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Abstract—A comprehensive method is proposed to enhance the resolution and accuracy of radar
angular measurements for detecting and determining the coordinates of objects in the form of
closely spaced multiple aerial targets that cannot be resolved by direct observation. Solving
this problem improves the quality of controlling various types of unmanned aerial vehicles
(UAVs) located near such targets. The practical implementation of the method is particularly
important in calculating and modeling flight trajectories of autonomous and controlled aerial
vehicles when visual observation is difficult or ineffective. Mathematically, the problem reduces
to solving Fredholm integral equations of the first kind of convolution type with additional
constraints. Solutions with angular super-resolution are sought in the form of an expansion of
the unknown function over chosen systems of orthogonal functions. For group targets with high
object density, it is not always possible to obtain an adequate solution to this inverse problem.
In such cases, enhancing the achievable super-resolution degree is proposed based on a new
method called the separation method. It is based on excluding from the analyzed signal its
component formed by reflection from one or several targets distinguished by some means. The
use of nonlinear regression methods in research is justified. Results of numerical experiments
on a mathematical model are presented and analyzed.
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1. INTRODUCTION

Angular super-resolution of a measurement or observation system refers to angular resolution
capability exceeding the Rayleigh criterion. The Rayleigh criterion is the minimum angular dis-
tance 6r between two point objects at which the measurement system can still register them
separately:

0r = \/L, (1)

where L is the linear size of the receiving system, A is the wavelength used. The angle 0r equals
the antenna beamwidth 6 5, defined at the level of received power reduction by a factor of 2.

In measurements of angular coordinates, the obtained resolution does not exceed the Rayleigh
criterion. Results of digital signal processing using special algorithms allow systems to detail images
of studied objects with accuracy down to a previously unknown angle ;s < 8r. The value 65 depends
on the signal-to-noise ratio (SNR) in the data, the digital processing method used, as well as the
angular reflection (or radiation) characteristics of the signals from the studied objects. Achieved
angular super-resolution improves measurement accuracy, enhances detection and identification
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COMPREHENSIVE METHOD FOR ANGULAR SUPER-RESOLUTION 1139

probability characteristics. It becomes possible to observe and measure coordinates of individual
closely located objects within targets, called group targets, which previously, according to (1),
merged into a single extended object.

Consequently, the obtained dynamic picture enables improving the effectiveness of control-
ling unmanned aerial vehicles (UAVs) operating in zones containing many other UAVs and UAV
“swarms.”

Several dozen numerical methods for achieving super-resolution and their variations are known
[1-7]. However, there is no single universal method for solving the super-resolution achievement
problem. All methods and algorithms have various limitations. For example, for most methods,
super-resolution can only be achieved at SNR above 2025 dB. The most well-known methods [5-7]
are effective only for solving one-dimensional problems. For two-dimensional problems, algorithms
become significantly more complex [8] and do not allow real-time use.

For each specific problem, one should choose its own, most effective method for processing mea-
surement or observation data under the given conditions. The quality of the obtained approximate
solution can be improved by combining several new methods into a single comprehensive method.
It is based on the sequential application, depending on the results obtained, of new specialized
processing methods described in Sections 4-6.

2. PROBLEM FORMULATION

Let a large number of closely located UAVs be present in the surveillance zone of a radar station
(ground-based or mounted on an aerial vehicle). A significant portion of objects, due to relatively
small distances between them, are not angularly resolved by direct observation. In this case, they
form a single large spatial object, i.e., a group target.

It is necessary to isolate the maximum possible number of individual objects in the surveillance
zone and determine their coordinates. The characteristics of the measurement system and the
received signal are assumed known.

Mathematical problem formulation.

Given: antenna pattern (AP) F(a, ), the received signal U(a, ¢) during scanning of the two-
dimensional surveillance sector ¥ in the form of a linear integral transform:

Ulasp) = [ Fla—a'p = ) ¢!) dalds @
Q

where 2 is an unknown two-dimensional angle within which signal sources are located, and 2 < .
It is required to find the angular distribution of the reflected signal amplitude I(«, ¢), equal to zero
outside the region €.

The problem of finding the function I(a, ) represents an inverse problem, ill-posed in the sense
of Hadamard, in the form of a Fredholm integral equation (IE) of the first kind. In such problems,
the third condition of well-posedness—stability of solutions with respect to input data—is violated.

It is well known that the stability of inverse problems can be improved by using any additional
data about the solution. Algebraic methods [9-15] are convenient for introducing various additional
constraints into solutions. Furthermore, the mentioned methods are relatively noise-resistant, and
their high speed allows real-time use. For the considered class of problems, they are the most
promising.

3. REGULARIZATION OF THE PROBLEM USING THE ALGEBRAIC METHOD

Algebraic methods involve representing one- or two-dimensional solutions (2) as expansions over
a given orthogonal system of functions in the region of source location.

AUTOMATION AND REMOTE CONTROL Vol. 8 No. 12 2025



1140 LAGOVSKY, RUBINOVICH

Consider a one-dimensional problem when scanning is performed along one coordinate. Gener-
alization of the obtained results to the two-dimensional case presents no fundamental difficulties.

Following the ideology of algebraic methods, the desired solution I(a) can be represented as

0 M
(@) = ) bngm(a) = > bmgm(a), (3)
m=1 m=1

where gp, (), m=1,...,M is a chosen finite system of functions orthogonal in the region €,
by, are the desired expansion coefficients of I(«) in a series. Then the received signal (2) can be
represented as

1
(]
=
3
N
3
&

U(@) = Y buGm(a) . Gla) = / Fla— o' )gm(a) de!, (4)
m=1 Q

and it turns out to be a superposition of non-orthogonal functions G,,(«). Thus, the inverse problem
becomes parameterized. Its approximate solution reduces to finding the vector of coefficients B
with elements b,,, which are determined from a system of linear algebraic equations (SLAE) by
minimizing the mean square deviation of U(«) (4) from the received signal (2) [16-23]:

V = HB, (5)
V,— / U()G(a) d(@), Hypm— / Con(@)C(a) d(a), nym=1,..., M. (6)
Q Q

If the signal is given as a discrete sequence of values, the problem reduces to solving an overdeter-
mined SLAE based on the least squares method.

The boundaries of the angular sector {2, within which signal sources are located, are initially
chosen based on an estimate, considering a significant decrease in the level of the received signal
at the boundaries of ) relative to its maximum value. Later, based on preliminary solutions, the
boundaries of sector {2 are refined, and the solution is sought in a new, usually smaller, angular
sector. As numerical experiments have shown, after several iterations, the size and boundaries of
sector {2 become close to the true ones.

The choice of the system of functions g,,(«) for representing the solution (3) is based on using
a priori information about signal sources or, in its absence, on a reasonable model of physically
realizable source types.

Enhancing the achievable super-resolution level is based on increasing the number of functions
in the representation (3). However, in the considered inverse problems, matrices H in SLAE (5)
are ill-conditioned. Their condition numbers grow exponentially with increasing matrix dimension.
A stable approximate solution for UAV-type signal sources can only be obtained for the first few
functions from (3), which, at high SNR, allows exceeding the Rayleigh criterion by 2—4 times
10, 13, 14].

To further improve the quality of the approximate solution by increasing the number of used
functions in (4)—(6), it is proposed to apply Tikhonov regularization method [16] to the stated
problem (2).

Formally, solving SLAE (5) is equivalent to minimizing the function

®(B) =|| HB -V |]?, (7)

where || . || denotes the vector or matrix norm. The Tikhonov regularization method allows finding
the normal solution of system (5) using representation (7), i.e., the vector B minimizing the norm
of vector || HB -V |.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025
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Fig. 1. Solution of the problem for two close objects.

The solution consists in finding the vector B for which the function
(BN = HB -V |?+X | B | (8)

reaches the smallest value for a fixed positive A. It is known that a solution to such a problem
exists and is unique [16].

The problem of minimizing function ®(B, \) (8), as can be easily shown, is equivalent to solving
the SLAE

(H'H + \E)B =H"'V, (9)

where E is the identity matrix, HT is the transposed matrix. For A = 0, equation (9) transforms
into the original SLAE.

The Tikhonov regularization method additionally allows accounting for a possible a priori ap-
proximate estimate of the solution, given in the form of expected coordinates of vector B as a
vector C.

Then instead of (8), (9) we obtain

OB\ =|HB-V |?+X||B-C|?, )
10
(H'H + \E)B = HTV + \C.

Since in solving real problems related to measurement systems, the input data always contain
random components, to choose the best solution, it is necessary to perform calculations for various
values of the regularization parameter A, close to the level of random components in the studied
signal. As a model example, the problem of achieving angular super-resolution for two closely
located identical small-size objects at high SNR was solved.

In Figs. 1 and subsequent figures, the zero direction is taken as the direction to the antenna plane;
the vertical axis—the amplitude value of signal sources and the received signal, normalized to unity;
the horizontal axis—the scanning angle « of the system in relative units of 6y 5 beamwidth; true
signal sources, simulating UAVs, are shown as a thin black solid broken line (curve 1). The angular
dependence of the received signal U(«), showing that during direct observation without signal
processing the sources merge into a single object, is presented by a dashed curve (curve 2). The thick

AUTOMATION AND REMOTE CONTROL Vol. 8 No. 12 2025
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Fig. 2. Solution of the problem for two close objects, SNR = 12dB: 1—true sources, 2—received signal U(a),
3—solution with super-resolution.

stepped line 3 is the solution by the algebraic method (3)-(6) without problem regularization. The
obtained inadequate solution is unstable and represents an oscillating function. The broken curve 4
is the stable solution obtained using Tikhonov regularization. Both true sources are observed
separately. The Rayleigh criterion is exceeded by a factor of 5.

When comparing super-resolution achievement methods, one of the main quality criteria is
the dependence of the degree of exceeding the Rayleigh criterion on SNR. This is because inverse
problems are being solved, which are significantly more sensitive to the level of random components
in the studied signals than direct problems. By this criterion, Tikhonov regularization allows
sharply improving the quality of the obtained solutions.

On Fig. 2, the solution of the same problem is presented in the same notations as in Fig. 1, but
at SNR = 12 dB. The obtained stable solution practically did not change, whereas for popular
super-resolution achievement methods [1-7] the minimally required SNR level is 20 dB.

4. REGULARIZATION OF THE PROBLEM BY THE SEPARATION METHOD

Suppose that from a group target, using M step functions, it was possible to isolate K separate
objects (or one object) and approximately determine their angular positions and amplitudes of
reflected signals. Then the number of objects in the new group target will be M — K. For the
isolated K objects, we assume that their locations gi(«) and amplitudes by have been found:

Ik(a) = bkgk(oz), k=M-K —|-j, j = 1, ce ,K. (11)

The problem arises of separating the remaining objects in the new group. For this, a method based
on extracting from the received reflected signals U(«a) only those that belong to the new group
target is proposed.

The signal received from the already isolated K sources

M M M
Uk(a) =Y /F(a — &) (o)do! = 3 bk/F(a —d)ge(e)do' = 3 biGrla),  (12)
k=P T k=P
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where P =M — K 4+ 1, I is the region of location of the isolated sources. For the new prob-
lem, signal Uk («) becomes interference, and strong interference at that, which prevents isolating
individual sources from the new group.

It is possible to largely neutralize the influence of this interference. For this, from the received
real signal U(«), one should subtract an artificially synthesized signal imitating the signal from
the previously separated K sources (12). Then the signal received from the remaining objects,
representing the new group target of P objects, becomes equal to

Us(a) = Ula) — Ux(a). (13)

The formed signal in the form (13) can be further used in solving the super-resolution achieve-
ment problem for the new group target similarly to (3)—(6). Introducing a new system of step
functions h,,(«) for this, we finally obtain an SLAE of the form

W = QC, (14)

where the elements of vector W and matrix () are represented as:

We= [ Us(@Hi(@)da, Quq= [ Hi(o)H,(0)do.

[ [
(15)
Hi(a) = / Fla — o/ )hy(o) de!.
[

Here C'is the vector with elements by, from (11), @ is the region of location of the new group target.

Estimation of the position and boundaries of region ® is now performed based on analysis of
the synthesized signal Ug(«) similarly to determining region € in (6). If the previously separated
K objects are located near the boundary of region €2, then the size of region ® becomes smaller
than €. If the separated objects are not located at the edge of the region, then the new region ® also
turns out to be smaller than 2, but doubly connected or even multiply connected. Constructing
a solution in a multiply connected region is performed according to the same scheme as in the
one-dimensional case, by introducing a finite system of functions orthogonal in region &.

In the new reduced region ®, the same number of functions g,,(a) as in region 2 in (3) provides
greater resolution without a substantial increase in the condition numbers of matrix H in (5).
In many cases, this allows angular resolution of objects of the new group target. The described
approach to the problem of analyzing a UAV swarm or other objects constituting a group target
can be called the separation method.

5. SEPARATION METHOD

It should be noted that the coefficients b, from (5), (6), and consequently Us(c«), are found with
some error. For direct problems, the error may be insignificant and can be neglected. However,
the considered problem is inverse, the stability of its solutions is significantly worse. To obtain
adequate results, it is necessary to refine the values of b, before their further use in (7)—-(15).

Refinement of the values is proposed to be carried out according to the following scheme. Prob-
lem (3)—(6) is solved, but instead of signal U(«), signal Ug(«) is used, i.e., vector V is replaced by
vector W from (10). In the idealized case, i.e., if coefficients b,,, and Ug(«) were previously found
accurately, all coefficients by in (7) turn out to be zero.

In the real case, we obtain values b,, and by satisfying the relation

K M-K M
Us(a) =U(a) — Z WGr(a) = Z bl Go(a) + Z bi.Gr(a), (16)
k=M—K+1 m=1 k=M—K+1
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Fig. 3. Separation of one object from a group target. I—True sources, 2—synthesized signal Us(c),
3—received signal, 4—solution with super-resolution.

where b are the values of by, found with some error when solving problem (8)—(15) with the original
signal U(a), bL, are refined values of coefficients b, when solving the problem with the original
signal Ug(a), b}, are residual values of coefficients by not equal to zero, arising due to errors in
determining b}.

To reduce these errors, an iterative process [17] is then built. Instead of coefficients b} in (8) at
the first step, we use bl = b? + bL, and instead of Ug(a) in the form (9) Ul(a) ie.

M

Us(e) =U(a) —Uk(a), Uk(a)= > bGila). (17)
k=M-K+1

Further, similarly to (14), (15), we obtain the second approximation b7. At the next step, we use
bl = b0 + bt + b2, etc. At the nth step, we arrive at the relation

M
Uta) =U(a) —Uk(e), Uk(a)= > biGx(a). (18)
k=M-K+1

Numerical experiments showed that in several iterations b} decrease significantly compared to
the initial values and become comparable to errors in the input data.

As an example of applying the separation method, consider a group target of four point objects
located in the angular sector [—1.16p5; 1.56p 5], with small differences in signal amplitude values.

In Fig. 3, the original angular dependence of the received signal U(«) is shown as a dashed curve
(curve 3). The objects are not angularly resolved by direct observation. Solution by the algebraic
method (3)—(6) using eight step functions allowed isolating one object from the group target.

Using a larger number of functions leads to unstable inadequate solutions that cease to reflect
reality. Such solutions can be easily recognized, as coefficients b, begin to take values orders of
magnitude larger than real ones.

The degree of solution stability can be assessed using condition numbers of matrices H from (5).
Note that condition numbers of such matrices increase sharply (exponentially) with an increase
in the number of used functions. Consequently, the number of functions g,,(«) in representing
solution (3) is always limited.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025
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Fig. 4. Solution of the problem based on the object separation method.

Figure 3 shows: as a thin broken line (curve 1)—positions of true point signal sources and the
introduced virtual source In(«) (12) with negative polarity; as a thick solid curve (curve 2)—the
synthesized signal Ug(«), which was used to refine the signal amplitude reflected by the fourth
object, i.e., refining by; dotted curve (curve 3)—the reflected signal; as a thick stepped curve
(curve 4)—the solution of the inverse problem (2) based on the synthesized signal Ug(«) in the
original region 2.

The solution confirmed the correctness of isolating one object from the group target. However,
resolving the remaining objects in angle using the eight introduced step functions g,,(a) in Q was
not possible.

In this case, one should proceed to the second stage of solving the problem by the separation
method in the found new region ® (15).

The second stage consists in using Ug(a) instead of Us(a) in (13)—(15) for the newly formed
group target.

On Fig. 4, the solution results are presented. As a thick dashed curve (curve 1), the synthesized
signal Ug(c) (18) is shown. Thin broken line (curve 2)—true point signal sources, thick solid
broken line (curve 3)—the found solution using five step functions g,,(«) in region ®, the size of
which turned out to be 1.75 times smaller than the original region €.

Sufficient solution stability and the achieved super-resolution level in the considered example
allowed separately registering and determining the coordinates of all objects in the new group
target.

The second stage of solution does not always allow resolving objects of the group target. For
each specific target and specific measurement system, there exists an angular distance between
objects below which their resolution is impossible.

6. NONLINEAR REGRESSION

In cases where resolving objects of a group target using the proposed methodology fails, a more
complex approach is proposed in the comprehensive method.

Note that the above separation method is based on determining object amplitudes b; with high
accuracy. However, the accuracy of the angular position of each object does not change, as it is

AUTOMATION AND REMOTE CONTROL Vol. 8 No. 12 2025
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Fig. 5. Solution of the problem for a group target using nonlinear regression.

limited by the angular size of the used step function. More accurate determination of coordinates «;
simultaneously with searching for b; will improve the quality of obtained solutions.

Assume, as in the given examples, that angular coordinates of objects are negligibly small and
can be described using delta-functions é(a — ), where «a; is the coordinate of the jth object,
j=1,...N, N =M — K. Then instead of (3)—(4) we obtain further (19)—(20)

N
I(a) = Z o — am), (19)

I
hE

Ug () Fla—an). (20)

Search for new refined solutions «; and b; is proposed to be carried out based on applying
nonlinear regression [25-29]. We introduce a regression function similar to (16), i.e.

N
L(@) = " duFla = m), (21)
m=1

where v, and d,, are the desired parameters. We also use an additional condition in the form of
equality of received signal powers

2
/(Ug(a)fda _ / (fj dy F —'ym)> da. (22)
m=1

1] (]

Solution based on minimizing the mean square deviation of (21) from Ug(c) reduces to solving a
system of nonlinear equations. Then, using standard nonlinear regression algorithms, we determine
unknown parameters 7, and d,, minimizing the deviation.

Numerical search for solutions for several objects does not cause significant difficulties, since a
good initial approximation is used in the form of previously found b,, and coordinates «,, specified
within each previously used step function.

On Fig. 5, an example of solving the problem for three closely located objects with different
amplitudes of reflected signals is given. The real location of point sources and their amplitude
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values are shown by solid broken lines (curve 1). The useful signal Ug(c) received during scanning
together with the noise component within angles [—6y5/2,6005/2] is shown as a rapidly oscillating
curve (curve 3). Using the previously described methods did not allow resolving the targets.
Using nonlinear regression allowed obtaining an adequate solution, shown by a dashed broken line
(curve 2).

All objects are resolved, their location is determined with good accuracy, amounting
to 0.07 beamwidth. Amplitude values were found with less accuracy, but they are of secondary
importance. The resolution exceeded the Rayleigh criterion by more than four times.

Solving the system of nonlinear equations based on (19)—(22) is noticeably more stable than
solving SLAE (14). Numerical experiments showed that adequate solutions are obtained at SNR
down to 18 dB, i.e., at higher levels of random components than when using known super-resolution
methods.

In some cases, when UAVs are located with high density, resolving objects by the methods
described above fails. However, through a more complex approach and some complication of the
technical system, achieving super-resolution is possible in these cases as well. For this, it is proposed
to use a so-called harmonic radar.

7. NONLINEAR SECONDARY RADAR

Secondary, or harmonic radar (HR), upon reception uses a signal frequency two or three times
higher than the probing (or interrogation) signal frequency. The received signal is formed due
to reflection from nonlinear elements of the studied objects. As a result, the signal represents a
superposition of harmonics, multiples of the emitted frequency [24—29].

Ordinary radar objects exhibit nonlinear properties to a very small degree. Currently, HR
with specially built-in nonlinear elements are most often used in rescue operations under complex
conditions on land and sea for searching and measuring coordinates of objects.

In the considered problems, in the studied angular region at the emitted frequency fy, there
are many signals reflected from a large number of objects, including dangerous mobile objects.
Moreover, signals can represent interference at the used frequency fp, including intentionally created
ones. Ultimately, determining coordinates of individual objects by analyzing the total response
signal at frequency fy turns out to be practically impossible.

At the same time, nonlinear HR detects only targets possessing nonlinear properties, using
frequencies 2 fy and 3 fy, and any signals and interference at frequency fo do not affect its operation.

The main disadvantage of HR is the weak reflected signal at the used, multiples of fj, frequencies
compared to reflection at the original frequency fo. This circumstance significantly limits the
range D of nonlinear radars. Various methods are proposed to increase it [24-29]. Ultimately, at
frequencies 2fy and 3fy, a range up to D ~ 1-5 km can be achieved.

Ensuring determination of coordinates of individual objects is possible when reducing the number
of objects in the studied region. For this, it is proposed to install lightweight small-size nonlinear
elements on certain types of UAVs. Simple antennas, including printed ones, in the form of dipoles
with a diode, can be used as such. Then, against the background of signals reflected by them at
frequencies 2fy and 3fy, other UAVs will become practically unnoticeable.

In this case, it becomes possible to measure coordinates of selected types of UAVs at frequencies
2fo and 3fy, including using super-resolution methods if necessary. At the main frequency fo,
the above-described method of separating objects in the form of selected types of UAVs with now
known coordinates becomes applicable. Consequently, the number of UAVs in the surveillance
zone decreases, and the problem of determining coordinates of the remaining UAVs of other types
is simplified. Its solution is now carried out according to the above scheme (3)—(6) and (7)—(10).

AUTOMATION AND REMOTE CONTROL Vol. 8 No. 12 2025
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Fig. 6. Improving the accuracy of angular measurements of airborne radars.

Low accuracy of angular measurements for aerial vehicles of relatively small size in autonomous
mode at frequencies 2fy and 3fy can significantly reduce the effectiveness of using the presented
separation method. This drawback can be largely compensated by using algebraic signal processing
methods of airborne radars (3)-(6) to achieve super-resolution at frequencies 2fy and 3f;. An
example of such compensation is given in Fig. 6.

As a sparse grid, the two-dimensional received signal U(a, ¢) at frequency 2 fj is shown. The true
distribution of the emitted signal amplitude was a point source and a small background emission
at the second harmonic. When solving direct problems, the background emission can be neglected
without any noticeable error. However, when solving inverse unstable problems in the form of IE (2),
it can noticeably distort solutions.

The received signal U(«, @) very roughly estimates the angular coordinates of the source. In the
considered problem, this is the region covered by the sparse grid. The approximate solution found
by the algebraic method (4)—(6), i.e., distribution I(c, ) considering the interfering background
emission, is shown as a dense grid. The obtained solution of the IE shows that the point source is
located within the peak of I(«, ¢).

The accuracy of determining the coordinates of signal sources and its localization improved by
more than five times. Noise in the form of background emission slightly distorted the true solution
and did not allow obtaining even more accurate source coordinates.

For HR, further improvement of angular measurement accuracy and angular resolution is pos-
sible. For this, one should simultaneously analyze received signals at the second Us(a, ) and
third Us(c, ¢) harmonics. The simplest method of analysis is summing the amplitudes of these
signals during scanning:

U(O{, QD) = UQ(O(, QD) + kU3(Oé, QD)
= / [fola = o0 = @) I(d) @) + kfs(a— oo — ) Is(d, )] da dy, (23)
Q
where Is(a, ) and I3(a, ) describe the same angular position of the source but with different
amplitude values. For signals at the third harmonic, a gain coefficient k is introduced. Since the
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Fig. 8. Solution when separating one object of known type. The solution of the problem of determining angular
coordinates of a complex object using HR is presented. The object represented a group target consisting of
three closely located point targets—thin broken line (curve 1). The original signal U(«) (2) is shown as a thin
smooth curve (curve 2).

amplitude of signals at the third harmonic is significantly lower than at the second, coefficient k
is chosen from the condition of approximate equality of maximum values of Us(«, ¢) and Us(a, ¢).
The condition of equality of maxima ensures approximately equal contribution of harmonics to the
desired solution. An additional advantage of summing harmonics is that noises present in signals
Uz(a, ) and Us(a, ) are non-coherent, and their addition ensures an increase in SNR in (23)
compared to SNR at each of frequencies 2 fy and 3fy. In Fig. 7, results of solving IE (23) for the same
problem as in Fig. 6 are shown, in the same notations. As expected, the localization accuracy of the
true source noticeably increased—by a factor of two. This ensured an improvement in the accuracy
of solving the problem of separating an object of known type from a group target. Resolving targets
is not possible either by direct observation or using known super-resolution methods.

One of the objects, namely the one located close to the left boundary of zone €, at frequencies
2fo and 3fp, is identified by HR as an object of known type. At these frequencies, its angular
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coordinate «; is measured. According to the separation method (12)—(14) at frequency fy, a com-
pensating signal with negative polarity is synthesized:

Us(a) =U(a) — AF(an). (24)

The reflection coefficient A at frequency fj is not known in advance and is initially set based on
a reasonable estimate. Then it is subject to refinement during the iterative process of solving the
problem similar to (16)—(18).

The final signal Ug(a) (14) is shown in Fig. 8 as a thick dashed curve (curve 3).

For representing the solution, Gaussian functions were used as functions g¢,,(«) in (3). The
found solution without the previously identified UAV with angular coordinate a; is shown as a
thick curve (curve 4). In the final solution, the source was represented as a superposition of five
Gaussian functions g, (a):

5
I(a) = Z b gm (o — Aam) (25)
m=1
with distance A = 0.2360p 5 between maxima of adjacent g, («).

True, near-point signal sources together with the virtual compensating source Ad(a — aq) are
shown as a thin broken line (curve 1).

The appearance in the solution of many small objects, the radiation intensity I?(a) of which is
an order of magnitude lower than that of the others, is usually caused by the influence of noise and
interference. Such targets are considered false.

Consequently, the obtained solution allowed resolving all objects of the group target and deter-
mining their angular coordinates with good accuracy.

8. CONCLUSION

1. A new comprehensive method for digital processing of radar signals reflected from multiple
objects is theoretically justified and tested in numerical experiments. The method allows measure-
ment systems to achieve angular resolution significantly exceeding the Rayleigh criterion.

2. The proposed separation method, as shown by analytical and numerical results, is applicable
for detecting and determining coordinates of individual objects within group targets, including
those consisting of UAV “swarms.” Creating an artificially synthesized signal during processing
of the obtained information allows substantially increasing the achievable super-resolution level
compared to known methods.

3. New signal processing algorithms based on nonlinear regression methods allow improving
the accuracy of determining angular coordinates and enhancing localization of studied objects
by 2-5 times.

4. Using mathematical models, it is shown that nonlinear regression methods allow solving super-
resolution achievement problems at higher levels of noise and interference than known methods.

5. The use of harmonic radar for achieving angular resolution allowing the isolation of dangerous
UAVs within group targets is justified.

6. Algorithms based on the proposed comprehensive method are relatively simple and can be
applied in real time.
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