# Управление в технических системах

© 2023 г. А.В. АНТОНОВ, канд. техн. наук (antonov.av@imash.ru), А.С. ФОМИН, канд. техн. наук (alexey-nvkz@mail.ru) (Институт машиноведения им. А.А. Благонравова РАН, Москва)

# РЕШЕНИЕ ОБРАТНОЙ КИНЕМАТИЧЕСКОЙ ЗАДАЧИ ДЛЯ ПЯТИПОДВИЖНОГО МАНИПУЛЯТОРА ГИБРИДНОЙ СТРУКТУРЫ<sup>1</sup>

Управление любой робототехнической системой невозможно реализовать без предварительного решения обратной кинематической задачи, состоящей в определении законов управления приводами, требуемых для реализации заданной траектории движения и закладываемых в систему управления. Настоящая статья посвящена решению обратной кинематической задачи для пятиподвижного манипулятора гибридной (параллельно-последовательной) структуры. После краткого описания структуры манипулятора, включающей трехподвижную параллельную и двухподвижную последовательную части и обеспечивающей выходному звену три вращательные и две поступательные степени свободы, в статье подробно изложен алгоритм решения обратной задачи. Алгоритм основан на представлении манипулятора в виде эквивалентной системы последовательной структуры и последующем использовании формулы произведения матричных экспонент. Предлагаемый алгоритм позволяет получить решение в аналитическом виде без каких-либо допущений на геометрию манипулятора; рассмотренный пример подтверждает работоспособность алгоритма. Методика решения обратной задачи может быть также адаптирована к анализу других манипуляторов гибридной структуры.

*Ключевые слова*: манипулятор, параллельно-последовательная (гибридная) структура, кинематический анализ, обратная кинематическая задача, кинематический винт, формула произведения матричных экспонент.

**DOI:** 10.31857/S0005231023030054, **EDN:** ZZBRNY

# 1. Введение

Манипуляторы гибридной структуры — это механические устройства, включающие одновременно несколько кинематических цепей параллельной и/или последовательной структуры, которые служат основой для множества многоподвижных робототехнических систем [1]. Такие манипуляторы обладают рядом важных функциональных свойств, в том числе расширенными

 $<sup>^1</sup>$ Исследование выполнено за счет гранта Российского научного фонда № 22-79-10304, https://rscf.ru/project/22-79-10304/.

габаритами рабочего пространства [2], а также возможностью обходить или исключать особые положения [3].

Настоящая статья посвящена классу манипуляторов гибридной структуры, обладающих пятью степенями свободы, в которых на параллельную кинематическую цепь наслаивается последовательная. Известен ряд манипуляторов такого типа, среди которых: CaHyMan — манипулятор, образованный трехподвижным модулем параллельной структуры и двухподвижным модулем последовательной структуры [4]; обрабатывающий станок, состоящий из параллельной части с двумя степенями свободы и последовательной части с тремя степенями свободы [5]; полировальный станок, включающий трехподвижный модуль параллельной структуры для вертикального движения и вращения относительно горизонтальных осей и двухподвижный модуль последовательной структуры для позиционирования вдоль данных осей [6].

В рамках решения задачи управления робототехническими системами, в частности манипуляторами гибридной структуры, необходимо получить решение обратной кинематической задачи (обратной задачи о положениях), заключающейся в определении законов управления приводами при заданной траектории движения выходного звена. Важность данной задачи обусловлена тем, что ее решение закладывается непосредственно в систему управления манипулятора.

Методы решения обратной кинематической задачи для разнообразных манипуляторов гибридной структуры можно найти в ряде исследований. Одним из первых исследований в данном направлении является [7], в котором решение обратной задачи о положениях удалось свести к определению решения системы трех алгебраических уравнений шестой степени; решение было найдено численными методами. В [8] автор сопоставил исходному манипулятору гибридной структуры эквивалентный манипулятор последовательной структуры; используя классический метод Денавита–Хартенберга [9, с. 506] и составляя соответствующие матрицы однородных преобразований, были получены кинематические соотношения, на основе которых были найдены выражения для искомых приводных координат в аналитическом виде. Аналогичный метод Денавита-Хартенберга был применен при анализе других манипуляторов гибридной структуры в [10] (совместно с геометрическим подходом) и [5, 11]. Представление исходного манипулятора гибридной структуры в виде эквивалентного манипулятора последовательной структуры было также использовано в [12], но вместо метода Денавита-Хартенберга авторы применили формулу произведения матричных экспонент [9, с. 119]. Данная формула была также использована в [13, 14]. В указанных выше исследованиях [12–14] структурно-геометрические особенности рассматриваемых манипуляторов дали возможность получить решение обратной кинематической задачи в аналитическом виде. Особенности структуры манипулятора и наличие кинематической развязки между поступательными и вращательными движениями выходного звена позволили авторам [15] рассматривать по отдельности параллельную и последовательную части манипулятора и получить решение

обратной задачи о положениях в упрощенном виде. Также в [3, 16–19] можно найти кинематический анализ других манипуляторов: большинство алгоритмов решения основано на использовании алгебраических или геометрических подходов, каждый из которых индивидуален и зависит от структуры рассматриваемого манипулятора.

Ранее в [1] был представлен ряд новых манипуляторов гибридной структуры, однако решение обратной задачи о положениях, непосредственно связанное с практической задачей управления данными устройствами, было рассмотрено лишь для одного из манипуляторов [20]. Настоящее исследование продолжает упомянутые выше статьи и рассматривает решение обратной задачи о положениях для другого манипулятора гибридной структуры, описание которого представлено в следующем разделе.

Статья имеет следующую структуру. В разделе 2 приведено описание исследуемого манипулятора. Раздел 3 посвящен алгоритму решения обратной задачи о положениях, а в разделе 4 приведен численный пример решения данной задачи согласно предложенному алгоритму. Раздел 5 содержит обсуждение особенностей алгоритма и краткий сравнительный анализ с другими исследованиями. Заключение обобщает результаты проведенного исследования и указывает направления его дальнейшего развития. Статья также имеет два приложения: Приложение 1 приводит краткие теоретические основы используемого метода решения, а Приложение 2 содержит выражения коэффициентов, используемых в уравнениях.

# 2. Описание манипулятора

Кинематическая схема исследуемого манипулятора представлена на рис. 1, где использованы следующие обозначения: 1 -основание;  $2, \ldots, 5 -$ промежуточные звенья; 6 — платформа; 7 — каретка; 8 — выходное звено. Манипулятор состоит из параллельной части, образованной звеньями 1,..., 6, и последовательной части, образованной звеньями 7 и 8. Промежуточные звенья  $2, \ldots, 5$  соединены с основанием 1 и платформой 6 вращательными (B) шарнирами, при этом звенья 2 и 3 соединены друг с другом вращательным шарниром, а звенья 4 и 5 — поступательным ( $\Pi$ ): таким образом, платформа 6 соединена с основанием 1 двумя кинематическими цепями типа ВВВ и двумя цепями типа  $B\Pi B$ . Оси всех упомянутых выше вращательных шарниров параллельны друг другу, что обеспечивает платформе 6 плоское движение с тремя степенями свободы. Каретка 7 образует в платформой 6 поступательную пару, а с выходным звеном 8 — вращательную, что обеспечивает выходному звену 8 две степени свободы относительно платформы 6 и пять степеней свободы относительно основания 1. Единственная степень свободы, отсутствующая у выходного звена 8, — это вращение относительно оси, перпендикулярной осям всех прочих вращательных шарниров манипулятора, поэтому можно считать, что выходное звено 8 обладает тремя поступательными и двумя вращательными степенями свободы.



Рис. 1. Кинематическая схема исследуемого манипулятора.

В данном манипуляторе приводными (управляемыми) шарнирами являются шарниры, обозначенные на рис. 1 параметрами  $q_1, \ldots, q_6$ , где:

- q<sub>1</sub> и q<sub>2</sub> соответствуют вращениям в приводах цепей *BBB*;
- q<sub>3</sub> и q<sub>4</sub> соответствуют поступательным перемещениям в приводах цепей *ВПВ*;
- q<sub>5</sub> соответствует поступательному перемещению в приводе каретки 7;
- $q_6$  соответствует вращению в приводе выходного звена 8.

Можно видеть, что манипулятор обладает приводной избыточностью: движение платформы 6 относительно основания 1 осуществляется за счет работы четырех приводов, в то время как она обладает тремя степенями свободы. И хотя такое решение требует согласованной работы данных приводов, наличие избыточного привода позволяет повысить жесткость манипулятора и исключить ряд особых положений, присущих манипуляторам параллельной структуры [21]. Кроме того, наличие четвертой кинематической цепи позволяет сделать манипулятор симметричным и увеличить его габариты таким образом, чтобы можно было выполнять операции над объектами протяженной формы, что и является одним из назначений данного манипулятора [1].

### 3. Решение обратной задачи о положениях

Фактически обратная задача о положениях заключается в определении относительного положения звеньев манипулятора в приводных шарнирах при известной конфигурации выходного звена. В связи с этим сперва необходимо рассмотреть, как описать эти относительные положения и конфигурацию. Первые можно представить в виде вектора приводных координат  $\mathbf{q} = \begin{bmatrix} q_1 & \dots & q_6 \end{bmatrix}^T \in \mathbb{R}^6$ , соответствующих предыдущему разделу. Конфигурацию выходного звена можно описать при помощи вектора  $\mathbf{p}_S \in \mathbb{R}^3$ , определяющего положение некой точки S выходного звена, и единичного вектора  $\hat{\mathbf{n}} \in \mathbb{R}^3$ ,  $\|\hat{\mathbf{n}}\|_2 = 1$ , определяющего его ориентацию (рис. 2, *a*). Параметры  $\mathbf{p}_S$ 



Рис. 2. Кинематический анализ: *a* — расположение систем координат и приводных координат; *б* — эквивалентная кинематическая цепь с последовательной структурой.

и  $\hat{\mathbf{n}}$  задаются относительно неподвижной системы координат OXYZ, расположенной на основании манипулятора известным (заданным) образом. Поскольку в рассматриваемом манипуляторе вращательных степеней свободы у выходного звена всего две, вектора  $\hat{\mathbf{n}}$  достаточно для описания его ориентации (нет необходимости использовать матрицу поворота).

Таким образом, решение обратной задачи о положениях сводится к нахождению вектор-функции  $\mathbf{f}: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^6$ :

(1) 
$$\mathbf{q} = \mathbf{f}(\mathbf{p}_S, \hat{\mathbf{n}}), \quad \|\hat{\mathbf{n}}\|_2 = 1.$$

Методику решения обратной задачи о положениях можно представить следующим образом.

Согласно структуре манипулятора, платформа совершает плоское движение и обладает тремя степенями свободы. В связи с этим мы можем представить, что платформа соединена с основанием некой «виртуальной» кинематической цепью типа  $\Pi\Pi B$ , у которой оси поступательных пар параллельны плоскости движения, а ось вращательной пары перпендикулярна ей (рис. 2,  $\delta$ ). Таким образом, мы можем рассматривать соединение выходного звена как эквивалентную кинематическую цепь с последовательной структурой  $\Pi\Pi B\Pi B$ . Как будет показано далее, такое представление дает возможность применить известные методы исследования манипуляторов последовательной структуры к манипулятору гибридного типа.

Пусть  $SX_SY_SZ_S$  — система координат выходного звена, конфигурация которой относительно системы координат основания OXYZ определяется матрицей  $\mathbf{T}_S \in SE(3)$ , так, что:

(2) 
$$\mathbf{T}_{S} = \begin{bmatrix} \hat{\mathbf{u}} & \hat{\mathbf{v}} & \hat{\mathbf{n}} & \mathbf{p}_{S} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

где  $\hat{\mathbf{u}}$  и  $\hat{\mathbf{v}}$  — единичные векторы, образующие вместе с вектором  $\hat{\mathbf{n}}$  правую тройку ортонормированных векторов; как будет показано далее, направление данных векторов не влияет на решение обратной задачи и потому может быть выбрано произвольным образом.

Рассматривая упомянутую выше кинематическую цепь с последовательной структурой  $\Pi\Pi B\Pi B$ , можно записать матрицу  $\mathbf{T}_S$  через произведение матричных экспонент следующим образом (см. Приложение 1 и выражение (П.2)):

(3) 
$$\mathbf{T}_{S} = \left(\prod_{i=1}^{5} e^{[\boldsymbol{\xi}_{i}]\boldsymbol{\theta}_{i}}\right) \mathbf{M}_{S},$$

где  $\mathbf{M}_{S} \in SE(3)$  — матрица, определяющая положение и ориентацию выходного звена в некоторой начальной конфигурации манипулятора; i — порядковый номер шарнира цепи, считая от основания,  $i = 1, \ldots, 5$ ;  $\boldsymbol{\xi}_{i} \in \mathbb{R}^{6}$  — (единичный) кинематический винт, соответствующий оси i-го шарнира в начальной конфигурации манипулятора;  $[\boldsymbol{\xi}_{i}]$  — матричное представление винта  $\boldsymbol{\xi}_{i}$  согласно выражениям (П.1) и (П.3);  $\boldsymbol{\theta}_{i}$  — перемещение в i-м шарнире.

Для рассматриваемой цепи  $\Pi\Pi B\Pi B$  кинематические винты  $\xi_i$  и перемещения  $\theta_i$  будут иметь следующий вид согласно выражению (П.1) и рис. 2,6:

(4) 
$$\boldsymbol{\xi}_1 = \begin{bmatrix} \boldsymbol{0}_{3\times 1} \\ \hat{\mathbf{s}}_1 \end{bmatrix}$$
,  $\boldsymbol{\xi}_2 = \begin{bmatrix} \boldsymbol{0}_{3\times 1} \\ \hat{\mathbf{s}}_2 \end{bmatrix}$ ,  $\boldsymbol{\xi}_3 = \begin{bmatrix} \hat{\mathbf{s}}_3 \\ \mathbf{r}_3 \times \hat{\mathbf{s}}_3 \end{bmatrix}$ ,  $\boldsymbol{\xi}_4 = \begin{bmatrix} \boldsymbol{0}_{3\times 1} \\ \hat{\mathbf{s}}_4 \end{bmatrix}$ ,  $\boldsymbol{\xi}_5 = \begin{bmatrix} \hat{\mathbf{s}}_5 \\ \mathbf{r}_5 \times \hat{\mathbf{s}}_5 \end{bmatrix}$ ,  
(5)  $\boldsymbol{\theta}_1 = y$ ,  $\boldsymbol{\theta}_2 = z$ ,  $\boldsymbol{\theta}_3 = \boldsymbol{\varphi}$ ,  $\boldsymbol{\theta}_4 = q_5$ ,  $\boldsymbol{\theta}_5 = q_6$ ,

где  $\hat{\mathbf{s}}_1, \ldots, \hat{\mathbf{s}}_5$  — единичные векторы, параллельные осям соответствующих шарниров;  $\mathbf{r}_3$  и  $\mathbf{r}_5$  — векторы, определяющие координаты произвольных точек на осях соответствующих шарниров; y и z — линейные перемещения платформы в направлении векторов  $\hat{\mathbf{s}}_1$  и  $\hat{\mathbf{s}}_2$  (выбор таких обозначений станет понятен далее);  $\varphi$  — поворот платформы вокруг оси, определяемой вектором  $\hat{\mathbf{s}}_3$ .

Параметры  $\mathbf{M}_S$ ,  $\hat{\mathbf{s}}_1, \ldots, \hat{\mathbf{s}}_5$ ,  $\mathbf{r}_3$  и  $\mathbf{r}_5$  определяются конструктивными особенностями манипулятора и выбранным расположением систем координат OXYZ и  $SX_SY_SZ_S$ , и потому их можно считать известными. Таким образом, при заданной матрице  $\mathbf{T}_S$  выражение (3) представляет собой систему уравнений относительно неизвестных  $\theta_i$ ,  $i = 1, \ldots, 5$ , приведенных в (5). Для упрощения решения данной системы уравнений можно без потери общности расположить систему координат OXYZ таким образом, чтобы ось OX была перпендикулярна плоскости, параллельной осям обоих шарниров  $\Pi$  «виртуальной» кинематической цепи  $\Pi\Pi B$  (рис. 2, $\delta$ ). При этом оси данных шарниров можно направить параллельно осям OY и OZ, так, что

(6) 
$$\hat{\mathbf{s}}_1 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\mathrm{T}}, \quad \hat{\mathbf{s}}_2 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathrm{T}}, \quad \hat{\mathbf{s}}_3 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$

Подставим (2) и (4)–(6) в (3) и рассмотрим уравнение, соответствующее первой строке и третьему столбцу выражения (3). Данное уравнение содер-

жит всего одну неизвестную  $q_6$  и имеет вид:

(7) 
$$a_1 \cos q_6 + b_1 \sin q_6 + c_1 = 0,$$

где  $a_1$ ,  $b_1$  и  $c_1$  — коэффициенты, известные при решении обратной задачи о положениях и приведенные в Приложении 2.

Решение уравнения (7) можно найти следующим образом [22, с. 29]:

(8) 
$$q_6 = 2 \arctan \frac{b_1 \pm \sqrt{a_1^2 + b_1^2 - c_1^2}}{a_1 - c_1}.$$

Для того чтобы уравнение выше имело действительное решение, подкоренное выражение должно быть неотрицательным. Согласно Приложению 2, при известных геометрических параметрах манипулятора данное выражение будет зависеть лишь от одной переменной  $n^x$ , являющейся проекцией вектора  $\hat{\mathbf{n}}$ на ось OX. Поэтому перед расчетом переменной  $q_6$  нужно сперва убедиться в неотрицательности подкоренного выражения для всех значений  $n^x$  или как минимум для тех значений  $n^x$ , для которых решается обратная задача о положениях. Позже в разделе 4 будет приведен пример такого анализа.

В числителе выражения (8) знак перед корнем соответствует различным решениям  $q_6$ . Функция arctg в общем случае также определяет два различных решения, но, поскольку в правой части (8) перед данной функцией стоит множитель 2, два данных решения будут соответствовать одному и тому же значению  $q_6$ . В итоге получим два различных решения  $q_6$ , зависящие от знака перед корнем в числителе (8).

Далее рассмотрим уравнения, соответствующие второй и третьей строкам и третьему столбцу выражения (3). Их можно привести к виду, аналогичному (7):

(9) 
$$a_2 \cos \varphi + b_2 \sin \varphi + c_2 = 0,$$
$$a_3 \cos \varphi + b_3 \sin \varphi + c_3 = 0,$$

где  $a_2, \ldots, c_3$  — коэффициенты, зависящие от найденной выше переменной  $q_6$  и приведенные в Приложении 2.

Уравнения (9) можно рассматривать как систему линейных уравнений относительно двух неизвестных  $\cos \varphi$  и  $\sin \varphi$ , причем, согласно Приложению 2,  $a_2 = b_3$  и  $b_2 = -a_3$ . При таком соотношении коэффициентов данная система уравнений в общем случае (при  $a_2b_3 - a_3b_2 \neq 0$ ) будет иметь единственное решение [22, с. 30], из которого далее можно найти угол  $\varphi$ , используя функцию atan2 [9, с. 188]. При этом каждое из двух решений (8) определит свое решение для угла  $\varphi$ .

Далее рассмотрим уравнение, соответствующее первой строке и четвертому столбцу выражения (3). Данное уравнение является линейным относительно переменной  $q_5$ :

(10) 
$$a_4q_5 + b_4 = 0,$$

где  $a_4$  и  $b_4$  — коэффициенты, зависящие от найденной выше переменной  $q_6$  и приведенные в Приложении 2.

При  $a_4 \neq 0$  уравнение (10) дает одно решение для каждого значения  $q_6$ . Согласно Приложению 2,  $a_4 = s_4^x$ , где  $s_4^x$  — проекция вектора  $\hat{\mathbf{s}}_4$  на ось OX, определяемая геометрией манипулятора. Если геометрия такова, что данная проекция равна нулю, вектор  $\hat{\mathbf{s}}_4$  будет параллелен плоскости OYZ, как и векторы  $\hat{\mathbf{s}}_1$  и  $\hat{\mathbf{s}}_2$ . Поскольку три указанных вектора соответствуют осям поступательных пар эквивалентной кинематической цепи (рис.  $2, \delta$ ), мы получим структуру манипулятора, в которой оси трех поступательных пар параллельны одной плоскости. В такой структуре при заданной конфигурации выходного звена существует бесконечное число комбинаций параметров  $q_5$ , y и z, определяющих перемещения в поступательных парах, что также соответствует бесконечному числу решений уравнения (10). Однако данный случай имеет исключительно теоретический интерес, поскольку в реальном манипуляторе можно всегда обеспечить геометрию, при которой  $s_4^x \neq 0$ .

Наконец, можно рассмотреть уравнения соответствующие второй и третьей строкам и четвертому столбцу выражения (3). Данные уравнения являются линейными относительно переменных y и z и имеют вид, аналогичный (10):

(11) 
$$a_5y + b_5 = 0, \\ a_6z + b_6 = 0,$$

где  $a_5, \ldots, b_6$  — коэффициенты, зависящие от найденных ранее переменных  $q_6, \varphi$  и  $q_5$  и приведенные в Приложении 2.

Согласно данному Приложению,  $a_5 = a_6 = 1$ , и уравнения (11) также дают по одному решению для каждого значения переменной  $q_6$ .

Таким образом, при заданной конфигурации выходного звена, определяемой матрицей  $\mathbf{T}_S$ , были найдены все неизвестные  $\theta_i$ ,  $i = 1, \ldots, 5$ , в том числе включающие две переменные  $q_5$  и  $q_6$ . Для того чтобы найти оставшиеся неизвестные  $q_1, \ldots, q_4$ , можно снова воспользоваться формулой произведения матричных экспонент (П.2), записанной для i = 1, 2 и 3. Пусть  $PX_PY_PZ_P$  система координат платформы, конфигурация которой относительно системы координат основания OXYZ определяется матрицей  $\mathbf{T}_P$ , так, что начальной конфигурации платформы соответствует известная матрица  $\mathbf{M}_P$ . Тогда согласно (П.2) можно записать:

(12) 
$$\mathbf{T}_P = \left(\prod_{i=1}^3 e^{[\boldsymbol{\xi}_i]\boldsymbol{\theta}_i}\right) \mathbf{M}_P,$$

где  $\boldsymbol{\xi}_i$  и  $\boldsymbol{\theta}_i$  соответствуют выражениям (4) и (5).

Поскольку параметры  $\theta_1$ ,  $\theta_2$  и  $\theta_3$  соответствуют параметрам y, z и  $\varphi$ , найденным ранее, выражение (12) позволяет рассчитать матрицу  $\mathbf{T}_P$ . Далее можно определить координаты  $\mathbf{p}_{Aj}$ ,  $j = 1, \ldots, 4$ , точек  $A_j$ , соответствующих вращательным шарнирам платформы (рис. 2,*a*), из следующего выражения:

(13) 
$$\begin{bmatrix} \mathbf{p}_{Aj} \\ 1 \end{bmatrix} = \mathbf{T}_P \begin{bmatrix} \mathbf{r}_{Aj} \\ 1 \end{bmatrix}, \quad j = 1, \dots, 4,$$

где  $\mathbf{r}_{Aj}$  — координаты точек  $A_j$  в системе координат платформы  $PX_PY_PZ_P$ ; данные координаты определяются конструкцией манипулятора и считаются известными.

Зная координаты  $\mathbf{p}_{Aj}$ , приводные координаты  $q_3$  и  $q_4$  можно определить как длину отрезка между точками  $A_j$  и  $B_j$ , j = 3, 4, где  $B_j$  соответствуют вращательным шарнирам основания (рис. 2,a):

(14) 
$$q_j = \sqrt{(\mathbf{p}_{Aj} - \mathbf{p}_{Bj})^2}, \quad j = 3, 4,$$

где  $\mathbf{p}_{Bj}$  — координаты точек  $B_j$  в системе координат основания OXYZ; данные координаты определяются конструкцией манипулятора и считаются известными (мы полагаем без потери общности, что для каждого  $j = 1, \ldots, 4$ обе точки  $A_j$  и  $B_j$  лежат в плоскости, перпендикулярной осям вращательных шарниров *j*-й кинематической цепи).

Чтобы найти оставшиеся приводные координаты  $q_1$  и  $q_2$ , сперва определим координаты  $\mathbf{p}_{Cj}$  точек  $C_j$ , j = 1, 2, соответствующих промежуточным вращательным шарнирам цепей *ВПВ* (рис. 2,*a*). С учетом принятого ранее направления оси *OX* можно записать следующие соотношения:

(15) 
$$\begin{pmatrix} p_{Aj}^y - p_{Cj}^y \end{pmatrix}^2 + \left( p_{Aj}^z - p_{Cj}^z \right)^2 = l_{AjCj}^2, \\ \left( p_{Bj}^y - p_{Cj}^y \right)^2 + \left( p_{Bj}^z - p_{Cj}^z \right)^2 = l_{BjCj}^2, \qquad j = 1, 2,$$

где  $p_{Aj}^y, \ldots, p_{Cj}^z$  — соответствующие компоненты векторов  $\mathbf{p}_{Aj}, \mathbf{p}_{Bj}$  и  $\mathbf{p}_{Cj};$  $l_{AjCj}$  и  $l_{BjCj}$  — длины звеньев  $A_jC_j$  и  $B_jC_j$  соответственно.

Для каждого j = 1,2 соотношения (15) представляют собой систему двух квадратных уравнений относительно двух неизвестных  $p_{Cj}^y$  и  $p_{Cj}^z$ . Вычитая одно уравнение из другого, можно выразить  $p_{Cj}^z$  через  $p_{Cj}^y$ :

(16) 
$$p_{Cj}^z = a_7 p_{Cj}^y + b_7, \quad j = 1, 2,$$

где *a*<sub>7</sub> и *b*<sub>7</sub> — известные коэффициенты, приведенные в Приложении 2.

Подставляя (16) в любое из двух уравнений (15), получим квадратное уравнение относительно неизвестной  $p_{C_i}^y$ :

(17) 
$$a_8(p_{Cj}^y)^2 + b_8 p_{Cj}^y + c_8 = 0, \quad j = 1, 2,$$

где  $a_8, b_8$  и  $c_8$  — известные коэффициенты, приведенные в Приложении 2.

Соотношение выше позволяет в общем случае получить два решения для переменной  $p_{Cj}^y$ , после чего из выражения (16) можно найти  $p_{Cj}^z$  (квадратное уравнение (17) будет иметь действительное решение тогда и только тогда, когда при известной конфигурации платформы манипулятора возможна сборка его кинематической цепи, т.е. при  $\|\mathbf{p}_{Aj} - \mathbf{p}_{Bj}\|_2 \leq l_{AjCj} + l_{BjCj}$ ). Наконец, зная данные величины и полагая без потери общности, что приводная координата  $q_j$ , j = 1, 2, отсчитывается от положительного направления оси Oy, данную координату можно определить следующим образом:

(18) 
$$q_j = \operatorname{atan2}\left(p_{Cj}^z - p_{Bj}^z, p_{Cj}^y - p_{Bj}^y\right), \quad j = 1, 2.$$

Выражения (8), (10), (14) и (18) позволяют определить приводные координаты **q** при заданных координатах выходного звена  $\mathbf{p}_{S}$  и  $\hat{\mathbf{n}}$ , т.е. представляют собой искомую вектор-функцию (1), определяющую решение обратной задачи о положениях для рассматриваемого манипулятора. Согласно проведенному анализу видно, что данная задача может иметь несколько различных решений (в общем случае возможно получить восемь различных комбинаций значений приводных координат), и выбор конкретного решения зависит от конструктивных особенностей манипулятора и выполняемой им операции. Так, например, различные решения уравнения (17) соответствуют различным сборкам кинематических цепей ВВВ (рис. 1): в случае, когда промежуточный вращательный шарнир цепи выходит за пределы платформы, рабочая зона манипулятора возрастает, что может быть важно при выполнении операций над объектами протяженной формы; при этом, однако, также возрастают габаритные размеры манипулятора. Кроме того, в зависимости от сборки кинематической цепи меняются области близости к особым положениям [23], в которых снижается жесткость манипулятора и возможна потеря управляемости. Наконец, некоторые сборки могут быть заранее недостижимы в связи с существующими ограничениями на допустимые перемещения в шарнирах.

# 4. Численный пример

Рассмотрим пример решения обратной задачи о положениях для манипулятора со следующими параметрами (линейные параметры указаны в мм):

$$\hat{\mathbf{s}}_{4} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathrm{T}}, \quad \hat{\mathbf{s}}_{5} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\mathrm{T}}, \qquad \mathbf{r}_{3} = \mathbf{r}_{5} = \begin{bmatrix} 0 & 0 & 250 \end{bmatrix}^{\mathrm{T}}, \\ \mathbf{r}_{A1} = \mathbf{p}_{B1} = \begin{bmatrix} 300 & 150 & 0 \end{bmatrix}^{\mathrm{T}}, \qquad \mathbf{r}_{A2} = \mathbf{p}_{B2} = \begin{bmatrix} 300 & -150 & 0 \end{bmatrix}^{\mathrm{T}}, \\ \mathbf{r}_{A3} = \mathbf{p}_{B3} = \begin{bmatrix} -300 & 150 & 0 \end{bmatrix}^{\mathrm{T}}, \qquad \mathbf{r}_{A4} = \mathbf{p}_{B4} = \begin{bmatrix} -300 & -150 & 0 \end{bmatrix}^{\mathrm{T}}, \\ \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 150 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad \mathbf{M}_{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 250 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \\ l_{AjCj} = l_{BjCj} = 100, \quad j = 1, 2.$$

При указанных выше геометрических параметрах платформа и основание манипулятора имеют одинаковые размеры: прямоугольники  $A_1A_2A_4A_3$ и  $B_1B_2B_4B_3$  равны друг другу, причем одна из сторон в два раза длиннее



Рис. 3. Манипулятор в начальной конфигурации и заданная траектория движения.

другой (600 и 300 мм соответственно). В указанной начальной конфигурации, определяемой матрицами  $\mathbf{M}_S$  и  $\mathbf{M}_P$ , плоскость  $A_1A_2A_4A_3$  платформы параллельна плоскости OXY основания и находится на высоте 250 мм над ней. При этом точка S выходного звена расположена на высоте 150 мм над плоскостью основания (выходное звено представляется в виде стержня длиной 100 мм). На рис. 3 приведено схематичное изображение манипулятора в данной конфигурации.

Согласно Приложению 2, при указанных геометрических параметрах в выражении (8) получим  $\sqrt{a_1^2 + b_1^2 - c_1^2} = \sqrt{1 - (n^x)^2}$ . Поскольку  $|n^x| \leq 1$ , подкоренное выражение будет всегда неотрицательным и уравнение (8) будет иметь решение. Кроме того, в системе уравнений (9) получим  $a_2b_3 - a_3b_2 = (\cos q_6)^2$ . Данное выражение будет равно нулю при  $q_6 = \pm \pi/2$ : в этом случае вектор  $\hat{\mathbf{n}}$ параллелен оси OX. Очевидно, что при такой ориентации выходного звена платформа манипулятора может быть наклонена к плоскости основания под любым углом  $\varphi$ , так что обратная задача о положениях будет иметь бесконечное количество решений. В связи с этим при планировании траектории движения выходного звена рассматриваемого манипулятора необходимо избегать конфигураций, для которых  $q_6 = \pm \pi/2$ .

В качестве заданной траектории движения выходного звена рассмотрим кусочно-заданную кривую (рис. 3), которая может соответствовать обработке или анализу поверхности некого протяженного объекта. Данная траектория симметрична относительно плоскостей OXZ и OYZ и состоит из двух прямолинейных участков (1–2 и 3–4) протяженностью 400 мм, расположенных над плоскостью OXY на высоте 156,6 мм и отстоящих друг от друга на 100 мм, и двух дугообразных участков (2–3 и 4–1), середина которых расположена над плоскостью OXY на высоте 170 мм. На всей траектории движения выходное



Рис. 4. Результат решения обратной задачи о положениях.

звено лежит в плоскости, параллельной плоскости OYZ, причем на участках 1–2 и 3–4 оно сохраняет свою ориентацию, образуя с осью OZ угол  $\pm 20^{\circ}$ , а на участках 2–3 и 4–1 оно меняет ориентацию от одного предельного значения угла до другого (на рис. 3 стрелки обозначают ориентацию инструмента и соответствуют направлению вектора  $-\hat{\mathbf{n}}$ ). Движение начинается из точки 0, находящейся в середине участка 4–1. Временные интервалы движения вдоль участков 0–1, 1–2, 2–3, 3–4 и 4–0 составляют 1, 4, 2, 4 и 1 с соответственно.

Результаты решения обратной задачи о положениях для указанной геометрии манипулятора и траектории движения приведены на рис. 4 в виде графиков  $\mathbf{q}(t)$ , где t — время. Можно видеть, что результаты решения также имеют кусочный вид:

- 1) При  $t \leq 1$  с (движение вдоль участка 0–1) платформа манипулятора опускается и смещается в отрицательном направлении OY, о чем свидетельствует увеличение значений  $q_1$  и  $q_2$  и уменьшение значений  $q_3$ и  $q_4$ . При этом угол отклонения выходного звена меняется от 0 до  $-20^\circ$ , что соответствует изменению значения  $q_6$ . Координата  $q_5$  также незначительно изменяется, чтобы скомпенсировать наклон выходного звена и сохранить положение точки S вдоль оси OX неизменным.
- 2) При  $1 < t \leq 5$  с (движение вдоль участка 1–2) платформа манипулятора неподвижна, ориентация выходного звена неизменна, и его линейное перемещение осуществляется только за счет привода каретки платформы. Значения  $q_1, \ldots, q_4$  и  $q_6$  остаются постоянными, а координата  $q_5$  изменяется соответствующим образом.

- 3) При 5 < t  $\leq$  7 с (движение вдоль участка 2–3) платформа манипулятора смещается в положительном направлении оси OY, что соответствует уменьшению значений  $q_1$  и  $q_2$ . Кроме того, платформа сперва поднимается, а затем опускается, о чем свидетельствуют рост и последующее уменьшение значений  $q_3$  и  $q_4$ . При этом выходное звено меняет свой угол наклона от  $-20^{\circ}$  до  $+20^{\circ}$ , что соответствует изменению значения  $q_6$ . Координата  $q_5$  незначительно изменяется для компенсации данного наклона и сохранения неизменного положения точки S вдоль оси OX.
- 4) При 7 <  $t \leq 11$  с (движение вдоль участка 4–5) характер изменения приводных координат аналогичен движению вдоль участка 1–2: значение  $q_5$  уменьшается, а остальные координаты остаются неизменными.
- 5) При 11 <  $t \leq 12$  с (движение вдоль участка 5–0) платформа манипулятора поднимается и смещается в отрицательном направлении OY, о чем свидетельствует увеличение значений  $q_1, \ldots, q_4$ . Угол отклонения выходного звена уменьшается от  $+20^\circ$  до 0, что соответствует изменению значения  $q_6$ . Изменение координаты  $q_5$  направлено на компенсацию отклонения выходного звена и сохранение неизменным положения точки S вдоль оси OX. По окончании движения манипулятор возвращается в исходную точку траектории, что также подтверждается из рис. 4:  $\mathbf{q}(0) = \mathbf{q}(12)$ .

Рассчитанные значения и характер изменения приводных координат соответствуют геометрическим параметрам манипулятора и заданной траектории движения выходного звена, что подтверждает корректность предложенного алгоритма решения обратной задачи о положениях.

#### 5. Обсуждение результатов

Приведенный алгоритм решения обратной задачи о положениях основан на использовании формул произведения матричных экспонент (3) и (12), которые позволили установить взаимосвязь между заданными координатами выходного звена и искомыми приводными координатами. Данный подход требует лишь значения ряда параметров ( $\xi_i$ ,  $i = 1, \ldots, 5$ ,  $\mathbf{M}_S$  и  $\mathbf{M}_P$ ), соответствующих некоторой начальной конфигурации манипулятора, за которую может быть принята любая желаемая конфигурация, и определяемых исключительно геометрией манипулятора и выбранным расположением систем координат. При этом используемый метод позволяет легко учесть геометрические неточности расположения осей шарниров: например, если оси шарниров, соответствующих приводным координатам  $q_5$  и  $q_6$ , имеют какие-либо отклонения, достаточно изменить соответствующим образом кинематические винты  $\xi_4$  и  $\xi_5$  — алгоритм в целом сохранит свою работоспособность. Также согласно Приложению 2 можно видеть, что коэффициенты решаемых уравнений не зависят от векторов  $\hat{\mathbf{u}}, \hat{\mathbf{v}}$  и их выражений в начальной конфигурации манипулятора (соответствующей матрице  $\mathbf{M}_{S}$ ): таким образом, как было сказано ранее, направление данных векторов может быть выбрано произвольным образом.

Проводя сравнительный анализ с другими исследованиями, посвященными решению обратной задачи о положениях прочих манипуляторов гибридной структуры, отметим, что формула произведения матричных экспонент была использована в ограниченном количестве исследований. Так, например, в [13] авторы использовали данную формулу, но только для последовательной части рассматриваемого манипулятора; авторы также сделали ряд допущений на геометрию манипулятора, что позволило получить уравнения довольно простого вида. В [14] структурно-геометрические особенности исследуемого манипулятора также привели к простым соотношениям, из которых решение обратной задачи удалось найти методом обратных преобразований (используя обратные матрицы вида  $e^{-[\xi_i]\theta_i}$ ). Кроме того, стоит отметить исследование [12], в котором был применен схожий метод, а также представление исходного манипулятора гибридной структуры в виде эквивалентного манипулятора последовательной структуры аналогично текущей статье. Решение обратной задачи о положениях было найдено путем решения подзадач Падена–Кахана [24, с. 99], но, как отмечают сами авторы, такой подход можно использовать лишь для определенных структур манипуляторов. Что касается прочих исследований, в том числе упомянутых во введении, большинство из них либо основаны на составлении кинематических соотношений путем введения дополнительных систем координат (используя метод Денавита-Хартенберга), либо опираются на структурные особенности конкретного рассматриваемого манипулятора и учитывают различные геометрические допущения. Используемый в данной статье алгоритм не требует построения дополнительных систем координат или введения допущений, и потому его применение также представляет интерес для других манипуляторов гибридной структуры.

#### 6. Заключение

Настоящая статья была посвящена разработке алгоритма решения обратной задачи о положениях для пятиподвижного манипулятора гибридной структуры, состоящего из параллельной части с тремя степенями свободы и последовательной части с двумя степенями свободы, а также имеющего приводную избыточность. Предложенный алгоритм основан на использовании формулы произведения матричных экспонент и позволяет получить решение в аналитическом виде, не предъявляя при этом никаких допущений к геометрическим параметрам манипулятора. Согласно алгоритму сперва определяются координаты, характеризующие ориентацию выходного звена, далее находятся оставшаяся координата последовательной части и координаты, описывающие расположение платформы параллельной части манипулятора, и, наконец, определяются неизвестные координаты в кинематических цепях параллельной части. Рассмотренный пример подтвердил работоспособность предложенного алгоритма. Полученные кинематические соотношения могут быть использованы при решении прямой задачи о положениях, состоящей в определении конфигурации выходного звена при заданных значениях приводных координат, что имеет важное практическое значение и применяется для оценки реального положения выходного звена путем анализа данных с датчиков, установленных в приводах манипулятора. Рассмотренные соотношения также лежат в основе последующего анализа скоростей, особых положений манипулятора и определения его рабочих зон, что является направлением дальнейшего развития текущей работы. Кроме того, предложенные в данном исследовании методики могут быть адаптированы для изучения других манипуляторов гибридной структуры.

#### Дополнительные материалы

Файлы MATLAB с текстами программ, соответствующих представленным в данной статье алгоритмам, находятся в свободном доступе онлайн по ссылке: http://dx.doi.org/10.17632/tp8nx5jhyv.1.

#### ПРИЛОЖЕНИЕ 1

Данное Приложение содержит краткие сведения об использовании формулы произведения матричных экспонент (product of exponentials formula [9]) при анализе кинематики манипуляторов.

Пусть выходное звено манипулятора соединено с основанием разомкнутой кинематической цепью, состоящей из n одноподвижных шарниров (любой многоподвижный шарнир можно представить в виде комбинации одноподвижных). При этом *i*-му шарниру, i = 1, ..., n, можно сопоставить (единичный) кинематический винт  $\xi_i \in \mathbb{R}^6$ :

(П.1) 
$$\boldsymbol{\xi}_{i} = \begin{bmatrix} \boldsymbol{\omega}_{i} \\ \boldsymbol{\upsilon}_{i} \end{bmatrix} = \begin{cases} \begin{bmatrix} \hat{\mathbf{s}}_{i} \\ \mathbf{r}_{i} \times \hat{\mathbf{s}}_{i} + h_{i} \hat{\mathbf{s}}_{i} \end{bmatrix}, & \text{если } h_{i} \neq \infty, \\ \begin{bmatrix} \mathbf{0}_{3 \times 1} \\ \hat{\mathbf{s}}_{i} \end{bmatrix}, & \text{если } h_{i} = \infty, \end{cases}$$

где  $\mathbf{\omega}_i \in \mathbb{R}^3$  — векторная часть винта;  $\mathbf{v}_i \in \mathbb{R}^3$  — моментная часть винта;  $\hat{\mathbf{s}}_i$  — единичный вектор, параллельный оси винта;  $\mathbf{r}_i$  — вектор, определяющий координаты произвольной точки на оси винта;  $h_i$  — шаг винта.

Пусть с выходным звеном связана некоторая система координат  $SX_SY_SZ_S$ , конфигурацию которой относительно неподвижной системы координат основания OXYZ можно описать при помощи матрицы  $\mathbf{T}_S \in SE(3)$ . Пусть матрица  $\mathbf{M}_S$  описывает некую начальную конфигурацию манипулятора, в которой шарнирам цепи можно сопоставить кинематические винты  $\boldsymbol{\xi}_i$ ,  $i = 1, \ldots, n$ , согласно выражению (П.1). Тогда матрицы  $\mathbf{T}_S$  и  $\mathbf{M}_S$  связаны друг с другом следующим образом [9, с. 120]:

(II.2) 
$$\mathbf{T}_{S} = \left(\prod_{i=1}^{n} e^{[\boldsymbol{\xi}_{i}]\boldsymbol{\theta}_{i}}\right) \mathbf{M}_{S},$$

где  $\theta_i$  — перемещение в *i*-м шарнире;  $[\xi_i]$  — матричное представление винта  $\xi_i$ :

$$[\boldsymbol{\xi}_{i}] = \begin{bmatrix} \Lambda(\boldsymbol{\omega}_{i}) & \boldsymbol{\upsilon}_{i} \\ \boldsymbol{0}_{1\times3} & \boldsymbol{0} \end{bmatrix} \in se(3),$$
(II.3)  

$$\Lambda(\boldsymbol{\omega}_{i}) = \Lambda \left( \begin{bmatrix} \boldsymbol{\omega}_{i}^{x} \\ \boldsymbol{\omega}_{i}^{y} \\ \boldsymbol{\omega}_{i}^{z} \end{bmatrix} \right) = \begin{bmatrix} \boldsymbol{0} & -\boldsymbol{\omega}_{i}^{z} & \boldsymbol{\omega}_{i}^{y} \\ \boldsymbol{\omega}_{i}^{z} & \boldsymbol{0} & -\boldsymbol{\omega}_{i}^{x} \\ -\boldsymbol{\omega}_{i}^{y} & \boldsymbol{\omega}_{i}^{x} & \boldsymbol{0} \end{bmatrix} \in so(3).$$

Выражение (П.2) представляет собой формулу произведения матричных экспонент  $e^{[\xi_i]\theta_i}$ , которые также можно представить следующим образом:

$$e^{[\boldsymbol{\xi}_i]\boldsymbol{\theta}_i} = \begin{bmatrix} e^{\Lambda(\boldsymbol{\omega}_i)\boldsymbol{\theta}_i} & \left(\mathbf{I}_{3\times 3}\boldsymbol{\theta}_i + (1-\cos\boldsymbol{\theta}_i)\Lambda(\boldsymbol{\omega}_i) + (\boldsymbol{\theta}_i - \sin\boldsymbol{\theta}_i)\Lambda(\boldsymbol{\omega}_i)^2\right)\boldsymbol{\upsilon}_i \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix},$$

где  $e^{\Lambda(\boldsymbol{\omega}_i)\boldsymbol{\theta}_i}$  соответствует матрице поворота вокруг оси, определяемой вектором  $\boldsymbol{\omega}_i$ , на угол  $\boldsymbol{\theta}_i$ :

$$e^{\Lambda(\boldsymbol{\omega}_i)\boldsymbol{\theta}_i} = \mathbf{I}_{3\times 3} + \sin \boldsymbol{\theta}_i \Lambda(\boldsymbol{\omega}_i) + (1 - \cos \boldsymbol{\theta}_i) \Lambda(\boldsymbol{\omega}_i)^2.$$

Начальная конфигурация манипулятора  $\mathbf{M}_S$  и соответствующие ей кинематические винты  $\boldsymbol{\xi}_i$ , i = 1, ..., n, определяются конструктивными особенностями рассматриваемого манипулятора и выбором расположения систем координат  $SX_SY_SZ_S$  и OXYZ, и потому при анализе кинематики данные параметры считаются заранее известными. Таким образом, соотношение (П.2) устанавливает связь между перемещениями  $\boldsymbol{\theta}_i$  в шарнирах и конфигурацией выходного звена, описываемой матрицей  $\mathbf{T}_S$ . Данное соотношение может быть использовано не только для решения прямой задачи о положениях (для чего оно и применяется в большинстве случаев [9]), но также при решении обратной задачи, что демонстрируется в настоящей статье на примере манипулятора гибридной структуры.

## ПРИЛОЖЕНИЕ 2

Данное Приложение содержит коэффициенты уравнений, используемых при решении обратной задачи о положениях:

$$a_{1} = n_{0}^{x} ((s_{5}^{y})^{2} + (s_{5}^{z})^{2}) - n_{0}^{y} s_{5}^{x} s_{5}^{y} - n_{0}^{z} s_{5}^{x} s_{5}^{z},$$
  

$$b_{1} = -n_{0}^{y} s_{5}^{z} + n_{0}^{z} s_{5}^{y},$$
  

$$c_{1} = n_{0}^{x} (s_{5}^{x})^{2} + n_{0}^{y} s_{5}^{x} s_{5}^{y} + n_{0}^{z} s_{5}^{x} s_{5}^{z} - n^{x},$$

$$\begin{split} a_2 &= n_0^x (s_5^z s_5^y (1 - \cos q_6) + s_5^z \sin q_6) + n_0^y ((s_5^y)^2 (1 - \cos q_6) + \cos q_6) - \\ &- n_0^z (s_5^z \sin q_6 - s_5^y s_5^z (1 - \cos q_6)), \\ b_2 &= n_0^x (s_5^z s_5^z (\cos q_6 - 1) + s_5^y \sin q_6) - n_0^y (s_5^z \sin q_6 + s_5^y s_5^z (1 - \cos q_6)) + \\ &+ n_0^z ((s_5^z)^2 (\cos q_6 - 1) - \cos q_6), \\ c_2 &= -n^y, \\ a_3 &= n_0^x (s_5^z s_5^z (1 - \cos q_6) - s_5^y \sin q_6) + n_0^y (s_5^x \sin q_6 + s_5^y s_5^z (1 - \cos q_6)) + \\ &+ n_0^z ((s_5^z)^2 (1 - \cos q_6) + \cos q_6), \\ b_3 &= n_0^x (s_5^z s_5^y (1 - \cos q_6) + s_5^z \sin q_6) + n_0^y ((s_5^y)^2 (1 - \cos q_6) + \cos q_6) - \\ &- n_0^z (s_5^x \sin q_6 - s_5^y s_5^z (1 - \cos q_6)), \\ c_3 &= -n^z, \\ a_4 &= s_4^x, \\ b_4 &= p_{50}^z (((s_5^y)^2 + (s_5^z)^2) (\cos q_6 - 1) + 1) + p_{50}^y (s_5^z s_5^y (1 - \cos q_6) - s_5^z \sin q_6) + \\ &+ p_{50}^z (s_5^z s_5^z (1 - \cos q_6) + s_5^y \sin q_6) + r_5^z ((s_5^y)^2 + (s_5^z)^2) (1 - \cos q_6) + \\ &+ r_5^y (s_5^x s_5^z (1 - \cos q_6) \cos \varphi + s_5^x s_5^z (\cos q_6 - 1) \sin \varphi + s_5^y \sin q_6) - p_5^x, \\ a_5 &= 1, \\ b_5 &= p_{50}^y (s_5^x s_5^y (1 - \cos q_6) \cos \varphi + s_5^x s_5^z (\cos q_6 - 1) \sin \varphi + s_5^y \sin q_6 \sin \varphi + \\ &+ s_5^z \sin q_6 \cos \varphi) + \\ &+ p_{50}^z (-s_5^x \sin q_6 \sin \varphi + (s_5^y)^2 (1 - \cos q_6) \cos \varphi + s_5^y s_5^z (\cos q_6 - 1) \sin \varphi + \\ &+ c \cos q_6 \cos \varphi) + \\ &+ r_5^z (s_5^x (\cos q_6 - 1) (s_5^y \cos \varphi - s_5^z \sin \varphi) - s_5^y \sin q_6 \sin \varphi - s_5^z \sin q_6 \cos \varphi + \\ &+ r_5^z (s_5^x (\cos q_6 - 1) (s_5^y \cos \varphi - s_5^z \sin \varphi) - s_5^y \sin q_6 \sin \varphi - s_5^z \sin q_6 \cos \varphi + \\ &+ r_5^z (s_5^x (\cos q_6 - 1) (s_5^y \cos \varphi - s_5^z s_5 \sin \varphi) - s_5^y \sin q_6 \sin \varphi - s_5^z \sin q_6 \cos \varphi + \\ &+ r_5^z (s_5^x \sin q_6 \cos \varphi + (s_5^y)^2 (1 - \cos q_6) \cos \varphi - s_5^y \sin q_6 \sin \varphi - s_5^z \sin q_6 \cos \varphi + \\ &+ r_5^z (s_5^x \sin q_6 \sin \varphi + ((s_5^y)^2 (\cos \varphi - s_5^y s_5^z \sin \varphi - \cos \varphi) (\cos q_6 - 1)) + \\ &+ r_5^y (s_5^x \sin q_6 \cos \varphi + (s_5^y)^2 (1 - \cos q_6) \sin \varphi + s_5^y s_5^z (1 - \cos q_6) \cos \varphi + \\ &+ s_5^z \sin q_6 \sin \varphi + (s_5^y)^2 (1 - \cos q_6) \sin \varphi + s_5^y s_5^z (1 - \cos q_6) \cos \varphi + \\ &+ c s_6 q_6 \sin \varphi) + \\ &+ p_{50}^y (s_5^x \sin q_6 \cos \varphi + (s_5^y)^2 (1 - \cos q_6) \sin \varphi + (s_5^y)^2 (1 - \cos q_6) \cos \varphi + \\ &+ c s_6 q_6 \sin \varphi) + \\ &+ r_{50}^y (s_5^x \sin q_6 \sin \varphi + s_5^y s_5^z (1 - \cos q_6) \sin \varphi + (s_5^y)^2 (1 - \cos q_6) \cos \varphi$$

$$+ r_5^y (-s_5^x \sin q_6 \cos \varphi + ((s_5^y)^2 \sin \varphi + s_5^y s_5^z \cos \varphi - \sin \varphi)(\cos q_6 - 1)) + r_5^z (s_5^x \sin q_6 \sin \varphi + (s_5^y s_5^z \sin \varphi + (s_5^z)^2 \cos \varphi - \cos \varphi)(\cos q_6 - 1)) - p_S^z,$$

$$\begin{aligned} a_7 &= -\frac{p_{Aj}^y - p_{Bj}^y}{p_{Aj}^z - p_{Bj}^z}, \\ b_7 &= \frac{(p_{Aj}^y)^2 + (p_{Aj}^z)^2 - (p_{Bj}^y)^2 - (p_{Bj}^z)^2 - l_{AjCj}^2 + l_{BjCj}^2}{2(p_{Aj}^z - p_{Bj}^z)}, \end{aligned}$$

$$a_8 = 1 + a_7^2,$$
  

$$b_8 = -2p_{Aj}^y - 2a_7(p_{Aj}^z - b_7),$$
  

$$c_8 = (p_{Aj}^z - b_7)^2 - l_{AjCj}^2,$$

где  $p_S^x$ ,  $p_S^y$ ,  $p_S^z$  и  $n^x$ ,  $n^y$ ,  $n^z$  — соответствующие компоненты векторов  $\mathbf{p}_S$  и  $\hat{\mathbf{n}}$ ;  $p_{S0}^x$ ,  $p_{S0}^y$ ,  $p_{S0}^z$ ,  $n_0^x$ ,  $n_0^y$ ,  $n_0^z$  — те же компоненты, соответствующие начальной конфигурации манипулятора (матрице  $\mathbf{M}_S$  в выражении (3));  $s_4^x$ ,..., $s_5^z$  — соответствующие компоненты векторов  $\hat{\mathbf{s}}_4$  и  $\hat{\mathbf{s}}_5$ .

#### СПИСОК ЛИТЕРАТУРЫ

- Ganiev R.F., Glazunov V.A., Filippov G.S. Urgent problems of machine science and ways of solving them: Wave and additive technologies, the machine tool industry, and robot surgery // J. Mach. Manuf. Reliab. 2018. Vol. 47. P. 399–406. https://doi.org/10.3103/S1052618818050059
- Wen K., Harton D., Laliberté T., Gosselin C. Kinematically redundant (6+3)-dof hybrid parallel robot with large orientational workspace and remotely operated gripper // Proc. 2019 IEEE Inter. Conf. Robotics and Automation. Montreal, QC, Canada, 20-24 May 2019. P. 1672-1678. https://doi.org/10.1109/ICRA.2019.8793772
- Liu Q., Huang T. Inverse kinematics of a 5-axis hybrid robot with non-singular tool path generation // Robot. Comp. Integ. Manuf. 2019. Vol. 56. P. 140–148. https://doi.org/10.1016/j.rcim.2018.06.003
- Carbone G., Ceccarelli M. A stiffness analysis for a hybrid parallel-serial manipulator // Robotica. 2004. Vol. 22. No. 5. P. 567–576. https://doi.org/10.1017/S0263574704000323
- Lai Y.-L., Liao C.-C., Chao Z.-G. Inverse kinematics for a novel hybrid parallel– serial five-axis machine tool // Robot. Comp. Integ. Manuf. 2018. Vol. 50. P. 63–79. https://doi.org/10.1016/j.rcim.2017.09.002
- Oba Y., Kakinuma Y. Simultaneous tool posture and polishing force control of unknown curved surface using serial-parallel mechanism polishing machine // Prec. Eng. 2017. Vol. 49. P. 24–32. https://doi.org/10.1016/j.precisioneng.2017.01.006
- Waldron K.J., Raghavan M., Roth B. Kinematics of a hybrid series-parallel manipulation system // J. Dyn. Sys., Meas., Control. 1989. Vol. 111. No. 2. P. 211–221. https://doi.org/10.1115/1.3153039
- Cheng H.H. Real-time manipulation of a hybrid serial-and-parallel-driven redundant industrial manipulator // J. Dyn. Sys., Meas., Control. 1994. Vol. 116. No. 4. P. 687–701. https://doi.org/10.1115/1.2899268

- Lynch K.M., Park F.C. Modern robotics: Mechanics, planning, and control. Cambridge: Cambridge University Press, 2017. https://doi.org/10.1017/9781316661239
- Tang Z., Payandeh S. Design and modeling of a novel 6 degree of freedom haptic device // Proc. 3rd Joint EuroHaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Guilin, China, 19–23 December 2009. P. 1941–1946. https://doi.org/10.1109/WHC.2009.4810891
- Yan C., Gao F., Zhang Y. Kinematic modeling of a serial-parallel forging manipulator with application to heavy-duty manipulations // Mech. Based Des. Struct. Mach. 2010. Vol. 38. No. 1. P. 105–129. https://doi.org/10.1080/15397730903455344
- Sun P., Li Y.B., Wang Z.S., Chen K., Chen B., Zeng X., Zhao J., Yue Y. Inverse displacement analysis of a novel hybrid humanoid robotic arm // Mech. Mach. Theory. 2020. Vol. 147. P. 103743. https://doi.org/10.1016/j.mechmachtheory.2019.103743
- Yang G., Chen W., Ho E.H.L. Design and kinematic analysis of a modular hybrid parallel-serial manipulator // Proc. 7th Inter. Conf. on Control, Automation, Robotics and Vision. Singapore, 2–5 December 2002. Vol. 1. P. 45–50. https://doi.org/10.1109/ICARCV.2002.1234788
- Tang C., Zhang J., Cheng S. Kinematics analysis for a hybrid robot in minimally invasive surgery // Proc. 2009 IEEE Inter. Conf. on Robotics and Biomimetics. Guilin, China, 19–23 December 2009. P. 1941–1946. https://doi.org/10.1109/ROBIO.2009.5420534
- Lee M.K., Park K.W., Choi B.O. Kinematic and dynamic models of hybrid robot manipulator for propeller grinding // J. Robot. Sys. 1999. Vol. 16. No. 3. P. 137–150. https://doi.org/10.1002/(SICI)1097-4563(199903)16:3<137::AID-ROB1>3.0.CO;2-V
- Pisla D., Gherman B., Vaida C., Suciu M., Plitea N. An active hybrid parallel robot for minimally invasive surgery // Robot. Comp. Integ. Manuf. 2013. Vol. 29. No. 4. P. 203–221. https://doi.org/10.1016/j.rcim.2012.12.004
- 17. Hu B., Shi Y., Xu L., Bai P. Reconsideration of terminal constraint/mobility and kinematics of 5-DOF hybrid manipulators formed by one 2R1T PM and one RR SM // Mech. Mach. Theory. 2020. Vol. 149. P. 103837. https://doi.org/10.1016/j.mechmachtheory.2020.103837
- Ye H., Wang D., Wu J., Yue Y., Zhou Y. Forward and inverse kinematics of a 5-DOF hybrid robot for composite material machining // Robot. Comp. Integ. Manuf. 2020. Vol. 65. P. 101961. https://doi.org/10.1016/j.rcim.2020.101961
- López-Custodio P.C., Fu R., Dai J.S., Jin Y. Compliance model of Exection manipulators with an offset wrist // Mech. Mach. Theory. 2022. Vol. 167. P. 104558. https://doi.org/10.1016/j.mechmachtheory.2021.104558
- Antonov A., Fomin A., Glazunov V., Kiselev S., Carbone G. Inverse and forward kinematics and workspace analysis of a novel 5-DOF (3T2R) parallel-serial (hybrid) manipulator // Int. J. Adv. Robot. Sys. 2021. Vol. 18. No. 2. P. 2963. https://doi.org/10.1177/1729881421992963
- Gosselin C., Schreiber L.-T. Redundancy in parallel mechanisms: A review // Appl. Mech. Rev. 2018. Vol. 70. No. 1. P. 010802. https://doi.org/10.1115/1.4038931
- 22. Waldron K.J., Schmiedeler J. Kinematics // Springer Handbook of Robotics. Cham: Springer, 2016. P. 11–36. https://doi.org/10.1007/978-3-319-32552-1\_2

- Liu S., Qiu Z., Zhang X. Singularity and path-planning with the working mode conversion of a 3-DOF 3-RRR planar parallel manipulator // Mech. Mach. Theory. 2017. Vol. 107. P. 166–182. https://doi.org/10.1016/j.mechmachtheory.2016.09.004
- Murray R.M., Li Z., Sastry S.S. A mathematical introduction to robotic manipulation. Boca Raton: CRC Press, 1994. https://doi.org/10.1201/9781315136370

Статья представлена к публикации членом редколлегии П.В. Пакшиным.

Поступила в редакцию 22.08.2022 После доработки 23.10.2022 Принята к публикации 26.10.2022