Робастное, адаптивное и сетевое управление

© 2023 г. А.И. ГЛУЩЕНКО, д-р техн. наук (aiglush@ipu.ru), К.А. ЛАСТОЧКИН (lastconst@yandex.ru) (Институт проблем управления им. В.А. Трапезникова РАН, Москва)

АДАПТИВНОЕ УПРАВЛЕНИЕ С ГАРАНТИЕЙ ЭКСПОНЕНЦИАЛЬНОЙ УСТОЙЧИВОСТИ. ЧАСТЬ II. ОБЪЕКТЫ С КУСОЧНО-ПОСТОЯННЫМИ ПАРАМЕТРАМИ¹

Предлагается адаптивная система управления по вектору состояний классом линейных систем с кусочно-постоянными неизвестными параметрами. Решение 1) гарантирует глобальную экспоненциальную устойчивость замкнутой системы при конечном возбуждении регрессора после каждого изменения параметров; 2) не требует знания матрицы коэффициентов усиления и моментов времени изменения параметров системы. Полученные теоретические результаты подтверждены математическим моделированием.

Ключевые слова: адаптивное управление, системы с переключением, переменные параметры, параметрическая ошибка, конечное возбуждение, идентификация, экспоненциальная устойчивость.

DOI: 10.31857/S0005231023030042, **EDN:** ZYTLKX

1. Введение

Классические алгоритмы адаптивного беспоискового управления с эталонной моделью при постоянных неизвестных параметрах объекта обеспечивают асимптотическую сходимость регулируемых координат к координатам эталонной модели [1–3]. Однако в приложениях реальные физические системы часто описываются моделями с переменными или кусочно-постоянными неизвестными параметрами. В этих условиях стандартные решения доставляют целевую асимптотическую устойчивость только при удовлетворении функции изменения неизвестных параметров специальным требованиям [1, 2, 4]. Скорость изменения переменных параметров должна быть существенно меньше скорости протекания переходных процессов в системе (требование квазистационарности). Интервал времени между изменениями кусочно-постоянных параметров должен быть достаточно большим (требование регулярности).

 $^{^1}$ Работа выполнена при частичной финансовой поддержке Совета по грантам Президента РФ (проект МД.1787.2022.4).

Подробно проблемы применения классических адаптивных систем с эталонной моделью для объектов с переменными или кусочно-постоянными неизвестными параметрами обсуждались и экспериментально демонстрировались в [1, с. 552–554, с. 732–734; 2, с. 337–345].

Современные комбинированные модификации [5-7] классических алгоритмов адаптивного беспоискового управления направлены на ослабление хорощо известного требования неисчезающего возбуждения регрессора, выполнение которого при использовании классических алгоритмов необходимо и достаточно для экспоненциальной устойчивости ошибки слежения [8]. Комбинированные алгоритмы, в своем большинстве, используют инерционные схемы обработки измеряемых с объекта сигналов, позволяющие свести задачу адаптивного управления к задаче идентификации неизвестных параметров линейного регрессионного уравнения. Ослабление условия неисчезающего возбуждения достигается за счет сохранения ранее измеренных сигналов с помощью специальных интеллектуальных алгоритмов или различных фильтров с памятью, благодаря чему даже после окончания периода возбуждения обеспечивается настройка параметров закона управления [9]. Общим ограничением рассматриваемых модифицированных алгоритмов адаптации является требование постоянства неизвестных параметров объекта управления, необходимое для предотвращения смешивания информации о различных неизвестных параметрах [10]. Детально ограничения комбинированных адаптивных систем управления с эталонной моделью для объектов с переменными или кусочно-постоянными неизвестными параметрами обсуждалась и экспериментально демонстрировалась в [6, рис. 7, рис. 8; 7, рис. 2; 10, рис. 4].

Таким образом, на сегодняшний день важными и актуальными остаются задачи развития методов адаптивного беспоискового управления объектами с переменными или кусочно-постоянными неизвестными параметрами. Не претендуя на полноту обзора, остановимся на рассмотрении основных методов решения задач адаптивного управления классом систем с кусочно-постоянными неизвестными параметрами.

Мотивация рассмотрения задач управления системами с переключением параметров прежде всего связана с популярной в приложениях техникой линеаризации нелинейных моделей физических систем в окрестностях рабочих точек [11, с. 13; 12]. Классическая модель с переключениями, полученная с помощью упомянутой техники, состоит из непрерывной части, включающей дифференциальное уравнение известного порядка, и дискретной части, которая определяет логику изменения параметров уравнения. Логика переключений описывает переход траекторий объекта в полиэдральный регион фазового пространства, связанный с новой рабочей точкой. Число регионов разбиения фазового пространства соответствует числу линейных моделей с неизвестными параметрами, которыми с достаточной точностью может быть аппроксимирована исходная нелинейная модель. Поскольку обычно параметры каждой модели неизвестны или известны усредненно, построение законов

управления для систем с переключением параметров должно осуществляться с привлечением методов адаптивного управления.

Отправной точкой для создания процедур синтеза алгоритмов адаптивного беспоискового управления объектами с переключением параметров стали пионерские работы Тао [12–15], в которых была предложена унифицированная адаптивная система управления для объектов с переключениями и продемонстрированы ее преимущества относительно классических алгоритмов адаптивного управления системами с постоянными параметрами. Логика переключений считается известной и вводится столько настраиваемых законов управления, сколько отдельных регионов выделено в фазовом пространстве исходной нелинейной системы. Переключения между законами управления осуществляются синхронно с переключениями параметров в модели объекта управления. Параметры каждого закона управления настраиваются собственным законом адаптации и только при его применении. Эталонная модель, задающая желаемое качество управления, может быть задана системой с постоянными параметрами, а может являться системой с переключениями. Более того, с целью повышения качества управления, переключения в эталонной модели могут осуществляться асинхронно с переключениями в объекте управления. Асимптотическая устойчивость результирующей гибридной стратегии адаптивного управления и ограниченность всех сигналов могут доказываться как с помощью метода общей функции Ляпунова (common Lyapunov function в зарубежной литературе [16]), так и с помощью метода составной функции Ляпунова (multiple Lyapunov function в зарубежной литературе [16]). Первый подход применяется, если для всех матриц состояния эталонной модели удается найти общее решение уравнения Ляпунова, второй подход используется в противоположной ситуации. Важно отметить, что в случае использовании составной функции Ляпунова, для асимптотической устойчивости оказывается необходимо выполнение условия неисчезающего возбуждения регрессора, а при использовании общей функции Ляпунова это требование необходимо только для обеспечения экспоненциальной скорости сходимости. Недостатком результатов [12-15] является обеспечение экспоненциальной скорости сходимости ошибки слежения только при удовлетворении условия неисчезающего возбуждения регрессора, что при его невыполнении и частых переключениях параметров объекта приводит к неудовлетворительному качеству отслеживания траекторий эталонной модели.

Преодолеть недостатки решений [12–15] удалось благодаря применению комбинированных законов адаптации, ослабляющих условия неисчезающего возбуждения регрессора. В [17–21] на основе алгоритма конкурентного обучения [5] предложены законы адаптации, гарантирующие экспоненциальную устойчивость замкнутой системы с переключениями при выполнении условия конечного возбуждения регрессора после каждого переключения. Предложенные законы позволяют настраивать параметры неактивных законов управления, если в период их использования удалось составить информационную матрицу полного ранга. Благодаря данному приему удается доказать

глобальную экспоненциальную устойчивость ошибки слежения и сходимость всех параметрических ошибок. Недостатком работ [17–21] является использование нетривиальных оффлайн процедур мониторинга и обработки измеримых с объекта сигналов с целью составления полноранговой информационной матрицы после каждого переключения параметров объекта.

Рассмотренные решения [12–15, 17–21] исходят из предположения о том, что логика переключения параметров системы известна и связана с посещением траекториями объекта определенных областей фазового пространства. Однако на практике, во-первых, точки линеаризации, границы полиэдральных регионов и, следовательно, логика переключений могут быть неизвестны или известны недостаточно точно, а во-вторых, скачкообразное изменение параметров может вызываться не только движением фазовых траекторий, но и другими явлениями событийной дискретной природы, в том числе проявлением неучтенных нелинейностей, действием внешних параметрических возмущений, отказом или повреждением исполнительных органов. Поэтому актуальной представляется задача синтеза адаптивных алгоритмов управления, выполняющих одновременно с настройкой параметров закона управления детектирование моментов времени переключения параметров объекта.

В [22, 23] предложены два различных алгоритма детектирования, позволяющие с достаточной точностью при наличии внешних возмущений обнаруживать моменты времени скачкообразного изменения параметров объекта (его дискретного состояния, в зарубежной литературе — switching state). Идеологически алгоритмы детектирования основаны на косвенном сравнении текущих параметров объекта с предыдущими, информация о которых сохранена в специальный массив. Если косвенная информация о текущих параметрах, в смысле выбранной метрики, достаточно отличается от косвенной информации о предыдущих, значит произошло скачкообразное изменение параметров объекта. После детектирования создается новый информационный массив и заполняется косвенной информацией о текущих параметрах объекта. Впоследствии в целях детектирования косвенное сравнение текущих параметров объекта осуществляется с сохраненной в массивы информацией о всех предыдущих состояниях объекта. Основным отличием решений [22, 23] от [12–15, 17–21] является отсутствие необходимости априорного знания как логики переключения параметров объекта, так и числа точек линеаризации исходной нелинейной модели, а поэтому вводится столько настраиваемых законов управления, сколько состояний объекта удалось выделить в процессе детектирования. Вместе с тем решения [22, 23] используют концепцию конкурентного обучения, что так же, как и в [17-21] позволяет по сохраненным данным настраивать параметры всех моделей одновременно. Недостатками алгоритмов [22, 23] является оффлайн манипулирование с данными и возможность построения на их основе только непрямых законов адаптации с хорошо известными сопутствующими трудностями [1–3, 21]. Более обстоятельный обзор современных и классических методов идентификации и адаптивного

управления системами с переключениями параметров возможно отыскать в монографии [11] и постановочных частях работ [12–15, 17–23].

В целом все рассмотренные алгоритмы адаптивного управления объектами с переключениями параметров обладают общими недостатками, основными из которых являются, во-первых, разрывное поведение сигнала управления при переключении на закон управления, предназначенный для конкретного региона фазового пространства нелинейной системы, а во-вторых, в использовании избыточного числа, в сущности, структурно одинаковых законов адаптации параметров закона управления.

Оба недостатка связаны с использованием концепции управления системой с переключениями с помощью соответствующего закона управления с переключением. В адаптивной постановке утверждается [12, 24], что, имея несколько законов управления и адаптации, переключаясь между ними, удается улучшить быстродействие подстройки параметров управления и обеспечить более высокое качество управления, чем при использовании общего закона управления и адаптации. Более того, часто мотивация использования нескольких законов адаптации связана с использованием эталонной модели с переключениями в ситуации, если общая функция Ляпунова не существует [11]. Однако концепция управления с переключениями противоречит основному принципу адаптивного беспоискового управления, в соответствии с которым для управления системой с параметрической неопределенностью необходима непрерывная подстройка под текущие параметры объекта управления параметров одного закона управления [1–3]. Отказ от этого основополагающего принципа и использование концепции управления с переключениями вызваны недостатками классического закона адаптации, прежде всего, медленной скоростью сходимости и недостаточной способностью отслеживания кусочно-постоянных неизвестных параметров.

Таким образом, обобщая вышесказанное, целью настоящей работы является создание новой адаптивной системы управления объектами с кусочно-постоянными неизвестными параметрами, в которой используются общий закон управления и закон настройки его параметров для всех возможных переключений параметров объекта. В такой постановке логика переключений параметров объекта управления считается неизвестной, а эталонная модель выбирается общей для всех областей фазового пространства системы.

Основной результат работы, позволяющий достичь поставленную цель, основан на объединении предложенного в первой части работы подхода адаптивного управления с гарантией экспоненциальной устойчивости [25] с недавно разработанным законом идентификации неизвестных кусочно-постоянных параметров линейного регрессионного уравнения [26]. Отличия предлагаемой системы адаптивного управления объектами с кусочно-постоянными неизвестными параметрами от рассмотренных в обзоре и других алгоритмов, которые интересующийся читатель может самостоятельно обнаружить в биб-

лиографии цитируемой литературы [11–15, 17–23], можно сформулировать следующим образом:

- 1) для управления объектами с переключением параметров используется закон управления без переключений коэффициентов;
- настройка параметров закона управления осуществляется с помощью одного нового прямого закона адаптации, способного отслеживать кусочно-постоянные неизвестные идеальные параметры закона управления;
- оффлайн процедуры обработки массивов измеряемой с объекта информации не используются;
- 4) априорная информация о значениях/знаке матрицы коэффициентов усиления объекта не требуется;
- переключения параметров объекта могут быть вызваны как движением траекторий объекта между полиэдральными регионами фазового пространства, так и различными неизвестными событиями дискретной природы;
- б) глобальная экспоненциальная устойчивость замкнутой системы и экспоненциальная сходимость настраиваемых параметров управления к истинным значениям достигаются при выполнении достаточно слабого условия конечного возбуждения регрессора после каждого переключения параметров объекта.

Основные определения

При доказательстве теорем и утверждений будут использованы определение конечного возбуждения регрессора и следствие из леммы Калмана–Якубовича–Попова.

Определение 1. Регрессор $\omega(t)$ возбуждается конечно $\omega(t) \in \mathrm{FE}$ на интервале $[t_r^+;t_e]$, если существуют $t_r^+\geqslant 0$, $t_e>t_r^+$ и α такие, что верно неравенство:

(1.1)
$$\int_{t_{r}^{+}}^{t_{e}} \omega(\tau) \omega^{\mathrm{T}}(\tau) d\tau \geqslant \alpha I_{n \times n},$$

где $\alpha>0$ — степень возбуждения, $I_{n\times n}$ — единичная матрица.

C ледствие 1. Для любой матрицы D>0 управляемой пары (A,B) с гурвицевой матрицей $A\in R^{n\times n}$ и $B\in R^{n\times m}$ существуют матрицы $P=P^{\mathrm{T}}>0,\ Q\in R^{n\times m},\ K\in R^{m\times m}$ и число $\mu>0,\ m$ акие что:

(1.2)
$$A^{\mathrm{T}}P + PA = -QQ^{\mathrm{T}} - \mu P, \quad PB = QK,$$
$$K^{\mathrm{T}}K = D + D^{\mathrm{T}}.$$

2. Постановка задачи

Рассмотрим класс непрерывных линейных систем с дискретным изменением параметров:

(2.1)
$$\forall t \geqslant t_0^+, \quad \dot{x}(t) = \Theta_{\kappa(t)}^{\mathrm{T}} \Phi(t) = A_{\kappa(t)} x(t) + B_{\kappa(t)} u(t), \quad x \left(t_0^+ \right) = x_0, \\ \Phi(t) = \begin{bmatrix} x^{\mathrm{T}}(t) & u^{\mathrm{T}}(t) \end{bmatrix}^{\mathrm{T}}, \quad \Theta_{\kappa(t)}^{\mathrm{T}} = \begin{bmatrix} A_{\kappa(t)} & B_{\kappa(t)} \end{bmatrix},$$

где $x(t) \in R^n$ — координаты состояния с неизвестными начальными условиями $x_0,\ u(t) \in R^m$ — управляющие воздействия, $A_{\kappa(t)} \in R^{n \times n}$ — неизвестная матрица состояний, $B_{\kappa(t)} \in R^{n \times m}$ — неизвестная матрица усилений, $\kappa(t) \in \Xi = \{1,2,\ldots,N\}$ — неизвестная дискретная функция, определяющая моменты времени изменения параметров объекта, t_0^+ — известный начальный момент времени, N — количество значений, которые могут принимать параметры $\Theta_{\kappa(t)}$. Пара $\left(A_{\kappa(t)}, B_{\kappa(t)}\right)$ управляема, $\forall t > t_0^+$ вектор $\Phi(t) \in R^{n+m}$ измерим, а матрица $\Theta_{\kappa(t)} \in R^{(n+m) \times n}$ неизвестна.

Для конкретности считается, что $\kappa(t)$ и $\Theta_{\kappa(t)}$ непрерывны справа:

(2.2)
$$\forall t \geqslant t_0^+ \ \kappa(t) = \lim_{\tau \to t_i^+} \kappa\left(\tau\right), \quad \Theta_{\kappa(t)} = \lim_{\tau \to t_i^+} \Theta_{\kappa(\tau)},$$

где t_i^- — момент времени, соответствующий значению функции слева от разрыва, а t_i^+ — момент времени, соответствующий значению функции справа от разрыва.

В общем случае сигналом $\kappa(t)$ кодируется последовательность переключений

$$\Sigma = \left\{ \left(j_0, t_0^+ \right), \dots, \left(j_{i-1}, t_{i-1}^+ \right), \left(j_i, t_i^+ \right), \dots \right|$$

$$j_i \in \Xi, j_i \neq j_{i+1}, t_i^+ \in \Im, i \in \mathbb{N} \right\},$$

$$\Im = \left\{ t_0^+, t_1^+, \dots, t_{i-1}^+, t_i^+, \dots \middle| i \in \mathbb{N} \right\},$$

которая определяет, что $\forall t \in [t_i^+; t_{i+1}^+), \kappa(t) = j_i, \Theta_{\kappa(t)} = \Theta_{j_i}$ (на i-м интервале времени параметр $\Theta_{\kappa(t)}$ принимает j-е значение из множества Ξ).

Функция $\kappa(t)$ может однозначно определяться движением состояний x(t) и управлений u(t) системы (2.1), а может изменять свои значения в зависимости от различных неизвестных событий дискретной природы:

(2.4a)
$$\kappa(t) = j_i \Leftrightarrow \Phi(t) \in \Pi_j = \left\{ \Phi(t) \in \mathbb{R}^{n+m} \middle| H_j \Phi(t) \leqslant j_j \right\},$$

или

(2.4b)
$$\kappa(t) = j_i \Leftrightarrow t \in \left[t_i^+; t_{i+1}^+\right],$$

где $\Pi_j - j$ -й полиэдральный регион в пространстве R^{n+m} , $H_j \in R^{(n+m)\times(n+m)}$ — матрица, задающая регион Π_j , $\leqslant [j]$ — операторы сравнения (< или \leqslant), гарантирующие удовлетворение условий $\bigcup_i^N \Pi_i = R^{m+n}$, $\Pi_i \cap \Pi_j = \emptyset \ \forall j \neq i$.

Для краткости и в то же время общности изложения, существующие на интервале $\begin{bmatrix} t_i^+; t_{i+1}^+ \end{bmatrix}$ параметры объекта (2.1) обозначим ϑ_i ($\forall t \in [t_i^+; t_{i+1}^+)$ $\vartheta_i = \Theta_{\kappa(t)} = \Theta_{j_i}$), что позволяет независимо от природы изменения параметров (2.4a) или (2.4b) записать (2.1) в виде:

$$\forall t \geqslant t_0^+, \ \dot{x}(t) = \vartheta^{\mathrm{T}}(t)\Phi(t) = \begin{cases} A_0x(t) + B_0u(t), \text{ если } t \in \left[t_0^+; t_1^+\right) \\ \vdots \\ A_ix(t) + B_iu(t), \text{ если } t \in \left[t_i^+; t_{i+1}^+\right), \end{cases}$$

$$\vartheta(t) = \vartheta_i = \vartheta_0 + \sum_{q=1}^i \Lambda_q h\left(t - t_q^+\right), \ \dot{\vartheta}(t) = \sum_{q=1}^i \Lambda_q \delta\left(t - t_q^+\right),$$

где $\Lambda_i = \vartheta_i - \vartheta_{i-1} = \Theta_{j_i} - \Theta_{j_{i-1}}$ — величина изменения ϑ_i в момент времени $t_i^+,\ h\left(t-t_i^+\right)$ — функция единичного скачка в момент времени $t_i^+,\ \delta\left(t-t_i^+\right)$ — функция единичного импульса в момент времени $t_i^+.$

Требуемое качество управления в замкнутой управлением u(t) системе (2.5) зададим эталонной моделью с постоянными параметрами:

$$(2.6) \forall t \geqslant t_0^+, \ \dot{x}_{ref}(t) = A_{ref} x_{ref}(t) + B_{ref} r(t), \ x_{ref}(t_0^+) = x_{0ref},$$

где $x_{ref}(t) \in R^n$ — вектор координат состояния эталонной модели с начальными условиями $x_{0ref}, r(t) \in R^m$ — сигнал задания, $A_{ref} \in R^{n \times n}$ — гурвицева матрица состояний эталонной модели, $B_{ref} \in R^{n \times m}$ — матрица усилений эталонной модели.

Для объекта (2.5) и эталонной модели (2.6) предполагается выполненным необходимое и достаточное условие идеального отслеживания (ideal model following conditions или Erzberger's matching conditions в западной литературе).

Допущение 1. Существуют матрицы $K_i^x \in R^{m \times n}$ и $K_i^r \in R^{m \times m}$ такие, что верно

$$(2.7) A_i + B_i K_i^x = A_{ref}, \quad B_i K_i^r = B_{ref}.$$

С учетом допущения 1, уравнение в отклонениях между уравнением объекта (2.5) и эталонной модели (2.6) имеет вид:

$$\dot{e}_{ref}(t) = A_{ref}e_{ref}(t) + B_{i}u(t) - (A_{ref} - A_{i}) x(t) - B_{ref}r(t) =$$

$$= A_{ref}e_{ref}(t) + B_{i} [u(t) - K_{i}^{x}x(t) - K_{i}^{r}r(t)] =$$

$$= A_{ref}e_{ref}(t) + B_{i} [u(t) - \theta^{T}(t)\omega(t)],$$

$$e_{ref}(t) = x(t) - x_{ref}(t), \quad \omega(t) = \begin{bmatrix} x^{\mathrm{T}}(t) & r^{\mathrm{T}}(t) \end{bmatrix}^{\mathrm{T}} \in R^{n+m},$$

$$\theta_i = \begin{bmatrix} K_i^x & K_i^r \end{bmatrix}^{\mathrm{T}} \in R^{(n+m)\times m},$$

$$\theta(t) = \theta_i = \theta_0 + \sum_{q=1}^i \Delta_q^{\theta} h\left(t - t_q^+\right), \quad \dot{\theta}_i = \sum_{q=1}^i \Delta_q^{\theta} \delta\left(t - t_q^+\right), \quad \Delta_i^{\theta} = \theta_i - \theta_{i-1}.$$

Поскольку параметры $\theta(t)$ и множества Ξ, Σ, \Im неизвестны, введем непрерывный закон управления с настраиваемыми параметрами:

(2.9)
$$u(t) = \hat{\theta}^{\mathrm{T}}(t)\omega(t),$$

где $\hat{\theta}(t) \in \mathbb{R}^{(n+m)\times m}$ — оценка параметров $\theta(t)$.

Подставив (2.9) в (2.8), имеем:

(2.10)
$$\dot{e}_{ref}(t) = A_{ref}e_{ref}(t) + B_i \left[\hat{\theta}^{\mathrm{T}}(t) - \theta^{\mathrm{T}}(t)\right]\omega(t) =$$
$$= A_{ref}e_{ref}(t) + B_i\tilde{\theta}^{\mathrm{T}}(t)\omega(t),$$

где $\tilde{\theta}(t) = \hat{\theta}(t) - \theta(t)$ — ошибка оценки параметров $\theta(t)$.

Относительно параметров $\theta(t)$ и возбуждения регрессора $\Phi(t)$ принимаются следующие допущения.

 \mathcal{A} опущение 2. Пусть $\exists \overline{\Delta}_{\theta} > 0$, $T_{\min} > \min_{\forall i \in \mathbb{N}} T_i > 0$ такие, что $\forall i \in \mathbb{N}$ одновременно:

1)
$$t_{i+1}^+ - t_i^+ \geqslant T_{\min}$$
, $\|\theta_i - \theta_{i-1}\| = \|\Delta_i^{\theta}\| \leqslant \overline{\Delta}_{\theta}$;

- 2) $\Phi(t) \in \text{FE на } \left[t_i^+; t_i^+ + T_i\right]$ со степенью α_i ;
- 3) $\Phi(t) \in \text{FE на } \left[\hat{t}_i^+; t_i^+ + T_i\right] \text{ со степенью } \overline{\alpha}_i,$ $\varepsilon \partial e \ \alpha_i > \overline{\alpha}_i > 0, \quad \hat{t}_i^+ \in \left[t_i^+; t_i^+ + T_i\right).$

Допущение 3. Существует и известен параметр l>0 такой, что:

$$\Phi(t) \in \mathrm{FE} \Rightarrow \overline{\varphi}(t) = \left[\int\limits_{\hat{t}_{i}^{+}}^{t} e^{-l(t-\tau)} \Phi^{\mathrm{T}}\left(\tau\right) d\tau \ e^{-l\left(t-t_{i}^{+}\right)} \right]^{\mathrm{T}} \in \mathrm{FE}.$$

Тогда основная цель работы сводится к построению алгоритма формирования оценок $\hat{\theta}(t)$, гарантирующего выполнение целевого условия:

(2.11)
$$\lim_{t \to \infty} \|\xi(t)\| = 0 \,(\exp) \,,$$

где $\xi(t) = \left[\begin{array}{cc} e_{r\!e\!f}^{\mathrm{T}}(t) & vec^{\mathrm{T}}\left(\tilde{\theta}(t)\right) \end{array} \right]^{\mathrm{T}}$ — обобщенная ошибка слежения.

Замечание 1. Допущение 1 является классическим в теории адаптивного управления с эталонной моделью (заинтересованный читатель может ознакомиться в [27, 28] с недавно предложенными новыми методами ослабления допущения 1 для линейных объектов управления с постоянными параметрами).

Первая часть допущения 2 требует конечной частоты и амплитуды изменения неизвестных параметров, что является стандартными требованиями соответственно в теории систем с переключениями [11, 16] и теории идентификации [1–3]. Вторая и третья часть допущения 2 описывают необходимое и достаточное условие идентифицируемости истинных значений всех элементов i-й матрицы неизвестных параметров [29].

3. Предварительные результаты

Рассмотрим решение задачи экспоненциального регулирования (2.11) при известных $\kappa(t)$ и $\Theta_{\kappa(t)}$.

Выбор управления в форме $u(t) = \hat{\theta}^{\mathrm{T}}(t)\omega(t)$, $\hat{\theta}(t) = \theta(t)$, в силу гурвицевости матрицы A_{ref} , для всех $t \geqslant t_0^+$ гарантирует $\tilde{\theta}(t) = 0$ и экспоненциальную устойчивость ошибки $e_{ref}(t)$ [16]. Однако сигнал управления в этом случае испытывает разрывы первого рода при изменении параметров объекта управления, что может быть неприемлемо в приложениях.

Альтернативный выбор управления заключается в использовании следующего алгоритма фильтрации:

(3.1)
$$\dot{\hat{\theta}}(t) = -\gamma_1 \left(\hat{\theta}(t) - \theta(t) \right) = -\gamma_1 \tilde{\theta}(t), \quad \hat{\theta}\left(t_0^+\right) = \hat{\theta}_0,$$

где $\gamma_1>0$ — коэффициент усиления, регулирующий скорость сходимости $\tilde{\theta}(t)$.

Для управления (2.9) с фильтрацией (3.1) оказывается верно следующее утверждение.

Y т в е р ж д е н и е 1. При достаточно большом значении параметра $\gamma_1>0$ и выполнении хотя бы одного из условий:

1) $i \leqslant i_{\text{max}} < \infty$,

2)
$$\forall q \in \mathbb{N} \|\Delta_q^{\theta}\| \leq c_q \phi\left(t_q^+, t_0^+\right), \quad c_q > c_{q+1}, \quad \phi\left(t_q^+, t_0^+\right) = e^{-\gamma_1\left(t_q^+ - t_0^+\right)},$$

управление (2.9) с (3.1) гарантирует $\forall t \geqslant t_0^+ \quad \lim_{t \to \infty} \|\xi(t)\| = 0 \, (\exp) \, .$

Доказательство утверждения приведено в Приложении.

Условия экспоненциальной устойчивости из утверждения 1 эквивалентны ограниченности суммы всех коррекций Δ_a^{θ} по норме:

$$i \leqslant i_{\max} < \infty \Leftrightarrow \|\theta(t)\| \leqslant \|\theta_0\| + \sum_{q=1}^{i_{\max}} \|\Delta_q^{\theta}\| h\left(t - t_q^+\right) < \infty,$$
$$\|\Delta_q^{\theta}\| \leqslant c_q \phi\left(t_q^+, t_0^+\right) \Leftrightarrow \|\theta(t)\| \leqslant \|\theta_0\| + \sum_{q=1}^{i} c_q \phi\left(t_q^+, t_0^+\right) h\left(t - t_q^+\right) < \infty,$$

что, в отличие от разрывов управления при выборе $\hat{\theta}(t) = \theta(t)$, не является ограничительным.

Таким образом, при известных параметрах $\theta(t)$ задача экспоненциального регулирования (2.11) может быть разрешена с помощью непрерывного управления (2.9) с фильтрацией (3.1). Этот результат мотивирует для решения задачи (2.11) в адаптивной постановке по доступным для измерения сигналам $\Phi(t)$ косвенно реализовать фильтрацию (3.1).

4. Основной результат

Следуя методу адаптивного управления с гарантией экспоненциальной устойчивости [25], для косвенной реализации (3.1) сначала получим регрессионное уравнение, связывающее неизвестные параметры $\theta(t)$ с измеримыми сигналами $\Phi(t)$.

Результат такой параметризации оформим в виде утверждения, в котором \hat{t}_i^+ будем считать оценкой t_i^+ .

Утверждение 2. На основании состояний фильтра со сбросом

(4.1)
$$\dot{\overline{\Phi}}(t) = -l\overline{\Phi}(t) + \Phi(t), \quad \overline{\Phi}(\hat{t}_i^+) = 0_{m+n},$$

процедур нормализации

(4.2)
$$\overline{z}_n(t) = n_s(t) \left[x(t) - l\overline{x}(t) \right], \quad \overline{\varphi}_n(t) = n_s(t) \overline{\varphi}(t),$$

$$n_s(t) = \frac{1}{1 + \overline{\varphi}^{\mathrm{T}}(t)\overline{\varphi}(t)}, \quad \overline{x}(t) = \left[I_{n \times n} \quad 0_{n \times m} \right] \overline{\Phi}(t),$$

расширения $(\sigma > 0)$

(4.3a)
$$\dot{z}(t) = e^{-\sigma \left(t - \hat{t}_i^+\right)} \overline{\varphi}_n(t) \overline{z}_n^{\mathrm{T}}(t), \quad z\left(\hat{t}_i^+\right) = 0_{(n+m+1)\times n},$$

(4.3b)
$$\dot{\varphi}(t) = e^{-\sigma(t - \hat{t}_i^+)} \overline{\varphi}_n(t) \overline{\varphi}_n^{\mathrm{T}}(t), \quad \varphi(\hat{t}_i^+) = 0_{(n+m+1)\times(n+m+1)},$$

смешивания

(4.4)
$$Y(t) := \operatorname{adj} \{ \varphi(t) \} z(t),$$
$$\Delta(t) := \det \{ \varphi(t) \},$$

вырезания

$$(4.5) z_A(t) = Y^{\mathrm{T}}(t)\mathfrak{L}, \quad \mathfrak{L} = \begin{bmatrix} I_{n \times n} & 0_{n \times (m+1)} \end{bmatrix}^{\mathrm{T}} \in R^{(n+m+1) \times n},$$

$$z_B(t) = Y^{\mathrm{T}}(t)\mathfrak{e}_{n+m+1}, \quad \mathfrak{e}_{n+m+1} = \begin{bmatrix} 0_{m \times n} & I_{m \times m} & 0_{m \times 1} \end{bmatrix}^{\mathrm{T}} \in R^{(n+m+1) \times m},$$

подстановки

(4.6)
$$\mathcal{Y}(t) := \begin{bmatrix} \operatorname{adj} \left\{ z_B^{\mathrm{T}}(t) z_B(t) \right\} z_B^{\mathrm{T}}(t) \left(\Delta(t) A_{ref} - z_A(t) \right) \\ \operatorname{adj} \left\{ z_B^{\mathrm{T}}(t) z_B(t) \right\} z_B^{\mathrm{T}}(t) \Delta(t) B_{ref} \end{bmatrix},$$

$$\mathcal{M}(t) := \operatorname{det} \left\{ z_B^{\mathrm{T}}(t) z_B(t) \right\},$$

и сглаживания $(k = k_0 \gamma_1, k_0 \geqslant 1)$

(4.7a)
$$\dot{\Upsilon}(t) = -k \left(\Upsilon(t) - \mathcal{Y}(t) \right), \quad \Upsilon\left(t_0^+\right) = 0_{(n+m)\times n},$$

(4.7b)
$$\dot{\Omega}(t) = -k \left(\Omega(t) - \mathcal{M}(t) \right), \quad \Omega\left(t_0^+\right) = 0,$$

имеем возмущенное регрессионное уравнение относительно $\theta(t)$:

(4.8)
$$\Upsilon(t) = \Omega(t)\theta(t) + w(t),$$

где функции $\Upsilon(t), \Omega(t)$ вычисляются по $\Phi(t)$ и дополнительно:

- а) при выполнении допущений 1-3 $\forall t \ge t_0^+ + T_0$ верно $0 < \Omega_{\rm LB} \le \Omega(t) \le \Omega_{\rm UB} < \infty$.
- b) если $\tilde{t}_i^+ = \hat{t}_i^+ t_i^+ = 0$, то $||w(t)|| \le w_{\text{max}} \phi \left(t, t_0^+ + T_0 \right) \le w_{\text{max}}$.

Доказательство утверждения и определение величин $w(t), w_{\max}$ приведены в Приложении.

Временно предположив постоянство параметров $\vartheta(t) = \vartheta$ и $\theta(t) = \theta$, кратко поясним назначение используемых процедур. Фильтрация (4.1) позволяет по измеримым сигналам $\Phi(t)$ получить в распоряжение измеримое регрессионное уравнение $x(t) - l\overline{x}(t) = \overline{\vartheta}^{\mathrm{T}}\overline{\varphi}(t)$ относительно параметров объекта управления (2.1). Нормализация (4.2) обеспечивает принадлежность пространству L_{∞} всех используемых в дальнейших процедурах сигналов. Процедуры расширения и смешивания (4.3a), (4.3b), (4.4) позволяют преобразовать полученную в (4.1), (4.2) регрессию к виду $Y(t) = \Delta(t)\overline{\vartheta}$, где $\Delta(t) \in R$ — скалярный регрессор (см. доказательство утверждения и [9]). Кроме того, интегральная фильтрация (4.3a), (4.3b) позволяет обеспечить $\forall t \geqslant t_0^+ + T_0$ выполнение условия $\Delta(t) \geqslant \Delta_{LB} > 0$ [26]. Вырезание (4.5) в силу $\Delta(t) \in R$ реализует переход к отдельному рассмотрению регрессионных уравнений $z_A(t) = \Delta(t)A$, $z_B(t) = \Delta(t)B$ относительно матриц A и B. С помощью подстановки (4.6) выражений (4.5) в условие согласованности (2.7) выполняется переход от уравнений относительно A и B к уравнению $\mathcal{Y}(t) = \mathcal{M}(t)\theta$ относительно θ (см. доказательство утверждения и [25, 27, 28]). Сглаживание (4.7a), (4.7b) позволяет для всех $t\geqslant t_0^++T_0$ отделить $\Omega(t)$ от нуля и обеспечивает достаточную гладкость $\Upsilon(t)$ и $\Omega(t)$.

Вернемся к рассмотрению кусочно-постоянных неизвестных параметров системы (2.1). В этом случае получаем ненулевое возмущение w(t), вызванное нарушением коммутативности фильтров (4.1), (4.3a), (4.7a).

При произвольном выборе \hat{t}_i^+ в силу интегральной природы (4.3a), (4.3b) возмущение w(t) оказывается незатухающей функцией. Однако, как следует из результатов части δ) утверждения выбором $\hat{t}_i^+ = t_i^+$, т.е. путем сброса фильтров (4.1) и (4.3a), (4.3b) после каждого изменения параметров системы (2.1) возможно обеспечить экспоненциальное убывание w(t).

Моменты времени t_i^+ изменения параметров системы (2.1) неизвестны по постановке, поэтому вводим в рассмотрение следующий алгоритм обнаружения переключений.

Утверждение 3. Если выполнены допущения 2 и 3, оценка \hat{t}_i^+ формируется по функции

(4.9)
$$\epsilon(t) = \Delta(t)\overline{\varphi}_n(t)\overline{z}_n^{\mathrm{T}}(t) - \overline{\varphi}_n(t)\overline{\varphi}_n^{\mathrm{T}}(t)Y(t),$$

в соответствии с алгоритмом детектирования

Инициализация:
$$i \leftarrow 1$$
, $t_{\rm up} = \hat{t}_{i-1}^+$ (4.10)
$$\text{ЕСЛИ } t - t_{up} \geqslant \Delta_{pr} \text{ И } \|\epsilon(t)\| > 0,$$

$$\text{TO } \hat{t}_i^+ := t + \Delta_{pr}, \ t_{up} \leftarrow t, \ i \leftarrow i+1,$$

то ситуационным выбором $\min_{\forall i \in \mathbb{N}} T_i > \Delta_{pr} \geqslant 0$ гарантируется $\tilde{t}_i^+ = \Delta_{pr} \leqslant T_i$. Доказательство утверждения приведено в Приложении.

Имея в распоряжении регрессионное уравнение (4.8), вычисленное исключительно по измеримым сигналам $\Phi(t)$, и алгоритм обнаружения переключений (4.10), обеспечивающий $\tilde{t}_i^+ = \Delta_{pr} \geqslant 0$, можно косвенно реализовать фильтрацию (3.1) и гарантировать достижение поставленной цели (2.11) в адаптивной постановке.

Tе о р е м а 1. Пусть $\Delta_{pr}=0$, выполнены допущения 1–3, тогда закон настройки:

$$\begin{split} \dot{\hat{\theta}}(t) &= -\gamma(t)\Omega(t) \left(\Omega(t)\hat{\theta}(t) - \Upsilon(t)\right) = \\ &= -\gamma(t)\Omega^2(t)\tilde{\theta}(t) + \gamma(t)\Omega(t)w(t), \quad \hat{\theta}\left(t_0^+\right) = \hat{\theta}_0, \\ \gamma(t) &= \left\{ \begin{array}{ll} 0, & \text{если } \Omega(t) < \Omega_{LB}, \\ \frac{\gamma_1}{\Omega^2(t)} & \text{иначе}, \end{array} \right. \end{split}$$

если дополнительно выполняется хотя бы одно из условий:

1)
$$i \leqslant i_{\text{max}} < \infty$$
,

2)
$$\forall q \in \mathbb{N}, \ \left\|\Delta_q^{\theta}\right\| \leqslant c_q \phi^{k_0}\left(t_q^+, t_0^+\right), c_q > c_{q+1}, \phi\left(t_q^+, t_0^+\right) = e^{-\gamma_1\left(t_q^+ - t_0^+\right)},$$
 при $k_0 \geqslant 1$ и достаточно большом значении параметра $\gamma_1 > 0$ гарантирует:

- i) $\forall t \geqslant t_0^+ \xi(t) \in L_\infty$
- ii) $\forall t \ge t_0^+ + T_0 \lim_{t \to \infty} ||\xi(t)|| = 0 \text{ (exp)}.$

Доказательство теоремы приведено в Приложении.

Структурная схема предложенного алгоритма адаптивного управления объектами с кусочно-постоянными неизвестными параметрами представлена на рис. 1.

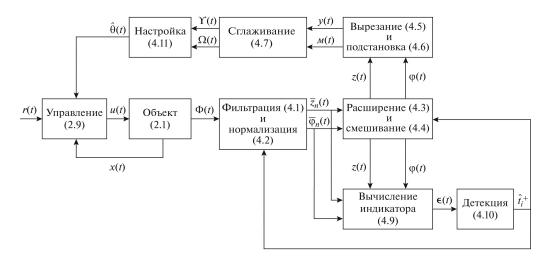


Рис. 1. Структурная схема разработанной адаптивной системы.

Таким образом, разработанная адаптивная система управления объектами с кусочно-постоянными параметрами состоит из закона управления (2.9), закона адаптации (4.11), набора процедур (4.1)–(4.8) обработки измеряемых сигналов и алгоритма детектирования (4.9)–(4.10) переключений параметров объекта (2.1). В отличие от существующих методов адаптивного управления системами с переключениями, предложенный подход не требует какой-либо информации о матрицах коэффициентов усиления объекта B_i , не использует сигнал управления с разрывными параметрами, равноприменим для управления объектами с переключениями, вызванными дискретными событиями (2.4b) и движением фазовых траекторий (2.4a), и гарантирует глобальную экспоненциальную сходимость ошибки $\xi(t)$ к нулю при условии конечного возбуждения регрессора после каждого переключения параметров.

4.1. Робастность

Любая система управления, проектируемая в предположении отсутствия внешних возмущающих воздействий, обязательно в случае их наличия должна гарантировать хотя бы ограниченность регулируемых сигналов.

Робастность предложенной системы адаптивного управления (2.9), (4.10), (4.11) в смысле ограниченности ошибки $\xi(t)$ зависит от робастности как закона адаптации (4.11), так и алгоритма детектирования (4.10).

При использовании закона (4.11) и действии внешних возмущений на объект управления (2.1) или измеримые сигналы $\Phi(t)$, параметрическая ошибка $\tilde{\theta}(t)$ описывается следующим линейным дифференциальным уравнением:

(4.12)
$$\dot{\tilde{\theta}}(t) = -\gamma \Omega(t) \left(\Omega(t) \hat{\theta}(t) - \Upsilon(t) \right) - \dot{\theta}(t) =$$

$$= -\gamma \Omega^{2}(t) \tilde{\theta}(t) + \gamma \Omega(t) \left(w(t) - \delta_{w}(t) \right) - \dot{\theta}(t),$$

где $\delta_w(t) \in L_{\infty}$ — внешнее возмущение, вызванное распространением через (4.1)–(4.8) возмущений, действующих на объект управления или измеримые сигналы.

Уравнение (4.12) в силу $\gamma(t)>0$, $\Omega(t)\in L_{\infty}$, $\forall t\geqslant t_0+T_0$ $\Omega(t)\geqslant\Omega_{LB}>0$ является устойчивым в смысле ограниченный вход — ограниченный выход. Поэтому в случае присутствия в функции $\Upsilon(t)$ ограниченного внешнего возмущения $\delta_w(t)\in L_{\infty}$, закон (4.11) гарантирует сходимость параметрической ошибки $\tilde{\theta}(t)$ в ограниченную область положения равновесия. Если размер данной области достаточен для ограниченности состояний x(t) объекта, то дополнительно обеспечивается и ограниченность $\xi(t)$.

Поскольку ошибочные или хуже того постоянные сбросы фильтров (4.1), (4.3a), (4.3b), при действии на объект управления внешних возмущений могут приводить к значительному ухудшению качества идентификации или полной потери законом (4.11) идентифицирующей способности вместе с обеспечением ограниченности ошибки $\tilde{\theta}(t)$, важно также постараться предотвратить возникновение ошибок детектирования переключений параметров объекта.

Для этого в [26, 30] было предложено использовать следующую робастную версию алгоритма (4.10):

Инициализация:
$$i \leftarrow 1$$
, $t_{\rm up} = \hat{t}_{i-1}^+$

$$(4.13) \qquad \text{ЕСЛИ } t - t_{up} \geqslant \Delta_{pr} \text{ И } \|\text{E}\left\{\epsilon(t)\right\}\| > \left\|0.9\sqrt{\text{var}\left\{(t)\right\}}\right\| + \|\rho(t)\|,$$

$$\text{TO } \hat{t}_i^+ := t + \Delta_{pr}, \quad t_{up} \leftarrow t, \quad i \leftarrow i+1,$$

где $\rho(t)$ — функциональный параметр робастного алгоритма, Е $\{.\}$ — математическое ожидание, var $\{.\}$ — дисперсия.

Выбор параметра $\rho(t)$ алгоритма (4.13) позволяет регулировать точность детектирования и настраиваться под конкретный класс внешних возмущающих воздействий. Например, если возмущение представляет собой шум с нулевым математическим ожиданием, то в соответствии с результатами [26, 30], достаточно выбрать $\rho(t)=0$. В общем случае рекомендуется выбирать $\rho(t)$ следующим образом:

$$(4.14) \quad \rho(t) = E\left\{\overline{\varphi}_n(t) \left(\Delta(t) \rho_1 - \rho_2 \overline{\varphi}_n^{\mathrm{T}}(t) \operatorname{adj} \{\varphi(t)\} \int_{\hat{t}_i^+}^t e^{-\sigma(\tau - \hat{t}_i^+)} \overline{\varphi}_n(\tau) d\tau\right)\right\},$$

где $\rho_1 > 0, \rho_2 > 0$ — некоторые постоянные.

При отсутствии возмущений свойства алгоритма (4.13) совпадают со свойствами алгоритма (4.10), а при наличии возмущений алгоритм (4.13) при правильном выборе функционального параметра $\rho(t)$ позволяет избежать ошибок детектирования. Больше подробностей об алгоритме (4.13) возможно найти в [26, 30].

5. Математическое моделирование

В среде Matlab/Simulink выполним моделирование предложенной адаптивной системы управления при переключениях параметров объекта, вызванных как дискретными неизвестными событиями (2.4b), так и переходом состояний объекта между полиэдральными регионами фазового пространства (2.4a). Моделирование будем проводить, используя численное интегрирование методом Эйлера с постоянным шагом дискретизации $\tau_s = 10^{-4}$ секунды.

5.1. Переключение параметров в дискретные моменты времени

Проверим работоспособность разработанной системы при изменении параметров объекта, вызванных дискретными неизвестными событиями. Моделирование выполним как при отсутствии, так и при наличии внешних возмущений.

5.1.1. Отсутствие внешних возмущений

Рассмотрим объект управления в форме (2.5) с тремя переключениями:

$$\forall t \geqslant 0, \ \dot{x}(t) = \begin{cases} A_0 x(t) + B_0 u(t), \ \text{если } t \in [0; 5) \\ A_1 x(t) + B_1 u(t), \ \text{если } t \in [5; 10) \\ A_2 x(t) + B_2 u(t), \ \text{если } t \geqslant 10, \end{cases}$$

$$(5.1.1)$$

$$A_0 = A_2 = \begin{bmatrix} 0 & 1 \\ -6 & -8 \end{bmatrix}; \ B_0 = B_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix};$$

$$A_1 = \begin{bmatrix} 0 & 1 \\ -2 & -4 \end{bmatrix}; \ B_1 = \begin{bmatrix} 0 \\ -4 \end{bmatrix}.$$

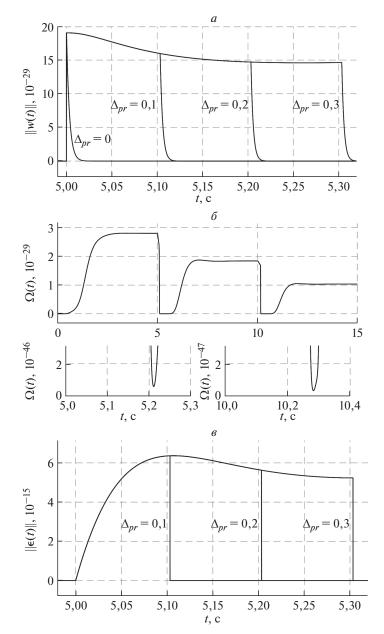


Рис. 2. Переходные процессы по: а) $\|w(t)\|$ при различных Δ_{pr} ; б) регрессору $\Omega(t)$ при $\Delta_{pr}=0.1$; в) $\|\epsilon(t)\|$ при различных Δ_{pr} .

Эталонную модель и задание для (5.1.1) зададим следующим образом:

$$(5.1.2) \qquad \forall t \geqslant 0, \quad \dot{x}_{ref}(t) = \left[\begin{array}{cc} 0 & 1 \\ -8 & -4 \end{array} \right] x_{ref}(t) + \left[\begin{array}{c} 0 \\ 8 \end{array} \right], \quad x_{ref}\left(0\right) = \left[\begin{array}{c} -1 \\ 0 \end{array} \right].$$

Структурное соответствие матриц эталонной модели матрицам объекта гарантирует выполнение допущения 1.

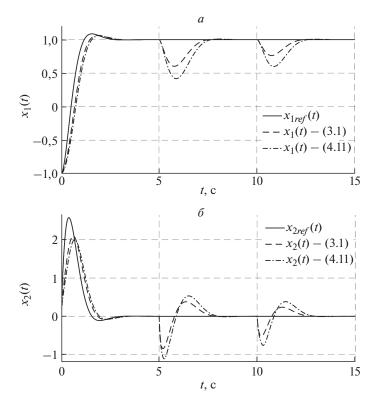


Рис. 3. Переходные процессы по состояниям эталонной модели $x_{ref}(t)$ и объекта x(t) при применении управлений (2.9) с (3.1) и (4.11).

Начальные условия объекта (5.1.1), параметры фильтров (4.1), (4.3), (4.7), а также параметры закона адаптации (4.11) и алгоритма детектирования (4.10) установим в соответствии с выражением:

(5.1.3)
$$x(0) = \begin{bmatrix} -1 & 0 \end{bmatrix}^{T}, \quad \hat{\theta}(0) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}, \quad l = 10, \quad \sigma = 5,$$

$$k_{0} = 100, \quad \gamma_{0} = 1, \quad \gamma_{1} = 1, \quad \Delta_{pr} = 0, 1.$$

Удостоверимся в выполнении допущений 2—3, а также требований теоремы и утверждений 2, 3.

На рис. 2 представлено: а) сравнение ||w(t)|| при различных Δ_{pr} ; б) переходные процессы по регрессору $\Omega(t)$ при $\Delta_{pr}=0,1$; в) сравнение $||\epsilon(t)||$ при различных Δ_{pr} .

Малые амплитуды сигналов на рис. 2 объясняются использованием процедуры смешивания (4.4) и плохой обусловленностью $\varphi(t)$: $\lambda_{\max}(\varphi(t)) \gg \lambda_{\min}(\varphi(t)) > 0 \Rightarrow \Delta(t) = \prod_{i=1}^{n+m+1} \lambda_i(\varphi(t)) \to 0$. Подробнее вычислительная ликвидация сигналов обсуждалась в [25]. В целом результаты моделирования подтверждают выполнение в эксперименте допущений, сделанных в теоретическом анализе:

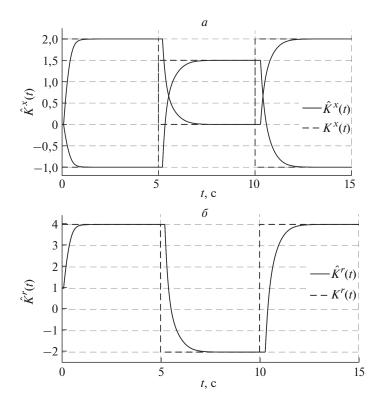


Рис. 4. Переходные процессы по оценкам $\hat{\theta}(t)$ неизвестных параметров $\theta(t)$.

- переключение параметров объекта приводит к возникновению конечного возбуждения регрессора на $[t_i^+; t_i^+ + T_i]$ и $[\hat{t}_i^+; t_i^+ + T_i]$ (п. 2)–3) из допущения 2);
- выбором l возможно гарантировать сохранение возбуждения регрессора и его дальнейшее распространение в параметризации (допущение 3).

Кроме того, моделирование подтвердило теоретические выводы утверждений 2–3:

- регрессор $\Omega(t)$ отделен от нуля $\forall t \geqslant t_0^+ + T_0$;
- возмущение w(t) при близких к нулю значениях параметра Δ_{pr} является экспоненциально убывающей функцией;
- индикатор $\epsilon(t)$ отличен от нуля только на интервале $[t_i^+; \hat{t}_i^+];$
- при использовании алгоритма детектирования (4.10) выполняется неравенство $\tilde{t}_i^+ \leqslant T_i$, а величина ошибки детектирования \tilde{t}_i^+ определяется величиной Δ_{pr} .

Таким образом, все принятые допущения в эксперименте выполнены, а выводы утверждений 2, 3 получили экспериментальное подтверждение.

На рис. 3 приведено сравнение переходных процессов по координатам состояния x(t) с эталонными $x_{ref}(t)$ при применении управлений (2.9) с (3.1) и (4.11).

Временные диаграммы по x(t) показывают достаточно высокое быстродействие предложенной адаптивной системы управления (2.9), (4.11) по сравнению с идеальным непрерывным законом (2.9), (3.1) и подтверждают доказанную в утверждении 1 и теореме экспоненциальную сходимость к нулю ошибки $e_{ref}(t)$ при конечном числе переключений параметров объекта.

На рис. 4 представлены переходные процессы по оценкам $\hat{\theta}(t)$ неизвестных параметров $\theta(t)$.

Рисунок 4 подтверждает доказанную в теореме экспоненциальную сходимость ошибки $\tilde{\theta}(t)$ к нулю.

Таким образом, эксперимент, проведенный в условиях переключения параметров объекта управления в дискретные неизвестные моменты времени, полностью подтвердил теоретические свойства предложенной адаптивной системы управления.

5.1.2. Влияние внешних возмущений

Проверим работоспособность предложенной адаптивной системы при действии на объект управления внешнего ограниченного возмущения.

Объект управления (2.5) рассмотрим в следующей форме:

$$(5.1.4) \ \forall t \geqslant 0, \ \dot{x}(t) = \begin{cases} A_0x(t) + B_0(u(t) + 0.25\mathrm{sgn}(\sin(2.5t))), \ \mathrm{если} \ t \in [0; 5) \\ A_1x(t) + B_1(u(t) + 0.25\mathrm{sgn}(\sin(2.5t))), \ \mathrm{если} \ t \in [5; 10) \\ A_2x(t) + B_2(u(t) + 0.25\mathrm{sgn}(\sin(2.5t))), \ \mathrm{если} \ t \geqslant 10, \end{cases}$$

где A_i, B_i — матрицы, определенные в (5.1.1), 0,25 sgn (sin (2,5t)) — внешнее согласованное с сигналом управления ограниченное возмущение.

Все начальные условия и параметры адаптивной системы установим в соответствии с выражением (5.1.3). Для детектирования изменений параметров объекта будем использовать робастный алгоритм (4.13), где функциональный параметр $\rho(t)$ выберем в соответствии с выражением (4.14) при $\rho_1=1$, $\rho_2=10^{-1}$.

На рис. 5 приведены переходные процессы по:

- а) ||E { $\epsilon(t)$ }|| и ||0,9 $\sqrt{\text{var}\{(t)\}}$ || + || $\rho(t)$ ||;
- б) состоянию $x_1(t)$ при применении (2.9) с (3.1) и (4.11);
- в) оценкам $\hat{\theta}(t)$ неизвестных параметров $\theta(t)$.

Результаты моделирования подтверждают выводы, сделанные при аналитическом обсуждении робастности:

- уравнение параметрической ошибки (4.12) действительно является устойчивым в смысле ограниченный вход ограниченный выход;
- если параметрическая ошибка $\tilde{\theta}(t)$ экспоненциально сходится в достаточно малую окрестность нуля, то гарантируется ограниченность x(t) и $e_{ref}(t)$;
- при правильном выборе функционального параметра $\rho(t)$ робастный алгоритм (4.13) позволяет обнаружить переключение параметров объекта

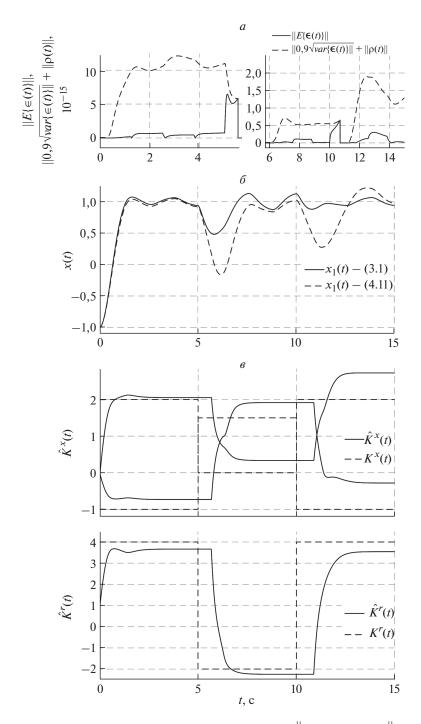


Рис. 5. Переходные процессы по: а) $\|\mathbb{E}\left\{\epsilon(t)\right\}\|$ и $\left\|0.9\sqrt{\mathrm{var}\left\{\epsilon(t)\right\}}\right\| + \|\rho(t)\|$; 6) состоянию $x_1(t)$ при использовании (2.9) с (3.1) и (4.11); в) оценкам $\hat{\theta}(t)$ параметров $\theta(t)$.

даже при действии на объект управления внешних ограниченных возмущений.

Таким образом, проведенный эксперимент подтвердил робастность к влиянию внешних ограниченных возмущений закона настройки (4.11) и алгоритма детектирования (4.13).

5.2. Переключения параметров при фазовом переходе

В этом эксперименте валидируем возможность использования предложенной адаптивной системы управления при переключениях параметров объекта управления, вызванных движением состояний системы в фазовом пространстве.

Рассмотрим объект управления (2.1) с одинарным разбиением фазового пространства:

$$(5.2.1) \quad \forall t \geqslant 0, \quad \dot{x}(t) = \left\{ \begin{array}{l} \left[\begin{array}{cc} 0 & 1 \\ -1 & 0.2 \end{array} \right] x(t) + \left[\begin{array}{cc} 0 \\ -1 \end{array} \right] u(t), \text{ если } x_1(t) \geqslant 0 \\ \left[\begin{array}{cc} 0 & 1 \\ -1.5 & -0.2 \end{array} \right] x(t) + \left[\begin{array}{cc} 0 \\ 1 \end{array} \right] u(t), \text{ если } x_1(t) < 0. \end{array} \right.$$

Эталонную модель и задающее воздействие для (5.2.1) определим следующим образом:

$$\forall t\geqslant 0, \quad \dot{x}_{ref}(t) = \left[\begin{array}{cc} 0 & 1 \\ -2 & -4 \end{array}\right] x_{ref}(t) + \left[\begin{array}{c} 0 \\ 2 \end{array}\right] r(t),$$

$$(5.2.2)$$

$$r(t) = \left\{\begin{array}{cc} 1, & \text{если} & 0\leqslant t<10 \\ -1, & \text{если} & 10\leqslant t<20 \\ 1, & \text{если} & 20\leqslant t<30 \\ -1, & \text{если} & 30\leqslant t<40. \end{array}\right.$$

Структурное соответствие матриц эталонной модели матрицам объекта гарантирует выполнение допущения 1.

Начальные условия объекта (5.2.1) и эталонной модели (5.2.2), параметры фильтров (4.1), (4.3), (4.7), а также параметры закона адаптации (4.11) и алгоритма детектирования (4.10) установим в соответствии с выражением:

(5.2.3)
$$x(0) = \begin{bmatrix} -2 & 2 \end{bmatrix}^{\mathrm{T}}, \quad x_{ref}(0) = \begin{bmatrix} -1 & 0 \end{bmatrix}^{\mathrm{T}}, \quad \hat{\theta}(0) = \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}^{\mathrm{T}},$$

$$l = 10, \quad \sigma = 5, \quad k_0 = 100, \quad \gamma_0 = 1, \quad \gamma_1 = 1, \quad \Delta_{pr} = 0, 1.$$

На рис. 6 приведены переходные процессы по: а) x(t) и $x_{ref}(t)$; б) $\hat{\theta}(t)$ и $\theta(t)$.

Результаты моделирования подтверждают выводы утверждений 2, 3 и теоремы, а также валидируют возможность применения разработанной адаптивной системы для решения задач управления объектами с переключениями, вызванными движением фазовых траекторий (2.4a).

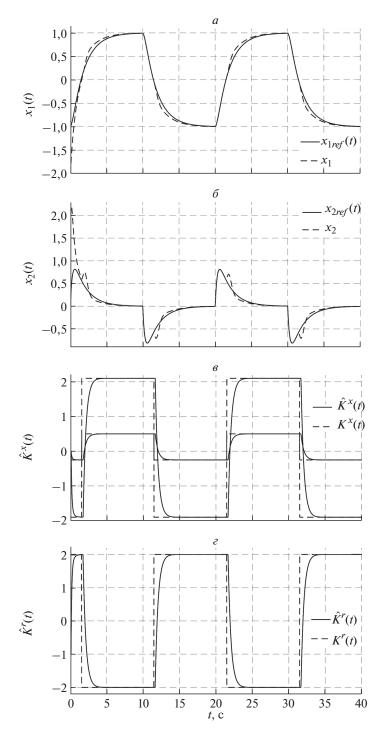


Рис. 6. Переходные процессы по: а) x(t) и $x_{ref}(t)$; б) $\hat{\theta}(t)$ и $\theta(t)$.

6. Заключение

Для решения задач управления линейными объектами с неизвестными кусочно-постоянными параметрами предложен новый закон настройки параметров регулятора, равноприменимый к системам с различной природой переключений параметров, обеспечивающий при конечном возбуждении регрессора после каждого изменения параметров экспоненциальную устойчивость обобщенной ошибки слежения $\xi(t)$. В отличие от существующих решений, разработанная система адаптивного управления не требует знания знаков/значений матриц коэффициентов усиления и моментов времени t_i^+ изменения параметров объекта, а также свободна от процедур оффлайн манипулирования с данными.

Целью дальнейших исследований может являться расширение полученных результатов на a) задачи управления по выходу линейными системами с кусочно-постоянными параметрами; δ) задачи управления по вектору состояний при нарушении условий согласованности (2.7) (например, применение предложенного подхода в схемах [27, 28]).

Третья часть работы будет посвящена разработке метода адаптивного управления с гарантией экспоненциальной устойчивости системами с переменными параметрами.

ПРИЛОЖЕНИЕ

Доказательство утверждения 1. Разделим доказательство экспоненциальной устойчивости $\xi(t)$ на два этапа. На первом этапе покажем экспоненциальную сходимость к нулю $\tilde{\theta}(t)$ независимо от ограниченности $e_{ref}(t)$ и $\omega(t)$. На втором этапе, в силу сходимости $\tilde{\theta}(t)$, покажем сходимость $e_{ref}(t)$.

Шаг 1. Решим полученное из (3.1) уравнение $\tilde{\theta}(t) = \hat{\theta}(t) - \theta(t)$:

$$(\Pi.1) \qquad \qquad \tilde{\theta}(t) = \phi\left(t, t_0^+\right) \tilde{\theta}\left(t_0^+\right) - \int_{t_0^+}^t \phi\left(t, \tau\right) \sum_{q=1}^i \Delta_q^{\theta} \delta\left(\tau - t_q^+\right) d\tau,$$

где
$$\phi(t,\tau) = e^{-\int_{\tau}^{t} \gamma_1 d\tau}$$
.

Воспользовавшись фильтрующим свойством функции единичного импульса:

$$(\Pi.2) \qquad \int_{t_0^+}^t f(\tau) \,\delta\left(\tau - t_q^+\right) d\tau = f\left(t_q^+\right) h\left(t - t_q^+\right), \,\forall f(t),$$

из (П.1) можем получить:

$$\left\| \tilde{\theta}(t) \right\| \leqslant \phi\left(t, t_0^+\right) \left\| \tilde{\theta}\left(t_0^+\right) \right\| + \sum_{q=1}^i \phi\left(t, t_q^+\right) \left\| \Delta_q^{\theta} \right\| h\left(t - t_q^+\right) =$$

$$= \underbrace{\left(\left\| \tilde{\theta}\left(t_0^+\right) \right\| + \sum_{q=1}^i \phi\left(t_0^+, t_q^+\right) \left\| \Delta_q^{\theta} \right\| h\left(t - t_q^+\right) \right)}_{\beta(t)} \phi\left(t, t_0^+\right),$$

где
$$\phi(t_0^+, t_a^+) = \phi^{-1}(t_a^+, t_0^+) = \phi^{-1}(t, t_0^+) \phi(t, t_a^+) = \phi(t_0^+, t) \phi(t, t_a^+).$$

Для доказательства экспоненциальной сходимости $\theta(t)$ осталось показать ограниченность $\beta(t)$. Если число переключений параметров системы конечно: $i \leq i_{\max} < \infty$, то поскольку:

- а) при конечном i моменты времени t_i^+ конечны,
- б) $\phi(t_0^+, t_q^+)$ ограничена при конечном t_q^+ , верна оценка сверху:

$$(\Pi.4) \qquad \beta(t) \leqslant \left\| \tilde{\theta}\left(t_0^+\right) \right\| + \sum_{q=1}^{i_{\max}} \phi\left(t_0^+, t_q^+\right) \left\| \Delta_q^{\theta} \right\| h\left(t - t_q^+\right) = \beta_{\max}.$$

Если $\forall q \in \mathbb{N} \ \left\| \Delta_q^{\theta} \right\| \leqslant c_q \phi \left(t_q^+, t_0^+ \right), \ c_q > c_{q+1}, \ \text{то даже при неограниченном } i$ верно:

(II.5)
$$\beta(t) \leqslant \left\| \tilde{\theta}\left(t_0^+\right) \right\| + \sum_{q=1}^{i} c_q h\left(t - t_q^+\right) = \beta_{\text{max}}.$$

Ряд в (П.5) знакоположительный и все его частичные суммы ограничены в силу монотонности $0 < c_{q+1} < c_q$, а поэтому $\sum_{q=1}^{\infty} c_q h\left(t-t_q^+\right) < \infty$, что ведет к $\beta(t) \leqslant \beta_{\max}$.

Из ограниченности (П.4) или (П.5) мгновенно следует:

(II.6)
$$\left\|\tilde{\theta}(t)\right\| \leqslant \beta_{\max}\phi\left(t, t_0^+\right) = \beta_{\max}e^{-\gamma_1\left(t - t_0^+\right)} < \beta_{\max}.$$

Перейдем к анализу ошибки слежения $e_{\mathit{ref}}(t)$.

Шаг 2. Введем в рассмотрение квадратичную форму:

$$V_{e_{ref}} = e_{ref}^{\mathrm{T}} P e_{ref} + \frac{2a_0^2}{\gamma_1} e^{-\gamma_1 \left(t - t_0^+\right)}, \quad H = \operatorname{blockdiag}\left\{P, \frac{2a_0^2}{\gamma_1}\right\},$$

$$\underbrace{\lambda_{\min}\left(H\right)}_{\lambda_m} \|\overline{e}_{ref}\|^2 \leqslant V\left(\|\overline{e}_{ref}\|\right) \leqslant \underbrace{\lambda_{\max}\left(H\right)}_{\lambda_M} \|\overline{e}_{ref}\|^2,$$

где $\overline{e}_{ref}(t) = \left[e_{ref}^{\rm T}(t) \ e^{-\frac{\gamma_1}{2}(t-t_0^+)}\right]^{\rm T}, \ a_0>0, \ {\rm a}\ P$ есть решение при $K=I_{n\times n}$ системы:

$$A_{ref}^{\mathrm{T}}P + PA_{ref} = -QQ^{\mathrm{T}} - \mu P, \quad PI_{n \times n} = QK,$$

$$K^{\mathrm{T}}K = D + D^{\mathrm{T}},$$

которая эквивалентна уравнению Риккати $A_{ref}^{\rm T}P+PA_{ref}+PP^{\rm T}+\mu P=0_{n\times n}.$ Производная (П.7) имеет вид:

$$(\Pi.8) \quad \dot{V}_{e_{ref}} = e_{ref}^{\mathrm{T}} \left(A_{ref}^{\mathrm{T}} P + P A_{ref} \right) e_{ref} - 2a_0^2 e^{-\gamma_1 \left(t - t_0^+ \right)} + 2e_{ref}^{\mathrm{T}} P I_n B_i \tilde{\theta}^{\mathrm{T}} \omega = \\ = -\mu e_{ref}^{\mathrm{T}} P e_{ref} - e_{ref}^{\mathrm{T}} Q Q^{\mathrm{T}} e_{ref} - 2a_0^2 e^{-\gamma_1 \left(t - t_0^+ \right)} + tr \left(2B_i \tilde{\theta}^{\mathrm{T}} \omega e_{ref}^{\mathrm{T}} Q K \right).$$

Так как $KK^{\mathrm{T}} = K^{\mathrm{T}}K = I_{n \times n}$, выражение (П.8) примет вид:

$$\dot{V}_{e_{ref}} = -\mu e_{ref}^{T} P e_{ref} - 2a_{0}^{2} e^{-\gamma_{1} (t - t_{0}^{+})} - e_{ref}^{T} Q K K^{T} Q^{T} e_{ref} +$$

$$+ tr \left(2B_{i} \tilde{\theta}^{T} \omega e_{ref}^{T} Q K \right) = -\mu e_{ref}^{T} P e_{ref} - 2a_{0}^{2} e^{-\gamma_{1} (t - t_{0}^{+})} +$$

$$+ tr \left(-K^{T} Q^{T} e_{ref} e_{ref}^{T} Q K + 2B_{i} \tilde{\theta}^{T} \omega e_{ref}^{T} Q K \right).$$

Использовав дополнение до полного квадрата

(II.10)
$$K^{\mathrm{T}}Q^{\mathrm{T}}e_{ref}e_{ref}^{\mathrm{T}}QK - 2B_{i}\tilde{\theta}^{\mathrm{T}}\omega e_{ref}^{\mathrm{T}}QK + B_{i}\tilde{\theta}^{\mathrm{T}}\omega\omega^{\mathrm{T}}\tilde{\theta}B_{i}^{\mathrm{T}} =$$

$$= \left(B_{i}\tilde{\theta}^{\mathrm{T}}\omega - K^{\mathrm{T}}Q^{\mathrm{T}}e_{ref}\right)\left(B_{i}\tilde{\theta}^{\mathrm{T}}\omega - K^{\mathrm{T}}Q^{\mathrm{T}}e_{ref}\right)^{\mathrm{T}} \geqslant 0,$$

имеем:

$$\dot{V}_{e_{ref}} \leqslant -\mu e_{ref}^{T} P e_{ref} - 2a_{0}^{2} e^{-\gamma_{1}(t-t_{0}^{+})} + \\
+ tr \left(-K^{T} Q^{T} e_{ref} e_{ref}^{T} Q K + 2B_{i} \tilde{\theta}^{T} \omega e_{ref}^{T} Q K \pm B_{i} \tilde{\theta}^{T} \omega \omega^{T} \tilde{\theta} B_{i}^{T} \right) \leqslant \\
\leqslant -\mu e_{ref}^{T} P e_{ref} - 2a_{0}^{2} e^{-\gamma_{1}(t-t_{0}^{+})} + tr \left(B_{i} \tilde{\theta}^{T} \omega \omega^{T} \tilde{\theta} B_{i}^{T} \right) \leqslant \\
(\Pi.11) \qquad \leqslant -\mu \lambda_{\min} (P) \|e_{ref}\|^{2} - 2a_{0}^{2} e^{-\gamma_{1}(t-t_{0}^{+})} + b_{\max}^{2} \lambda_{\max} \left(\omega \omega^{T} \right) \|\tilde{\theta}\|^{2} \leqslant \\
\leqslant -\mu \lambda_{\min} (P) \|e_{ref}\|^{2} - 2a_{0}^{2} e^{-\gamma_{1}(t-t_{0}^{+})} + \\
+ b_{\max}^{2} \beta_{\max}^{2} \lambda_{\max} \left(\omega \omega^{T} \right) e^{-\gamma_{1}(t-t_{0}^{+})} \leqslant \\
\leqslant -\mu \lambda_{\min} (P) \|e_{ref}\|^{2} - 2a_{0}^{2} e^{-\gamma_{1}(t-t_{0}^{+})} + \\
+ b_{\max}^{2} \beta_{\max}^{2} \lambda_{\max} \left(\omega \omega^{T} \right) e^{-\gamma_{1}(t-t_{0}^{+})} e^{-\gamma_{1}(t-t_{0}^{+})},$$

где $\forall i \in \mathbb{N} \ \|B_i\| \leqslant b_{\max}$ — из условия управляемости пары (A_i, B_i) .

Для экспоненциальной устойчивости $e_{ref}(t)$ необходимо экспоненциальное убывание третьего слагаемого в (П.11), что требует:

(II.12)
$$\chi(t) = \lambda_{\max} \left(\omega(t) \omega^{\mathrm{T}}(t) \right) e^{-\gamma_1 \left(t - t_0^+ \right)} \leqslant \chi_{\mathrm{UB}},$$

где $\chi_{\rm UB} > 0$.

Оценим скорость роста $\lambda_{\max}\left(\omega(t)\omega^{\mathrm{T}}(t)\right)$, рассмотрев функцию $L_{e_{ref}}=e_{ref}^{\mathrm{T}}Pe_{ref}$:

$$\dot{L}_{e_{ref}} = e_{ref}^{\mathrm{T}} \left(A_{ref}^{\mathrm{T}} P + P A_{ref} \right) e_{ref} + 2 e_{ref}^{\mathrm{T}} P B_{i} \tilde{\theta}^{\mathrm{T}} \omega \leqslant$$

$$\leqslant -\mu e_{ref}^{\mathrm{T}} P e_{ref} + 2 e_{ref}^{\mathrm{T}} P B_{i} \tilde{K}_{x} x + 2 e_{ref}^{\mathrm{T}} P B_{i} \tilde{K}_{r} r \leqslant$$

$$\leqslant -\mu \lambda_{\min} \left(P \right) \|e_{ref}\|^{2} + 2 \lambda_{\max} \left(P \right) b_{\max} \|e_{ref}\| \|\tilde{\theta}\| \|x\| +$$

$$+ 2 \lambda_{\max} \left(P \right) b_{\max} \|e_{ref}\| \|\tilde{\theta}\| r_{\max} \leqslant$$

$$\leqslant -\mu \lambda_{\min} \left(P \right) \|e_{ref}\|^{2} + 2 \lambda_{\max} \left(P \right) b_{\max} \|e_{ref}\|^{2} \|\tilde{\theta}\| +$$

$$+ 2 \lambda_{\max} \left(P \right) b_{\max} \left(x_{ref}^{\mathrm{UB}} + r_{\max} \right) \|e_{ref}\| \|\tilde{\theta}\| \leqslant$$

$$\leqslant \left(-\mu \lambda_{\min} \left(P \right) + 2 \lambda_{\max} \left(P \right) b_{\max} \left(x_{ref}^{\mathrm{UB}} + r_{\max} \right) \|e_{ref}\| \|\tilde{\theta}\|,$$

$$+ 2 \lambda_{\max} \left(P \right) b_{\max} \left(x_{ref}^{\mathrm{UB}} + r_{\max} \right) \|e_{ref}\| \|\tilde{\theta}\|,$$

где $||x_{ref}(t)|| \leqslant x_{ref}^{\mathrm{UB}}$ — оценка сверху на норму вектора состояний эталонной модели.

Ошибка $\tilde{\theta}(t)$ ограничена, тогда в консервативном случае из (П.13) имеем:

$$\dot{L}_{e_{ref}} \leq c_1 \|e_{ref}\|^2 + 2c_2 \|e_{ref}\|,$$

где

$$c_{1} = -\mu \lambda_{\min}(P) + 2\lambda_{\max}(P) b_{\max} \beta_{\max} > 0,$$

$$c_{2} = \lambda_{\max}(P) b_{\max} \beta_{\max} \left(x_{ref}^{\text{UB}} + r_{\max} \right).$$

Воспользовавшись неравенством Юнга $ab\leqslant \frac{1}{2}a^2+\frac{1}{2}b^2$, из (П.14), имеем:

$$\dot{L}_{e_{ref}} \leqslant \left(c_1 + 2c_2^2\right) \|e_{ref}\|^2 + 0.5 \leqslant
(\Pi.15)
\leqslant \left(c_1 + 2c_2^2\right) \|e_{ref}\|^2 + 1 = \frac{c_1 + 2c_2^2}{\lambda_{\max}(P)} L_{e_{ref}} + 1.$$

Решим (П.15) с учетом

$$\lambda_{\min}(P) \|e_{ref}(t)\|^2 \leqslant L_{e_{ref}}(t), \quad L_{e_{ref}}(t) \leqslant \lambda_{\max}(P) \|e_{ref}(t)\|^2$$
:

$$||e_{ref}(t)|| \leq \sqrt{\frac{\lambda_{\max}(P)}{\lambda_{\min}(P)}} e^{\frac{c_1 + 2c_2^2}{2\lambda_{\max}(P)} (t - t_0^+)} ||e_{ref}(t_0^+)|| + \sqrt{\frac{\lambda_{\max}(P) e^{\frac{c_1 + 2c_2^2}{\lambda_{\max}(P)} (t - t_0^+)}}{\lambda_{\min}(P) (c_1 + 2c_2^2)}}.$$

Откуда скорость роста x(t) не превосходит экспоненциальной, а поэтому, в силу ограниченности r(t) верно:

(II.17)
$$\lambda_{\max} \left(\omega(t) \omega^{\mathrm{T}}(t) \right) = tr \left(\omega(t) \omega^{\mathrm{T}}(t) \right) = \sum_{i=1}^{n} x_i^2(t) + \sum_{i=1}^{m} r_i^2(t) \leqslant \overline{c}_0 e^{\overline{c}_1 \left(t - t_0^+ \right)}, \quad \overline{c}_0 > 0, \quad \overline{c}_1 > 0.$$

Подставив оценку (П.17) в выражение (П.12), имеем выполнение (П.12) при достаточно большом значении $\gamma_1>0$. Далее, используя (П.12) в (П.11), получаем:

$$(\Pi.18) \qquad \dot{V}_{e_{ref}} \leqslant -\mu \lambda_{\min}(P) \|e_{ref}\|^2 - 2a_0^2 e^{-\gamma_1 (t - t_0^+)} + a_0^2 e^{-\gamma_1 (t - t_0^+)} = -\overline{\eta}_{e_{ref}} V_{e_{ref}},$$

где

$$a_{0}^{2}=b_{\max}^{2}\beta_{\max}^{2}\chi_{\mathrm{UB}},\quad \overline{\eta}_{e_{ref}}=\min\left\{\frac{\mu\lambda_{\min}\left(P\right)}{\lambda_{\max}\left(P\right)},\frac{\gamma_{1}}{2}\right\}.$$

Решение дифференциального неравенства (П.18) позволяет получить:

(II.19)
$$V_{e_{ref}}(t) \leqslant e^{-\overline{\eta}_{e_{ref}}(t-t_0^+)} V_{e_{ref}}(t_0^+)$$
.

Откуда следует экспоненциальная сходимость ошибки слежения $e_{ref}(t)$ к нулю:

где

$$\eta_{e_{ref}} = \frac{1}{2} \overline{\eta}_{e_{ref}}.$$

Объединив ($\Pi.20$) и ($\Pi.6$), запишем:

$$(\Pi.21) \|\xi(t)\| \leqslant \max \left\{ \sqrt{\frac{\lambda_M}{\lambda_m}} \|e_{ref}(t_0^+)\|, \beta_{\max} \right\} e^{-\eta_{e_{ref}}(t-t_0^+)},$$

что завершает доказательство утверждения.

Доказательство утверждения 2. Продифференцируем $x(t) - l\overline{x}(t)$:

$$\dot{x}(t) - l\dot{\overline{x}}(t) = -l\left(x(t) - l\overline{x}(t)\right) + \vartheta^{\mathrm{T}}(t)\Phi(t).$$

Решив дифференциальное уравнение (П.22), имеем:

$$x(t) - l\overline{x}(t) = e^{-l(t-\hat{t}_{i}^{+})}x(\hat{t}_{i}^{+}) +$$

$$+ \int_{\hat{t}_{i}^{+}}^{t} e^{-l(t-\tau)}\vartheta^{\mathrm{T}}(\tau)\Phi(\tau)d\tau \pm \vartheta^{\mathrm{T}}(t)\overline{\Phi}(t) =$$

$$= \overline{\vartheta}^{\mathrm{T}}(t)\overline{\varphi}(t) + \int_{\hat{t}_{i}^{+}}^{t} e^{-l(t-\tau)}\vartheta^{\mathrm{T}}(\tau)\Phi(\tau)d\tau - \vartheta^{\mathrm{T}}(t)\overline{\Phi}(t),$$

где $\overline{\vartheta}^{\mathrm{T}}(t) = \begin{bmatrix} A_i & B_i & x(\hat{t}_i^+) \end{bmatrix} \in R^{n \times (n+m+1)}$.

Применив (4.2) к левой и правой частям выражения (П.23), имеем:

$$\forall t \geqslant t_0^+ \quad \overline{z}_n(t) = n_s(t) \left[x(t) - l\overline{x}(t) \right] = \overline{\vartheta}^{\mathrm{T}}(t) \overline{\varphi}_n(t) + \overline{\varepsilon}_0(t),$$

$$(\Pi.24)$$

$$\overline{\varepsilon}_0(t) = n_s(t) \left(\int_{\hat{t}_i^+}^t e^{-l(t-\tau)} \vartheta^{\mathrm{T}}(\tau) \Phi(\tau) d\tau - \vartheta^{\mathrm{T}}(t) \overline{\Phi}(t) \right),$$

где $\overline{z}_n(t) \in R^n, \, \overline{\varphi}_n(t) \in R^{n+m+1}, \, \overline{\varepsilon}_0(t) \in R^n.$

Использовав (4.4) и умножив z(t) на $adj \{\varphi(t)\}$, имеем:

$$Y(t) := \operatorname{adj} \{ \varphi(t) \} \left(z(t) \pm \varphi(t) \overline{\vartheta}(t) \right) = \Delta(t) \overline{\vartheta}(t) + \overline{\varepsilon}_1(t),$$

$$\operatorname{adj} \{ \varphi(t) \} \varphi(t) = \operatorname{det} \{ \varphi(t) \} I_{(n+m+1)\times(n+m+1)} =$$

$$= \Delta(t) I_{(n+m+1)\times(n+m+1)},$$

$$\overline{\varepsilon}_1(t) = \operatorname{adj} \{ \varphi(t) \} \left(z(t) - \varphi(t) \overline{\vartheta}(t) \right),$$

где $Y(t) \in R^{(n+m+1)\times n}$, $\Delta(t) \in R$, $\overline{\varepsilon}_1(t) \in R^{(n+m+1)\times n}$.

В силу $\Delta(t) \in R$ вырезание (4.5) позволяет из (П.25) записать:

$$z_{A}(t) = Y^{T}(t)\mathfrak{L} = \Delta(t)A_{i} + \overline{\varepsilon}_{1}^{T}(t)\mathfrak{L},$$

$$z_{B}(t) = Y^{T}(t)\mathfrak{e}_{n+m+1} = \Delta(t)B_{i} + \overline{\varepsilon}_{1}^{T}(t)\mathfrak{e}_{n+m+1},$$

$$\mathfrak{L} = \begin{bmatrix} I_{n\times n} & 0_{n\times (m+1)} \end{bmatrix}^{T} \in R^{(n+m+1)\times n},$$

$$\mathfrak{e}_{n+m+1} = \begin{bmatrix} 0_{m\times n} & I_{m\times m} & 0_{m\times 1} \end{bmatrix}^{T} \in R^{(n+m+1)\times m},$$

где $z_A(t) \in R^{n \times n}, z_B(t) \in R^{n \times m}.$

Умножим каждое уравнение из (2.7) на $\operatorname{adj}\left\{z_B^{\mathrm{T}}(t)z_B(t)\right\}z_B^{\mathrm{T}}(t)\Delta(t)$ слева. Подставив с учетом (П.26) в результат умножения уравнения (4.5) и объединив полученные выражения, имеем уравнение:

$$\mathcal{Y}(t) = \mathcal{M}(t)\theta(t) + d(t)$$

$$\mathcal{Y}(t) := \begin{bmatrix} \operatorname{adj} \left\{ z_{B}^{\mathsf{T}}(t)z_{B}(t) \right\} z_{B}^{\mathsf{T}}(t) \left(\Delta(t)A_{ref} - z_{A}(t) \right) \\ \operatorname{adj} \left\{ z_{B}^{\mathsf{T}}(t)z_{B}(t) \right\} z_{B}^{\mathsf{T}}(t)\Delta(t)B_{ref} \end{bmatrix},$$

$$(\Pi.27)$$

$$\operatorname{adj} \left\{ z_{B}^{\mathsf{T}}(t)z_{B}(t) \right\} z_{B}^{\mathsf{T}}(t)z_{B}(t) = \det \left\{ z_{B}^{\mathsf{T}}(t)z_{B}(t) \right\} I_{m \times m} = \mathcal{M}(t)I_{m \times m},$$

$$d(t) := - \begin{bmatrix} \operatorname{adj} \left\{ z_{B}^{\mathsf{T}}(t)z_{B}(t) \right\} z_{B}^{\mathsf{T}}(t) \left(\overline{\varepsilon}_{1}^{\mathsf{T}}(t)\mathfrak{L} + \overline{\varepsilon}_{1}^{\mathsf{T}}(t)\mathfrak{e}_{n+m+1}K_{i}^{x} \right) \\ \operatorname{adj} \left\{ z_{B}^{\mathsf{T}}(t)z_{B}(t) \right\} z_{B}^{\mathsf{T}}(t) \overline{\varepsilon}_{1}^{\mathsf{T}}(t)\mathfrak{e}_{n+m+1}K_{i}^{x} \end{bmatrix},$$

где $\mathcal{Y}(t) \in \mathbb{R}^{(n+m)\times n}$, $\mathcal{M}(t) \in \mathbb{R}$, $d(t) \in \mathbb{R}^{(n+m)\times n}$.

С учетом $(\Pi.27)$ для решения уравнения (4.7a) имеет место соотношение:

$$\Upsilon(t) = \int_{t_0^+}^t e^{\int_{t_0^+}^{\tau} k d\tau} \mathcal{M}(\tau) \,\theta(\tau) \,d\tau + \int_{t_0^+}^t e^{\int_{t_0^+}^{\tau} k d\tau} d(\tau) \,d\tau \pm \Omega(t) \theta(t) =$$

$$= \Omega(t) \theta(t) + w(t),$$

$$w(t) = \Upsilon(t) - \Omega(t) \theta(t),$$

что подтверждает возможность получения (4.8) на основании процедур (4.1)–(4.7).

Для доказательства части а) решим (4.7b) на $[\hat{t}_i^+; t_i^+ + T_i]$ и $[t_i^+ + T_i; \hat{t}_{i+1}^+]$:

$$\forall t \in \left[\hat{t}_{i}^{+}; t_{i}^{+} + T_{i}\right] \quad \Omega(t) = \phi^{k_{0}}\left(t, \hat{t}_{i}^{+}\right) \Omega\left(\hat{t}_{i}^{+}\right) + \int_{\hat{t}_{i}^{+}}^{t} \phi^{k_{0}}\left(t, \tau\right) \mathcal{M}\left(\tau\right) d\tau,$$

$$(\Pi.29) \quad \forall t \in \left[t_{i}^{+} + T_{i}; \hat{t}_{i+1}^{+}\right] \quad \Omega(t) = \phi^{k_{0}}\left(t, t_{i}^{+} + T_{i}\right) \Omega(t_{i}^{+} + T_{i}) + + \int_{t_{i}^{+} + T_{i}}^{t} \phi^{k_{0}}\left(t, \tau\right) \mathcal{M}(\tau) d\tau.$$

С точностью до обозначений в [26] доказано при $\Phi(t) \in \text{FE}$, $\hat{t}_i^+ \geqslant t_i^+$ выполнение $\forall t \in [t_i^+ + T_i; \hat{t}_{i+1}^+)$ неравенства $\Delta_{\text{UB}} \geqslant \Delta(t) \geqslant \Delta_{LB} > 0$. Тогда на рассматриваемых в (П.29) интервалах для регрессора $\mathcal{M}(t)$ оказывается верно:

$$(\Pi.30) \quad \forall t \in \left[\hat{t}_i^+; t_i^+ + T_i\right] \quad \mathcal{M}(t) = \det\left\{z_B^{\mathrm{T}}(t)z_B(t)\right\} = \Delta^m(t)\det\left\{B_i^{\mathrm{T}}B_i\right\} \equiv 0,$$

$$\forall t \in \left[t_i^+ + T_i; \hat{t}_{i+1}^+\right] \quad \Delta_{\mathrm{UB}}^m\det\left\{B_i^{\mathrm{T}}B_i\right\} \geqslant \mathcal{M}(t) \geqslant \Delta_{LB}^m\det\left\{B_i^{\mathrm{T}}B_i\right\} > 0.$$

Подставив (П.30) в (П.29), учитывая $0\leqslant\phi\left(t, au\right)\leqslant1$, имеем оценки на $\Omega(t)$:

$$\forall t \in \left[\hat{t}_{0}^{+}; t_{0}^{+} + T_{0}\right] \ \Omega(t) \equiv 0,$$

$$\forall i \geqslant 1 \ \forall t \in \left[\hat{t}_{i}^{+}; t_{i}^{+} + T_{i}\right] \ \Omega\left(\hat{t}_{i}^{+}\right) \geqslant \Omega(t) \geqslant \phi^{k_{0}}\left(t_{i}^{+} + T_{i}, \hat{t}_{i}^{+}\right) \Omega\left(\hat{t}_{i}^{+}\right) > 0,$$

$$(\Pi.31) \ \forall t \in \left[t_{i}^{+} + T_{i}; \hat{t}_{i+1}^{+}\right] \ \Omega\left(t_{i}^{+} + T_{i}\right) + \left(\hat{t}_{i+1}^{+} - t_{i}^{+} - T_{i}\right) \Delta_{\mathrm{UB}}^{m} \det\left\{B_{i}^{\mathrm{T}}B_{i}\right\} \geqslant$$

$$\geqslant \Omega(t) \geqslant \phi^{k_{0}}\left(\hat{t}_{i+1}^{+}, t_{i}^{+} + T_{i}\right) \left(\Omega\left(t_{i}^{+} + T_{i}\right) + \left(\hat{t}_{i+1}^{+} - t_{i}^{+} - T_{i}\right) \Delta_{LB}^{m} \det\left\{B_{i}^{\mathrm{T}}B_{i}\right\}\right) > 0.$$

Откуда получим:

$$\forall t \geq t_{0}^{+} + T_{0} \quad \Omega_{\text{UB}} \geq \Omega(t) \geq \Omega_{\text{LB}} > 0,$$

$$(\Pi.32) \quad \Omega_{\text{LB}} = \min_{\forall i \geq 1} \begin{cases} \phi^{k_{0}}(\hat{t}_{i+1}^{+}, t_{i}^{+} + T_{i}) \left(\Omega\left(t_{i}^{+} + T_{i}\right) + \right. \\ \left. + \left(\hat{t}_{i+1}^{+} - t_{i}^{+} - T_{i}\right) \Delta_{\text{LB}}^{m} \text{det} \left\{ B_{i}^{\text{T}} B_{i} \right\} \right), \\ \phi^{k_{0}}\left(t_{i}^{+} + T_{i}, \hat{t}_{i}^{+}\right) \Omega\left(\hat{t}_{i}^{+}\right) \end{cases},$$

$$\Omega_{\text{UB}} = \max_{\forall i \geq 1} \left\{ \Omega\left(\hat{t}_{i}^{+}\right), \Omega\left(t_{i}^{+} + T_{i}\right) + \left(\hat{t}_{i+1}^{+} - t_{i}^{+} - T_{i}\right) \Delta_{\text{UB}}^{m} \text{det} \left\{ B_{i}^{\text{T}} B_{i} \right\} \right\},$$

что завершает доказательство части а).

Для доказательства части б) продифференцируем возмущение w(t):

$$\dot{w}(t) = \dot{\Upsilon}(t) - \dot{\Omega}(t)\theta(t) - \Omega(t)\dot{\theta}(t) =$$

$$= -k\left(\Upsilon(t) - \mathcal{Y}(t)\right) + k\left(\Omega(t) - \mathcal{M}(t)\right)\theta(t) - \Omega(t)\dot{\theta}(t) =$$

$$= -k\left(\Upsilon(t) - \mathcal{M}(t)\theta(t) - d(t)\right) + k\left(\Omega(t) - \mathcal{M}(t)\right)\theta(t) - \Omega(t)\dot{\theta}(t) =$$

$$= -k\left(\Upsilon(t) - \Omega(t)\theta(t)\right) - \Omega(t)\dot{\theta}(t) + kd(t) =$$

$$= -kw(t) - \Omega(t)\dot{\theta}(t) + kd(t), \quad w\left(t_0^+\right) = 0_{(n+m)\times m},$$

Покажем выполнение при $\tilde{t}_i^+=0$ тождественного равенства $d(t)\equiv 0$. Как следует из определения (П.27), верно $\overline{\varepsilon}_1(t)\equiv 0 \Leftrightarrow d(t)\equiv 0$. Предполо-

жим $\forall i \in \mathbb{N}$ $\hat{t}_i^+ \geqslant t_i^+$ и получим определение $\overline{\varepsilon}_1(t)$ на интервалах $[\hat{t}_i^+; t_{i+1}^+)$ и $[t_i^+; \hat{t}_i^+)$:

$$\forall t \in \left[\hat{t}_{i}^{+}; t_{i+1}^{+}\right) \ \vartheta(t) = \vartheta_{i}$$

$$\updownarrow$$

$$\overline{\varepsilon}_{1}(t) = \operatorname{adj}\left\{\varphi(t)\right\} \int_{\hat{t}_{i}^{+}}^{t} e^{-\int_{\hat{t}_{i}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{z}_{n}^{\mathrm{T}}\left(\tau\right) d\tau - \Delta(t) \overline{\vartheta}_{i} =$$

$$= \operatorname{adj}\left\{\varphi(t)\right\} \left(\int_{\hat{t}_{i}^{+}}^{t} e^{-\int_{\hat{t}_{i}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{\varphi}_{n}^{\mathrm{T}}\left(\tau\right) d\tau \overline{\vartheta}_{i} + \int_{\hat{t}_{i}^{+}}^{t} e^{-\int_{\hat{t}_{i}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{\varepsilon}_{0}^{\mathrm{T}}\left(\tau\right) d\tau \right) -$$

$$-\Delta(t) \overline{\vartheta}_{i} = \Delta(t) \overline{\vartheta}_{i} - \Delta(t) \overline{\vartheta}_{i} + \int_{\hat{t}_{i}^{+}}^{t} e^{-\int_{\hat{t}_{i}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{\varepsilon}_{0}^{\mathrm{T}}\left(\tau\right) d\tau = 0_{(n+m+1)\times n}.$$

В то же время:

$$\forall t \in \left[t_{i-1}^{+}; t_{i}^{+}\right) \ \vartheta(t) = \vartheta_{i-1}; \ \forall t \in \left[t_{i}^{+}; \hat{t}_{i}^{+}\right) \ \vartheta(t) = \vartheta_{i}$$

$$\updownarrow$$

$$\forall t \in \left[t_{i}^{+}; \hat{t}_{i}^{+}\right), \ \overline{\varepsilon}_{1}(t) = \operatorname{adj}\left\{\varphi(t)\right\} \int_{\hat{t}_{i-1}^{+}}^{t} e^{-\int_{\hat{t}_{i-1}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{z}_{n}^{\mathrm{T}}\left(\tau\right) d\tau - \Delta(t) \overline{\vartheta}_{i} = \operatorname{adj}\left\{\varphi(t)\right\} \times \\
\times \left(\int_{\hat{t}_{i-1}^{+}}^{t_{i}^{+}} e^{-\int_{\hat{t}_{i-1}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{\varphi}_{n}^{\mathrm{T}}\left(\tau\right) d\tau \overline{\vartheta}_{i-1} + \int_{\hat{t}_{i}^{+}}^{t} e^{-\int_{\hat{t}_{i-1}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{\varphi}_{n}^{\mathrm{T}}\left(\tau\right) d\tau \overline{\vartheta}_{i} + \int_{\hat{t}_{i-1}^{+}}^{t} e^{-\int_{\hat{t}_{i-1}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{\varepsilon}_{0}^{\mathrm{T}}\left(\tau\right) d\tau \overline{\vartheta}_{i} + \int_{\hat{t}_{i-1}^{+}}^{t} e^{-\int_{\hat{t}_{i-1}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{\varepsilon}_{0}^{\mathrm{T}}\left(\tau\right) d\tau - \Delta(t) \overline{\vartheta}_{i} = \operatorname{adj}\left\{\varphi(t)\right\} \times \\
\times \left(\int_{\hat{t}_{i-1}^{+}}^{t} e^{-\int_{\hat{t}_{i-1}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{\varphi}_{n}^{\mathrm{T}}\left(\tau\right) d\tau \left(\overline{\vartheta}_{i-1} - \overline{\vartheta}_{i}\right) + \int_{\hat{t}_{i-1}^{+}}^{t} e^{-\int_{\hat{t}_{i-1}^{+}}^{\tau} \sigma ds} \overline{\varphi}_{n}\left(\tau\right) \overline{\varepsilon}_{0}^{\mathrm{T}}\left(\tau\right) d\tau \right).$$

Объединение выражений (П.34) и (П.35) позволяет записать:

$$(\Pi.36) \quad \overline{\varepsilon}_{1}(t) := \begin{cases} \operatorname{adj} \left\{ \varphi(t) \right\} \begin{pmatrix} \int_{t_{i-1}}^{t} e^{-\int_{t_{i-1}}^{\tau} \sigma ds} \overline{\varphi}_{n} \left(\tau \right) \overline{\varphi}_{n}^{\mathrm{T}} \left(\tau \right) d\tau \left(\overline{\vartheta}_{i-1} - \overline{\vartheta}_{i} \right) + \\ + \int_{t_{i-1}}^{t} e^{-\int_{t_{i-1}}^{\tau} \sigma ds} \overline{\varphi}_{n} \left(\tau \right) \overline{\varepsilon}_{0}^{\mathrm{T}} \left(\tau \right) d\tau \\ 0_{(n+m+1)\times n}, \forall t \in \left[\hat{t}_{i}^{+}; t_{i+1}^{+} \right) \end{cases}, i > 0, \ \forall t \in \left[t_{i}^{+}; \hat{t}_{i}^{+} \right) \end{cases}$$

откуда следует $\overline{\varepsilon}_1(t) \equiv 0$ при $\tilde{t}_i^+ = 0$, что влечет за собой $d(t) \equiv 0$.

Используя (П.2), решим уравнение (П.33) с учетом $d(t) \equiv 0$:

$$w(t) = -\int_{t_0^+ + T_0}^t \phi^{k_0}(t, \tau) \Omega(\tau) \sum_{q=1}^i \Delta_q^{\theta} \delta(\tau - t_q^+) d\tau =$$

$$= -\sum_{q=1}^i \phi^{k_0}(t, t_q^+) \Omega(t_q^+) \Delta_q^{\theta} h(t - t_q^+) =$$

$$= \left(-\sum_{q=1}^i \phi^{k_0}(t_0^+ + T_0, t_q^+) \Omega(t_q^+) \Delta_q^{\theta} h(t - t_q^+)\right) \phi^{k_0}(t, t_0^+ + T_0).$$

Здесь отметим отсутствие в силу допущения 2 переключений параметров на интервале $[t_0^+; t_0^+ + T_0)$, что приводит к суммированию в (П.37) от q = 1 до i.

Если число переключений параметров конечно: $i \leqslant i_{\max} < \infty$, то поскольку:

- а) при конечном i моменты времени t_i^+ также конечны;
- б) $\forall q \in \mathbb{N} \ \phi^{k_0} \left(t_0^+ + T_0, t_q^+ \right)$ ограничена при конечном $t_q^+,$
- B) $k_0 \geqslant 1$,

верна оценка сверху:

(II.38)
$$\|w(t)\| \leqslant \phi \left(t, t_0^+ + T_0\right) \sum_{q=1}^{i_{\max}} \phi^{k_0} \left(t_0^+ + T_0, t_q^+\right) \Omega_{\text{UB}} \left\|\Delta_q^{\theta}\right\| h\left(t - t_q^+\right) = \\ = w_{\max} \phi \left(t, t_0^+ + T_0\right) \leqslant w_{\max}.$$

Если $\forall q \in \mathbb{N} \ \left\| \Delta_q^{\theta} \right\| \leqslant c_q \phi^{k_0} \left(t_q^+, t_0^+ \right), \ c_q > c_{q+1}, \ \text{то из (\Pi.37)}$ имеем:

$$(\Pi.39) ||w(t)|| \leq \phi^{k_0} \left(t, t_0^+ + T_0 \right) \Omega_{\mathrm{UB}} \phi^{k_0} \left(t_0^+ + T_0, t_0^+ \right) \sum_{q=1}^i c_q h \left(t - t_q^+ \right).$$

Все частичные суммы знакоположительного ряда в (П.39) ограничены, а поэтому $\sum_{q=1}^i c_q h\left(t-t_q^+\right) < \infty$ и даже при неограниченном числе переключений верна оценка:

$$(\Pi.40)$$
 $||w(t)|| \leq w_{\text{max}}\phi(t, t_0^+ + T_0) \leq w_{\text{max}},$

что завершает доказательство утверждения.

Замечание 2. Возмущение d(t), отличающее реальное поведение возмущения w(t) от оценки (П.40), возникает в предложенной параметризации при $\tilde{t}_i^+ > 0$ на ограниченных интервалах времени $[t_i^+; \hat{t}_i^+]$, и $\forall t \geqslant \hat{t}_i^+$ его вклад в w(t) представляет глобально-экспоненциально затухающую функцию. Поэтому d(t) может влиять исключительно на качество переходных процессов по $\tilde{\theta}(t)$ и $e_{ref}(t)$, но не на глобальные свойства ошибки $\xi(t)$. Уменьшить влияние d(t) возможно увеличением параметра σ (подробный анализ механизма улучшения см. в утверждении 4 из [26]).

Доказательство утверждения 3. В соответствии с результатами работы [26] алгоритм (4.10) гарантирует выполнение условия $\tilde{t}_i^+ = \Delta_{pr} \leqslant T_i$, если функция $\epsilon(t)$ является индикатором изменения параметров системы:

$$(\Pi.41) \qquad \forall t \in \left[t_i^+; \ \hat{t}_i^+\right] f(t) \neq 0, \ \forall t \in \left[\hat{t}_i^+; \ t_{i+1}^+\right] f(t) = 0,$$

т.е. отлична от нуля только на интервале $[t_i^+; \hat{t}_i^+]$ задержки детекции.

Подставив выражения (П.25) и (П.24) в (4.9), имеем:

$$\begin{split} \epsilon(t) &= \Delta(t) \overline{\varphi}_n(t) \overline{z}_n^{\mathrm{T}}(t) - \overline{\varphi}_n(t) \overline{\varphi}_n^{\mathrm{T}}(t) Y(t) = \Delta(t) \overline{\varphi}_n(t) \overline{\varphi}_n^{\mathrm{T}}(t) \overline{\vartheta}(t) + \\ &+ \Delta(t) \overline{\varphi}_n(t) \overline{\varepsilon}_0^{\mathrm{T}}(t) - \Delta(t) \overline{\varphi}_n(t) \overline{\varphi}_n^{\mathrm{T}}(t) \overline{\vartheta}(t) - \overline{\varphi}_n(t) \overline{\varphi}_n^{\mathrm{T}}(t) \overline{\varepsilon}_1(t) = \\ &= \Delta(t) \overline{\varphi}_n(t) \overline{\varepsilon}_0^{\mathrm{T}}(t) - \overline{\varphi}_n(t) \overline{\varphi}_n^{\mathrm{T}}(t) \overline{\varepsilon}_1(t). \end{split}$$

Ошибка $\epsilon(t)$ удовлетворяет определению (П.41), если $\overline{\varepsilon}_0^{\mathrm{T}}(t)$ и $\overline{\varepsilon}_1(t)$ удовлетворяют (П.41). По доказанному в утверждении 2 (см. (П.36)) функция $\overline{\varepsilon}_1(t)$ является индикатором изменений параметров системы. Тогда осталось доказать аналогичный тезис для $\overline{\varepsilon}_0^{\mathrm{T}}(t)$. Предположим $\forall i \in \mathbb{N}$ $\hat{t}_i^+ \geqslant t_i^+$, а тогда:

$$\forall t \in \left[\hat{t}_{i}^{+}; t_{i+1}^{+}\right) \ \vartheta(t) = \vartheta_{i}$$

$$\updownarrow$$

$$\forall t \in \left[\hat{t}_{i}^{+}; t_{i+1}^{+}\right) \ \overline{\varepsilon}_{0}(t) = n_{s}(t) \left(\int_{t_{i}^{+}}^{t} e^{-l(t-\tau)}\dot{x}\left(\tau\right)d\tau - \vartheta_{i}^{\mathrm{T}}\overline{\Phi}(t)\right) =$$

$$= n_{s}(t) \left(\vartheta_{i}^{\mathrm{T}}\int_{t_{i}^{+}}^{t} e^{-l(t-\tau)}\Phi\left(\tau\right)d\tau - \vartheta_{i}^{\mathrm{T}}\overline{\Phi}(t)\right) =$$

$$= n_{s}(t) \left(\vartheta_{i}^{\mathrm{T}}\overline{\Phi}(t) - \vartheta_{i}^{\mathrm{T}}\overline{\Phi}(t)\right) = 0.$$

В то же время:

$$\forall t \in \left[t_{i-1}^+; t_i^+\right) \ \vartheta(t) = \vartheta_{i-1}; \ \forall t \in \left[t_i^+; \hat{t}_i^+\right) \ \vartheta(t) = \vartheta_i$$

$$\updownarrow$$

$$\forall t \in \left[t_i^+; \hat{t}_i^+\right), \quad \overline{\varepsilon}_0(t) = n_s(t) \left(\int_{\hat{t}_{i-1}^+}^t e^{-l(t-\tau)}\dot{x}\left(\tau\right)d\tau - \vartheta_i^{\mathrm{T}}\overline{\Phi}(t)\right) =$$

$$= n_s(t) \left(e^{-l\left(t-t_i^+\right)}\int_{\hat{t}_{i-1}^+}^{t_i^+} e^{-l\left(t_i^+-\tau\right)}\vartheta_{i-1}^{\mathrm{T}}\Phi\left(\tau\right)d\tau + \int_{t_i^+}^t e^{-l(t-\tau)}\vartheta_i^{\mathrm{T}}\Phi\left(\tau\right)d\tau -$$

$$-\vartheta_i^{\mathrm{T}}\left(e^{-l\left(t-t_i^+\right)}\int_{\hat{t}_{i-1}^+}^{t_i^+} e^{-l\left(t_i^+-\tau\right)}\Phi\left(\tau\right)d\tau + \int_{t_i^+}^t e^{-l(t-\tau)}\Phi\left(\tau\right)d\tau\right)\right) =$$

$$= n_s(t)e^{-l\left(t-t_i^+\right)} \left(\vartheta_{i-1}^{\mathrm{T}} - \vartheta_i^{\mathrm{T}}\right)\int_{\hat{t}_{i-1}^+}^{t_i^+} e^{-l\left(t_i^+-\tau\right)}\Phi\left(\tau\right)d\tau.$$

Объединив выражения (П.43) и (П.44), имеем

$$(\Pi.45) \qquad \overline{\varepsilon}_{0}(t) := \begin{cases} n_{s}(t)e^{-l\left(t-t_{i}^{+}\right)}\left(\vartheta_{i-1}^{\mathrm{T}}-\vartheta_{i}^{\mathrm{T}}\right)\int_{\hat{t}_{i-1}}^{t_{i}^{+}}e^{-l\left(t_{i}^{+}-\tau\right)}\Phi\left(\tau\right)d\tau, \ i>0, \\ & \forall t\in\left[t_{i}^{+};\hat{t}_{i}^{+}\right), \end{cases}$$

что вместе с (П.36) позволяет записать:

$$(\Pi.46) \qquad \forall i \in \mathbb{N}, \ \epsilon(t) := \left\{ \begin{array}{l} \Delta(t) \overline{\varphi}_n(t) \overline{\varepsilon}_0^{\mathrm{T}}(t) - \overline{\varphi}_n(t) \overline{\varphi}_n^{\mathrm{T}}(t) \overline{\varepsilon}_1(t), \\ \\ i > 0, \ \forall t \in \left[t_i^+; \hat{t}_i^+\right), \\ \\ 0_{(n+m+1) \times n}, \ \forall t \in \left[\hat{t}_i^+; t_{i+1}^+\right), \end{array} \right.$$

откуда $\epsilon(t)$ — индикатор изменений параметров системы, и по доказанному в [26] при $\Delta(t) \in \text{FE}$ и $\overline{\varphi}_n(t) \in \text{FE}$ на $\left[\hat{t}_i^+; t_i^+ + T_i\right]$ (что обеспечивается выполнением допущений 2 и 3) верно $\tilde{t}_i^+ = \Delta_{pr} \leqslant T_i$.

Доказательство теоремы 1. Доказательство теоремы проведем аналогично доказательству утверждения 1. Рассмотрим два интервала $[t_0^+; t_0^+ + T_0)$ и $[t_0^+ + T_0; \infty)$. На $[t_0^+; t_0^+ + T_0)$ в консервативном случае выполняется неравенство $\Omega(t) \leqslant \Omega_{LB}$, а значит $\dot{\theta}(t) = 0_{(n+m)\times m} \Rightarrow \tilde{\theta}(t) = \tilde{\theta}\left(t_0^+\right)$ (в силу отсутствия по допущению 2 переключений на $[t_0^+; t_0^+ + T_0)$). Тогда, из ограниченности $\tilde{\theta}(t)$, по доказанному в утверждении 1 (см. (П.13)–(П.17)), следует экспоненциальная скорость роста $e_{ref}(t)$ и, следовательно, ограниченность $e_{ref}(t)$ своим конечным значением на правой границе рассматриваемого интервала: $\forall t \in [t_0^+; t_0^+ + T_0)$ $e_{ref}(t) \leqslant e_{ref}(t_0^+ + T_0)$. Откуда следует ограниченность $\xi(t)$ на интервале $[t_0^+; t_0^+ + T_0)$.

Перейдем к рассмотрению интервала $[t_0^+ + T_0; \infty)$.

Шаг 1. Экспоненциальная сходимость $\tilde{\theta}(t) \ \forall t \geqslant t_0^+ + T_0$.

Решение уравнения (4.11) $\forall t \ge t_0^+ + T_0$ с учетом (П.38) или (П.40) и ограниченности $\Omega(t) \ge \Omega_{LB}$ удовлетворяет неравенству:

$$\tilde{\theta}(t) = \phi\left(t, t_0^+ + T_0\right) \tilde{\theta}\left(t_0^+ + T_0\right) + \int_{t_0^+ + T_0}^t \phi\left(t, \tau\right) \frac{\gamma_1 w\left(\tau\right)}{\Omega\left(\tau\right)} d\tau -$$

$$(\Pi.47) \qquad - \int_{t_0^+ + T_0}^t \phi\left(t, \tau\right) \sum_{q=1}^i \Delta_q^{\theta} \delta\left(\tau - t_q^+\right) d\tau \leqslant \phi\left(t, t_0^+ + T_0\right) \tilde{\theta}\left(t_0^+ + T_0\right) +$$

$$+ \frac{\gamma_1 w_{\text{max}}}{\Omega_{LB}} \int_{t_0^+ + T_0}^t \phi\left(t, \tau\right) \phi\left(\tau, t_0^+ + T_0\right) d\tau - \sum_{q=1}^i \phi\left(t, t_q^+\right) \Delta_q^{\theta} h\left(t - t_q^+\right).$$

Поскольку выполняется хотя бы одно из условий:

- 1) $i \leqslant i_{\text{max}} < \infty$,
- 2) $\forall q \in \mathbb{N} \|\Delta_q^{\theta}\| \leqslant c_q \phi^{k_0} \left(t_q^+, t_0^+\right) \leqslant c_q \phi \left(t_q^+, t_0^+\right), c_q > c_{q+1},$ то аналогично (П.3)–(П.5) из (П.47) можем получить следующую оценку сверху:

$$\|\tilde{\theta}(t)\| \leqslant \beta_{\max} \phi \left(t, t_0^+ + T_0\right) + \frac{\gamma_1 w_{\max}}{\Omega_{LB}} \phi \left(t, t_0^+ + T_0\right) \left(t - t_0^+ - T_0\right) \leqslant$$

$$\leqslant \beta_{\max} \phi \left(t, t_0^+ + T_0\right) + \frac{\gamma_1 w_{\max}}{\Omega_{LB}} \chi_1(t) e^{-\frac{\gamma_1}{2} \left(t - t_0^+ - T_0\right)},$$

где $\chi_1(t)$ — переменный параметр:

$$\chi_1(t) = e^{-\frac{\gamma_1}{2}(t - t_0^+ - T_0)} (t - t_0^+ - T_0), \quad \chi_1(t_0^+ + T_0) = 0,$$

а $\beta(t)$ для обоих рассматриваемых случаев определен следующим образом:

$$(\Pi.49) \qquad \beta(t) \leqslant \left\| \tilde{\theta} \left(t_0^+ + T_0 \right) \right\| + \sum_{q=1}^{i_{\text{max}}} \phi \left(t_0^+ + T_0, t_q^+ \right) \left\| \Delta_q^{\theta} \right\| h \left(t - t_q^+ \right) = \beta_{\text{max}},$$

$$\beta(t) \leqslant \left\| \tilde{\theta} \left(t_0^+ + T_0 \right) \right\| + \sum_{q=1}^i \phi \left(t_0^+ + T_0, t_q^+ \right) \phi \left(t_q^+, t_0^+ \right) c_q h \left(t - t_q^+ \right) =$$

$$= \left\| \tilde{\theta} \left(t_0^+ + T_0 \right) \right\| + \sum_{q=1}^i \phi \left(t_0^+ + T_0, t_0^+ \right) c_q h \left(t - t_q^+ \right) = \beta_{\text{max}}.$$

Если параметр $\chi_1(t)$ ограничен, то для $\tilde{\theta}(t)$ верно:

$$\left\|\tilde{\theta}(t)\right\| \leqslant \left(\beta_{\max} + \frac{\gamma_1 w_{\max}}{\Omega_{LB}} \chi_1^{\text{UB}}\right) e^{-\frac{\gamma_1}{2} \left(t - t_0^+ - T_0\right)}.$$

Тогда необходимо показать $|\chi_1(t)| \leq \chi_1^{\mathrm{UB}}$. Дифференцируем $\chi_1(t)$ по времени:

$$\dot{\chi}_1(t) = -\frac{\gamma_1}{2}\chi_1(t) + e^{-\frac{\gamma_1}{2}\left(t - t_0^+ - T_0\right)}.$$

Оценка сверху на решение (П.52) принимает вид:

$$|\chi_{1}(t)| \leqslant \left| \int_{t_{0}^{+}+T_{0}}^{t} e^{-\int_{\tau}^{t} \frac{\gamma_{1}}{2} d\tau} e^{\frac{-\gamma_{1}}{2} (\tau - t_{0}^{+} - T_{0})} d\tau \right| \leqslant$$

$$(\Pi.53)$$

$$\leqslant \left| \int_{t_{0}^{+}+T_{0}}^{t} e^{\frac{-\gamma_{1}}{2} (\tau - t_{0}^{+} - T_{0})} d\tau \right| \leqslant \frac{2}{\gamma_{1}},$$

что доказывает целевую ограниченность $|\chi_1(t)| \leqslant \chi_1^{\mathrm{UB}}$.

Из ограниченности (Π .53) мгновенно следует экспоненциальная сходимость (Π .51), что и требовалось доказать на Шаге 1.

Шаг 2. Экспоненциальная сходимость ошибки $\xi(t) \ \forall t \ge t_0^+ + T_0$.

Чтобы доказать сходимость $\xi(t)$ $\forall t \geqslant t_0^+ + T_0$ в силу оценки (П.51), остается доказать сходимость ошибки слежения $e_{ref}(t)$ $\forall t \geqslant t_0^+ + T_0$.

Введем в рассмотрение следующую квадратичную форму:

$$V_{e_{ref}} = e_{ref}^{\mathrm{T}} P e_{ref} + \frac{4a_0^2}{\gamma_1} e^{-\frac{\gamma_1}{2} (t - t_0^+ - T_0^+)}, \quad H = \operatorname{blockdiag} \left\{ P, \frac{4a_0^2}{\gamma_1} \right\},$$

$$(\Pi.54) \qquad \underbrace{\lambda_{\min} (H)}_{\lambda_m} \| \overline{e}_{ref} \|^2 \leqslant V \left(\| \overline{e}_{ref} \| \right) \leqslant \underbrace{\lambda_{\max} (H)}_{\lambda_M} \| \overline{e}_{ref} \|^2,$$

$$\overline{e}_{ref}(t) = \left[e_{ref}^{\mathrm{T}}(t) \ e^{-\frac{\gamma_1}{4} (t - t_0^+ - T_0^+)} \right]^{\mathrm{T}}.$$

Аналогично доказательству утверждения 1, $\forall t \ge t_0^+ + T_0$ производная (П.54) может быть записана в виде:

$$\dot{V}_{e_{ref}}(t) \leqslant -\mu \lambda_{\min}(P) \|e_{ref}(t)\|^{2} - 2a_{0}^{2} e^{-\frac{\gamma_{1}}{2} (t - t_{0}^{+} - T_{0}^{+})} + b_{\max}^{2} \lambda_{\max} \left(\omega(t) \omega^{T}(t)\right) \|\tilde{\theta}(t)\|^{2}.$$

На основании (П.55) введем следующую оценку сверху на $b_{\max}^2 \left\| \tilde{\theta}(t) \right\|^2$:

(II.56)
$$b_{\max}^2 \| \tilde{\theta}(t) \|^2 \leqslant b_{\max}^2 \left(\beta_{\max} + \frac{\gamma_1 w_{\max}}{\Omega_{LB}} \chi_1^{\text{UB}} \right)^2 e^{-\gamma_1 (t - t_0^+ - T_0)}.$$

Подставим (П.56) в (П.55):

$$\dot{V}_{e_{ref}}(t) \leqslant -\mu \lambda_{\min}(P) \|e_{ref}(t)\|^{2} - 2a_{0}^{2} e^{-\frac{\gamma_{1}}{2} \left(t - t_{0}^{+} - T_{0}^{+}\right)} +
(\Pi.57) + b_{\max}^{2} \left(\beta_{\max} + \frac{\gamma_{1} w_{\max}}{\Omega_{LB}} \chi_{1}^{\text{UB}}\right)^{2} \lambda_{\max}\left(\omega(t) \omega^{\text{T}}(t)\right) e^{-\frac{\gamma_{1}}{2} \left(t - t_{0}^{+} - T_{0}\right)} \times
\times e^{-\frac{\gamma_{1}}{2} \left(t - t_{0}^{+} - T_{0}\right)}.$$

Для экспоненциальной устойчивости $e_{ref}(t)$ необходимо экспоненциальное убывание третьего слагаемого в (П.57), что требует:

(II.58)
$$\chi(t) = \lambda_{\max} \left(\omega(t) \omega^{\mathrm{T}}(t) \right) e^{-\frac{\gamma_1}{2} \left(t - t_0^+ \right)} \leqslant \chi_{\mathrm{UB}},$$

где $\chi_{\rm UB} > 0$.

Ошибка $\tilde{\theta}(t)$ ограничена (П.51). В этом случае, по доказанному в утверждении 1, скорость роста $\lambda_{\max}\left(\omega(t)\omega^{\mathrm{T}}(t)\right)$ не превосходит экспоненциальной (П.17). Тогда при достаточно большом $\gamma_1>0$ оценка (П.58) справедлива. Подставив (П.58) в (П.57), имеем:

$$(\Pi.59) \qquad \dot{V}_{e_{ref}}(t) \leqslant -\mu \lambda_{\min}(P) \|e_{ref}(t)\|^2 - 2a_0^2 e^{-\frac{\gamma_1}{2} \left(t - t_0^+ - T_0^+\right)} + a_0^2 e^{-\frac{\gamma_1}{2} \left(t - t_0^+ - T_0\right)} \leqslant -\overline{\eta}_{e_{ref}} V_{e_{ref}}(t),$$

где

$$a_{0}^{2} = b_{\max}^{2} \bigg(\beta_{\max} + \frac{\gamma_{1} w_{\max}}{\Omega_{LB}} \chi_{1}^{\mathrm{UB}} \bigg)^{2} \chi_{\mathrm{UB}}, \quad \overline{\eta}_{e_{ref}} = \min \left\{ \frac{\mu \lambda_{\min} \left(P \right)}{\lambda_{\max} \left(P \right)}, \frac{\gamma_{1}}{4} \right\}.$$

Решение дифференциального неравенства (П.59) позволяет получить:

$$(\Pi.60) V_{e_{ref}}(t) \leqslant e^{-\overline{\eta}_{e_{ref}}(t-t_0^+-T_0)} V_{e_{ref}}(t_0^++T_0).$$

Откуда следует экспоненциальная сходимость ошибки слежения $e_{ref}(t)$ к нулю:

(II.61)
$$||e_{ref}(t)|| \leq \sqrt{\frac{\lambda_M}{\lambda_m}} ||e_{ref}(t_0^+ + T_0)||e^{-\eta_{e_{ref}}(t - t_0^+ - T_0)},$$

где

$$\eta_{e_{ref}} = \frac{1}{2} \overline{\eta}_{e_{ref}}.$$

Объединение (Π .61) и (Π .51) позволяет записать:

$$(\Pi.62) \quad \|\xi(t)\| \leqslant \max \left\{ \sqrt{\frac{\lambda_M}{\lambda_m}} \|e_{ref} \left(t_0^+ + T_0\right)\|, \right.$$

$$\beta_{\max} + \frac{\gamma_1 w_{\max}}{\Omega_{LB}} \chi_1^{\text{UB}} \right\} e^{-\eta_{e_{ref}} \left(t - t_0^+ - T_0\right)},$$

что вместе с ограниченностью $\xi(t)$ на интервале $[t_0^+;t_0^++T_0]$ позволяет сделать вывод как о глобальной ограниченности $\xi(t)\in L_\infty$, так и об экспоненциальной сходимости $\xi(t)$ к нулю $\forall t\geqslant t_0^++T_0$. Доказательство теоремы завершено.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ioannou P., Sun J. Robust Adaptive Control. N.Y.: Dover, 2013.
- Narendra K.S., Annaswamy A.M. Stable Adaptive Systems. Courier Corporation, 2012.
- 3. Tao G. Adaptive Control Design and Analysis. John Wiley & Sons, 2003.
- 4. Narendra K.S. Hierarchical Adaptive Control of Rapidly Time-Varying Systems Using Multiple Models // Control Complex Syst. Butterworth-Heinemann, 2016. P. 33–66.
- Chowdhary G. V., Johnson E.N. Theory and Flight-Test Validation of A Concurrent-Learning Adaptive Controller // J. Guid. Control & Dyn. 2011. Vol. 34. No. 2. P. 592–607.
- 6. Pan Y., Aranovskiy S., Bobtsov A., Yu H. Efficient Learning from Adaptive Control under Sufficient Excitation // Int. J. Robust & Nonlinear Control. 2019. Vol. 29. No. 10. P. 3111–3124.
- Lee H.I., Shin H.S., Tsourdos A. Concurrent Learning Adaptive Control with Directional Forgetting // IEEE Trans. Automat. Control. 2019. Vol. 64. No. 12. P. 5164–5170.
- 8. Jenkins B.M., Annaswamy A.M., Lavretsky E., Gibson T.E. Convergence Properties of Adaptive Systems and The Definition of Exponential Stability // SIAM J. Control & Optimiz. 2018. Vol. 56. No. 4. P. 2463–2484.
- 9. Ortega R., Nikiforov V., Gerasimov D. On Modified Parameter Estimators for Identification and Adaptive Control. A Unified Framework and Some New Schemes // Annual Reviews in Control. 2020. Vol. 50. P. 278–293.

- 10. Glushchenko A., Petrov V., Lastochkin K. Regression Filtration with Resetting to Provide Exponential Convergence of MRAC for Plants with Jump Change of Unknown Parameters // IEEE Trans. Automat. Control. 2022. P. 1–8. Early Access.
- 11. Kersting S. Adaptive Identification and Control of Uncertain Systems with Switching. PhD thesis, Technische Universität Munchen; 2018. https://mediatum.ub.tum.de/doc/1377055/1377055.pdf. Accessed March 15, 2022.
- 12. Sang Q., Tao G. Adaptive Control of Piecewise Linear Systems: The State Tracking Case // IEEE Trans. on Automat. Control. 2011. Vol. 57. No. 2. P. 522–528.
- 13. Sang Q., Tao G. Adaptive Control of Piecewise Linear Systems With Applications to NASA GTM // Proc. Amer. Control Conf. 2011. P. 1157–1162.
- 14. Sang Q., Tao G. Adaptive Control of Piecewise Linear Systems with Output Feedback for Output Tracking // Conf. Dec. & Control. 2012. P. 5422–5427.
- Sang Q., Tao G. Adaptive Control of Piecewise Linear Systems with State Feedback for Output Tracking // Asian J. Control. 2013. Vol. 15. No. 4. P. 933–943.
- 16. Liberzon D. Switching in Systems and Control. Boston: Birkhauser, 2003.
- 17. De La Torre G., Chowdhary G., Johnson E.N. Concurrent learning adaptive control for linear switched systems // Amer. Control Conf. 2013. P. 854–859.
- 18. Goldar S.N., Yazdani M., Sinafar B. Concurrent Learning Based Finite-Time Parameter Estimation in Adaptive Control of Uncertain Switched Nonlinear Systems // J. Control, Automat. & Electr. Syst. 2017. Vol. 28. No. 4. P. 444–456.
- Wu C., Huang X., Niu B., Xie X.J. Concurrent Learning-Based Global Exponential Tracking Control of Uncertain Switched Systems With Mode-Dependent Average Dwell Time // IEEE Access. 2018. Vol. 6. P. 39086–39095.
- 20. Wu C., Li J., Niu B., Huang X. Switched Concurrent Learning Adaptive Control of Switched Systems with Nonlinear Matched Uncertainties // IEEE Access. 2020. Vol. 8. P. 33560–33573.
- 21. Liu T., Buss M. Indirect Model Reference Adaptive Control of Piecewise Affine Systems with Concurrent Learning // IFAC-PapersOnLine. 2020. Vol. 53. No. 2. P. 1924–1929.
- 22. Du Y., Liu F., Qiu J., Buss M. Online Identification of Piecewise Affine Systems Using Integral Concurrent Learning // IEEE Trans. Circuits & Syst. I: Reg. Papers, 2021. Vol. 68. No. 10 P. 4324–4336.
- 23. Du Y., Liu F., Qiu J., Buss M. A Novel Recursive Approach for Online Identification of Continuous-Time Switched Nonlinear Systems // Int. J. Robust Nonlinear Control. 2021. P. 1–20.
- 24. Narendra K.S., Balakrishnan J. Adaptive Control Using Multiple Models // IEEE Trans. Automat. Control. 1997. Vol. 42. No. 2. P. 171–187.
- 25. Глущенко А.И., Ласточкин К.А., Петров В.А. Адаптивное управление с гарантией экспоненциальной устойчивости. Часть І. Объекты с постоянными параметрами // АиТ. 2022. № 4. С. 62–99.
 - Glushchenko A., Lastochkin K., Petrov V. Exponentially Stable Adaptive Control. Part I. Time-Invariant Plants // Autom. Remote Control. 2022. V. 83. No. 4. P. 548–578.
- 26. Glushchenko A., Lastochkin K. Unknown Piecewise Constant Parameters Identification with Exponential Rate of Convergence // Int. J. Adap. Control Signal Proc. 2023. V. 37. No. 1. P. 315–346.

- 27. Glushchenko A., Lastochkin K. Exponentially Stable Adaptive Optimal Control of Uncertain LTI Systems // arXiv preprint arXiv:2205.02913. 2022. P. 1–37.
- 28. Glushchenko A., Lastochkin K. Exponentially Convergent Direct Adaptive Pole Placement Control of Plants with Unmatched Uncertainty under FE Condition // IEEE Control Syst. Letters. 2022. Vol. 6. P. 2527–2532.
- 29. Wang L., Ortega R., Bobtsov A., Romero J., Yi B. Identifiability Implies Robust, Globally Exponentially Convergent On-Line Parameter Estimation: Application to Model Reference Adaptive Control // preprint arXiv:2108.08436; 2021. P. 1–16.
- 30. Hakem A., Cocquempot V., Pekpe K. Switching time estimation and active mode recognition using a data projection method // Int. J. App. Math. & Comp. Sc. 2016. Vol. 26. No.4. P. 827–840.

Статья представлена к публикации членом редколлегии А.А. Бобцовым.

Поступила в редакцию 11.07.2022

После доработки 21.11.2022

Принята к публикации 30.11.2022