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Abstract—This paper considers the problem of estimating the probability of the following event:
a continuous random process will first reach a given level at some time from a given variation
interval of the independent variable. The general results obtained previously are specified
for a smooth Gaussian process. The estimates are calculated for different values of process
parameters, and the corresponding numerical results are presented.
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1. INTRODUCTION. PROBLEM STATEMENT AND PREVIOUS RESULTS

Let £(z) be a random process continuous with probability 1, and let y be a given number.
As the domain of the process £(t) we consider two intervals, namely, a) a half-interval (xq,z"|
or b) a closed interval [zg,z”]. In case a), by assumption,

1) lim P{e(x) > y} =1,

T—T0

and xo can be either a finite number or —oo. In case b), we suppose P{&(z) > y} = 1.
Consider an arbitrary value z’ € (g, z”). Let us define the events

Z={3z € (,2") Vx € (x0,2) &(z) >y, &(T) =y}
and
L=1{3% € (x0,2"] Vx € (20,2) &(z) > y}.

Event L means that at the initial time, the trajectory £(z) is above level y; and event Z means
that level y will be first reached by the trajectory at some time within the interval (z/,z") (see
Fig. 1). Tt is required to find the conditional probability P{Z|L} of event Z given the occurrence
of event L.

This problem is a special case of the one posed in [1]. For non-Markov smooth processes, it
was studied, in particular, in the author’s publications [2-5]; related problems were considered
in many well-known works, e.g., [6-13]. A more detailed bibliography can be found in [5]. For
diffusion Markov processes, this problem can be reduced to solving a mixed problem for a partial
differential equation, which was shown back in [1]. In this paper, as in [2-5], we consider the case
of a non-Markov smooth random process £(x). Note that, in contrast to [3-5], a somewhat different
procedure for forming lower estimates of the desired probability was proposed in [2]. This paper is
a continuation of [2].
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Fig. 1. Some realization of the process £(x).

In applications, the above problem arises when investigating various stochastic systems; for
example, see [14]. For instance, the probabilistic estimation of the accuracy and safety of aircraft
landing reduces to this problem [15-19], which confirms its practical importance.

Following [10], we denote by Gy (zo,z") the set of scalar functions continuous on [z, z”] or
(x9,2"] (depending on the domain of the process &(z) selected) that are not identically equal to y
on any subinterval of (zg,z”). For functions from Gy (zo,z”), we define the concepts of a crossing
of level y, a touching of level y, an upcrossing of level y [10], and a downcrossing of level y [10], as
done in [10].

If! 1) the sample functions £(x) belong to the set Gy(wo,z”) and have no touchings of level y
with probability 1 and 2) the mean? number N (zg,z") of crossings of level y by the process &(z)
on the interval (zg,2") is finite, then, in view of condition (1), it is not difficult to show that
P{Z|L} = P{Z}. In other words, one can deal with estimating the unconditional probability P{Z}
instead of estimating the conditional one P{Z|L}.

For the process £(z), we denote by Nt (x1,x2) and N~ (1, 22) the mean number of upcrossings
and downcrossings of level y, respectively, on an interval (x,z2). Also, we denote by my(z1,x2)
the mean number of local maxima of the process £(x) located above level y on an interval (z1,z2).
The following result was established in [2].

Theorem. Assume that:

1) The sample functions {(x) belong to the set Gy(xo,x”) and have no touchings of level y on
the interval (xq, x") with probability 1, and N(xg,z") < oo.

2) P{{(a’) =y} =0.
3) Condition (1) holds.
Let x* be any point from the interval (zo, ") such that P{{(z*) = y} = 0, my(z*,2") < co. Then

N=(@',2") = (NF(20,%) + my(a*,2")) < P{Z} < N (a/,2").

If the process &(x) is mean-square differentiable, then the numbers N~ (z1,2z3), N1 (z1,22), and
my (1, 22) can be calculated by Rice’s formulas [6, 8, 10]:

N~ (1, 29) = /dx/ovfx(y, v)do, @)
Nt (zy,29) = /da:/vfx (y,v)dv, (3)

0

y(21,22) /d;v /du / 2wy (u, 0, 2)dz, (4)

! Sufficient conditions for assumptions 1) and 2) were formulated in [2].
2 Here, “mean” refers to the mathematical expectation of a random variable.
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where f,(u,v) is the joint probability density of the random variables £(z) and &' (x), and w,(u, v, 2)
is the joint probability density of the random variables &(z),&'(z), and £’ (x). In addition, &'(x)
and £”(x) stand for the first and second mean-square derivatives of the process &().

2. SPECIFICATION FOR A GAUSSIAN PROCESS

Let the process £(x) have the form
§(r) = amx +ao +n(x), = € (—o0,z"],

where a1 < 0 and ag are constants, n(x) is a stationary centered Gaussian process with continuous
realizations and the correlation function

r(r) = E{n(z)n(z +1)}/0?,

where o2 indicates the variance of the processes £(x) and 7(z), and E is the mathematical expecta-
tion operator. If there exists a finite second derivative r”(0), then the process £(x) is mean-square
differentiable, and Rice’s formulas (2) and (3) can be used to calculate the numbers N~ and N*.
If there exists a finite fourth derivative V' (0), then the process £(x) is twice mean-square differ-
entiable, and the number m, can be calculated by Rice’s formula (4).

In the case under consideration, the conditions of the theorem are satisfied, and for any «* from
the interval (—oo, "), we have the inequalities

N~ (2!, 2") = (N*(=00,2") + my(a",2")) < P{Z} <N~ (a',2"), (5)

where N*(—o0,2*) = lim N*(z,z%).
T——00

We denote by 0% and o3 the variance of the processes ¢(z) and &”(z), respectively, and by p
the correlation coefficient of the random variables £(x) and £”(x). Note that

0_% _ —02?"”(0), U% — 027“IV(0), p= 7“”(0)/ /TIV(O).

According to these relations, in the nondegenerate case (i.e., 0 # 0, o1 # 0, and o9 # 0), which is

studied here, the correlation coefficient p takes only negative values.

For the process () under consideration, the formulas for f,(u,v) and w,(u,v,z) become?

fa(u,v) 1 exp{_(u—ao—alx)Q (v—al)Q}’

2100 202 203

( ) 1 (v —ay)? 1
we(u,v,2) = exp —
‘ V2moy P 202 2rooy/1 — p?

1 {(u—ao —ayr)? (u—ap—ar1x)z 22]} '

x - ) z
exp{ 2(1—p?) o2 p 009 - o3

3 Since the process £(x) is Gaussian, the probability densities f.(u,v) and ws(u,v,z) will be Gaussian (e.g.,
see [10, 15]); in other words, f.(u,v) and we(u,v,z) are two- and three-dimensional Gaussian probability den-
sities, respectively. In addition, for any x, the correlation coefficient of the random variables £(z) and £'(z) and
that of the random variables £'(z) and £”(z) are equal to zero due to the stationarity of the process n(z) (e.g.,
see [14, 15]). These circumstances finally bring to formulas (6) and (7).
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Fig. 2. Crossing of the zero level y = 0 by some realization of the process £(x) and by its mean E{(z)}
for ag = 0.

For the sake of definiteness, assume that y = 0, ag = 0, and 2" > 0 (Fig. 2). Then event Z means
that the zero level will be first reached by the process £(x) = ayx + n(x) at some point from the
interval (z/,2").

We introduce the parameters?

a=—ai/oy and B = —a12"/o.

Then, see the Appendix, formulas (2)—(4) yield

N~(@,a) = [ — exp{—;}w(a)] [@(ﬂ)—@(ﬁx—,ﬂ)}, 2)
Nt (—o00,3%) = [\/g_m exp{—og}—@(—a)] (I)(ﬁi—;), (3)
my(ﬂ?*aw”)——% Xp{—;}
3 B 322 (4)
x// l@(-mv>— (-m) exp{— . }1 v,

where

O(z exp{—x?/2}dz. (8)

>=\/%_[o

3. PROBABILITY ESTIMATES: ACCURACY ANALYSIS

Inequalities (5) can be written as
N=(2',2") = f(z*) < P{Z} < N (2, 2"),

where
f(z*) = Nt (—o0,2*) + my(z*,2"), 2* € (—o0,2”].

4 In a physical interpretation, the value of the parameter a shows how strongly, on average, the slope of the real-
izations of the process £(z) differs from that of its mean E{£(z)} : for small «, this difference is large, and vice
versa.
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Fig. 3. (a) Curves f(w) for different 3, a = 0.5, and p = —0.5 and (b) curves f’(w) for different 3, a = 0.5,
and p = —0.5.

With the dimensionless variable w = z* /2", the estimates (5) take the form
(5") N=(2,2") = f(w) < P{Z} < N~ («/,2"),
where w € (—o0,1] and

f(w) = N+(—OO,’LU) + my(w7 1)7

N+ (00, w) = [ ;m exp{—;} - @(—a)] B(Bw),

1
my(w,1) = —% exp{—%Q}w/ [(I’ (—\/%—;)219 — p® (—\/%) exp{—ﬂ?2 }] dv.

Let us investigate the behavior of the function f(w) on the interval (—oo, 1]. The smaller the values

of f(w) are, the higher accuracy the estimates (5’) of the probability P{Z} will have.

Consider the behavior of the function f(w) depending on three parameters: «, 3, and p. The
region of interest is w € [—1,1] since, by the physical meaning of the numbers N (—oo,w) and
my(w, 1), the function f(w),w < —1, is monotonically decreasing, so the minimum values of f(w)

will be achieved for w > —1.

Figure 3a shows the behavior of the function f(w) for different 8, « = 0.5, and p = —0.5. As
it turned out, for any value combination of the parameters «, 8, and p, the function f(w) is
monotonically decreasing on the interval (—oo, 1]. This conclusion follows from the analysis of the
derivative f’(w). Based on the well-known formula for the derivative of a definite integral with

variable limits,

p 10 doi(t) dpa(t)
g / h(v)dv = ~h(é1(t)) == + h(a(t) ==
#1(t)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



ON A PROBLEM RELATED TO THE TIME OF FIRST REACHING ... 1173
S (w)

0

0.24

-1 —0.5 0 0.5 1 -1 —0.5 0 0.5 1

Fig. 4. (a) Curves f(w) for different 3, « = 0.5, and p = —0.8 and (b) curves f'(w) for different 3, a = 0.5,
and p = —0.8.
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Fig. 5. (a) Curves f(w) for different 3, a = 0.5, and p = —0.999 and (b) curves f'(w) for different 3, a = 0.5,
and p = —0.999.

we obtain the following expression for the derivative of the function f(w) :

-l 2] ol )

“r {5 [P ) - (A e
expy —— —_—— | — ———— | expq — .
orpa P\ 2 1—p2) 7 1—2) P 2
Figure 3b shows the behavior of the derivative f/(w) for different 8, o = 0.5, and p = —0.5.
According to the numerical calculations, f/(w) < 0 for all w € (—o0, 1]. So the minimum values of
the function f(w) are achieved at w = 1. However, the nature of change of the derivative f'(w)

strongly depends on the parameters «, 3, and p. For example, for 8 = 10, the values of f'(w) are
negligibly small on the interval (0.5, 1); therefore, f(w) is almost independent of w on this interval.
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Fig. 6. (a) Curves f(w) for different 3, a = 1, and p = —0.8 and (b) curves f'(w) for different 3, a = 1, and
p=—0.8.
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Fig. 7. (a) Curves f(w) for different 3, a = 1.5, and p = —0.8 and (b) curves f’(w) for different 3, o = 1.5,
and p = —0.8.

Direct comparison of Figs. 3a-5a demonstrates changes in the behavior of the function f(w) de-
pending on the correlation coefficient p : p = —0.5 for Fig. 3a, p = —0.8 for Fig. 4a, and p = —0.999
for Fig. 5a. The corresponding changes in the behavior of the derivatives f’(w) are shown in
Figs. 3b—5b. If w is close to 1, then the values of f(w) change very weakly. If w is below 1, then
the values of f(w) decrease under the transition {p = —0.5} — {p = —0.8} — {p = —0.999}; the
smaller w is, the greater this decrease will be. Moreover, this conclusion holds for all 3.

Direct comparison of Figs. 4a and 6a—9a demonstrates changes in the behavior of the func-
tion f(w) depending on the parameter o : a = 0.5 for Fig. 4a, a = 1 for Fig. 6a, a = 1.5 for Fig. 7a,
a = 2 for Fig. 8a, and o = 3 for Fig. 9a. The corresponding changes in the behavior of the deriva-
tives f/(w) are shown in Figs. 4b and 6b—9b. Clearly, for any fixed (3, increasing « leads to a
decrease in f(w). If @« =3 (Fig. 9a), then the values of f(w) are less than 0.008 for 8 = 10 and
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Fig. 8. (a) Curves f(w) for different 3, a = 2, and p = —0.8 and (b) curves f'(w) for different 3, a = 2, and
p=—0.8.
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Fig. 9. (a) Curves f(w) for different 8, o = 3, and p = —0.8 and (b) curves f’(w) for different 8, @ = 3, and
p=—0.8.

B =3 and less than 0.001 for 5 =1 and g = 0.5. For all value combinations of the parameters «,
B, and p under consideration, the minimum value of the function f(w) is achieved at w = 1. Also
note that for a > 3, the values of f(w) are negligibly small. In this case, inequalities (5') allow
determining the probability P{Z} almost exactly.

The Maple package was used for the numerical calculations.

4. CONCLUSIONS

A special stationary Gaussian process &(x) with drift has been considered, and the estimates (5)
for the probability P{Z} [2] of the process have been analyzed numerically. That is, the accuracy
of these estimates has been studied depending on the choice of the point z* and the parameters
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a, B, and p of the process £(x). The accuracy is given by f(w), w € (—o0, 1], (see (5')), where the
value w is uniquely determined by the choice of the point z*. The smaller value f(w) takes, the
more accurate the resulting probability P{Z} will be. As it turned out, for Gaussian processes, the
minimum value of f(w) is obtained at w = 1 for any value combination of the parameters a, 3, and p.
The values of f(w) strongly depend on the parameter « : the larger « is, the smaller f(w) will be.
If > 3, then the values of f(w) are negligibly small, and the probability P{Z} is determined
almost exactly.

APPENDIX

We find the number N*(z1,z2) by formula (3), substituting the expression (6) for the density
fa(u,v) with u = y. As a result,

o0

n 1 i (y — ag — arz)? (v —ap)?
N7 (x1,29) = Sy /exp — 52 dx/vexp —T dv.

x1 0

Both integrals here are easily calculated:

T2 _ _ 2 _ _ _ _
/exp _y—a—az)* |, _ % o {(P(Z/ ao a1962> _ <I><y ao alxl)] 7
202 al o o

1
s 2 2
/vexp —w dv = U% exp _a_12 + \/2%&101®(a—1),
201 201 o1

0

where the function ®(-) is given by (8). Consequently,

2
o1 a al Yy —ap —airy Yy —apg — ai1xa
N (o w2) = lmal eXp{ N ﬁ} * ‘b(g_lﬂ [@(7) - ‘D(f)] :

In this relation, letting y = 0, ag = 0, and z9 = 2™ and denoting « = —ay /01 and 8 = —a12” /o
(by analogy with the main text of the paper), one finally arrives at formula (3') as x; — —oo since
a1 < 0.

Similarly, substituting the expression (6) for the density f,(u,v) with u =y, by formula (2) we
obtain the number

2
_ o1 ay ai Yy —ap — a1y Yy—apg —air2
N (-7517-7)2): l _27Ta1 eXp{_ﬁ}—‘I’(—o_—l)] [‘I’(—O_ ) —q)(—o_ ):l .

In this relation, letting y =0, a9 =0, z; =2/, and 23 =2" and denoting a = —ay/07 and
B = —a12” /o (by analogy with the main text of the paper), one finally arrives at formula (2).

Now, using formula (4), let us determine the number my(z1,x2) if the density w,(u,0,z2) is
calculated by (7) with v = 0. With the new variables « = u —ag— a1, Z = 2z, and T = x, we obtain

(12
w--fo [ oaf el
my xl .IQ / T U 27‘(‘0‘1 { 20_%}

z1 y—ag— a1 ¥
y 1 1 u? Wz N 72 s
— eXxpy{——+ | —= — Z.
2roooy/1 — p? P 2(1 — p?) |02 paag o3
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After additional changes of the variables, u = @/0, Z = Z/09, and T = &, it follows that

my(x1,2) /dx / odu

0

022 exp a%
<pd — —L
V2moq 203
—0oQ

y— ao a1 ®

y 1 . u? — 2puz + 2 &

——F————¢€X ——— 5 ¢ 0924Z2

2moooy/1 — p? P 2(1 - p?) ?

0
oa(1 — p2)—% /d / 2 . / _ 72— 2puz i
= -—— z eXpy ————< ¢ du | Zexp{ ————— p dZ

21/ 20 oitors 2(1 — p?) . 2(1 — p?)

The exponent index in the last integral can be transformed as

_22—2,0@2 _ (z—pu) — ptu
2(1-p?) 2(1-p?)

Then we make the change of variables

to get

1
oa(1 — p?)~2 a?
my(z1,22) = —#exp{—ﬁ}

2m/ 2oy 203
—pA
)\2 N 2A2
d ——2 L dA A E_F2 4a
/T / eXp{ 2(1_p2)} /(u+p)exp{ 0= [
y— ao a)T — 00
1 —pA
oa(1—p?)72 / / A2 / s
L -1t [d 2 Vadx + pA —— 5 Ydu.
2m/2m0r Ty P12 (ot pA)exp ) =55 o du
ao a)T —00

Let g(\) denote the inner integral with respect to u. Direct calculations yield

—pA )
g(\) = / (1 + pA) exp {—ﬁ} du

—00

2 2% 7 p?
_(1_P)exp{—m}+W\/eXP{—W}d/%

—00

or, using the function ®(-) introduced above,

2

Thus,

1 2
a2(1—p*) 7> aj /
my(2r1,r2) = ————F———¢€ —— I(7)dr, Al
y( 1,T2) 97m/2r00 Xp 20% (1) (A1)
1
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1178 SEMAKOV

where
I(t) = ILi(7) + I(7),

® 2
Ii(7) = / —(1—P2)GXP{—ﬁ}d%

7 2
I(7) = / 27(1 — p?)pAexp {—%} o (—%) dA.

y—ag—aqiT
o

Based on the integration by parts, we bring I»(7) to the form

—agp —a1T —a _(IT2
I(r) = y/2m(1 — p?)p® <_p(y<7\/10——p21 )>exp{_(y 302 . }

2 T A2
—p / exp{—m}d)\,

y—apg—ajT
o

which allows writing I(7) as

o

)\2
I(r)=— / exp{—m}d)\

y—ap—ajlT
o

2
S _ply—ao—a17) (y—ap—ai7)
+/27(1 — p?)p® ( P exp 557 .
Expressing the first term here through the above function ®(-), we find

_ 7 T I )

y—ag—ajT

o

Hence, due to (A.1),

g9 CL%
my (21, 72) = 2704 exp 202
1

_1+@<7y—a0 —a17'> +p<1><— ply = ao _a17)>exp{ - v — a0 —arr)’ H dr.

o1 — p? o1 — p? 202

In this relation, letting y = 0, ag = 0, x; = 2*, and 25 = z” and utilizing the identity 1 — ®(z) =
®(—2z), we obtain

2\ = 2
. o9 ay a7 paiT (a17) }
- AU (4T _ e 24T AL § (i
my(@”,27) 2o, exp{ 20%}/ [ (o«l—pz) P (0\/1—p2>exp{ 202 4
‘/I:*
With the new integration variable v = 7/2", it follows that
ooz’ a? / a1zv parz’v (ajva’)?
) ’ - 202 @ 7\/ B (b(i\/) {_ 7} d ‘
my(z*, z") oo exp{ 20%} / l (a 1—,02) P P exp 552 v
I*/I”

Finally, letting o = —ay /01 and = —aj2” /o (by analogy with the main text of the paper), one
finally arrives at formula (4').

2
X/

x1
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