., Кибзун А.И. Задачи стохастического программирования с вероятностными критериями. М.: Физматлит, 2009.
- 22. *Пшеничный Б.Н., Данилин Ю.М.* Численные методы в экстремальных задачах. М.: Наука, 1978.

Статья представлена к публикации членом редколлегии А.А. Галяевым.

Поступила в редакцию 07.12.2022 После доработки 25.04.2023 Принята к публикации 28.04.2023