Нелинейные системы

© 2023 г. В.Н. ТХАЙ, д-р физ.-мат. наук (tkhai@ipu.ru) (Институт проблем управления им. В.А. Трапезникова РАН, Москва)

ПРИТЯГИВАЮЩИЙ ЦИКЛ В СВЯЗАННОЙ МЕХАНИЧЕСКОЙ СИСТЕМЕ С ФАЗОВЫМИ СДВИГАМИ В КОЛЕБАНИЯХ ПОДСИСТЕМ

Рассматривается множество обратимых механических систем с колебаниями одного периода и индивидуальными фазовыми сдвигами в них. Решается задача агрегирования связанной системы с притягивающим циклом. Развивается подход с выбором ведущей (управляющей) системы, которая через односторонную связь—управление действует на остальные (ведомые) системы: в агрегированной системе непосредственные связи между ведомыми системами отсутствуют. Применяются универсальные связи—управления. Особое внимание уделяется консервативным системам. Даются возможные сценарии функционирования агрегированной системы.

Ключевые слова: обратимая механическая система, симметричные периодические движения, связи—управления, ведущая система, ведомая система, притягивающий цикл, стабилизация.

DOI: 10.31857/S0005231023120103, **EDN:** NEQFMD

1. Предварительные замечания

Модели, содержащие связанные подсистемы, изучаются в различных областях знаний. В механике такой (классической) моделью стали симпатические маятники А. Зоммерфельда. Другие примеры даются, например, в [1–5].

Агрегирование заключается в конструировании на основе данного множества систем связанной системы, которая как одно целое будет обладать нужным динамическим свойством. Это свойство в задаче стабилизации колебания достигается, в частности, в притягивающем цикле системы. Само агрегирование происходит путем нахождения подходящих связей—управлений между системами.

Задача агрегирования в [6] решалась для набора консервативных систем. Доказывалось, что [6, лемма 1] цикл в системе существует только в случае, когда все механические системы, за исключением, быть может, одной системы с вырожденным семейством колебаний, содержат невырожденные семейства колебаний. При этом агрегирование проводилось для систем, содержащих невырожденные семейства колебаний, которые в несвязанной системе, как в целом, также образуют невырожденное семейство. Рассматривался случай,

когда колебания в системах были синхронизированными по фазе. Применялось универсальное управление из [7].

В то же время интерес представляют режимы колебаний, в которых фазы в колебаниях систем равноудалены друг от друга, например, или соседние системы колеблются в противофазе. Поэтому в общей ситуации встает задача нахождения связей—управлений, посредством которых реализуется притягивающий цикл связанной механической системы с фазовыми сдвигами в колебаниях входящих в него систем. Интересно также агрегировать связанную систему, содержащую одну или несколько механических систем с вырожденными семействами колебаний. Таким образом, возникает общая постановка задачи агрегирования связанной системы с притягивающим циклом на множестве механических систем, допускающих колебания.

Заметим, что подходы к агрегированию автономной системы общего вида с притягивающим циклом предложены в [8], а способы агрегирования сложной системы методом Ляпунова приводятся в [9].

2. Постановка задачи

Рассматривается множество Ξ из n гладких обратимых механических систем с одной степенью свободы

(1)
$$\ddot{q}_s + f_s(q_s, \dot{q}_s) = 0, \quad f_s(q_s, -\dot{q}_s) = f_s(q_s, \dot{q}_s), \quad s = 1, \dots, n.$$

Фазовый портрет s-й системы симметричен относительно неподвижного множества $M_s = \{q_s, \dot{q}_s : \dot{q}_s = 0\}$, где q_s – обобщенная координата. Предполагается, что каждая из систем множества Ξ допускает одночастотное колебание. Оно будет симметричным относительно множества M_s и представляет собой симметричное периодическое движение (СПД). СПД описывается формулой

$$q_s = \varphi_s(h_s, t + \gamma_s), \quad s = 1, \dots, n,$$

в которой от параметра h_s зависит период $T_s(h_s)$, а параметром γ_s задается сдвиг начальной точки по времени: при $\gamma_s=0$ начальная точка принадлежит неподвижному множеству M_s . В этом случае СПД описывается четной функцией по t. СПД всегда образуют семейства. В консервативной системе функция f_s не зависит от скорости \dot{q}_s .

Далее используется определение из [6].

Определение 1. Семейство СПД по параметру h называется невырожденным, если на нем производная от периода T(h) по переменной h отлична от нуля. СПД невырожденного семейства называется невырожденным.

Период T(h) на семействе невырожденных СПД может возрастать или убывать. К примеру, период колебаний математического маятника монотонно увеличивается вместе с энергией маятника, и колебания — невырожденные.

Решения уравнения $\ddot{x} + x^3 = 0$ принадлежат к семейству СПД с убывающим периодом.

Колебания линейного осциллятора — изохронные и образуют вырожденное семейство СПД. В нелинейной системе вырожденное СПД, как правило, находится на границе семейства невырожденных СПД. В консервативной системе за параметр h обычно выбирается постоянная интеграла энергии.

В общей постановке задачи рассматривается множество Ξ обратимых механических систем, содержащих невырожденные (и/или вырожденные) семейства СПД с возрастающими (и/или убывающими) на семействе периодами. При этом в случае одновременного наличия в Ξ системы с возрастающим ($dT_1/dh_1>0$) периодом и системы с убывающим ($dT_2/dh_2<0$) периодом кривые периодов пересекаются в одной точке, где $T_1(h_1^*)=T_2(h_2^*)=T^*$. Фазы колебаний в общем случае различны. При наличии в Ξ еще системы с вырожденным семейством период на нем также будет равняться T^* . Набор из трех уравнений в Ξ приводит в связанной системе к двум произвольным фазам колебаний в системах. В случае произвольного числа n уравнений в Ξ принимается, что $\gamma_s=\gamma_1+\delta_s, s=2,\ldots,n$. Поэтому ставится задача агрегирования связанной системы с притягивающим циклом при всех возможных векторах $\delta=(\delta_2,\ldots,\delta_n)$.

Далее исследуется автономная связанная механическая система

(2)
$$\ddot{q}_s + f_s(q_s, \dot{q}_s) = \varepsilon \sigma_s u_s(q, \dot{q}), \quad s = 1, \dots, n,$$

где связь-управление

(3)
$$u(q, \dot{q}) = (u_1(q, \dot{q}), \dots, u_n(q, \dot{q}))$$

действует с малым коэффициентом усиления ε : переключатели σ_s равны +1 или (-1). Предполагается, что при $\varepsilon=0$ система (2), рассматриваемая как одно целое, допускает T^* -периодическое СПД. Ставится задача нахождения связи–управления (3), гарантирующей существование в системе (2) притягивающего цикла с периодом T^* .

Поставленная задача содержит, в качестве частных, случаи: 1) все входящие в множество Ξ обратимые механические системы допускает семейство невырожденных СПД с возрастающим (убывающим) периодом, 2) характер монотонности периода в системах различный, 3) множество механических систем содержит невырожденные и вырожденные семейства СПД.

В [6] случай 1) исследовался для консервативных систем при дополнительном предложении, что множество несвязанных систем, как целое, допускает невырожденное семейство СПД.

3. Универсальные связи-управления при $\delta \neq 0$

Для вектора $\delta \neq 0$ находятся универсальные связи—управления, которые гарантируют существование и орбитальную асимптотическую устойчивость

цикла системы (2). Такие связи-управления можно рассматривать как обобщение связей из [7].

Предлагаются универсальные связи-управления

(4)
$$u_1 = [1 - K_1(h_1)q_1^2]\dot{q}_1, u_j = [1 - K_j(h_j, \delta_j)q_1^2]\dot{q}_j, \quad j = 2, \dots, n.$$

Функция $K_1(h_1)$ и функции $K_j(h_j, \delta_j)$ вычисляются далее.

Принимается, что при $\varepsilon=0$ система (2) допускает T^* -периодическое СПД, которому в подсистемах соответствуют значения $h_s=h_s^*,\ s=1,\ldots,n.$ Из формул (4) следует, что уравнения в (2) становятся не равноправными: конструируется управляемая связанная система, в которой система с номером s=1 становится ведущей, а остальные системы — ведомыми. Другая особенность управлений (4) заключается в том, что подсистемы с номерами $s=2,\ldots,n$ не оказывают непосредственного влияния друг на друга. С учетом этих замечаний к анализу предъявляются n-1 независимых однотипных подсистем

(5)
$$\ddot{q}_1 + f_1(q_1, \dot{q}_1) = \varepsilon \sigma_1 [1 - K_1(h_1^*) q_1^2] \dot{q}_1,$$

$$\ddot{q}_j + f_j(q_j, \dot{q}_j) = \varepsilon \sigma_j [1 - K_j(h_j^*, \delta_j) q_1^2] \dot{q}_j, \quad j = 2, \dots, n.$$

Для подсистемы, выделенной в (5) номером j, решается задача о цикле при $\varepsilon \neq 0$. Тогда, применяя полученный результат ко всем подсистемам с номерами $j=2,\ldots,n$, приходим к решению задачи о цикле для связанной системы. В системе (5) через $K_1(h_1^*)$ и $K_j(h_j^*)$ обозначены числа. При этом h_1^* и h_j^* означают, что управления выбраны для СПД с периодом T^* , которому соответствуют значения $h_1=h_1^*$ и $h_j=h_j^*$. С другой стороны, при решении задачи управления в (5) для другой пары (h_1,h_j) , выбирается другая пара коэффициентов $(K_1(h_1),K_j(h_j,\delta))$: в (6) применяется управление, в котором меняются коэффициенты K_1 и K_j . Следовательно, в (6) конструируется адаптивная система управления.

Таким образом, для адаптивной системы управления (6) необходимо найти зависимости $K_1(h_1)$ и $K_j(h_j, \delta)$, во второй из которых содержится параметр δ , которые обеспечивают существование притягивающего цикла.

Для подсистемы с номером j записывается система амплитудных уравнений

$$I_{1}(h_{1}) \equiv \int_{0}^{T^{*}} [1 - K_{1}(h_{1}^{*})\varphi_{1}^{2}(h_{1}, t)]\dot{\varphi}_{1}(h_{1}, t)\psi_{1}(h_{1}, t)dt = 0,$$

$$I_{j}(h_{1}, h_{j}, \delta_{j}) \equiv \int_{0}^{T^{*}} [1 - K_{j}(h_{j}^{*}, \delta_{j})\varphi_{1}^{2}(h_{1}, t)]\dot{\varphi}_{j}(h_{j}, t + \delta_{j})\psi_{j}(h_{j}, t + \delta_{j})dt = 0,$$

$$(6)$$

для нахождения $h_1 = h_1^*$ и $h_j = h_j^*$, отвечающих необходимым условиям существования цикла с периодом T^* в управляемой системе (5). Через

 $(\psi_1(h_1,t),\psi_j(h_j,t+\delta_j))$ в (6) обозначается решение сопряженного уравнения для $q_1=\varphi_1(h_1,t),\ q_j=\varphi_j(h_j,t+\delta_j).$ Вычисление этого решения дается в Приложении.

В системе (6) первое из уравнений одно и то же для всех номеров j. Оно анализируется независимо от второго уравнения.

Сначала рассматривается первое уравнение в (5). Необходимые условия существания цикла должны выполняться для всех значений параметра h_1 и соотвествующих значений периода $T_1(h_1)$. Поэтому справедливо тождество

(7)
$$\int_{0}^{T_{1}(h_{1})} [1 - K_{1}(h_{1})\varphi_{1}^{2}(h_{1}, t)]\dot{\varphi}_{1}(h_{1}, t)\psi_{1}(h_{1}, t)dt,$$

откуда выводится формула

$$K_1(h_1) = \frac{\int\limits_0^{T_1(h_1)} \dot{\varphi}_1(h_1, t) \psi_1(h_1, t) dt}{\int\limits_0^{T_1(h_1)} \varphi_1^2(h_1, t) \dot{\varphi}_1(h_1, t) \psi_1(h_1, t) dt}.$$

В этом выражении знаменатель не равен нулю, что показывается в случае консервативной системы в разделе 4. В общем случае обратимой механической системы утверждение следует из приведенного в Приложении вычисления решения сопряженного решения.

Из тождества (7) с учетом нечетности функции $\dot{\varphi}_1(h_1,t)$ и равенства $T_1(h_1^*)=T^*$ вычисляется производная от функции $I_1(h_1)$ в точке $h_1=h_1^*$:

$$\frac{dI_1(h_1^*)}{dh_1} = \chi_1 \nu_1,$$

$$\chi_1 = \frac{dK_1(h_1^*)}{dh_1}, \quad \nu_1 = \int_0^{T^*} \varphi_1(h_1^*, t)^2 \dot{\varphi}_1(h_1^*, t) \psi_1(h_1^*, t) dt.$$

Выполнение равенства $I(h_1^*)=0$ означает, что в первом уравнении системы (5) выполняется необходимое условие существования T^* -периодического решения. Неравенство $\chi_1\nu_1\neq 0$ гарантирует, что решение является циклом. При надлежащем выборе знака σ_1 цикл становится притягивающим (см. [7]).

Аналогично исследуется второе уравнение системы (6). Для него определяется функция

$$K_j(h_j, \delta_j) = \frac{\int\limits_0^{T_j(h_j)} \dot{\varphi}_j(h_j, t + \delta_j) \psi_j(h_j, t + \delta_j) dt}{\int\limits_0^{T_j(h_j)} \varphi_1^2(h_1^*, t) \dot{\varphi}_j(h_j, t + \delta_j) \psi_j(h_j, t + \delta_j) dt},$$

и при $h_j = h_i^* \; (h_1 = h_1^*)$ вычисляется производная

$$\frac{dI_{j}(h_{1}^{*}, h_{j}^{*}, \delta_{j})}{dh_{j}} = \chi_{j}\nu_{j},$$

$$\chi_{j} = \frac{dK_{j}(h_{j}^{*}, \delta_{j})}{dh_{j}}, \quad \nu_{j} = \int_{0}^{T^{*}} \varphi_{1}(h_{1}^{*}, t)^{2} \dot{\varphi}_{j}(h_{j}^{*}, t + \delta_{j}) \psi_{j}(h_{j}^{*}, t + \delta_{j}) dt.$$

Условия $\chi_1\nu_1 \neq 0$, $\chi_j\nu_j \neq 0$ являются теперь достаточными для существования простого корня (h_1^*,h_j^*) системы амплитудных уравнений (6) при фиксированном j. Тогда простота корня гарантирует существование цикла в системе (5) с фиксированным номером j. Цикл будет притягивающим, если переключатели выбираются из условий $\sigma_1\chi_1\nu_1 < 0$, $\sigma_i\chi_i\nu_i < 0$.

Рассмотрим системы амплитудных уравнений (6) для всех номеров $j=2,\ldots,n$. Тогда при выполнении неравенств $\chi_s\nu_s\neq 0,\, s=1,\ldots,n$ в связанной системе (5) реализуется цикл. При дополнительном условии $\sigma_s\chi_s\nu_s<0,\, s=1,\ldots,n$ цикл становится притягивающим.

Таким образом, справедлива теорема 1.

T е о р е м а 1. Пусть множество обратимых механических систем c одной степенью свободы допускает T^* -периодическое движение. Тогда связанная механическая система (5), где $j=2,\ldots,n$, обладает единственным циклом периода T^* , если $\chi_s \nu_s \neq 0$, $s=1,\ldots,n$. При дополнительных условиях $\sigma_s \chi_s \nu_s < 0$, $s=1,\ldots,n$ цикл становится притягивающим.

Замечание 1. Цикл связанной системы (5) определяется с точностью до одного произвольного сдвига на траектории. При этом порождающие цикл колебания имеют сдвиги $\delta_2, \ldots, \delta_n$ по фазе относительно фазы колебания в первом уравнении системы (5).

Замечание 2. В системе (6) интеграл

$$\kappa_j = \int_0^{T^*} \dot{\varphi}_j(h_j^*, \tau + \delta_j) \psi_j(h_j^*, \tau + \delta_j) d\tau$$

на периоде не зависит от δ_j . Поэтому при $\kappa_j \neq 0$ задается T^* -периодическая по δ_j функция

(8)
$$K_j(h_j^*, \delta_j) = \frac{\kappa_j}{\int\limits_0^{T^*} \varphi_1^2(h_1^*, \tau - \delta_j) \dot{\varphi}_j(h_j^*, \tau) \psi_j(h_j^*, \tau) d\tau},$$

которая будет T^* -периодической по δ_i .

 $3 \, a \, m \, e \, q \, a \, h \, u \, e \, 3$. В формуле (8) неравенство нулю знаменателя определяет область значений сдвига фазы δ_j в j-й подсистеме системы (5).

Замечание 4. В теореме 1 конструируется кусочно-непрерывная система (5). Существование цикла в силу независимости амплитудных уравнений (6) от σ_j гарантируется в каждой гладкой без переключения системе. Условия притяжения ($\chi_s \nu_s \neq 0$) должны выполняться в подсистеме на траекторях как с $h_s > h_s^*$, так и с $h_s < h_s^*$. Поэтому знаки σ_s для этих траекторий, как правило, — разные. Пример закона управления переключателями дается, например, в [10].

4. Консервативные системы

Для множества консервативных систем функции f_s в (1) не зависят от скоростей \dot{q}_s , и каждая система при $\varepsilon=0$ допускает интеграл энергии. Уравнения в вариациях для СПД содержат симметричную матрицу, поэтому для рассматриваемой системы с одной степенью свободы выполнятся равенства

$$\psi_s(h_s^*, \tau + \delta_s) = -\dot{\varphi}_s(h_s^*, \tau + \delta_s), \quad s = 1, \dots, n \quad (\delta_1 = 0).$$

В результате получается: $\nu_s > 0, \kappa_s < 0, \ s = 1, \dots, n$.

Подынтегральная функция в (8) получается $(T^*/2)$ -периодической по δ и каждому значению $K_j(h_j^*, \delta^*)$ отвечают две симметричные относительно неподвижного множества точки. Этим точкам отвечает один цикл.

Таким образом, справедлива следующая теорема 2.

Tе о р е м а 2. Для множества консервативных систем с одной степенью свободы, допускающей T^* -периодическое СПД, связанная система (5) обладает единственным притягивающим циклом, если выполняются условия $\sigma_s \chi_s < 0, \ s=1,\ldots,n$.

Пример 1. В связанной системе

(9)
$$\ddot{x} + \sin x = \varepsilon (1 - K_x(h_x)x^2)\dot{x}, \\ \ddot{y} + y^3/4 = \sigma \varepsilon (1 - K_y(h_y, \delta)x^2)\dot{y}$$

при $\varepsilon=0$ первое уравнение описывает математический маятник. Период $T_x(h_x)$ на семействе колебаний, начиная с 2π , монотонно растет с энергией маятника h_x , причем функция $K_x(h_x)$ монотонно убывает (см. [11]). Решения второго уравнения образуют семейство колебаний с убывающим от постоянной энергии h_y периодом $T_y(h_y)$.

В самом деле, период $T_y(h_y)$ вычисляется по формуле

$$T_y(h_y) = 2 \int_{-y(0)}^{y(0)} \frac{dy}{\sqrt{h - y^4}},$$

где y(0) — начальное значение переменой y. Тогда, переходя к переменной $z=y/h_y^{1/4}$, получим

$$T_y(h_y) = \frac{2}{h_y^{1/4}} \int_1^{-1} \frac{dz}{\sqrt{1-z^4}} = \frac{a}{h_y^{1/4}}, \quad a = 4 * 1.3 \dots,$$

явную зависимость периода от энергии системы.

Из проведенного анализа следует, что для любого h_x^* , $T_x(h_x^*) > 2\pi$, находится такое h_y^* , что в (9) выполняется равенство периодов $T_x(h_x^*) = T_y(h_y^*)$ с возрастающей функцией $f\colon h_y^* = f(h_x^*)$. Следовательно, система (9) при $\varepsilon = 0$ допускает однопараметрическое по h_x^* семейство СПД.

Функция $K_x(h_x)$ монотонно убывает. Поэтому при $h_x = h_x^*$ первое уравнение в (9) обладает притягивающим циклом. Выполнение еще одного условия $dK_y(h_y^*,\delta)/dh_y \neq 0$ по теореме 2 приводит к притягивающему циклу связанной системы (9).

Таким образом, для любого колебания математического маятника, отвечающего значению энергии h_x^* , находится энергия h_y^* второго уравнения в (9) такая, что в связанной системе реализуется притягивающий цикл. При этом фазы в колебаниях уравнений различаются на желаемое число δ .

5. Случай вырожденного семейста СПД

В [6, лемма 1] установлено, что в случае одинаковых фаз в колебаниях подсистем цикл в связанной системе существует только в случае, когда все механические системы, за исключением, быть может, одной системы с вырожденным семейством СПД, содержат невырожденные семейства СПД. Здесь более подробно рассматривается случай, когда одно из семейств является вырожденным. Допускается, что колебания в системах не синхронизированы по фазам. В системе (5) полагается n=2.

Анализируется система

(10)
$$\ddot{x} + x = \varepsilon (1 - K_x(h_x)x^2)\dot{x},$$

$$\ddot{y} + f(y) = \varepsilon \sigma (1 - K_y(h_y, \delta)x^2)\dot{y},$$

в которой при $\varepsilon=0$ первое уравнение содержит вырожденное семейство колебаний, а во втором уравнении период колебаний монотонно зависит от энергии h_y . Решение несвязанной системы при этом описывается формулами $x=A_x\cos t$ и $y=\varphi(h_y,t+\delta)$. На порождающем решении $A_x=2/\sqrt{K_x}$, а значению постоянной h_y^* во втором уравнении соответствует период колебаний 2π . Находится связь между $K_y(h_y,\delta)$ и K_x .

Формула (8) для системы (10) записывается в виде

(11)
$$K_{y}(h_{y}^{*},\delta) = -\frac{\kappa}{T^{*}} \int_{0}^{T^{*}} A_{x}^{2} \cos^{2} t \dot{\varphi}^{2}(h_{y}^{*}, t + \delta) dt$$

$$\kappa = -\int_{0}^{T^{*}} \dot{\varphi}^{2}(h_{y}^{*}, t) dt, \quad T^{*} = 2\pi.$$

Преобразуем интеграл в знаменателе

$$\begin{split} \frac{1}{2} \int\limits_0^{T^*} (1+\cos 2t) \dot{\varphi}^2(h_y^*,t+\delta) dt &= \frac{1}{2} \int\limits_\delta^{T^*+\delta} \dot{\varphi}^2(h_y^*,\tau) d\tau + \\ + \frac{1}{2} \left(\cos 2\delta \int\limits_\delta^{T^*+\delta} \cos 2\tau \dot{\varphi}^2(h_y^*,\tau) d\tau + \sin 2\delta \int\limits_\delta^{T^*+\delta} \sin 2\tau \dot{\varphi}^2(h_y^*,\tau) d\tau \right). \end{split}$$

Здесь в скобке первый интеграл от 2π -периодической функции на периоде не зависит от δ , второй интеграл берется от нечетной функции и обращается в нуль. Получается линейная функция от $\cos 2\varphi$; $K_y(h_y^*, \delta)$ задается четной, π -периодической функцией δ .

С учетом равенства $K_x = 4/A_x^2$ формула (11) преобразуется к виду

(12)
$$K_{y}(h_{y}^{*}, \delta) = \frac{K_{x} \int_{0}^{T^{*}} \dot{\varphi}^{2}(h_{y}^{*}, t)dt}{2 \int_{0}^{T^{*}} (1 + \cos 2\delta \cos 2t) \dot{\varphi}^{2}(h_{y}^{*}, t)dt}.$$

Производная от (12) будет нечетной π -периодической функцией δ . В интервале $\delta \in (-\pi/2, \pi/2)$ эта производная обращается в нуль при $\delta = 0$.

Для построения цикла связанной системы (10) применяется теорема 2. Характеристика $K_y(h_y, \delta)$ вычисляется для заданной функции $\varphi(h_y, t)$. Для математического маятника функция $K_y(h_y, \delta)$ при $\delta = 0$ мотононно убывает (см. [11]).

 $\Pi p u m e p 2$. Система (10), в которой во втором уравнении функция $K_y(h_y,\delta)$ не зависит от δ и совпадает с K_x , применяется в мехатронной схеме стабилизации колебаний [12]. В ней путем выбора амплитуды A_x в точке $\delta = \delta^*$ настраивается режим выполнения равенства $K_y(h_y^*,\delta) = K_x = 4/A_x^2$. В результате получается один из возможных сценариев рождения цикла, описанный в [10]: само существование сценария доказывалось путем анализа второго уравнения в (10) с подстановкой порождающего решения первого уравнения. Сдвиг по времени δ^* между колебаними осциллятора Ван дер Поля и механической системы находится в мехатронной схеме стабилизации по формуле (12).

6. Случай двух вырожденных семейств

В системе (10) осцлллятор Ван дер Поля применяется в качестве генератора сигналов для механической системы, допускающей невырожденное семейство колебаний. Сама система предназначена для стабилизации механических колебаний. В разделе 5 показано, что при $K_y = K_x$ сдвиг δ в решениях уравнений системы (10) находится по формуле (12).

Интересно проанализировать, как в цикле связанной системы синхронизируются амплитуда и фаза колебаний в ведущей и ведомой системах. Задача рассматривается для равноправности систем в Ξ, на примере двух идентичных линейных осцилляторов. Тогда к анализу предъявляется связанная система

(13)
$$\ddot{x} + x = \varepsilon (1 - K_x(h_x)x^2)\dot{x}, \\ \ddot{y} + y = \varepsilon \sigma (1 - K_y(h_y, \delta)x^2)\dot{y},$$

где первым уравнением описывается осциллятор Ван дер Поля, а второе уравнение становится ведомым для этого осциллятора.

При $\varepsilon=0$ система (13) по каждой координате колеблется с частотой 1: колебания – изохронные. Порождающие колебания описываются формулами

$$x = A_x \cos t$$
, $A_x = 2/\sqrt{K_x}$, $y = A_y \cos(t + \delta)$.

При этом для второго уравнения в (13) вычисляется $\kappa = -\int\limits_0^{2\pi} A_y^2 \sin^2 t dt =$ $= -\pi A_y^2.$

В связанной системе $K_y = K_y(h_y, \delta)$. Поэтому по формуле (8) получается

$$K_y(h_y, \delta) = -\frac{4\kappa}{A_x^2 A_y^2 \pi (2 - \cos 2\delta)} = \frac{4}{A_x^2 (2 - \cos 2\delta)} = \frac{K_x}{2 - \cos 2\delta}.$$

Отсюда следует, что в цикле связанной системы амплитуды колебаний в ведущей и ведомой системах синхронизируются $(K_y = K_x)$ только при $\delta = 0$, сихронизация фаз происходит также при $\delta = 0$.

Из формулы $K_y(h_y,\delta)=2/(h_y(2-\cos 2\delta))$ следует, что условия существования цикла в связанной системе (10) выполняются везде по δ . Для притягивающего цикла выбирается закон управления $\sigma=1$.

Заметим, что амплитуды колебаний в системах связанной системы (13) близки к линейным колебаниям. Поэтому в цикле (рабочем режиме) рассматриваемой конкретной связанной системы (13), независимо от сдвига δ , колебания в системах будут казаться синхронизированными по δ .

7. Заключение

Предлагается подход к агрегированию связанной системы с притягивающим циклом на данном множестве n обратимых механических систем с колебаниями. Выбирается ведущая (управляющая) система, которая односторонней связью—управлением действует на остальные (ведомые) системы: непосредственные связи между ведомыми системами отсутствуют. Сама связанная система колеблется как n-1 независимых подсистем, управляемых ведущей системой. При этом в колебании каждой системы допускается индивидуальный сдвиг по фазе с фазой колебания в ведущей системе.

Для агрегироваванной системы возможны различные сценарии управления. При отсутствии сдвига фаз в подсистемах реализуется (см. [6]) сценарий одновременного управления n-1 механических систем. При задании закона изменения сдвигов в n-1 механических системах в управляемой связанной системе реализуется конвеерный сценарий, когда, например, достижение максимальной амплидуды колебания в ведомых системах разнесены по времени. Для n=2 реализуется распространенный сценарий ведущий-ведомый, описанный, к примеру, в [12] для мехатронной схемы стабилизации колебаний.

Подход к агрегированию изложен на примере обратимых механических систем на плоскости. Он остается справедливым для множества механических систем произвольной размерности. Построенная связанная система представляет собой один уровень иерархии многоуровневой агрегированной системы с притягивающим циклом (по вопросу см. [8]).

ПРИЛОЖЕНИЕ

Для вычисления сопряженного решения полезна лемма 1.

Рассматривается гладкая обратимая механическая система второго порядка

$$\dot{u}=U(u,v),\quad \dot{v}=V(u,v),\quad U(u,-v)=-U(u,v),\quad V(u,-v)=V(u,v).$$

Пусть система допускает СПД. Оно описывается фукциями

$$u=\varphi(t),\quad v=\theta(t),\quad \varphi(-t)=\varphi(t),\quad \theta(-t)=-\theta(t).$$

Уравнения в вариациях для СПД записываются в виде

(II.1)
$$\dot{x} = a_{-}(t)x + a_{+}(t)y, \dot{y} = b_{+}(t)x + b_{-}(t)y,$$

где $a_{\pm}(t), b_{\pm}(t)$ обозначаются четные (+) и нечетные (-) периодические функции. Они имеют решение $x=\dot{\varphi}(t), y=\dot{\theta}(t).$

 \mathcal{H} емма 1. По данному СПД решение сопряженной κ (П.1) системы вычисляется по конструктивным формулам.

Доказательство. Выполняется преобразование

$$x = \xi_+(t)\tilde{x}, \quad y = \eta_+(t)\tilde{y}$$

с четными периодическими функциями $\xi_+(t)$ и $\eta_+(t)$, средние которых отличны от нуля. Тогда получается

$$\xi_{+}(t)\dot{\tilde{x}} + \dot{\xi}_{+}(t)\tilde{x} = a_{-}(t)\xi_{+}(t)\tilde{x} + a_{+}(t)\eta_{+}(t)\tilde{y},$$

$$\eta_{+}(t)\dot{\tilde{y}} + \dot{\eta}_{+}(t)\tilde{y} = b_{+}(t)\xi_{+}(t)\tilde{x} + b_{-}(t)\eta_{+}(t)\tilde{y}.$$

Функции $\xi_{+}(t)$ и $\eta_{+}(t)$ выбираются такими, чтобы выполнялись равенства

$$\dot{\xi}_{+} = a_{-}(t)\xi_{+}, \quad \dot{\eta}_{+} = b_{-}(t)\eta_{+}.$$

Тогда в преобразованной системе

$$\dot{\tilde{x}} = \tilde{a}_{+}(t)\tilde{y}, \quad \dot{\tilde{y}} = \tilde{b}_{+}(t)\tilde{x}$$

отсутствуют нечетные функции t.

Аналогично преобразуется сопряженная система

$$x_1 = \xi_{1+}(t)\tilde{x}_1, \quad y_1 = \eta_{1+}(t)\tilde{y}_1.$$

Получается

(
$$\Pi$$
.3) $\dot{\tilde{x}}_1 = -\tilde{b}_+(t)\tilde{y}_1, \quad \dot{\tilde{y}}_1 = -\tilde{a}_+(t)\tilde{x}_1.$

В переменных $\tilde{x}_1 = -\tilde{y}$, $\tilde{y}_1 = \tilde{x}$ полученная система (П.3) совпадает с (П.2). Значит, ее решение дается формулами $\tilde{x}_1 = -\xi_+(t)^{-1}\dot{\theta}(t)$, $\tilde{y}_1 = \eta_+(t)^{-1}\dot{\varphi}(t)$. Поэтому решение сопряженной системы записывается в виде

$$x_1 = -\xi_{1+}(t)\xi_+(t)^{-1}\dot{\theta}(t), \quad y_1 = \eta_{1+}(t)\eta_+(t)^{-1}\dot{\varphi}(t).$$

Лемма доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Морозов Н.Ф.*, *Товстик П.Е.* Поперечные колебания стержня, вызванные кратковременным продольным ударом // ДАН. 2013. Т. 452. № 1. С. 37–41.
- Kovaleva A., Manevitch L.I. Autoresonance Versus Localization in Weakly Coupled Oscillators // Physica D: Nonlinear Phenomena. 2016. V. 320 (15 Apr. 2016). P. 1–8.
- 3. *Кузнецов А.П.*, *Сатаев И.Р.*, *Тюрюкина Л.В.* Вынужденная синхронизация двух связанных автоколебательных осцилляторов Ван дер Поля // Нелинейная динамика. 2011. Т. 7. № 3. С. 411–425.
- 4. Rompala K., Rand R., Howland H. Dynamics of Three Coupled Van der Pol Oscillators with Application to Circadian Rhythms // Communicat. Nonlin. Sci. Numerical Simulation. 2007. V. 12. No. 5. P. 794–803.
- 5. Yakushevich L.V., Gapa S., Awrejcewicz J. Mechanical Analog of the DNA Base Pair Oscillations // 10th Conf. on Dynamical Systems Theory and Applications. Lodz: Left Grupa, 2009. P. 879–886.
- 6. *Барабанов И.Н.*, *Тхай В.Н.* Стабилизация цикла в связанной механической системе // АиТ. 2022. № 1. С. 67–76. *Barabanov I.N.*, *Tkhai V.N.* Stabilization of a Cycle in a Coupled Mechanical System // Autom. Remote Control. 2022. V. 83. No. 1. P. 54–61.
- Тхай В.Н. Стабилизация колебания управляемой механической системы // АиТ. 2019. № 11. С. 83–92.
 Tkhai V.N. Stabilizing the Oscillations of a Controlled Mechanical System // Autom. Remote Control. 2019. V. 80. No. 11. P. 1996–2004.
- 8. *Txaй B.H.* Агрегирование автономной системы с притягивающим циклом // AиT. 2022. № 3. С. 41–53. *Tkhai V.N.* Aggregation of an Autonomous System with an Attracting Cycle // Autom. Remote Control. 2022. V. 83. No. 3. P. 332–342.

- 9. Александров А.Ю., Платонов А.В. Метод сравнения и устойчивость движений нелинейных систем. СПб: Изд-во СПбГУ. 2012.
- 10. Txaй B.H. Режим цикла в связанной консервативной системе // AиT. 2022. № 2. С. 90–106.
 - *Tkhai V.N.* Cycle Mode in a Coupled Conservative System // Autom. Remote Control. 2022. V. 83. No. 2. P. 237–251.
- 11. Tkhai V.N. On stabilization of pendulum type oscillations of a rigid body // Proc. 2018 14th Int. Conf. on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB).

IEEE Xplore: https://ieeexplore.ieee.org/document/8408408 https://doi.org/10.1109/STAB.2018.8408408

12. *Тхай В.Н.* Мехатронная схема стабилизации колебаний // Изв. РАН. Теория и системы управления. 2022. № 1. С. 9–16.

Статья представлена к публикации членом редколлегии А.М. Красносельским.

Поступила в редакцию 24.04.2023

После доработки 19.09.2023

Принята к публикации 30.09.2023