

On a Problem Related to the Time of First Reaching a Given Level by a Random Process

S. L. Semakov*, **, a

*National Research University Higher School of Economics, Moscow, Russia

**Moscow Institute of Physics and Technology, Dolgoprudny, Russia

e-mail: ^aslsemakov@yandex.ru

Received April 16, 2025

Revised June 17, 2025

Accepted October 3, 2025

Abstract—This paper considers the problem of estimating the probability of the following event: a continuous random process will first reach a given level at some time from a given variation interval of the independent variable. The general results obtained previously are specified for a smooth Gaussian process. The estimates are calculated for different values of process parameters, and the corresponding numerical results are presented.

Keywords: probability, random process, level crossing

DOI: 10.7868/S1608303225120055

1. INTRODUCTION. PROBLEM STATEMENT AND PREVIOUS RESULTS

Let $\xi(x)$ be a random process continuous with probability 1, and let y be a given number. As the domain of the process $\xi(t)$ we consider two intervals, namely, a) a half-interval $(x_0, x'']$ or b) a closed interval $[x_0, x'']$. In case a), by assumption,

$$(1) \quad \lim_{x \rightarrow x_0} \mathbf{P}\{\xi(x) > y\} = 1,$$

and x_0 can be either a finite number or $-\infty$. In case b), we suppose $\mathbf{P}\{\xi(x_0) > y\} = 1$.

Consider an arbitrary value $x' \in (x_0, x'')$. Let us define the events

$$Z = \{\exists \tilde{x} \in (x', x'') \quad \forall x \in (x_0, \tilde{x}) \quad \xi(x) > y, \xi(\tilde{x}) = y\}$$

and

$$L = \{\exists \hat{x} \in (x_0, x''] \quad \forall x \in (x_0, \hat{x}) \quad \xi(x) > y\}.$$

Event L means that at the initial time, the trajectory $\xi(x)$ is above level y ; and event Z means that level y will be first reached by the trajectory at some time within the interval (x', x'') (see Fig. 1). It is required to find the conditional probability $\mathbf{P}\{Z|L\}$ of event Z given the occurrence of event L .

This problem is a special case of the one posed in [1]. For non-Markov smooth processes, it was studied, in particular, in the author's publications [2–5]; related problems were considered in many well-known works, e.g., [6–13]. A more detailed bibliography can be found in [5]. For diffusion Markov processes, this problem can be reduced to solving a mixed problem for a partial differential equation, which was shown back in [1]. In this paper, as in [2–5], we consider the case of a non-Markov smooth random process $\xi(x)$. Note that, in contrast to [3–5], a somewhat different procedure for forming lower estimates of the desired probability was proposed in [2]. This paper is a continuation of [2].

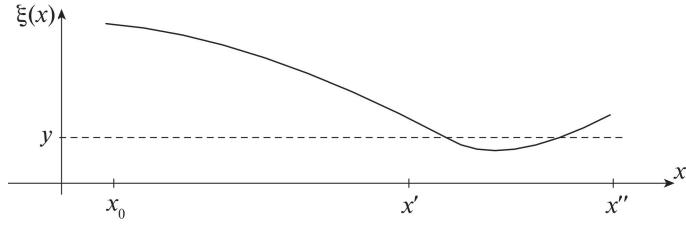


Fig. 1. Some realization of the process $\xi(x)$.

In applications, the above problem arises when investigating various stochastic systems; for example, see [14]. For instance, the probabilistic estimation of the accuracy and safety of aircraft landing reduces to this problem [15–19], which confirms its practical importance.

Following [10], we denote by $G_y(x_0, x'')$ the set of scalar functions continuous on $[x_0, x'']$ or (x_0, x'') (depending on the domain of the process $\xi(x)$ selected) that are not identically equal to y on any subinterval of (x_0, x'') . For functions from $G_y(x_0, x'')$, we define the concepts of a crossing of level y , a touching of level y , an upcrossing of level y [10], and a downcrossing of level y [10], as done in [10].

If¹ 1) the sample functions $\xi(x)$ belong to the set $G_y(x_0, x'')$ and have no touchings of level y with probability 1 and 2) the mean² number $N(x_0, x'')$ of crossings of level y by the process $\xi(x)$ on the interval (x_0, x'') is finite, then, in view of condition (1), it is not difficult to show that $\mathbf{P}\{Z|L\} = \mathbf{P}\{Z\}$. In other words, one can deal with estimating the unconditional probability $\mathbf{P}\{Z\}$ instead of estimating the conditional one $\mathbf{P}\{Z|L\}$.

For the process $\xi(x)$, we denote by $N^+(x_1, x_2)$ and $N^-(x_1, x_2)$ the mean number of upcrossings and downcrossings of level y , respectively, on an interval (x_1, x_2) . Also, we denote by $m_y(x_1, x_2)$ the mean number of local maxima of the process $\xi(x)$ located above level y on an interval (x_1, x_2) . The following result was established in [2].

Theorem. *Assume that:*

- 1) *The sample functions $\xi(x)$ belong to the set $G_y(x_0, x'')$ and have no touchings of level y on the interval (x_0, x'') with probability 1, and $N(x_0, x'') < \infty$.*
- 2) $\mathbf{P}\{\xi(x') = y\} = 0$.
- 3) *Condition (1) holds.*

Let x^ be any point from the interval (x_0, x'') such that $\mathbf{P}\{\xi(x^*) = y\} = 0$, $m_y(x^*, x'') < \infty$. Then*

$$N^-(x', x'') - (N^+(x_0, x^*) + m_y(x^*, x'')) \leq \mathbf{P}\{Z\} \leq N^-(x', x'').$$

If the process $\xi(x)$ is mean-square differentiable, then the numbers $N^-(x_1, x_2)$, $N^+(x_1, x_2)$, and $m_y(x_1, x_2)$ can be calculated by Rice's formulas [6, 8, 10]:

$$N^-(x_1, x_2) = - \int_{x_1}^{x_2} dx \int_{-\infty}^0 v f_x(y, v) dv, \quad (2)$$

$$N^+(x_1, x_2) = \int_{x_1}^{x_2} dx \int_0^\infty v f_x(y, v) dv, \quad (3)$$

$$m_y(x_1, x_2) = - \int_{x_1}^{x_2} dx \int_y^\infty du \int_{-\infty}^0 z w_x(u, 0, z) dz, \quad (4)$$

¹ Sufficient conditions for assumptions 1) and 2) were formulated in [2].

² Here, “mean” refers to the mathematical expectation of a random variable.

where $f_x(u, v)$ is the joint probability density of the random variables $\xi(x)$ and $\xi'(x)$, and $w_x(u, v, z)$ is the joint probability density of the random variables $\xi(x)$, $\xi'(x)$, and $\xi''(x)$. In addition, $\xi'(x)$ and $\xi''(x)$ stand for the first and second mean-square derivatives of the process $\xi(x)$.

2. SPECIFICATION FOR A GAUSSIAN PROCESS

Let the process $\xi(x)$ have the form

$$\xi(x) = a_1 x + a_0 + \eta(x), \quad x \in (-\infty, x''],$$

where $a_1 < 0$ and a_0 are constants, $\eta(x)$ is a stationary centered Gaussian process with continuous realizations and the correlation function

$$r(\tau) \equiv \mathbf{E}\{\eta(x)\eta(x + \tau)\}/\sigma^2,$$

where σ^2 indicates the variance of the processes $\xi(x)$ and $\eta(x)$, and \mathbf{E} is the mathematical expectation operator. If there exists a finite second derivative $r''(0)$, then the process $\xi(x)$ is mean-square differentiable, and Rice's formulas (2) and (3) can be used to calculate the numbers N^- and N^+ . If there exists a finite fourth derivative $r^{IV}(0)$, then the process $\xi(x)$ is twice mean-square differentiable, and the number m_y can be calculated by Rice's formula (4).

In the case under consideration, the conditions of the theorem are satisfied, and for any x^* from the interval $(-\infty, x'')$, we have the inequalities

$$N^-(x', x'') - (N^+(-\infty, x^*) + m_y(x^*, x'')) \leq \mathbf{P}\{Z\} \leq N^-(x', x''), \quad (5)$$

where $N^+(-\infty, x^*) = \lim_{x \rightarrow -\infty} N^+(x, x^*)$.

We denote by σ_1^2 and σ_2^2 the variance of the processes $\xi'(x)$ and $\xi''(x)$, respectively, and by ρ the correlation coefficient of the random variables $\xi(x)$ and $\xi''(x)$. Note that

$$\sigma_1^2 = -\sigma^2 r''(0), \quad \sigma_2^2 = \sigma^2 r^{IV}(0), \quad \rho = r''(0)/\sqrt{r^{IV}(0)}.$$

According to these relations, in the nondegenerate case (i.e., $\sigma \neq 0$, $\sigma_1 \neq 0$, and $\sigma_2 \neq 0$), which is studied here, the correlation coefficient ρ takes only negative values.

For the process $\xi(x)$ under consideration, the formulas for $f_x(u, v)$ and $w_x(u, v, z)$ become³

$$f_x(u, v) = \frac{1}{2\pi\sigma\sigma_1} \exp \left\{ -\frac{(u - a_0 - a_1 x)^2}{2\sigma^2} - \frac{(v - a_1)^2}{2\sigma_1^2} \right\}, \quad (6)$$

$$w_x(u, v, z) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp \left\{ -\frac{(v - a_1)^2}{2\sigma_1^2} \right\} \frac{1}{2\pi\sigma\sigma_2\sqrt{1 - \rho^2}} \\ \times \exp \left\{ -\frac{1}{2(1 - \rho^2)} \left[\frac{(u - a_0 - a_1 x)^2}{\sigma^2} - 2\rho \frac{(u - a_0 - a_1 x)z}{\sigma\sigma_2} + \frac{z^2}{\sigma_2^2} \right] \right\}. \quad (7)$$

³ Since the process $\xi(x)$ is Gaussian, the probability densities $f_x(u, v)$ and $w_x(u, v, z)$ will be Gaussian (e.g., see [10, 15]); in other words, $f_x(u, v)$ and $w_x(u, v, z)$ are two- and three-dimensional Gaussian probability densities, respectively. In addition, for any x , the correlation coefficient of the random variables $\xi(x)$ and $\xi'(x)$ and that of the random variables $\xi'(x)$ and $\xi''(x)$ are equal to zero due to the stationarity of the process $\eta(x)$ (e.g., see [14, 15]). These circumstances finally bring to formulas (6) and (7).

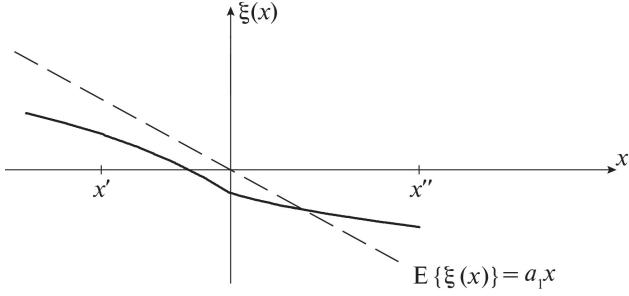


Fig. 2. Crossing of the zero level $y = 0$ by some realization of the process $\xi(x)$ and by its mean $\mathbf{E}\{\xi(x)\}$ for $a_0 = 0$.

For the sake of definiteness, assume that $y = 0$, $a_0 = 0$, and $x'' > 0$ (Fig. 2). Then event Z means that the zero level will be first reached by the process $\xi(x) = a_1 x + \eta(x)$ at some point from the interval (x', x'') .

We introduce the parameters⁴

$$\alpha = -a_1/\sigma_1 \quad \text{and} \quad \beta = -a_1 x''/\sigma.$$

Then, see the Appendix, formulas (2)–(4) yield

$$N^-(x', x'') = \left[\frac{1}{\sqrt{2\pi}\alpha} \exp\left\{-\frac{\alpha^2}{2}\right\} + \Phi(\alpha) \right] \left[\Phi(\beta) - \Phi\left(\beta \frac{x'}{x''}\right) \right], \quad (2')$$

$$N^+(-\infty, x^*) = \left[\frac{1}{\sqrt{2\pi}\alpha} \exp\left\{-\frac{\alpha^2}{2}\right\} - \Phi(-\alpha) \right] \Phi\left(\beta \frac{x^*}{x''}\right), \quad (3')$$

$$\begin{aligned} m_y(x^*, x'') &= -\frac{\beta}{2\pi\rho\alpha} \exp\left\{-\frac{\alpha^2}{2}\right\} \\ &\times \int_{x^*/x''}^1 \left[\Phi\left(-\frac{\beta}{\sqrt{1-\rho^2}}v\right) - \rho\Phi\left(-\frac{\rho\beta v}{\sqrt{1-\rho^2}}\right) \exp\left\{-\frac{\beta^2 v^2}{2}\right\} \right] dv, \end{aligned} \quad (4')$$

where

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z \exp\{-x^2/2\} dx. \quad (8)$$

3. PROBABILITY ESTIMATES: ACCURACY ANALYSIS

Inequalities (5) can be written as

$$N^-(x', x'') - f(x^*) \leq \mathbf{P}\{Z\} \leq N^-(x', x''),$$

where

$$f(x^*) = N^+(-\infty, x^*) + m_y(x^*, x''), \quad x^* \in (-\infty, x''].$$

⁴ In a physical interpretation, the value of the parameter α shows how strongly, on average, the slope of the realizations of the process $\xi(x)$ differs from that of its mean $\mathbf{E}\{\xi(x)\}$: for small α , this difference is large, and vice versa.

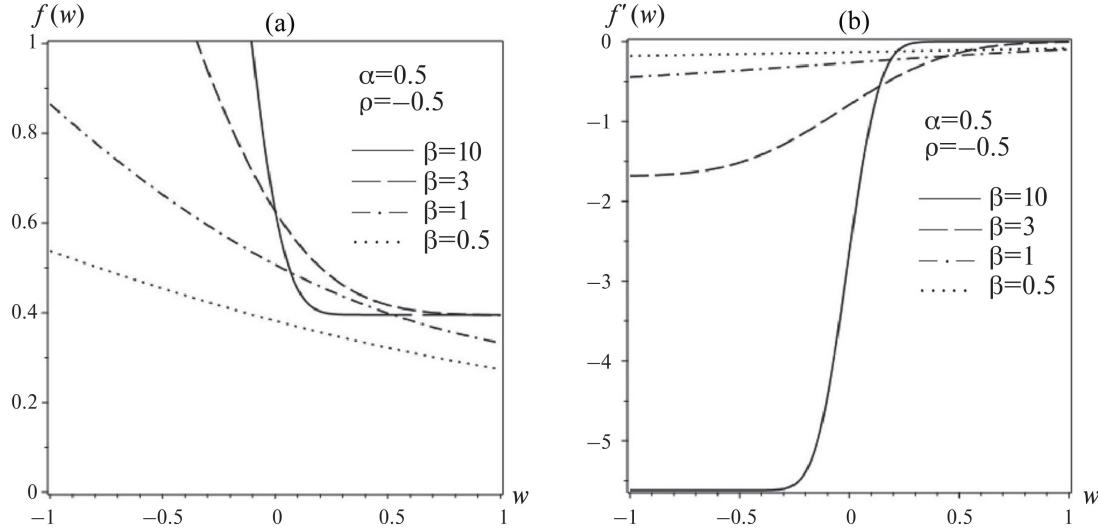


Fig. 3. (a) Curves $f(w)$ for different β , $\alpha = 0.5$, and $\rho = -0.5$ and (b) curves $f'(w)$ for different β , $\alpha = 0.5$, and $\rho = -0.5$.

With the dimensionless variable $w = x^*/x''$, the estimates (5) take the form

$$(5') \quad N^-(x', x'') - f(w) \leq \mathbf{P}\{Z\} \leq N^-(x', x''),$$

where $w \in (-\infty, 1]$ and

$$\begin{aligned} f(w) &= N^+(-\infty, w) + m_y(w, 1), \\ N^+(-\infty, w) &= \left[\frac{1}{\sqrt{2\pi\alpha}} \exp\left\{-\frac{\alpha^2}{2}\right\} - \Phi(-\alpha) \right] \Phi(\beta w), \\ m_y(w, 1) &= -\frac{\beta}{2\pi\rho\alpha} \exp\left\{-\frac{\alpha^2}{2}\right\} \int_w^1 \left[\Phi\left(-\frac{\beta}{\sqrt{1-\rho^2}}v\right) - \rho\Phi\left(-\frac{\rho\beta v}{\sqrt{1-\rho^2}}\right) \exp\left\{-\frac{\beta^2 v^2}{2}\right\} \right] dv. \end{aligned}$$

Let us investigate the behavior of the function $f(w)$ on the interval $(-\infty, 1]$. The smaller the values of $f(w)$ are, the higher accuracy the estimates (5') of the probability $\mathbf{P}\{Z\}$ will have.

Consider the behavior of the function $f(w)$ depending on three parameters: α , β , and ρ . The region of interest is $w \in [-1, 1]$ since, by the physical meaning of the numbers $N^+(-\infty, w)$ and $m_y(w, 1)$, the function $f(w)$, $w < -1$, is monotonically decreasing, so the minimum values of $f(w)$ will be achieved for $w > -1$.

Figure 3a shows the behavior of the function $f(w)$ for different β , $\alpha = 0.5$, and $\rho = -0.5$. As it turned out, for any value combination of the parameters α , β , and ρ , the function $f(w)$ is monotonically decreasing on the interval $(-\infty, 1]$. This conclusion follows from the analysis of the derivative $f'(w)$. Based on the well-known formula for the derivative of a definite integral with variable limits,

$$\frac{d}{dt} \int_{\phi_1(t)}^{\phi_2(t)} h(v) dv = -h(\phi_1(t)) \frac{d\phi_1(t)}{dt} + h(\phi_2(t)) \frac{d\phi_2(t)}{dt},$$

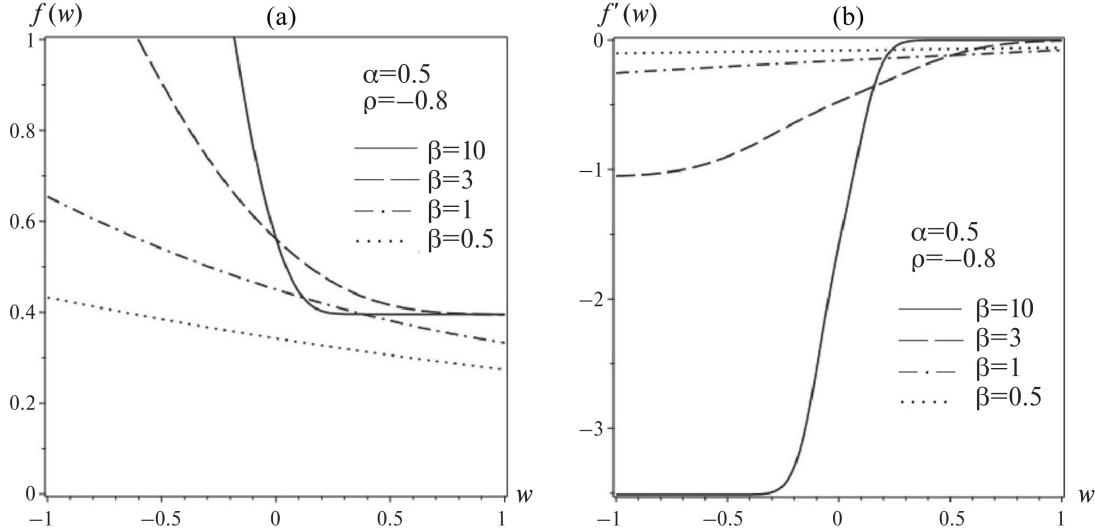


Fig. 4. (a) Curves $f(w)$ for different β , $\alpha = 0.5$, and $\rho = -0.8$ and (b) curves $f'(w)$ for different β , $\alpha = 0.5$, and $\rho = -0.8$.

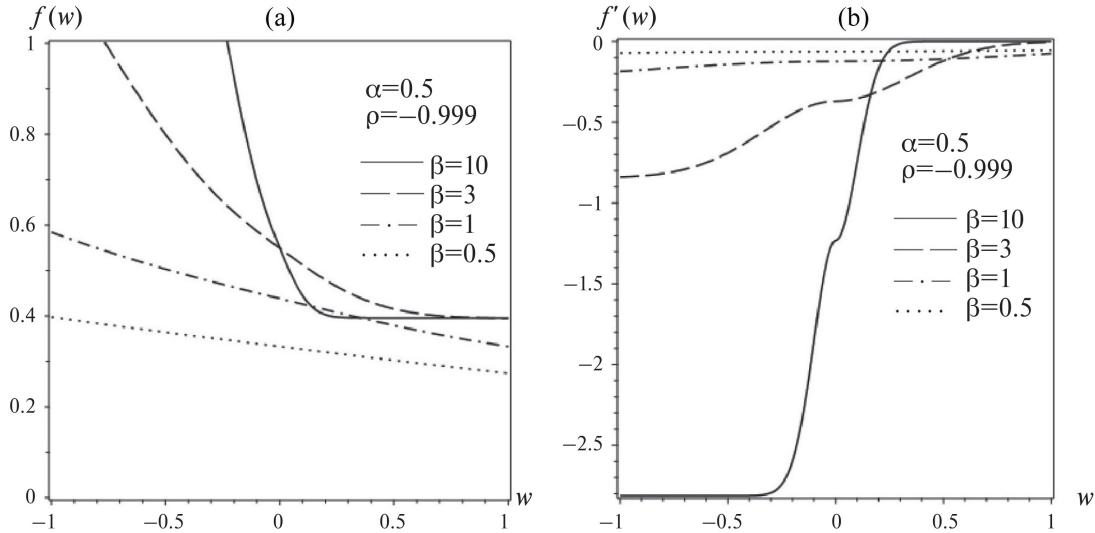


Fig. 5. (a) Curves $f(w)$ for different β , $\alpha = 0.5$, and $\rho = -0.999$ and (b) curves $f'(w)$ for different β , $\alpha = 0.5$, and $\rho = -0.999$.

we obtain the following expression for the derivative of the function $f(w)$:

$$\begin{aligned} \frac{df(w)}{dw} = & \left[\frac{1}{\sqrt{2\pi}\alpha} \exp\left\{-\frac{\alpha^2}{2}\right\} - \Phi(-\alpha) \right] \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\beta^2 w^2}{2}\right\} \beta \\ & + \frac{\beta}{2\pi\rho\alpha} \exp\left\{-\frac{\alpha^2}{2}\right\} \left[\Phi\left(-\frac{\beta w}{\sqrt{1-\rho^2}}\right) - \rho\Phi\left(-\frac{\rho\beta w}{\sqrt{1-\rho^2}}\right) \exp\left\{-\frac{\beta^2 w^2}{2}\right\} \right]. \end{aligned}$$

Figure 3b shows the behavior of the derivative $f'(w)$ for different β , $\alpha = 0.5$, and $\rho = -0.5$. According to the numerical calculations, $f'(w) < 0$ for all $w \in (-\infty, 1]$. So the minimum values of the function $f(w)$ are achieved at $w = 1$. However, the nature of change of the derivative $f'(w)$ strongly depends on the parameters α , β , and ρ . For example, for $\beta = 10$, the values of $f'(w)$ are negligibly small on the interval $(0.5, 1)$; therefore, $f(w)$ is almost independent of w on this interval.

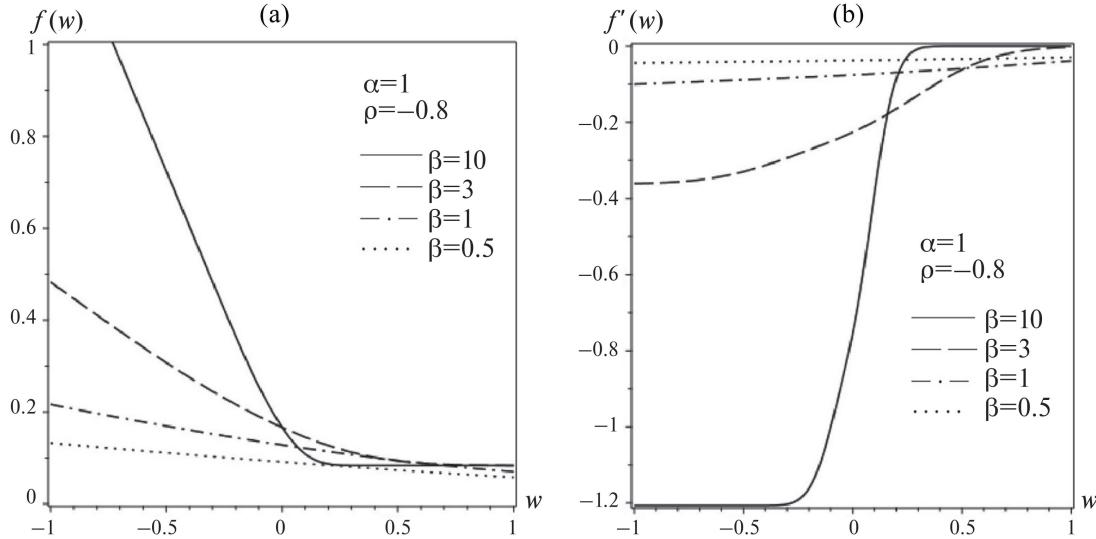


Fig. 6. (a) Curves $f(w)$ for different β , $\alpha = 1$, and $\rho = -0.8$ and (b) curves $f'(w)$ for different β , $\alpha = 1$, and $\rho = -0.8$.

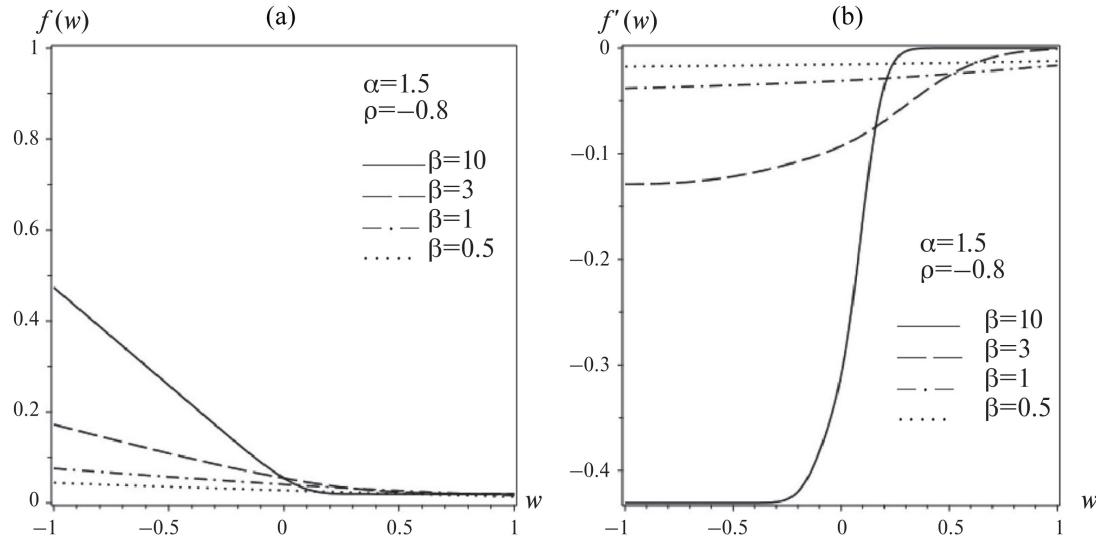


Fig. 7. (a) Curves $f(w)$ for different β , $\alpha = 1.5$, and $\rho = -0.8$ and (b) curves $f'(w)$ for different β , $\alpha = 1.5$, and $\rho = -0.8$.

Direct comparison of Figs. 3a–5a demonstrates changes in the behavior of the function $f(w)$ depending on the correlation coefficient ρ : $\rho = -0.5$ for Fig. 3a, $\rho = -0.8$ for Fig. 4a, and $\rho = -0.999$ for Fig. 5a. The corresponding changes in the behavior of the derivatives $f'(w)$ are shown in Figs. 3b–5b. If w is close to 1, then the values of $f(w)$ change very weakly. If w is below 1, then the values of $f(w)$ decrease under the transition $\{\rho = -0.5\} \rightarrow \{\rho = -0.8\} \rightarrow \{\rho = -0.999\}$; the smaller w is, the greater this decrease will be. Moreover, this conclusion holds for all β .

Direct comparison of Figs. 4a and 6a–9a demonstrates changes in the behavior of the function $f(w)$ depending on the parameter α : $\alpha = 0.5$ for Fig. 4a, $\alpha = 1$ for Fig. 6a, $\alpha = 1.5$ for Fig. 7a, $\alpha = 2$ for Fig. 8a, and $\alpha = 3$ for Fig. 9a. The corresponding changes in the behavior of the derivatives $f'(w)$ are shown in Figs. 4b and 6b–9b. Clearly, for any fixed β , increasing α leads to a decrease in $f(w)$. If $\alpha = 3$ (Fig. 9a), then the values of $f(w)$ are less than 0.008 for $\beta = 10$ and

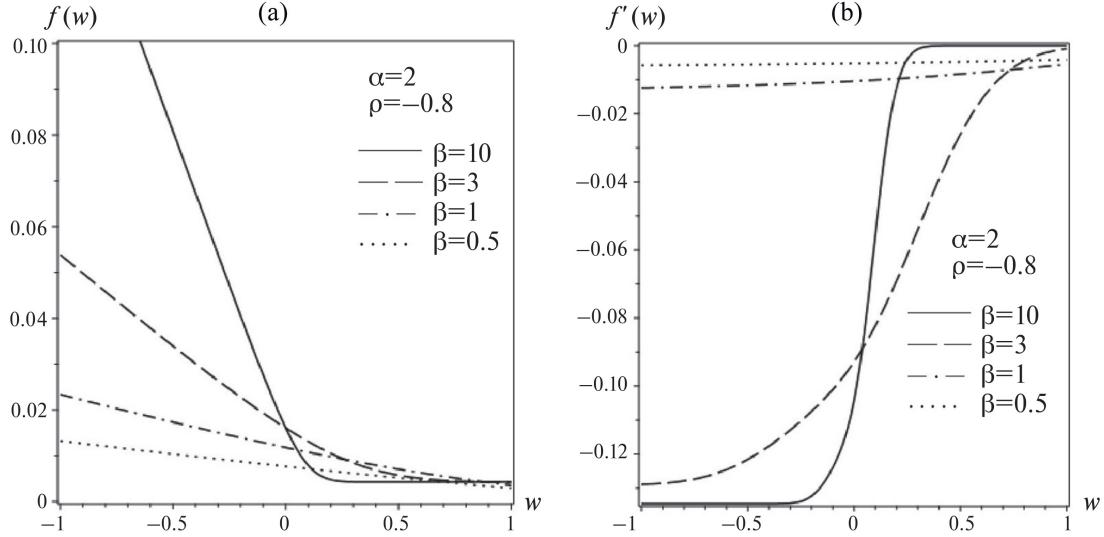


Fig. 8. (a) Curves $f(w)$ for different β , $\alpha = 2$, and $\rho = -0.8$ and (b) curves $f'(w)$ for different β , $\alpha = 2$, and $\rho = -0.8$.

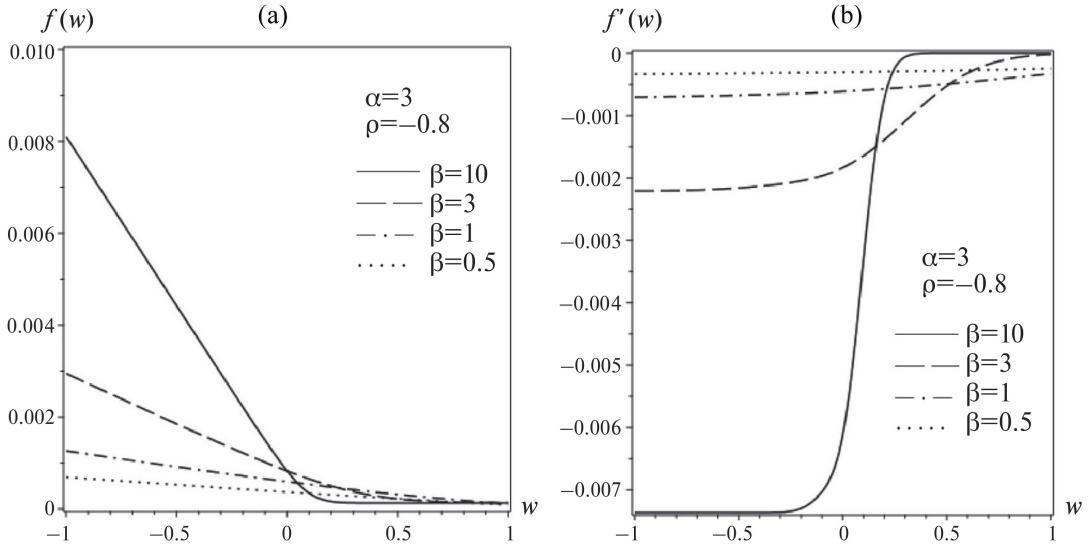


Fig. 9. (a) Curves $f(w)$ for different β , $\alpha = 3$, and $\rho = -0.8$ and (b) curves $f'(w)$ for different β , $\alpha = 3$, and $\rho = -0.8$.

$\beta = 3$ and less than 0.001 for $\beta = 1$ and $\beta = 0.5$. For all value combinations of the parameters α , β , and ρ under consideration, the minimum value of the function $f(w)$ is achieved at $w = 1$. Also note that for $\alpha > 3$, the values of $f(w)$ are negligibly small. In this case, inequalities (5') allow determining the probability $\mathbf{P}\{Z\}$ almost exactly.

The Maple package was used for the numerical calculations.

4. CONCLUSIONS

A special stationary Gaussian process $\xi(x)$ with drift has been considered, and the estimates (5) for the probability $\mathbf{P}\{Z\}$ [2] of the process have been analyzed numerically. That is, the accuracy of these estimates has been studied depending on the choice of the point x^* and the parameters

α , β , and ρ of the process $\xi(x)$. The accuracy is given by $f(w)$, $w \in (-\infty, 1]$, (see (5')), where the value w is uniquely determined by the choice of the point x^* . The smaller value $f(w)$ takes, the more accurate the resulting probability $\mathbf{P}\{Z\}$ will be. As it turned out, for *Gaussian* processes, the minimum value of $f(w)$ is obtained at $w = 1$ for any value combination of the parameters α , β , and ρ . The values of $f(w)$ strongly depend on the parameter α : the larger α is, the smaller $f(w)$ will be. If $\alpha > 3$, then the values of $f(w)$ are negligibly small, and the probability $\mathbf{P}\{Z\}$ is determined almost exactly.

APPENDIX

We find the number $N^+(x_1, x_2)$ by formula (3), substituting the expression (6) for the density $f_x(u, v)$ with $u = y$. As a result,

$$N^+(x_1, x_2) = \frac{1}{2\pi\sigma\sigma_1} \int_{x_1}^{x_2} \exp \left\{ -\frac{(y - a_0 - a_1 x)^2}{2\sigma^2} \right\} dx \int_0^\infty v \exp \left\{ -\frac{(v - a_1)^2}{2\sigma_1^2} \right\} dv.$$

Both integrals here are easily calculated:

$$\begin{aligned} \int_{x_1}^{x_2} \exp \left\{ -\frac{(y - a_0 - a_1 x)^2}{2\sigma^2} \right\} dx &= -\frac{\sigma}{a_1} \sqrt{2\pi} \left[\Phi \left(\frac{y - a_0 - a_1 x_2}{\sigma} \right) - \Phi \left(\frac{y - a_0 - a_1 x_1}{\sigma} \right) \right], \\ \int_0^\infty v \exp \left\{ -\frac{(v - a_1)^2}{2\sigma_1^2} \right\} dv &= \sigma_1^2 \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} + \sqrt{2\pi} a_1 \sigma_1 \Phi \left(\frac{a_1}{\sigma_1} \right), \end{aligned}$$

where the function $\Phi(\cdot)$ is given by (8). Consequently,

$$N^+(x_1, x_2) = \left[\frac{\sigma_1}{\sqrt{2\pi} a_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} + \Phi \left(\frac{a_1}{\sigma_1} \right) \right] \left[\Phi \left(\frac{y - a_0 - a_1 x_1}{\sigma} \right) - \Phi \left(\frac{y - a_0 - a_1 x_2}{\sigma} \right) \right].$$

In this relation, letting $y = 0$, $a_0 = 0$, and $x_2 = x^*$ and denoting $\alpha = -a_1/\sigma_1$ and $\beta = -a_1 x''/\sigma$ (by analogy with the main text of the paper), one finally arrives at formula (3') as $x_1 \rightarrow -\infty$ since $a_1 < 0$.

Similarly, substituting the expression (6) for the density $f_x(u, v)$ with $u = y$, by formula (2) we obtain the number

$$N^-(x_1, x_2) = \left[\frac{\sigma_1}{\sqrt{2\pi} a_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} - \Phi \left(-\frac{a_1}{\sigma_1} \right) \right] \left[\Phi \left(\frac{y - a_0 - a_1 x_1}{\sigma} \right) - \Phi \left(\frac{y - a_0 - a_1 x_2}{\sigma} \right) \right].$$

In this relation, letting $y = 0$, $a_0 = 0$, $x_1 = x'$, and $x_2 = x''$ and denoting $\alpha = -a_1/\sigma_1$ and $\beta = -a_1 x''/\sigma$ (by analogy with the main text of the paper), one finally arrives at formula (2').

Now, using formula (4), let us determine the number $m_y(x_1, x_2)$ if the density $w_x(u, 0, z)$ is calculated by (7) with $v = 0$. With the new variables $\tilde{u} = u - a_0 - a_1 x$, $\tilde{z} = z$, and $\tilde{x} = x$, we obtain

$$\begin{aligned} m_y(x_1, x_2) &= - \int_{x_1}^{x_2} d\tilde{x} \int_{y - a_0 - a_1 \tilde{x}}^\infty d\tilde{u} \int_{-\infty}^0 \frac{\tilde{z}}{\sqrt{2\pi} \sigma_1} \exp \left\{ -\frac{\tilde{u}^2}{2\sigma_1^2} \right\} \\ &\quad \times \frac{1}{2\pi\sigma\sigma_2\sqrt{1-\rho^2}} \exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{\tilde{u}^2}{\sigma^2} - 2\rho \frac{\tilde{u}\tilde{z}}{\sigma\sigma_2} + \frac{\tilde{z}^2}{\sigma_2^2} \right] \right\} d\tilde{z}. \end{aligned}$$

After additional changes of the variables, $\bar{u} = \tilde{u}/\sigma$, $\bar{z} = \tilde{z}/\sigma_2$, and $\bar{x} = \tilde{x}$, it follows that

$$\begin{aligned} m_y(x_1, x_2) &= - \int_{x_1}^{x_2} d\bar{x} \int_{\frac{y-a_0-a_1\bar{x}}{\sigma}}^{\infty} \sigma d\bar{u} \int_{-\infty}^0 \frac{\sigma_2 \bar{z}}{\sqrt{2\pi}\sigma_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} \\ &\quad \times \frac{1}{2\pi\sigma\sigma_2\sqrt{1-\rho^2}} \exp \left\{ -\frac{\bar{u}^2 - 2\rho\bar{u}\bar{z} + \bar{z}^2}{2(1-\rho^2)} \right\} \sigma_2 d\bar{z} \\ &= -\frac{\sigma_2(1-\rho^2)^{-\frac{1}{2}}}{2\pi\sqrt{2\pi}\sigma_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} \int_{x_1}^{x_2} d\bar{x} \int_{\frac{y-a_0-a_1\bar{x}}{\sigma}}^{\infty} \exp \left\{ -\frac{\bar{u}^2}{2(1-\rho^2)} \right\} d\bar{u} \int_{-\infty}^0 \bar{z} \exp \left\{ -\frac{\bar{z}^2 - 2\rho\bar{u}\bar{z}}{2(1-\rho^2)} \right\} d\bar{z}. \end{aligned}$$

The exponent index in the last integral can be transformed as

$$-\frac{\bar{z}^2 - 2\rho\bar{u}\bar{z}}{2(1-\rho^2)} = -\frac{(\bar{z} - \rho\bar{u})^2 - \rho^2\bar{u}^2}{2(1-\rho^2)}.$$

Then we make the change of variables

$$\lambda = \bar{u}, \quad \mu = \bar{z} - \rho\bar{u}, \quad \tau = \bar{x}$$

to get

$$\begin{aligned} m_y(x_1, x_2) &= -\frac{\sigma_2(1-\rho^2)^{-\frac{1}{2}}}{2\pi\sqrt{2\pi}\sigma_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} \\ &\quad \times \int_{x_1}^{x_2} d\tau \int_{\frac{y-a_0-a_1\tau}{\sigma}}^{\infty} \exp \left\{ -\frac{\lambda^2}{2(1-\rho^2)} \right\} d\lambda \int_{-\infty}^{-\rho\lambda} (\mu + \rho\lambda) \exp \left\{ -\frac{\mu^2 - \rho^2\lambda^2}{2(1-\rho^2)} \right\} d\mu \\ &= -\frac{\sigma_2(1-\rho^2)^{-\frac{1}{2}}}{2\pi\sqrt{2\pi}\sigma_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} \int_{x_1}^{x_2} d\tau \int_{\frac{y-a_0-a_1\tau}{\sigma}}^{\infty} \exp \left\{ -\frac{\lambda^2}{2} \right\} d\lambda \int_{-\infty}^{-\rho\lambda} (\mu + \rho\lambda) \exp \left\{ -\frac{\mu^2}{2(1-\rho^2)} \right\} d\mu. \end{aligned}$$

Let $g(\lambda)$ denote the inner integral with respect to μ . Direct calculations yield

$$\begin{aligned} g(\lambda) &\equiv \int_{-\infty}^{-\rho\lambda} (\mu + \rho\lambda) \exp \left\{ -\frac{\mu^2}{2(1-\rho^2)} \right\} d\mu \\ &= -(1-\rho^2) \exp \left\{ -\frac{\rho\lambda^2}{2(1-\rho^2)} \right\} + \rho\lambda \int_{-\infty}^{-\rho\lambda} \exp \left\{ -\frac{\mu^2}{2(1-\rho^2)} \right\} d\mu, \end{aligned}$$

or, using the function $\Phi(\cdot)$ introduced above,

$$g(\lambda) = -(1-\rho^2) \exp \left\{ -\frac{\rho\lambda^2}{2(1-\rho^2)} \right\} + \sqrt{2\pi(1-\rho^2)}\rho\lambda\Phi \left(-\frac{\rho\lambda}{\sqrt{1-\rho^2}} \right).$$

Thus,

$$m_y(x_1, x_2) = -\frac{\sigma_2(1-\rho^2)^{-\frac{1}{2}}}{2\pi\sqrt{2\pi}\sigma_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} \int_{x_1}^{x_2} I(\tau) d\tau, \quad (\text{A.1})$$

where

$$I(\tau) = I_1(\tau) + I_2(\tau),$$

$$I_1(\tau) = \int_{\frac{y-a_0-a_1\tau}{\sigma}}^{\infty} -(1-\rho^2) \exp \left\{ -\frac{\lambda^2}{2(1-\rho^2)} \right\} d\lambda,$$

$$I_2(\tau) = \int_{\frac{y-a_0-a_1\tau}{\sigma}}^{\infty} \sqrt{2\pi(1-\rho^2)} \rho \lambda \exp \left\{ -\frac{\lambda^2}{2} \right\} \Phi \left(-\frac{\rho\lambda}{\sqrt{1-\rho^2}} \right) d\lambda.$$

Based on the integration by parts, we bring $I_2(\tau)$ to the form

$$I_2(\tau) = \sqrt{2\pi(1-\rho^2)} \rho \Phi \left(-\frac{\rho(y-a_0-a_1\tau)}{\sigma\sqrt{1-\rho^2}} \right) \exp \left\{ -\frac{(y-a_0-a_1\tau)^2}{2\sigma^2} \right\}$$

$$- \rho^2 \int_{\frac{y-a_0-a_1\tau}{\sigma}}^{\infty} \exp \left\{ -\frac{\lambda^2}{2(1-\rho^2)} \right\} d\lambda,$$

which allows writing $I(\tau)$ as

$$I(\tau) = - \int_{\frac{y-a_0-a_1\tau}{\sigma}}^{\infty} \exp \left\{ -\frac{\lambda^2}{2(1-\rho^2)} \right\} d\lambda$$

$$+ \sqrt{2\pi(1-\rho^2)} \rho \Phi \left(-\frac{\rho(y-a_0-a_1\tau)}{\sigma\sqrt{1-\rho^2}} \right) \exp \left\{ -\frac{(y-a_0-a_1\tau)^2}{2\sigma^2} \right\}.$$

Expressing the first term here through the above function $\Phi(\cdot)$, we find

$$- \int_{\frac{y-a_0-a_1\tau}{\sigma}}^{\infty} \exp \left\{ -\frac{\lambda^2}{2(1-\rho^2)} \right\} d\lambda = -\sqrt{2\pi(1-\rho^2)} \left[1 - \Phi \left(\frac{y-a_0-a_1\tau}{\sigma\sqrt{1-\rho^2}} \right) \right].$$

Hence, due to (A.1),

$$m_y(x_1, x_2) = -\frac{\sigma_2}{2\pi\sigma_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\}$$

$$\times \int_{x_1}^{x_2} \left[-1 + \Phi \left(\frac{y-a_0-a_1\tau}{\sigma\sqrt{1-\rho^2}} \right) + \rho \Phi \left(-\frac{\rho(y-a_0-a_1\tau)}{\sigma\sqrt{1-\rho^2}} \right) \exp \left\{ -\frac{(y-a_0-a_1\tau)^2}{2\sigma^2} \right\} \right] d\tau.$$

In this relation, letting $y = 0$, $a_0 = 0$, $x_1 = x^*$, and $x_2 = x''$ and utilizing the identity $1 - \Phi(z) = \Phi(-z)$, we obtain

$$m_y(x^*, x'') = \frac{\sigma_2}{2\pi\sigma_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} \int_{x^*}^{x''} \left[\Phi \left(\frac{a_1\tau}{\sigma\sqrt{1-\rho^2}} \right) - \rho \Phi \left(\frac{\rho a_1\tau}{\sigma\sqrt{1-\rho^2}} \right) \exp \left\{ -\frac{(a_1\tau)^2}{2\sigma^2} \right\} \right] d\tau.$$

With the new integration variable $\nu = \tau/x''$, it follows that

$$m_y(x^*, x'') = \frac{\sigma_2 x''}{2\pi\sigma_1} \exp \left\{ -\frac{a_1^2}{2\sigma_1^2} \right\} \int_{x^*/x''}^1 \left[\Phi \left(\frac{a_1 x'' \nu}{\sigma\sqrt{1-\rho^2}} \right) - \rho \Phi \left(\frac{\rho a_1 x'' \nu}{\sigma\sqrt{1-\rho^2}} \right) \exp \left\{ -\frac{(a_1 \nu x'')^2}{2\sigma^2} \right\} \right] d\nu.$$

Finally, letting $\alpha = -a_1/\sigma_1$ and $\beta = -a_1 x''/\sigma$ (by analogy with the main text of the paper), one finally arrives at formula (4').

REFERENCES

1. Pontryagin, L.S., Andronov, A.A., and Vitt, A.A., On the Statistical Consideration of Dynamic Systems, *Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki*, 1933, vol. 3, no. 3, pp. 165–180.
2. Semakov, S.L. and Semakov, I.S., Estimating the Probability That a Random Process First Reaches the Boundary of a Region on a Given Time Interval, *Proc. 2018 IEEE 57th Conference on Decision and Control (CDC-2018)*, Miami Beach, USA, 2018, pp. 256–261.
3. Semakov, S.L., The Probability of the First Attainment of a Level by a Component of a Multidimensional Process on a Prescribed Interval under Restrictions on Its Other Components, *Theory of Probability and Its Applications*, 1990, vol. 34, no. 2, pp. 357–361.
4. Semakov, S.L. and Semakov, I.S., The Probability of First Reaching a Desired Level by a Random Process on a Given Interval, *Automation and Remote Control*, 2019, vol. 80, no. 3, pp. 459–473.
5. Semakov, S.L., The First Achievement of a Given Level by a Random Process, *IEEE Transactions on Information Theory*, 2024, vol. 70, no. 10, pp. 7162–7178.
6. Rice, S.O., Mathematical Analysis of Random Noise, *The Bell System Technical Journal*, 1944, vol. 23, no. 3, pp. 282–332; 1945, vol. 24, no. 1, pp. 46–156.
7. Itô, K., The Expected Number of Zeros of Continuous Stationary Gaussian Processes, *Journal of Mathematics of Kyoto University*, 1964, vol. 3, no. 2, pp. 207–221.
8. Leadbetter, M.R., On Crossings of Levels and Curves by a Wide Class of Stochastic Processes, *Annals of Mathematical Statistics*, 1966, vol. 37, no. 1, pp. 260–267.
9. Belyaev, Yu.K., On the Number of Level Crossings by a Gaussian Stochastic Process I, II, *Theory of Probability and Its Applications*, 1966, vol. 11, no. 1, pp. 106–113; 1967, vol. 12, no. 3, pp. 392–404.
10. Cramér, H. and Leadbetter, M.R., *Stationary and Related Stochastic Processes*, New York: Wiley, 1967.
11. Pickands, J., Upcrossing Probabilities for Stationary Gaussian Processes, *Transactions of the American Mathematical Society*, 1969, vol. 145, pp. 51–73.
12. Blake, I. and Lindsey, W., Level-Crossings Problems for Random Processes, *IEEE Transactions on Information Theory*, 1973, vol. 19, no. 3, pp. 295–315.
13. Hüsler, J., Extreme Values and High Boundary Crossings of Locally Stationary Gaussian Processes, *Annals of Probability*, 1990, vol. 18, no. 3, pp. 1141–1158.
14. Tikhonov, V.I., *Vybrosy sluchaynykh protsessov* (Outliers of Random Processes), Moscow: Nauka, 1970.
15. Semakov, S.L., *Vybrosy sluchainykh protsessov: prilozheniya v aviatsii* (Outliers of Random Processes: Applications in Aviation), Moscow: Nauka, 2005.
16. Semakov, S.L. and Semakov, I.S., Estimating the Probability of Safe Landing for Aircrafts, *Proc. 2019 IEEE 58th Conference on Decision and Control (CDC-2019)*, Nice, France, 2019, pp. 2568–2573.
17. Semakov, S.L. and Semakov, I.S., Method of Calculating the Probability of a Safe Landing for Ship-Based Aircraft, *IEEE Transactions on Aerospace and Electronic Systems*, 2022, vol. 58, no. 6, pp. 5425–5442.
18. Semakov, S.L. and Semakova, M.V., Thrust Control for Aircraft Landing on a Carrier, *Automation and Remote Control*, 2023, vol. 84, no. 3, pp. 331–340.
19. Semakov, S.L., *Crossings Problems in Random Processes Theory and Their Applications in Aviation*, 2nd ed., Newcastle, UK: Cambridge Scholars Publishing, 2024.

This paper was recommended for publication by A. V. Nazin, a member of the Editorial Board