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Abstract—For continuous-time Markov jump linear systems, the concept of the generalized H2

norm is introduced as the worst-case value of the maximum of the expected squared Euclidean
norm of the target output on a finite horizon, provided that the sum of the squared energy
of an exogenous disturbance and a quadratic form of the initial state is equal to one. This
norm is characterized in terms of coupled Riccati differential matrix equation solutions and
in terms of linear matrix inequalities. Linear dynamic state-feedback controllers ensuring an
upper bound for the H2 norm of the closed-loop system are designed by solving a semidefinite
programming problem. The effectiveness of the approach is demonstrated by the results of
numerical simulations.
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1. INTRODUCTION

Random structure systems, particularly Markov jump systems [1–6], are widespread in modern
control problems. Such systems have a finite number of distinct operation modes, and the dynamics
in each mode are described by a specific system of differential equations. Jumps between modes oc-
cur at random time instants, determined by the evolution of a homogeneous Markov chain (Markov
jumps, also called Markovian switching in the literature). The simplest problems leading to random
structure systems are control with failures and disruptions [2], synchronization in variable topology
networks [3, 4], multi-agent control [5, 6], and others.

The stability problem for random structure systems was pioneered by I.Ia. Kats and
N.N. Krasovskii [7]. Later, various formulations of control problems for such systems were consid-
ered in [8–10]; in particular, a linear-quadratic controller was designed. In [1, 11–14], H∞ and H2

control problems were solved for Markov jump systems. The H∞ and H2 norms allow assessing
the quality of transients on average. However, it is often necessary to guarantee that the maximum
value of a transient (target output) will not exceed a given threshold, i.e., to estimate the maximum
value of the system’s target output. One possible approach to solving this problem is based on the
generalized H2 norm.

For continuous-time systems, the concept of the generalized H2 norm, corresponding to the
maximum deviation of a system under an exogenous disturbance of bounded energy and zero
initial conditions, was introduced in [15]. The generalized H2 norm characterizes the system gain
when the input signal has a bounded L2 norm and the output signal is measured by the L∞ norm
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(the maximum value of the Euclidean norm of the target output over time). For a linear continuous
time-varying system, the concept of the maximum deviation was introduced in [16, 17] as a natural
extension of the generalized H2 norm to systems with nonzero initial conditions, and an algorithm
for its calculation was presented therein as well. As shown in [16, 17], multi-objective control
problems with generalized H2 norms as performance criteria can be effectively solved using the
apparatus of linear matrix inequalities (LMIs).

In [18], an estimate of the generalized H2 norm was calculated for continuous-time Markov
jump linear systems on an infinite horizon. For such systems, suboptimal generalized H2 control
was designed in [19]. Another definition of the generalized H2 norm, differing from the classical one,
was used in [20]: estimates for the first absolute moment of the system output components under
bounded-energy disturbances were constructed. In [21], the problem of generalized H2 filtering
for semi-Markovian systems was considered. Problems of generalized H2 filtering and control for
discrete-time Markov jump systems were studied in [22–24]. In all the works mentioned, the
dynamics of systems in each operation mode were described by time-invariant systems.

In this paper, the concept of the generalized H2 norm for linear continuous-time Markov jump
systems is considered on a finite horizon, and the systems are generally supposed to be time-varying
in each operation mode. Several algorithms are proposed for calculating this characteristic. Also, we
demonstrate how to find its upper bound rather simply; hence, suboptimal generalized H2 control
can be designed in the case where the state of the Markov chain is available to the controller.

The remainder of this paper is organized as follows. In Section 2, we introduce the concept of the
generalized H2 norm for continuous-time Markov jump linear systems on a finite horizon and present
algorithms for its calculation. Section 3 provides the solution of the suboptimal generalized H2

control design problem in the cases where the state of the Markov chain is available and unavailable
to the controller. In Section 4, we solve the multi-objective control problem. Numerical simulations
demonstrating the above results are given in Section 5.

2. GENERALIZED H2 NORM

Let (Ω,F , (Ft)t∈[ts,tf ],P) be a probability space with filtration (Ft)t∈[ts,tf ]. We denote by

LΩ
2 ([ts, tf ],R

nv
2 ) the space of Ft-adapted processes v = {v(t) ∈ R

nv
2 , t ∈ [ts, tf ]} such that

E‖v‖22 = E

tf∫
ts

v�(t)v(t)dt < ∞,

where E(·) indicates the mathematical expectation operator.

On a fixed time interval (finite horizon) [ts, tf ], we consider a continuous-time linear system with
a random structure changing according to the evolution of a stationary Markov chain:

ẋ = Aθ(t)(t)x+Bθ(t)(t)v, x(ts) = x0,

z = Cθ(t)(t)x,
(1)

where x ∈ R
nx
2 is the system state; v ∈ LΩ

2 ([ts, tf ],R
nv
2 ) is an exogenous disturbance; z ∈ R

nz
2 is the

target output; θ(t) is a homogeneous continuous-time Markov chain defined by the initial distri-
bution πj = P{θ(ts) = j} and the matrix of transition rates P (τ) = (pij(τ)), i, j ∈ S = {1, . . . , S},
where pij(τ) is the probability that the system, being in state i at some time instant t, will pass to
state j in time τ, i.e. pij(τ) = P{θ(t+ τ) = j|θ(t) = i}. Assume that

P{θ(t+ τ) = j|θ(t) = i} =

{
λijτ + o(τ), i �= j,

1 + λijτ + o(τ), i = j,
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GENERALIZED H2 CONTROL 1155

where λij are the elements of the stationary intensity matrix Λ with the following properties:

S∑
j=1

λij = 0, λij � 0, λii < 0.

Note that a continuous-time homogeneous Markov chain can be defined using the intensity matrix,
which is related to the transition rate matrix by P (τ) = eΛτ [1].

Let the target output of the system be represented as

z = column(z1, z2, . . . , zM ), zm = Cm,θ(t)(t)x, m = 1, . . . ,M.

We define the generalized ∞ norm of the target output by the relation

‖z‖2g∞ = sup
t∈[ts,tf ]

max
m=1,...,M

E
{|zm(t)|22

}
, |zm(t)|22 = z�m(t)zm(t). (2)

System (1) generates a linear operator mapping the initial conditions and exogenous disturbance
into the target output, i.e., S : (x0, v) �→ z. We define the generalized H2 norm of system (1) as the
norm of the operator S as follows:

‖S‖2g2 = sup
(x0,v)�=0

‖z‖2g∞
E‖v‖22 + x�0 Rx0

, (3)

where R = R� 
 0 is a given weight matrix reflecting the relative importance of considering un-
certainties in the initial conditions and exogenous disturbances.

Theorem 1. The generalized H2 norm of the Markov jump linear system (1) on the finite horizon
[ts, tf ] can be calculated as

‖S‖g2 = sup
T∈[ts,tf ]

γ(T ),

where γ(T ) is the solution of the following semidefinite programming problem with respect to the
unknown matrices Ql(t) = Q�l (t) � 0 :

infγ2⎡⎢⎣Q̇l(t) +A�l (t)Ql(t) +Ql(t)Al(t) +

S∑
j=1

λljQj(t) Ql(t)Bl(t)

B�l (t)Ql(t) −I

⎤⎥⎦� 0, t∈ [ts, T ],

S∑
l=1

πlQl(ts)−R � 0,

[
Ql(T ) C�m,l(T )

Cm,l(T ) γ2I

]
� 0, m = 1, . . . ,M, l ∈ S.

(4)

Let
t∗ = arg sup

T∈[ts,tf ]
γ(T ),

and let the matrix functions Qθ(t)(t) be obtained by solving inequalities (4) on the horizon [ts, t
∗].

Then the worst-case exogenous disturbance v∗(t) and the vector of initial conditions x∗0 are given
by

x∗0 = emax

(
R−1

S∑
l=1

πlQl(ts)

)
, v∗(t)=

⎧⎨⎩B�θ(t)(t)Qθ(t)(t)x(t), t ∈ [ts, t
∗],

0, t ∈ (t∗, tf ],
(5)

where x(t) is the solution of the Cauchy problem for the system

ẋ =
(
Aθ(t) +Bθ(t)B

�
θ(t)(t)Qθ(t)(t)

)
x(t), x(ts) = x∗0. (6)
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Remark 1. Note that in the case of deterministic exogenous disturbances v ∈ L2([ts, tf ],R
nv
2 ),

the generalized H2 norm satisfies the estimate

sup
(x0,v)�=0

‖z‖2g∞
‖v‖2L2

+ x�0 Rx0
� ‖S‖g2, (7)

since the domain for calculating the supremum is reduced. Thus, by calculating the generalized
H2 norm for stochastic disturbances (3), one obtains an upper bound for the case of deterministic
disturbances (7).

To find the generalized H2 norm using the matrix inequalities (4), we perform discretization.
Let us introduce, e.g., a uniform grid with step h :

t0 = ts, tk = tk−1 + h, k = 1, . . . ,K; h =
T − ts
K

. (8)

Then the discrete counterparts of inequalities (4) have the form⎡⎢⎢⎣Ql,k+1 −Ql,k + h
(
A�l,kQl,k +Ql,kAl,k +

S∑
j=1

λljQj,k

)
hQl,kBl,k

hB�l,kQl,k −hI

⎤⎥⎥⎦ � 0,

S∑
l=1

πlQl,0 −R � 0,

[
Ql,K C�m,l,K

Cm,l,K γ2I

]
� 0, m = 1, . . . ,M, l ∈ S,

(9)

where Al,k = Al(tk), Bl,k = Bl(tk), Cm,l,k = Cm,l(tk), and Ql,k = Ql(tk), k = 0, . . . ,K − 1.

Corollary 1. The generalized H2 norm of the Markov jump linear system (1) on the finite horizon
[ts, tf ] can be calculated as

‖S‖g2 = sup
T∈[ts,tf ]

γ(T ),

where γ(T ) is the solution of the semidefinite programming problem

infγ2[
−Ẏl(t) +Al(t)Yl(t) + Yl(t)A

�
l (t) +Bl(t)B

�
l (t) + λllYl(t) Vl(t)

V �l (t) −Wl(t)

]
� 0,

[
Yl(T ) Yl(T )C

�
m,l(T )

Cm,l(T )Yl(T ) γ2I

]
� 0, m = 1, . . . ,M, l ∈ S, t ∈ [ts, T ],

L(Y1(ts), . . . , YS(ts)
)
� 0,

(10)

where

Vl(t) =
[√

λl1Yl(t) . . .
√
λl,l−1Yl(t)

√
λl,l+1Yl(t) . . .

√
λl,SYl(t)

]
,

Wl(t) = diag(Y1(t), . . . , Yl−1(t), Yl+1(t), . . . , YS(t)),

L(
Y1(ts), . . . , YS(ts)

)
=

⎡⎢⎢⎢⎢⎣
R

√
π1I . . .

√
πSI√

π1I Y1(ts) . . . 0
...

...
. . .

...√
πSI 0 . . . YS(ts)

⎤⎥⎥⎥⎥⎦ .

(11)
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To find the generalized H2 norm of system (1) using Corollary 1, it is necessary to solve prob-
lem (10) for each time instant T ∈ [ts, tf ], which is a computationally intensive process. We formu-
late a theorem yielding an upper bound for the generalized H2 norm of system (1) rather easily. It
will also be used below to design suboptimal generalized H2 control in the case where the state of
the Markov chain is available to the controller.

Theorem 2. The generalized H2 norm of the Markov jump linear system (1) on the finite horizon
[ts, tf ] satisfies the inequality

‖S‖g2 � γ,

where γ is the solution of the following semidefinite programming problem with respect to the un-
known matrices Yl = Y �l � 0, l ∈ S :

infγ2⎡⎣−Ẏl(t) +Al(t)Yl(t) + Yl(t)A
�
l (t) +Bl(t)B

�
l (t) + λllYl(t) Vl(t)

V �l (t) −Wl(t)

⎤⎦ � 0,

⎡⎣ Yl(t) Yl(t)C
�
m,l(t)

Cm,l(t)Yl(t) γ2I

⎤⎦ � 0, m = 1, . . . ,M, l∈S, ∈ [ts, tf ],

L(
Y1(ts), . . . , YS(ts)

)
� 0,

(12)

where Vl(t) and Wl(t) are given by formula (11).

3. CONTROL LAW DESIGN

Consider a linear controlled plant with a random structure and dynamics described by the
equations

ẋ = Aθ(t)(t)x+Bθ(t)(t)v +Bu
θ(t)(t)u, x(ts) = x0,

z = Cθ(t)(t)x+Dθ(t)(t)u,
(13)

where x ∈ R
nx
2 is the plant’s state; v(t) ∈ R

nv
2 is a stochastic exogenous disturbance; z ∈ R

nz
2 is

the target output; u ∈ R
nu
2 is the control vector (input); θ(t) is a continuous-time homogeneous

Markov chain defined by the initial distribution πj = P{θ(ts) = j} and the transition rate matrix
P (τ) = (pij(τ)), i, j ∈ S.

3.1. Feedback Control Considering the Markov Chain State

Let us pose the following problem: it is required to design a linear state-feedback controller
considering the Markov chain state,

u(t) = Θθ(t)(t)x(t), θ(t) ∈ S, (14)

that minimizes the generalized H2 norm of the closed-loop system

ẋ = (Aθ(t)(t) +Bu
θ(t)(t)Θθ(t)(t))x+Bθ(t)(t)v, x(ts) = x0,

z = (Cθ(t)(t) +Dθ(t)(t)Θθ(t)(t))x
(15)

(system (13) with the controller (14)).

Substituting the matrices of the closed-loop system (15) into inequalities (10), we arrive at the
following result.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



1158 BIRYUKOV, BUBNOVA

Theorem 3. The gain matrices Θ(t) = (Θ1(t), . . . ,ΘS(t)) of the controllers (14) minimizing the
generalized H2 norm of system (13) are obtained by solving the problem

‖S‖g2 = inf
Θ(t),t∈[ts ,tf ]

sup
T∈[ts,tf ]

γΘ(T ), (16)

where γΘ(T ) is the solution of the semidefinite programming problem

infγ2⎡⎣−Ẏl +AlYl + YlA
�
l +Bu

l ΘlYl + YlΘ
�
l B

u�
l +BlB

�
l + λllYl ∗

V �l −Wl

⎤⎦ � 0,

⎡⎣ Yl(T ) ∗
Cm,l(T )Yl(T ) +Dm,l(T )ΘlYl(T ) γ2I

⎤⎦ � 0,

L(
Y1(ts), . . . , YS(ts)

)
� 0, t∈ [ts, T ], m = 1, . . . ,M, l ∈ S.

(17)

For brevity, the argument t of matrix functions in the first inequality is omitted, and ∗ indicates a
symmetric element.

Problem (16) cannot be solved using the existing apparatus since it is necessary to search for the
infimum over all possible controller parameters Θ(t). This problem vanishes under the conditions
of Theorem 2: the feedback parameters can be calculated within the semidefinite programming
problem (12). In this case, it seems reasonable to find a controller minimizing the norm bound,
the so-called suboptimal generalized H2 controller.

Theorem 4. The gain matrices Θl(t) of the controllers (14) minimizing the bound of the gener-
alized H2 norm of system (13) have the form Θl(t) = Zl(t)Y

−1
l (t), where Yl = Y �l � 0 and Zl are

obtained by solving the semidefinite programming problem

infγ2⎡⎣−Ẏl +AlYl + YlA
�
l +Bu

l Zl + Z�l B
u�
l +BlB

�
l + λllYl ∗

V �l −Wl

⎤⎦ � 0,

⎡⎣ Yl(t) ∗
Cm,l(t)Yl(t) +Dm,l(t)Zl(t) γ2I

⎤⎦ � 0,

L(
Y1(ts), . . . , YS(ts)

)
� 0, t∈ [ts, tf ], m = 1, . . . ,M, l∈S.

(18)

3.2. Feedback Control Independent of the Markov Chain State

Next, we design a controller whose parameters are independent of the Markov chain state:

u(t) = Θ(t)x(t). (19)

In this case, the corresponding closed-loop system (system (13) with the controller (19)) takes the
form

ẋ =
(
Aθ(t)(t) +Bu

θ(t)(t)Θ(t)
)
x+Bθ(t)(t)v, x(ts) = x0,

z =
(
Cθ(t)(t) +Dθ(t)(t)Θ(t)

)
x.

(20)
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Theorem 5. The generalized H2 norm of system (20) satisfies the inequality ‖S‖g2 � γ with some
positive γ if there exists ρ > 0 such that the following LMIs are valid for the matrices P (t) = P�(t),
Z(t), and Yl(t) = Y �l � 0, l ∈ S:⎡⎢⎢⎣

−Ẏl+AlYl+YlA
�
l +Bu

l Z+Z�Bu�
l +BlB

�
l +λllYl ∗ ∗

V �l −Wl ∗
ρZ�Bu�

l + Yl − P 0 −2ρP

⎤⎥⎥⎦� 0,

⎡⎢⎣ Yl(t) ∗ ∗
Cm,l(t)Yl(t) +Dm,l(t)Z(t) γ2I ∗

P − Yl ρZ�(t)D�m,l(t) 2ρP

⎤⎥⎦ � 0,

L(
Y1(ts), . . . , YS(ts)

)
� 0, t ∈ [ts, tf ], m = 1, . . . ,M, l ∈ S,

(21)

where Θ(t) = Z(t)P−1(t).

4. MULTI-OBJECTIVE CONTROL

Consider a linear controlled plant with a random structure and dynamics described by the
equations

ẋ = Aθ(t)(t)x+Bθ(t)(t)v +Bu
θ(t)(t)u, x(ts) = x0,

z(k) = C
(k)
θ(t)(t)x+D

(k)
θ(t)(t)u, k = 1, . . . , N,

(22)

where x ∈ R
nx
2 is the plant’s state; v(t) ∈ R

nv
2 is a stochastic exogenous disturbance; z(k) ∈ R

nzk
2 are

the target outputs; u ∈ R
nu
2 is the control vector (input); θ(t) is a continuous-time homogeneous

Markov chain defined by the initial distribution πj = P{θ(ts) = j} and the transition rate matrix
P (τ) = (pij(τ)), i, j ∈ S.

Each target output (vector) z(k), k = 1, . . . , N, is represented as the set of vectors

z(k) = column
(
z
(k)
1 , z

(k)
2 , . . . , z

(k)
Mk

)
,

z(k)m = C
(k)
m,θ(t)(t)x+D

(k)
m,θ(t)(t)u, m = 1, . . . ,Mk.

Assume that the impact of the exogenous disturbance on the kth target output is characterized
by the performance criterion

J2
k = sup

(x0,v)�=0

‖z(k)‖2g∞
E‖v‖22 + x�0 Rx0

, (23)

i.e., it represents the generalized H2 norm. Therefore, it is possible to formulate and solve a multi-
objective control problem: min{J1, . . . , JN}. Following [16], we define the auxiliary performance
criterion Jα; then, according to Theorem 4.1 [16], Pareto optimal solutions of the above multi-
objective problem can be obtained by solving the problem

min
u

Jα, Jα = max
k=1,...,N

Jk
αk

,

α ∈ A :=

{
α = (α1, . . . , αN ) : αk > 0,

N∑
k=1

αk = 1

}
,

(24)
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1160 BIRYUKOV, BUBNOVA

where the performance criterion Jα represents the Germeier convolution and, moreover, is the
generalized H2 norm of the system

ẋ =
(
Aθ(t)(t) +Bu

θ(t)(t)Θα,θ(t)(t)
)
x+Bθ(t)(t)v, x(ts) = x0,

ζ =
(Cθ(t)(t) +Dθ(t)(t)Θα,θ(t)(t)

)
x,

(25)

where

ζ = column
(
α−11 z

(1)
1 , . . . , α−11 z

(1)
M1

, α−12 z
(2)
1 , . . . , α−12 z

(2)
M2

, . . . , α−1N z
(N)
1 , . . . , α−1N z

(N)
MN

)
,

Cθ(t) = column
(
α−11 C

(1)
θ(t), . . . , α

−1
N C

(N)
θ(t)

)
, Dθ(t) = column

(
α−11 D

(1)
θ(t), . . . , α

−1
N D

(N)
θ(t)

)
.

A controller u(t) = Θα,θ(t)(t)x(t), α ∈ A, will be called a multi-objective optimal generalized H2

controller if it ensures the minimum possible values of the generalized H2 norm of system (25).
Based on Theorem 4, we arrive at the following statement.

Theorem 6. The gain matrices Θα,l(t) of the Pareto suboptimal controllers in terms of the per-
formance criteria Jk, k = 1, . . . , N, have the form Θα,l(t) = Zl(t)Y

−1
l (t), where Yl = Y �l � 0 and Zl

are obtained by solving the semidefinite programming problem

infγ2[−Ẏl +AlYl + YlA
�
l +Bu

l Zl + Z�l B
u�
l +BlB

�
l + λllYl ∗

V �l −Wl

]
� 0,

⎡⎣ Yl(t) ∗
C

(k)
m,l(t)Yl(t) +D

(k)
m,l(t)Zl(t) α2

kγ
2I

⎤⎦ � 0,
m = 1, . . . ,M,

k = 1, . . . , N,

L(
Y1(ts), . . . , YS(ts)

)
� 0, t ∈ [ts, tf ], l ∈ S.

(26)

5. NUMERICAL SIMULATIONS

As an illustration of the above results, we consider a continuous-time linear system with Markov
jumps between two states:

ẋ = Aθ(t)(t)x+Bθ(t)(t)v +Bu
θ(t)(t)u, x(ts) = x0,

z(k) = C
(k)
θ(t)(t)x+D

(k)
θ(t)(t)u, k = 1, 2,

(27)

with the matrices

A1 =

[
1.2 −2.0
0.1 1.1

]
, A2 =

[
0.2 0.0
2.0 0.3

]
, B1 = Bu

1 =

[
0
1

]
, B2 = Bu

2 =

[
1
0

]
,

C
(1)
1 =C

(1)
2 =

[
1 0
0 1

]
, D

(1)
1 =D

(1)
2 = 0, C

(2)
1 =C

(2)
2 = 0, D

(2)
1 =D

(2)
2 =

[
1
1

]
.

This system is considered on the horizon [0, 2], the parameters of the Markov chain and the weight
matrix are given by

π =

[
0.3
0.7

]
, Λ =

[
−10 10
5 −5

]
, R =

[
1 0
0 1

]
.
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Fig. 1. The Pareto set on the criteria plane (J1, J2).

Fig. 2. An example of a Markov process realization.

We introduce two performance criteria J1 and J2, which are the generalized H2 norms of the
system with respect to the target outputs z(1) and z(2), respectively:

J2
1 = sup

(x0,v)�=0

‖z(1)‖2g∞
E‖v‖22 + x�0 Rx0

, J2
2 = sup

(x0,v)�=0

‖z(2)‖2g∞
E‖v‖22 + x�0 Rx0

. (28)

Let us perform discretization on the horizon [0, 2] with a step of h = 0.001 and calculate the
generalized H2 norm of system (27) without control. Since the target output is z(2) = 0, the
generalized H2 norm of the system coincides with the criterion J1. The value ‖S‖g2 = 5.7882 was
obtained by solving inequalities (10).

The controllers Θα,l(t) = [Θ1
α,l,Θ

2
α,l], l = 1, 2, were designed using Theorem 4, and the corre-

sponding values of the criteria J1 and J2 were calculated using Corollary 1. In Fig. 1a, the solid
line depicts the Pareto optimal curve on the criteria plane (J1, J2). Point A(1.5509; 2.2492) cor-
responds to the convolution parameter α = 0.4. Figures 1b and 1c show the graphs of the Pareto
optimal gains Θα,l(t) depending on time: the solid curve corresponds to the gain Θ1

α,l(t) whereas

the dashed one to the gain Θ2
α,l(t).
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Fig. 3. The coefficients of the gain matrix Θ(t) and control input u(t).

Next, Fig. 2 presents an example of a Markov process realization: the graphs of the Markov
chain state (Fig. 2a), the worst-case disturbances (Fig. 2b), the components x1 and x2 ( curve) of
the system state vector (the solid and dashed curves in Fig. 2c, respectively), and the control input
(Fig. 2d).

Note that the gains can be considered slowly varying on the horizon selected. There-
fore, it is interesting to compare the values of the criteria under the suboptimal dynamic con-
troller and the static controller corresponding to the average values Θ1(t) ≡ [0.2402; −1.2928] and
Θ2(t) ≡ [−1.2366; −0.6797] (see point A(1.5959; 2.3158) in Fig. 1a). According to the data pre-
sented, the losses in control performance can be considered acceptable, and they are compensated
for by the relatively simple-to-implement static controller.

5.1. Control Independent of the Markov Chain State

Now we design a controller whose parameters are independent of the state of the Markov pro-
cess (19). To solve inequalities (21), let us choose the parameter ρ = 0.2, leaving the other simu-
lation parameters unchanged. In Fig. 1a, the upper bound of the Pareto optimal front is plotted
by the dashed curve; point B(2.3697; 3.4030) corresponds to the criteria values for α = 0.4. For the
chosen α, Fig. 3a shows the graphs of the Pareto optimal gains Θα(t) depending on time (the solid
curve corresponds to the gain Θ1

α(t) whereas the dashed one to the gain Θ2
α(t)). In Fig. 3b, the

control graph for a Markov process realization is presented.

Similar to the previous case, we analyze the behavior of the performance criteria if
the dynamic controller is replaced by the static one corresponding to the average values
Θ(t) ≡ [−0.5538; −1.2106] (see point B(2.4413; 3.9778) in Fig. 1a). Clearly, the resulting values of
the criteria are worse, but the static controller is simpler to implement, so this approach can be
considered justified.

6. CONCLUSIONS

For linear systems with a random structure on a finite horizon, the concept of the generalized H2

norm has been introduced, and algorithms for its calculation have been presented based on solving
both coupled matrix Riccati differential equations and systems of LMIs. Suboptimal generalized
H2 dynamic linear state-feedback control has been designed in the cases where the state of the
Markov chain is available and unavailable to the controller. Also, it has been demonstrated how to
solve multi-objective control problems if the criteria are generalized H2 norms.
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APPENDIX

Before proceeding to the proofs of the above theorems, for convenience, we introduce the notation

X = (X1,X2, . . . ,XS), Xl(t) = X�l (t) � 0, l ∈ S, (A.1)

Rl(X) = Ẋl(t) +A�l (t)Xl(t) +Xl(t)Al(t) +Xl(t)Bl(t)B
�
l (t)Xl(t) +

S∑
j=1

λljXj(t) (A.2)

and establish an auxiliary result.

Lemma 1. Let X = (X1,X2, . . . ,XS) be the solution of the equations

Rl(X) +Ml = 0, Xl(tf ) = X0
l , l ∈ S, t ∈ [ts, tf ], (A.3)

and let Y = (Y1, Y2, . . . , YS) be the solution of the equations

Rl(Y) +Nl = 0, Xl(tf ) = Y 0
l , l ∈ S, t ∈ [ts, tf ], (A.4)

where 0 � Ml(t) � Nl(t) and 0 � X0
l � Y 0

l , l ∈ S, t ∈ [ts, tf ]. Then

Xl(t) � Yl(t), l ∈ S, t ∈ [ts, tf ]. (A.5)

Proof of Lemma 1. Consider the system of Lyapunov equations

Ṗl + (Al +BlB
�
l Xl)

�Pl + Pl(Al +BlB
�
l Xl) +

S∑
j=1

λljPj

+ (Xl − Yl)BlB
�
l (Xl − Yl) +Nl −Ml = 0

(A.6)

on the time interval [ts, tf ] with the boundary conditions Pl(tf ) = Y 0
l −X0

l , l ∈ S. This equation
has a unique solution Pl(t), l ∈ S, with Pl(t) � 0 since (Xl − Yl)BlB

�
l (Xl − Yl) +Nl −Ml � 0 and

Pl(tf ) � 0 [1, 25]. Note that Pl(t) = Yl(t)−Xl(t) is the solution of equation (A.6), which finally
gives (A.5).

Proof of Theorem 1. We write the functional (3) in the following form:

‖S‖g2 = sup
T∈[ts, tf ]

max
m=1,...,M

γm(T ), γ2m(T ) = sup
(x0,v)�=0

E|zm(T )|22
E‖v‖22 + x�0 Rx0

.

Due to the linearity of the operator S, the last equality can be written as

sup
(x0,v)�=0

E

{
|zm(T )|22 − γ2

(‖v‖22 + x�0 Rx0
)}

= 0. (A.7)

(Hereinafter, for brevity, the argument and index γm(T ) are omitted.) We introduce the Bellman
function at a time instant t :

V (t, xt, l) = sup
v

E

⎧⎨⎩z�m(T )zm(T )−γ2
T∫
t

v�(τ)v(τ)dτ
∣∣∣x(t) = xt, θ(t) = l

⎫⎬⎭. (A.8)

Then the relation (A.7) becomes

sup
x0 �=0

E

{
V (ts, x0, θ0)− γ2x�0 Rx0

}
= 0, θ0 = θ(ts). (A.9)
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Let us calculate V (ts, x0, θ0) using the stochastic Bellman equation [26]

max
v

{LvV (t, x(t), l) − γ2v�(t)v(t)
}
= 0,

V (T, x(T ), l) = x�(T )C�m,l(T )Cm,l(T )x(T ),
(A.10)

where the infinitesimal generator Lv has the form

Lvg(t, x, l) =
∂g(t, x, l)

∂t
+

(
Al(t)x+Bl(t)v

)�∇xg(t, x, l)+
S∑

j=1

λljg(t, x, j). (A.11)

We seek a solution in the class of quadratic forms V (t, x(t), l) = x�(t)Xl(t)x(t),
Xl(t) = X�l (t) � 0. From this point onwards, for brevity again, the arguments of the functions
x(t) and v(t) will be omitted. Substituting the infinitesimal generator (A.11) into equation (A.10)
yields

max
v

{
x�Ẋl(t)x+ 2(Al(t)x+Bl(t)v)

�Xl(t)x+
S∑

j=1

λljx
�Xj(t)x− γ2v�v

}
= 0. (A.12)

Since the expression in curly braces is a concave functional in the variable v, a solution of this
problem does exist. To obtain it, we find the stationary point v∗ :

v∗ = γ−2B�l (t)Xl(t)x. (A.13)

Omitting the arguments of matrix functions and substituting (A.13) into (A.12), after straightfor-
ward simplifications, we get

x�
⎛⎝Ẋl +A�l Xl +XlAl + γ−2XlBlB

�
l Xl +

S∑
j=1

λljXj

⎞⎠x = 0. (A.14)

Equality (A.14) must hold for any value of x; therefore, one arrives at the differential matrix
equation

Ẋl +A�l Xl +XlAl + γ−2XlBlB
�
l Xl +

S∑
j=1

λljXj = 0 (A.15)

with the boundary conditions Xl(T ) = C�m,l(T )Cm,l(T ). Then, at the initial time, we have

V (ts, x0, θ0) = x�0 Xθ0(ts)x0, and the calculation of (A.9) reduces to

sup
x0 �=0

x�0

(
S∑
l=1

πlXl(ts)− γ2R

)
x0. (A.16)

This expression is a quadratic form in the variable x0 and reaches its maximum at the point

x∗0 = emax

(
R−1

S∑
l=1

πlXl(ts)

)
(A.17)

under the condition

S∑
l=1

πlXl(ts)− γ2R � 0; (A.18)
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in this case, the value of γ is given by

γ = λ1/2
max

(
R−1

S∑
l=1

πlXl(ts)

)
. (A.19)

Writing condition (A.19) using an LMI with the minimum value of γ, after the change of variables
Xl(t) = γ2Ql(t), we obtain the following optimization problem on the interval [ts, T ] for calculat-
ing γm(T ) :

inf γ2

Rl(Q) = 0,
S∑
l=1

πlQl(ts)−R� 0, Ql(T ) = γ−2C�m,l(T )Cm,l(T ), l ∈S.
(A.20)

Next, we show that γm(T ) can be found by solving the following semidefinite programming
problem on the interval [ts, T ] :

inf γ2

Rl(Q)� 0,
S∑
l=1

πlQl(ts)−R� 0, Ql(T )� γ−2C�m,l(T )Cm,l(T ), l ∈S.
(A.21)

Let γ1 be the solution of problem (A.20), and let γ2 and Q = (Q1, Q2, . . . , QS) be obtained by
solving (A.21). The solution of (A.20) is a solution of (A.21) if the corresponding inequalities hold
as equalities, therefore γ2 � γ1.

Assume that γ2 < γ1. Let X = (X1,X2, . . . ,XS) be the solution of the equations Rl(X) = 0,
l ∈ S, on the interval [ts, T ] with the boundary conditions Xl(T ) = γ−22 C�m,l(T )Cm,l(T ). Then, due
to Lemma 1, we have

Xl(t) � Ql(t), l ∈ S, t ∈ [ts, T ]. (A.22)

Since πl � 0, l ∈ S, the relations

S∑
l=1

πlXl(ts) �
S∑
l=1

πlQl(ts) � R (A.23)

hold at the initial time instant. Hence, X is a solution of the problem (A.20) for γ2 < γ1, which
contradicts the condition γ21 = inf γ2; consequently, the assumption γ2 < γ1 is false, and γ1 = γ2.

Note that for a fixed m, solving problem (A.21) yields γm(T ). To find max
m=1,...,M

γm(T ), it is

necessary to supplement inequalities (A.21) with enumeration over all possible values of m, i.e.,
solve (A.21) for m = 1, . . . ,M. Applying the Schur complement lemma to inequalities (A.21), we
finally arrive at conditions (4). The proof of Theorem 1 is complete.

Proof of Corollary 1. In inequalities (A.21), we make the change of variables Yl(t) = Q−1l (t),
l ∈ S, and multiply the first and third inequalities by Yl(t) on the left and right. After that, using
the Schur complement lemma, we get the expressions (10). The proof of Corollary 1 is complete.

Proof of Theorem 2. Let the generalized H2 norm of system (1), ‖S‖g2, be achieved at a time
instant t∗, i.e.,

‖S‖g2 = sup
T∈[ts,tf ]

γ(T ), t∗ = arg sup
T∈[ts,tf ]

γ(T ),

where γ(T ) is the solution of problem (10). Thus, for T = t∗, we obtain inf γ2 = γ2(t∗) = ‖S‖2g2 in
problem (10).
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Let solving problem (12) yield a value γ̂ and matrices Ŷl(t), t ∈ [ts, tf ]. Assume that γ̂ < ‖S‖g2;
then for T = t∗ and Yl(t) = Ŷl(t), t ∈ [ts, t

∗], problem (10) has a solution γ̂2 < ‖S‖2g2, which contra-
dicts the condition inf γ2 = ‖S‖2g2. Hence, the assumption γ̂ < ‖S‖g2 is false, and ‖S‖g2 � γ̂. The
proof of Theorem 2 is complete.

Proof of Theorem 4. We substitute the matrices of the closed-loop system (15) into inequali-
ties (12) and apply the changes Θl(t)Yl(t) = Zl(t), making the inequalities linear. These transfor-
mations lead to inequalities (18). The proof of Theorem 4 is complete.

Proof of Theorem 5. Let us utilize the approach outlined in [27]. Multiplying the first and
second inequalities of (21) on the left and right by[

I 0 ρ−1(Yl − P )P−1

0 I 0

]
and

[
I 0 ρ−1(Yl − P )P−1

0 I 0

]�
,

respectively, we obtain[
−Ẏl +

(
Al +Bu

l Θ
)
Yl + Yl

(
Al +Bu

l Θ
)�

+BlB
�
l + λllYl Vl

V �l −Wl

]
� 0,

[
Yl Yl(t)

(
Cm,l +Dm,lΘ

)�(
Cm,l +Dm,lΘ

)
Yl γ2I

]
� 0.

(A.24)

Together with the third inequality of (21), they are the conditions for calculating the bound of the
generalized H2 norm of system (20) using Theorem 2. The proof of Theorem 5 is complete.

REFERENCES

1. Costa, O.L., Fragoso, M.D., and Todorov, M.G., Continuous-Time Markov Jump Linear Systems,
Springer, 2014.

2. Stoica, A.M. and Stoicu, S.C., H∞ State-Feedback Control of Multi-Agent Systems with Data Packet
Dropout in the Communication Channels: A Markovian Approach, Entropy, 2022, vol. 24, no. 12,
pp. 1734.

3. Xiaowu, M., Baojie, Z., and Kai, L., L2−L∞ Containment Control of Multi-Agent Systems with Marko-
vian Switching Topologies and Non-Uniform Time-Varying Delays, IET Control Theory & Applications,
2014, vol. 8, no. 10, pp. 863–872.

4. Yan, Z., Sang, C., Fang, M., and Zhou, J., Energy-to-Peak Consensus for Multi-Agent Systems with
Stochastic Disturbances and Markovian Switching Topologies, Transactions of the Institute of Measure-
ment and Control, 2018, vol. 40, no. 16, pp. 4358–4368.

5. Abdollahi, F. and Khorasani, K., A Decentralized Markovian Jump H∞ Control Routing Strategy
for Mobile Multi-Agent Networked Systems, IEEE Transactions on Control Systems Technology, 2011,
vol. 19, no. 2, pp. 269–283.

6. Wan, H., Luan, X., Karimi, H.R., and Liu, F., Dynamic Self-Triggered Controller Codesign for Markov
Jump Systems, IEEE Transactions on Automatic Control, 2021, vol. 66, no. 3, pp. 1353–1360.

7. Kats, I.Ia. and Krasovskii, N.N., On Stability of Systems with Random Parameters, Journal of Applied
Mathematics and Mechanics, 1960, vol. 24, no. 5, pp. 1225–1246.

8. Kazakov, I.E. and Artem’ev, V.M., Optimizatsiya dinamicheskikh sistem sluchainoi struktury (Opti-
mization of Dynamic Systems with Random Structure), Moscow: Nauka, 1980.

9. Katz, I.Ya., Metod funktsii Lyapunova v zadachakh ustoichivosti i stabilizatsii sistem sluchainoi struktury
(The Lyapunov Function Method in Stability and Stabilization Problems of Systems with Random
Structure), Yekaterinburg: Ural State Transport University, 1998.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



GENERALIZED H2 CONTROL 1167

10. Mariton, M., Jump Linear Systems in Automatic Control, Taylor & Francis, 1990.

11. Hinrichsen, D. and Pritchard, A.J., Stochastic H∞, SIAM J. Control, 1998, vol. 36, no. 5, pp. 1504–153.

12. Petersen, I.R., Ugrinovskii, V.A., and Savkin, A.V., Robust Control Design Using H∞ Methods, London:
Springer, 2000.

13. Costa, O. and Fragoso, M., A Separation Principle for the H2-Control of Continuous-Time Infinite
Markov Jump Linear Systems with Partial Observations, J. Math. Anal. Appl., 2007, vol. 331, pp. 97–
120.

14. De Oliveira, A.M. and Costa, O.L.V., Mixed H2/H∞ State-Feedback Control of Continuous-Time
Markov Jump Systems with Partial Observations of the Markov Chain, IFAC-PapersOnLine, 2020,
vol. 53, no. 2, pp. 2249–2254.

15. Wilson, D.A., Convolution and Hankel Operator Norms for Linear Systems, IEEE Trans. Autom. Con-
trol, 1989, vol. 34, pp. 94–97.

16. Balandin, D.V. and Kogan, M.M., Pareto Optimal Generalized H2-Control and Vibroprotection Prob-
lems, Autom. Remote Control, 2017, vol. 78, no. 8, pp. 1417–1429.

17. Balandin, D.V., Biryukov, R.S., and Kogan, M.M., Optimal Control of Maximum Output Deviations
of a Linear Time-Varying System on a Finite Horizon, Autom. Remote Control, 2019, vol. 80, no. 10,
pp. 1783–1802.

18. De Oliveira, A.M., Costa, O.L.V., Gabriel, G.W., and Barros Dos Santos, S.R., Energy-to-Peak Reduced
Order Filtering for Continuous-TimeMarkov Jump Linear Systems with Partial Information on the Jump
Parameter, IEEE Access, 2022, vol. 10, pp. 79124–79133.

19. Costa, O.L.V., De Oliveira, A.M., Gabriel, G.W., and Barros Dos Santos, S.R., Energy-to-Peak Static
Output Control for Continuous-Time Hidden Markov Jump Linear Systems, IFAC-PapersOnLine, 2023,
vol. 56, no. 2, pp. 8141–8146.

20. Todorov, M.G., A New Approach to the Energy-to-Peak Performance Analysis of Continuous-Time
Markov Jump Linear Systems, IEEE Control Systems Letters, 2024, vol. 8, pp. 1024–1029.

21. Xu, Z., Wu, Z.-G., Su, H., Shi, P., and Que, H., Energy-to-Peak Filtering of Semi-Markov Jump Systems
with Mismatched Modes, IEEE Transactions on Automatic Control, 2020, vol. 65, no. 10, pp. 4356–4361.

22. Liu, H., Sun, F., and Sun, Z., Reduced-Order Filtering with Energy-to-Peak Performance for Discrete-
Time Markovian Jumping Systems, IMA J. Math. Control Inform., 2004, vol. 21, no. 2, pp. 143–158.

23. Feng, J., and Han, K., Robust Full- and Reduced-Order Energy-to-Peak Filtering for Discrete-Time
Uncertain Linear Systems, Signal Processing, 2015, vol. 108, pp. 183–194.

24. Zhang, Zh., Zhang, Z., and Yang, S., Robust Reduced-Order l2−l∞ Filtering for Network-Based Discrete-
Time Linear Systems, Signal Processing, 2015, vol. 109, pp. 110–118.

25. Fragoso, M. and Baczynski, J., Lyapunov Coupled Equations for Continuous-Time Infinite Markov Jump
Linear Systems, Journal of Mathematical Analysis and Applications, 2002, vol. 274, pp. 319–335.

26. Fragoso, M.D. and Hemerly, E.M., Optimal Control for a Class of Noisy Linear Systems with Markovian
Jumping Parameters and Quadratic Cost, Int. J. Syst. Sci., 1991, vol. 22, no. 12, pp. 2553–2561.

27. Zhou, J., Park, J.H., and Ma, Q., Non-Fragile Observer-Based H∞ Control for Stochastic Time-Delay
Systems, Applied Mathematics and Computation, 2016, vol. 291, pp. 69–83.

This paper was recommended for publication by P.V. Pakshin, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025


