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1. INTRODUCTION

As was established in [3], a single trajectory can be used to fully characterize a linear time-
invariant dynamic system under the so-called persistency of excitation. In view of this fundamental
result, different direct control design schemes based on experimental data were proposed in [4]
for objects with unknown state dynamics matrices and given target output matrices under the
persistency of excitation. According to [5], it suffices to fulfill the data informativity condition in
order to construct control laws from experimental data, which is less restrictive than the persistency
of excitation. For a fully uncertain object, H2- andH∞-optimal control laws were constructed based
on input and output measurements using a matrix version of S-lemma [6] in the publication [7] and
using Petersen’s lemma [8] in the publication [5–7, 9]. In [10, 11], the state feedback parameters
were calculated from a priori data and open-loop measurements of the input and output of a
discrete-time uncertain object subjected to an unmeasured disturbance from a definite class.

2. PROBLEM STATEMENT

2.1. Ccccccccc Vvvvvvv

Consider an uncertain system described by

∂x(t) = Ax(t) +Bu(t) + w(t), x(0) = x0,

z(t) = Cx(t) +Du(t)
(1)

with the following notations: ∂ is the differentiation operator in the continuous-time case or the
shift operator in the discrete-time case; x(t)∈Rnx is the state vector, u(t)∈Rnu is the control
vector (input), w(t)∈Rnw is an exogenous disturbance, and z(t)∈Rnz is the target output. By
assumption, the disturbance w(t)∈L2(l2) and the system matrices A, B, C, andD are unknown. In
general, it is required to design linear state-feedback control laws based on a priori and experimental
data so that the damping level of the disturbances in the closed loop system does not exceed a
specified value.



Fig. 1. The guaranteed estimates of the H∞ norm as functions of the disturbance level in experimental
data for different types of available information..

Proposition 1. For any m ∈ Z
+ \ 0, the optimal projection estimator f̂ 0

m(x) ∈ M2,m(P̃) exists if

and only if there are {ĉ 0
m} ∈ M̃2,m(P) such that

inf
{ĉj,m}j�0∈M̃2,m(P)

E
∞∑
j=0

[
cj − ĉj,m

]2
= E

∞∑
j=0

[
cj − ĉ 0

j,m

]2
. (2)

The proof of Proposition 1 is given in Appendix A.

The information about the unknown parameters of system (1) is extracted from a finite set of
measurements of its trajectory. For the discrete-time system, there are available measurements
of its state and target output, x0, x1, . . . , xN and z0, . . . , zN−1, respectively, under chosen controls
u0, . . . , uN−1 and some unknown disturbance w0, . . . , wN−1. We compile the matrices

Φ = (x0 · · · xN−1) , Φ+ = (x1 · · · xN ) ,

U = (u0 · · · uN−1) , W = (w0 · · ·wN−1) , Z = (z0 · · · zN−1) .

In the continuous-time case, there are measurements of the system state, its derivative, and the
target output, x(t0), . . . , x(tN−1), ẋ(t0), . . . , ẋ(tN−1), and z(t0), . . . , z(tN−1), respectively, under
chosen controls u(t0), . . . , u(tN−1) and some unknown disturbances w(t0), . . . , w(tN−1) at time in-
stants t0, . . . , tN−1.

Lemma 2.1. If the information matrix Φ̂Φ̂T is nonsingular, then the set Δp is a nondegenerate
“matrix ellipsoid” centered at ΔLS given by

(Δ −ΔLS)(Φ̂Φ̂
T)(Δ −ΔLS)

T ≤ Γ, (3)

where

Γ = Ω̂ + Φ̃[Φ̂T(Φ̂Φ̂T)−1Φ̂− I]Φ̃T ≥ 0, (4)

and ΔLS = Φ̃Φ̂T(Φ̂Φ̂T)−1 is the optimal least-squares estimate of the unknown matrix Δreal ....
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Corollary 2.1. For v(t) ≡ 0, the γ0 norm of system satisfies the condition γ0 < γ iff there exists
a quadratic form Va(xa) = xTa Pxa with P > R such that the corresponding inequality is valid for
za(t) ≡ 0 along the trajectories of the dual system

∂xa(t) = ATxa(t) + CTva(t),

za(t) = BTxa(t).
(2.5)

Remark 1. Formally, the dual system is described by the equations

˙̂xa = −ATx̂a − CTv̂a,

ẑa = BTx̂a
(2.6)

in the continuous-time case.
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APPENDIX A

A.1. PROOF OF LEMMA 2.1

Let f(x) ∈ L2(K,Λ) and f̂m(x) ∈ M2,m(P̃) be some projection estimator. ...

A.1.1. Proof of Lemma 2.1

Let f(x) ∈ L2(K,Λ) and f̂m(x) ∈ M2,m(P̃) be some projection estimator. ...

APPENDIX B

EXAMPLE

Hence, for any ...
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In view of...

B.1. PROOF OF PROPOSITION 1

Hence, for any ...

Vm(N) =
∞∑

j=N+1

c2j + E
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j=0

(
cj − ĉ 0

j,m

)2
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In view of...
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B.1.1. Proof of Corollary 2.1

Hence, for any ...

Vm(N) =
∞∑
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. (B.1.3)

Since ... we have
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In view of...
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