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Abstract—This paper proposes an algorithm for constructing gain matrices in the spectrum
assignment problem of a continuous-time linear dynamic control system without any constraints
on the matrix coefficients of the system. The algorithm is based on constructing eigenvectors
and adjoined vectors corresponding to the given eigenvalues of the corresponding matrix. An
algorithm with a minimum number of simple algebraic operations is developed for their con-
struction. As a result, to solve the above problem, a complete set of gain matrices is constructed,
depending on a certain number of arbitrary scalar parameters. Cases of the uniqueness of such a
matrix are determined. Illustrative examples are provided in the cases of a simple spectrum and
a multiple one. Gain matrices are constructed for a dynamic system describing the operation
of a multi-chamber heating furnace.
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1. INTRODUCTION

The problem of stabilizing the programmed motion of a dynamic system is one of the most
important challenges in control theory, dictated by pressing practical demands.

The solution of the stabilization problem has a long history of over 150 years and an extensive
bibliography, including both purely theoretical and practical works. The history up to 2019 was
described in detail in [1], with a comprehensive list of references containing 107 items.

A more general problem is also of great interest: if a linear dynamic feedback control system
is described by a set of differential equations with respect to the unknown components of the
state vector of the system, it is required to determine an appropriate feedback (gain matrix) under
which the spectrum of the matrix coefficient at the state vector will possess definite properties. For
example, it should be located in a desired region of the complex plane. In particular, if this region
lies in the left half-plane of the complex plane, then the corresponding gain matrix is constructed
by stabilizing the programmed motion of the control system under consideration.

In a special case, the region for locating the spectrum points can be a finite set of arbitrarily
given numbers. In this case, the problem of finding the corresponding gain matrix is called pole
assignment, spectrum control, or spectrum assignment in the literature.
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AN ALGORITHM FOR CONSTRUCTING GAIN MATRICES 1119

In the monograph [2], V.I. Zubov studied a nonlinear time-varying control system and established
sufficient conditions for the existence of additional components that can be introduced into the
system to stabilize it; also, he provided a method for finding such additional components.

For a linear time-invariant control system of the form

ẋ = Ax+Bu, (1.1)

where x = x(t), x ∈ R
n, u = u(t), u ∈ R

m, ẋ = dx
dt , A : Rn → R

n, B : Rm → R
n, and t ∈ [t0, tk], the

spectrum assignment problem consists in the following:

For arbitrarily given numbers {λj}nj=1, it is required to construct a state-feedback control law

u = Kx (1.2)

under which the spectrum of the matrix A+BK will coincide with {λj}nj=1, i.e.,

det(A+BK − λj I) = 0. (1.3)

In the case of complex values λj, they must be pairwise ordered and complex conjugate.

For a linear time-invariant system with a one-dimensional control vector (scalar control),
V.I. Zubov essentially derived a sufficient condition for the solvability of the spectrum assign-
ment problem: this is the controllability condition of the system. The spectrum was considered
arbitrary, and the author passed to the spectrum located in the left half-plane of the complex plane
only to stabilize the system [2, pp. 153 and 154].

The complete result on the existence of a solution of problem (1.1)–(1.3) was obtained by
W.M. Wonham [3, 4, p. 79]:

Theorem 1. Problem (1.1)–(1.3) is solvable if and only if the pair (A,B) is controllable.

Consequently, the condition

rank(BAB . . . An−1B) = n

must hold.

The history of the proof of this theorem by some authors, with the aim of simplification, was
presented in [1].

A practical solution of problem (1.1)–(1.3) was obtained for the case m = 1 as a solution of the
equation

det(A+BK − λI) = f(λ),

where f(λ) is a polynomial of degree n with corresponding real coefficients that contains the
components of the row matrix K = (k1 k2 . . . kn). This equation is uniquely solvable with
respect to ki, i = 1, . . . , n, and the solution is given by the exact Bass–Gura and Ackermann for-
mulas [1, p. 579].

A numerical implementation of problem (1.1)–(1.3) in MATLAB, based on the full pole place-
ment method [5], was provided in [6].

For the controllable system (1.1) with given A and B, Ker B = {0}, a method for constructing
a set of gain matrices was described in [7]. For this purpose, Jordan chains of vectors of the matrix
(A− λI B) for each λ = λj were used, and additional parameterizing matrices were introduced.

The so-called cascade decomposition method for solving problem (1.1)–(1.3) without any con-
straints on A and B was proposed in [8]. (For brevity, it will be referred to as the cascade method.)
This method allows one to establish that either system (1.1) is uncontrollable (and the matrix K
cannot be constructed) or system controllability holds (in this case, the method yields a complete
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1120 ZUBOVA, RAETSKAYA

manifold of all matrices K corresponding to the given A, B, and {λj}nj=1). Thus, another proof of
Theorem 1 was obtained and, moreover, a method for constructing a complete set of gain matrices
was developed.

Problem (1.1)–(1.3) is solved as follows [8].

The equation

(A+BK)vj = λjvj (1.4)

is solved with respect to vj and K; first, a set of n linearly independent vectors vj corresponding
to the eigenvalues λj is constructed; then, the components of the matrix K are found. The cascade
method is used only to construct vj.

However, application of the cascade method is rather computationally intensive: it involves
decompositions of spaces into subspaces, projectors onto subspaces, and semi-inverse matrices.

The goal of this paper is to maximally simplify the solution of problem (1.1)–(1.3); the idea is
to create an algorithm for constructing n linearly independent eigenvectors and adjoined vectors of
the matrix A+BK that requires only solving systems of linear algebraic equations and checking
the linear independence of the resulting vectors at the last step of the algorithm, e.g., by computing
determinants.

Such a design of gain matrices appreciably simplifies the computational process and creates the
necessary prerequisites for developing simpler computational programs.

For the sake of comparison, note the following: Moore–Penrose pseudoinverse matrices were
used in [6] to solve the applied problem (1.1)–(1.3) in MATLAB; they were computed as the limit
of a sequence of certain matrices. In this case, only one matrix K is constructed, although there
exists a set of such matrices [8, p. 2024] for the problem considered in [6].

In this paper, we reveal a complete set of gain matrices for a particular problem by establishing
the dependence of the matrix on some numerical parameters, some being arbitrary while the others
satisfying certain conditions.

The manifold of gain matrices is very useful in applications: one can select an appropriate
matrix, e.g., with a smaller norm or with fewer nonzero components.

The number of steps in the algorithm for finding the eigenvectors and adjoined vectors of the
matrix A+BK can be determined in advance: there are exactly p of them, where p = min q and
the number q is given by the condition

rank(BAB . . . AqB) = n. (1.5)

The algorithm proposed below is based on the cascade method [8] and represents its significant
simplification. The algorithm for constructing the eigenvectors and adjoined vectors of the matrix
A+BK is justified in the Appendix.

As illustrative examples, we find gain matrices in the cases of a simple spectrum and a multiple
one and construct gain matrices for a dynamic system describing the operation of a multi-chamber
heating furnace.

2. SOLVING A LINEAR ALGEBRAIC EQUATION
WITH A SINGULAR MATRIX AT THE UNKNOWN

A linear system of the form
Cx = y (2.1)

with a singular matrix C can be solved with respect to x only under some constraint (condition)
imposed on y :

Qy = 0. (2.2)
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The solution x may be nonunique, i.e.,

x = C−y + z, (2.3)

where C− is some matrix, and z is an arbitrary vector such that Cz = 0.

The constraint (2.2) will be called the well-posedness condition for system (2.1), and the vec-
tor (2.3) will be called the solution of system (2.1).

For example, let C =

⎛⎜⎜⎜⎝
1 0 1
0 1 0
2 0 2
0 0 0

⎞⎟⎟⎟⎠ , i.e.,

x1 + x3 = y1,
x2 = y2,

2x1 + 2x3 = y3,
0 = y4;

(2.4)

then x =

⎛⎜⎝y1
y2
0

⎞⎟⎠+

⎛⎜⎝−x3
0
x3

⎞⎟⎠ is the solution of system (2.4) with an arbitrary value x3 under the

conditions

−2y1 + y3 = 0,

y4 = 0.

Consequently, Qy = 0, where Q =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
−2 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ . In this case, z =

⎛⎜⎝−x3
0
x3

⎞⎟⎠ .

System (2.4) can also be solved as follows:

x =

⎛⎜⎝ 0
y2
y1

⎞⎟⎠+

⎛⎜⎝ x1
0

−x1

⎞⎟⎠ for any x1 under the well-posedness condition

y1 − 1

2
y3 = 0,

y4 = 0.

But the solution set and the well-posedness condition are equivalent in this case; hence, the
particular form of the solution with the corresponding well-posedness condition does not matter in
practice.

3. THE ALGORITHM FOR CONSTRUCTING A GAIN MATRIX
IN THE CASE OF A SIMPLE SPECTRUM

3.1. Preliminary Transformations

A1. In the case of simple eigenvalues λj , j = 1, . . . , n, in equation (1.4)

(A+BK)v(λj) = λjv(λj), (3.1)
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introduce the designation
Kv(λj) = f(λj). (3.2)

A2. Write equation (3.1) as
Bf(λj) = (λI −A)v(λj). (3.3)

A3. Solve equation (3.3) with respect to f(λj) :

f(λj) = B−(λjI −A)v(λj) + z(λj) (3.4)

with an arbitrary vector z = z(λj) under the well-posedness condition

Q(λjI −A)v(λj) = 0. (3.5)

As a result of preliminary transformations, the relation (3.1) is replaced by an equivalent system
of the three relations (3.2), (3.4), and (3.5).

3.2. The Algorithm for Solving Equation (3.5) with Respect to the Vector v = v(λj)

Forward pass

The first step. A11. In equation (3.5) with the subscript j omitted for now, denote by w1 = w1(λ)
the coefficient at λ (i.e., Qv); then (3.5) is equivalent to the system

(3.6)

{
Qv = w1

QAv = λw1.

A12. Obtain the solution v of system (3.6) in the form

(3.7) v = G1(λ,w1) + z1

with some matrix G1 and an arbitrary vector z1 = z1(λ) under the well-posedness condition

(3.8) Q1(λ,w1) = 0.

The second step. A21. In the relation (3.8), denote by w2 = w2(λ) the coefficient at λ (i.e., Q1w1);
then (3.8) is equivalent to the system

(3.9)

{
Q1w1 = w2

Q11w1 = λw2

with some matrix Q11.

A22. Obtain the solution of this system in the form

w1 = G2(λ,w2) + z2

with some matrix G2 and an arbitrary vector z2 = z2(λ) under the well-posedness condition

Q2(λ,w2) = 0.

And so on . . . .

The ith step. Ai1. In the well-posedness condition identified at the (i− 1)th step,

(3.10) Qi−1(λ,wi−1) = 0, i = 2, 3, . . . ,
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denote by wi = wi(λ) the coefficient at λ; as a result, (3.10) is equivalent to the system

(3.11)

{
Qi−1wi−1 = wi

Qi−11wi−1 = λwi.

Ai2. Obtain the solution of this system in the form

(3.12) wi−1 = Gi(λ,wi) + zi

with some matrix Gi and an arbitrary vector zi = zi(λ) under the well-posedness condition

Qi(λ,wi) = 0.

And so on . . . .

The pth step. Ap2. As proved in [8], if system (1.1) is completely controllable, then for i = p
(see (1.5)) system (3.11) is solvable with respect to wp−1 without any well-posedness condition:

(3.13) wp−1 = Gp(λ,wp) + zp

with some matrix Gp and an arbitrary vector zp = zp(λ). The element wp = wp(λ) is also arbitrary.

Construct wp−1.

3.3. The Algorithm for Constructing the Vector v(λ)

Backward pass

B1. Substitute the vector wp−1 constructed at step Ap into (3.12) with i = p− 1, thereby deter-
mining the vector wp−2.

B2. Substitute the vector wp−2 constructed at the previous step into (3.12) with i = p− 2,
thereby determining the vector wp−3.

And so on . . . .

Bp−2. Substitute the vector w2 constructed at step Bp−3 into (3.12) with i = 2, thereby deter-
mining the vector w1.

Bp−1. Substitute the vector w1 constructed at step Bp−2 into (3.7), thereby determining the
vector v :

(3.14) v = G
(
wp(λ), zp(λ), zp−1(λ), . . . , z1(λ)

)
with some matrix G and arbitrary vector functions wp(λ) and zs(λ), s = 1, . . . , p.

3.4. Constructing the System of n Linearly Independent Vectors v(λj)

If system (1.1) is completely controllable, then for any set {λj}nj=1 there exist elements
wp(λ), zp(λ), zp−1(λ), . . . , z1(λ) such that the vectors v(λj) (3.14) with the above
wp−1(λ), zp(λ), zp−1(λ), . . . , z1(λ) are linearly independent [8].

The eigenvalues λj can also be complex, pairwise ordered.

If system (1.1) is not completely controllable, then n linearly independent vectors v(λj) cannot
be constructed, and the same applies to the matrix K [8].

Here, one should construct a vector v(λj) such that the vectors v(λ1), v(λ2), . . . , v(λn) are
linearly independent for any set {λj}nj=1.
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3.5. The Algorithm for Constructing a Gain Matrix in the Case of a Simple Spectrum

C1. Substitute the vectors vj = v(λj) constructed in Section 3.4 into formula (3.4), thereby
determining fj = fj(λj), j = 1, . . . , n.

C2. Substitute vj and fj into (3.2) for each value of j. As a result, n linear equations with
unknowns kij , i = 1, . . . ,m (the components of matrix K) are obtained.

C3. Extract from the above equations those containing the components k1j as the unknowns,
thereby forming a system of linear algebraic equations with the principal determinant 
1 made up
of the components of the linearly independent vectors v(λj); hence, 
1 �= 0.

C4. Solve the system obtained at step C3 with respect to k1j (the components of the first row
of the matrix K).

C5. Repeat steps C3 and C4 for i = 2, 3, . . . ,m, thereby determining the components of the ith
rows of the matrix K.

Example 1. Let A=

⎛⎜⎝0 0 0
1 0 0
0 1 0

⎞⎟⎠, B =

⎛⎜⎝1 1
1 1
1 1

⎞⎟⎠, and K = (kij), i= 1, 2, j = 1, 3.

We solve the equation Bf = (λ I −A)v, where f = (f1, f2) and v = (v1, v2, v3), with respect to f
(step A3):

f1 + f2 = λv1,

f1 + f2 = −v1 + λv2,

f1 + f2 = −v2 + λv3.

Consequently,

(3.15)
f1 = λv1 − z(λ),
f2 = z(λ)

with an arbitrary vector z(λ) ((3.15) is (3.4)) under the well-posedness condition (3.5):

λv1 = −v1 + λv2,
λv1 = −v2 + λv3,

or

(3.16)

{
λ(v1 − v2) = −v1
λ(v1 − v3) = −v2.

Following step A11, we denote

(3.17)
v1 − v2 = w11,
v1 − v3 = w12.

Then (3.16) becomes

(3.18)

{
−v1 = λw11

−v2 = λw12.

The system composed of (3.17) and (3.18) is system (3.6).

We solve system (3.17), (3.18) with respect to v1, v2, and v3 (see step A12, formula (3.7)):

(3.19)
v1 = −λw11,
v2 = −λw12,
v3 = −λw11 − w12

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



AN ALGORITHM FOR CONSTRUCTING GAIN MATRICES 1125

(here z1 = 0) under the well-posedness condition of system (3.17), (3.18): −λw11+λw12 = w11. As
a result, we arrive at the relation (3.8):

λ(−w11 + w12) = w11.

Following step A21, we denote
−w11 + w12 = w2;

then
w11 = λw2.

The last two equalities are system (3.9).

We solve this system with respect to w11 and w12 (see step A22) :

(3.20)
w11 = λw2,
w12 = (1 + λ)w2.

A solution exists for any w2 without any well-posedness condition; hence, step A22 is step Ap2 with
p = 2.

Substituting (3.20) into (3.19) yields formula (3.14):

(3.21) v(λ) = (λ2, λ+ λ2, 1 + λ+ λ2).

For different values of λ1, λ2, and λ3, the vectors v(λj) = (λ2
j , λj + λ2

j , 1 + λj + λ2
j), j = 1, 2, 3,

are linearly independent since the determinant 
1 made up of the components of the above vectors
for each j reduces to a Vandermonde determinant [9, p. 33], which is nonzero.

Then v(λj) are substituted into (3.15) (step C1) and, together with f1 and f2, are substituted
into (3.2) (step C2).

Two systems are formed from the resulting equalities.

For i = 1 (see step C3),⎧⎪⎪⎨⎪⎪⎩
λ2
1k11 + (λ1 + λ2

1)k12 + (1 + λ1 + λ2
1)k13 = λ3

1 − z(λ1)

λ2
2k11 + (λ2 + λ2

2)k12 + (1 + λ2 + λ2
2)k13 = λ3

2 − z(λ2)

λ2
3k11 + (λ3 + λ2

3)k12 + (1 + λ3 + λ2
3)k13 = λ3

3 − z(λ3);

for i = 2 (step C4), ⎧⎪⎪⎨⎪⎪⎩
λ2
1k21 + (λ1 + λ2

1)k22 + (1 + λ1 + λ2
1)k23 = z(λ1)

λ2
2k21 + (λ2 + λ2

2)k22 + (1 + λ2 + λ2
2)k23 = z(λ2)

λ2
3k21 + (λ3 + λ2

3)k22 + (1 + λ3 + λ2
3)k23 = z(λ3).

And the components of the matrix K are determined accordingly.

The nonunique form of the matrix K is ensured by the arbitrary function z(λ).

4. THE ALGORITHM FOR CONSTRUCTING A GAIN MATRIX
IN THE CASE OF A MULTIPLE SPECTRUM

For example, let λ1 have multiplicity k, k � n, and let λk+1, λk+2, . . . , λn be distinct arbitrary
numbers not equal to λ1.

The vectors v1 = v(λ1), vk+1 = v(λk+1), . . . , vn = v(λn) are constructed as described in Sec-
tion 3; as k − 1 vectors τj = τj(λ) we take the vectors τ1, τ2, . . . , τk−1 of the matrix A+BK that
are adjoined to v1 and correspond to the eigenvalue λ1 :

(A+BK)τj = λ1τj + τj−1, j = 1, . . . , k − 1, τ0 = v1.
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4.1. Preliminary Transformations

D1. Introduce the designation

(4.1) Kτj = gj .

D2. For each j = 1, . . . , k− 1, solve the equations Bgj = (λ1I −A)τj + τj−1 with respect to gj :

(4.2) gj = B−((λ1I −A)τj + τj−1) + zj ,

with an arbitrary vector zj such that Bzj = 0, under the well-posedness conditions

(4.3) Q((λ1I −A)τj + τj−1) = 0.

4.2. The Algorithm for Solving Equations (4.3) with Respect to τj

Forward pass

The first step. D11. In (4.3), denote by wj
1, j = 1, . . . , k − 1, the coefficients at λ1 (i.e., Qτj) :

(4.4) Qτj = wj
1;

as a result, (4.3) takes the form

(4.5) QAτj = λ1w
j
1 +Qτj−1,

where τ0 = v1 is a known function (see Section 3).

D12. Find the solutions of systems (4.4) and (4.5) in the form

(4.6) τj = Gj
1(λ1, w

j
1) + zj1

with some matrices Gj
1 and arbitrary vectors zj1 under the well-posedness conditions

Qj
1(λ1, wp, w

j
1) = 0.

The ith step. Di1. In the relations obtained at the (i− 1)th step of the algorithm,

(4.7) Qj
i−1(λ1, wp, w

j
i−1) = 0,

denote by wj
i the coefficients at λ1 :

(4.8) Qj
i−1w

j
i−1 = wj

i .

The expressions (4.7) become

(4.9) Qj
i−11w

j
i−1 = λ1w

j
i .

Di2. Solve systems (4.8) and (4.9) with respect to wj
i−1 :

(4.10) wj
i−1 = Gj

i (λ1, w
j
i ) + zji

with some matrices Gj
i and arbitrary vectors zji under the well-posedness conditions

(4.11) Qj
i (λ1, wp, w

j
i ) = 0,

and so on . . . .
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The pth step. Dp2. As proved in [8], if system (1.1) is completely controllable, then for each

j = 1, . . . , k − 1 and i = p, equations (4.11) are solvable with respect to wj
p−1 :

(4.12) wj
p−1 = Gj

p(λ1, wp, w
j
p) + zjp,

where Gj
p are some matrices and zjp, wp, and wj

p are arbitrary vectors. In this case, well-posedness
conditions are absent.

Form wj
p−1.

Backward pass

E1. For each j = 1, . . . , k − 1, substitute the vectors wj
p−1 (4.12), with as yet arbitrary wj

p and rjp,

into (4.10) with i = p− 1, thereby determining the vectors wj
p−2.

E2. Substitute wj
p−2 into (4.10) with i = p− 2. Thereby, the vectors wj

p−3 are obtained.

And so on . . . .

Ep−2. Substitute wj
2 (found at step Ep−3) into (4.10) with i = 2. Thereby, the vectors wj

1 are
obtained.

Ep−1. Determine τj from (4.6):

(4.13) τj = G(wp, w
j
p, z

j
p, z

j
p−1, . . . , z

j
1), j = 1, . . . , k − 1.

4.3. Constructing the System of n Linearly Independent Vectors
in the Case of a Multiple Spectrum

According to [8], in the case of the complete controllability of system (1.1), there exist vectors
wp, w

j
p, z

j
p, z

j
p−1, . . . , z

j
1 such that the vectors v1, τ1, . . . , τk−1, vk+1, . . . , vn are linearly independent.

Here, the vectors τ1, . . . , τk−1 are constructed using formulas (4.13), and vj = v(λj), j = 1, k +
1, . . . , n, using formulas (3.14).

If system (1.1) is not completely controllable, then n linearly independent vectors
v1, τ1, . . . , τk−1, vk+1, . . . , vn cannot be constructed for arbitrary values λ1, λk+1, . . . , λn, where λ1

is an eigenvalue of multiplicity k [8].

Select elements wp, w
j
p, z

j
p, z

j
p−1, . . . , z

j
1 such that the vectors v1, τ1, . . . , τk−1, vk+1, . . . , vn are lin-

early independent.

4.4. The Algorithm for Constructing a Gain Matrix in the Case of a Multiple Spectrum

Let λ1 be an eigenvalue of multiplicity k of the matrix A+BK, and let the other λk+1, . . . , λn

be simple eigenvalues.

G1. For each j = 1, k + 1, . . . , n, substitute the vectors vj = v(λj) constructed in Section 3
into (3.4), thereby determining fj.

G2. Substitute fj and vj into (3.2):

(4.14) Kv(λj) = f(λj), j = 1, k + 1, . . . , n.

G3. Substitute the vectors τ1, τ2, . . . , τk−1 obtained at step 4.3 into formulas (4.2), thereby
determining the vectors gj .

G4. Substitute gj and τj into (4.1):

(4.15) Kτj = gj , j = 1, . . . , k.
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G5. From equalities (4.14) and (4.15) extract those containing the components k1j of the first
row of the matrix K, j = 1, . . . , n. Thereby, a linear algebraic system with the unknowns k1i is
formed, with the principal determinant 
2 made up of the components of the linearly independent
vectors v1, τ1, . . . , τk−1, vk+1, . . . , vn; hence, 
2 �= 0.

G6. Solve the system constructed at the previous step, thereby obtaining the components of the
first row of the matrix K.

G7. Repeat steps G5 and G6 for i = 2, 3, . . . ,m, thereby determining the components of the
ith rows of matrix K.

Example 2. Let A and B be the matrices from Example 1, and let λ1 = λ2 = λ3. It is required
to construct three linearly independent vectors v1, τ1, τ2 such that

(A+BK)v1 = λ1v1, (4.16)

(A+BK)τ1 = λ1τ1 + v1, (4.17)

(A+BK)τ2 = λ1τ2 + τ1. (4.18)

The vector v1 has been constructed in Section 3: v1 = (λ2
1, λ1 + λ2

1, 1 + λ1 + λ2
1) (formula (3.21).

To construct τ1 = (τ11, τ12), in equation (4.17) we introduce the designation (equality (4.1)
with j = 1)

Kτ1 = g1, g1 = (g11, g12). (4.19)

This equation becomes
Bg1 = (λ1I −A)τ1 + v1;

therefore,

g11 = λ1τ11 + λ2
1 − z11 ,

g12 = z11
(4.20)

(this is (4.2) with j = 1) with an arbitrary value z11 under the well-posedness condition ((4.3)
with j = 1) {

λ1(τ11 − τ12 − 1) = −τ11
λ1(τ11 − τ13 − 1) = −τ12 + 1.

Next, the coefficients at λ1 in the last two relations are denoted as the new unknowns (see
step D11), e.g.,

τ11 − τ12 − 1 = a,

τ11 − τ13 − 1 = b.

(Here, a and b are used instead of w1
11 and w1

12 for the sake of simple notation, see (4.4).) The
further actions are performed as described in subsection 4.2. As a result, the vector τ1 = (2λ1, 1 +
2λ1, 1 + 2λ1) is determined.

Next (see subsection 4.1, j = 2), with the designations

Kτ2 = g2, g2 = (g21, g22), (4.21)

equation (4.18) takes the form

Bg2 = (λ · I −A)τ2 + τ1. (4.22)

From this equation we find

g21 = λ1τ21 + 2λ1 − z2,

g22 = z2
(4.23)
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with an arbitrary value z2 under the condition{
λ1(τ21 − τ22) = −τ21 + 1
λ1(τ21 − τ23) = −τ22 + 1.

Continuing to solve the last system by the method described in subsection 4.4, we get

τ2 = (1, 1, 1).

As is easily verified, the determinant 
2 made up of the components of the vectors v1, τ1, τ2 is
nonzero.

Next, using formulas (4.20) and (4.23), we determine g1 = (3λ2
1 − z11 , z

1
1) and g2 = (3λ2 − z2, z2)

with arbitrary values z11 and z2. The vector f is given by (3.15): f = (λ3
1 − z, z) with an arbitrary

value z.

Finally, a system consisting of the equations Kv1 = f1, (4.19), and (4.21) is formed.

As a result, two systems are obtained:⎧⎪⎪⎨⎪⎪⎩
λ2
1k11 + (λ1 + λ2

1)k12 + (1 + λ1 + λ2
1)k13 = λ3

1 − z

2λ2
1k11 + (1 + 2λ1)k12 + (1 + 2λ1)k13 = 3λ2

1 − z11

k11 + k12 + k13 = 3λ1 − z2

and ⎧⎪⎪⎨⎪⎪⎩
λ2
1k21 + (λ1 + λ2

1)k22 + (1 + λ1 + λ2
1)k23 = z

2λ1k21 + (1 + 2λ1)k22 + (1 + 2λ1)k23 = z11

k21 + k22 + k23 = z2.

They yield the components kij, i = 1, 2, 3, j = 1, 2, 3, of the matrixK in a nonunique way, depending
on arbitrary values z, z11 , and z2.

In a special case where λ = −1 is a triple eigenvalue of the matrix A+BK, we have K =(
c1 −2 + c2 −1− c3
−c1 −c2 c3

)
, where c1, c2, and c3 are linear combinations of arbitrary values z, z11 ,

and z2, therefore being arbitrary as well.

Direct verification shows that, for such K,

det(A+BK − λI) = −(λ+ 1)3.

5. ON THE NONUNIQUENESS OF THE GAIN MATRIX

The nonuniqueness of K for given A, B, and {λj}nj=1 arises if Ker B �= {0}, i.e., when the equa-
tion Bf = h with a fixed vector h ∈ R

n has a nonunique solution f = B−h+ z with an arbitrary
vector z ∈ R

m.

Also, the nonuniqueness of K arises if at least one of systems (3.11) or systems (4.8), (4.9) with
i = 1, . . . , p has a nonunique solution wi−1 or wj

i−1, j = 1, . . . , k, where k is the multiplicity of λs.

However, if Ker B = {0} and all systems (3.11) or (4.8), (4.9) are uniquely solvable, then K has
a unique form; see Example 2 in [8].

Note that the higher the multiplicity of an eigenvalue is, the more arbitrary parameters K may
contain.

For example, a unique matrix K was constructed in [6] for system (1.1) with the matrices

A =

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 1
0 5 0 0
7 0 0 0

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
0 0
0 0
1 0
0 1

⎞⎟⎟⎟⎠ and the eigenvalue λ = −1 of multiplicity 4.
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However, for this case, the algorithm proposed here yields a matrix K depending on eight
parameters, K = K(c1, c2, . . . , c8), connected only by the condition∣∣∣∣∣∣∣∣∣

c1 c2 0 0
c3 c4 c1 c2
c5 c6 c3 c4
c7 c8 c5 c6

∣∣∣∣∣∣∣∣∣ �= 0.

This condition arises due to the linear independence of the vectors v1, τ1, τ2, and τ3 [8].

For a particular dynamic system of the form (1.1) and a given arbitrary set {λj}nj=1, the method
proposed in this paper constructs precisely the complete set of gain matrices. This conclusion
follows from the equivalence of the transformations applied.

6. AN ILLUSTRATIVE EXAMPLE: GAIN MATRICES FOR STABILIZING
THE OPERATION OF A MULTI-CHAMBER HEATING FURNACE

The dynamic model and operation scheme of three furnaces for heating three chambers were
presented in [10].

Consider the case of three furnaces and five chambers:

ẋ1 = 2ax1 + bu1 + cu2,

ẋ2 = ax2 + cu2 + du3,

ẋ3 = ax3 + bu1 + 2cu2 + du3,

ẋ4 = 3ax4 + 2cu2 + 2du3,

ẋ5 = 3ax5 + 2bu1 + 3cu2 + du3,

(6.1)

where a � − 1
10 , b =

1
4 , c =

1
9 , and d = 1

5 . In the case of the unreachability of a given initial temper-
ature xi(t0) = x0i in the ith chambers, i = 1, 2, . . . , 5, it is required to correct the program control
(fuel supply) ur = ur(t) of the rth furnaces, r = 1, 2, 3, so that at a specified time instant t = tk
the temperature xi(tk) in the chambers is close to a desired one xki. For this purpose, a stabilizing
control law with a gain matrix K can be used to make the state of system (6.1) exponentially
tending to the program state.

Here, A =

⎛⎜⎜⎜⎜⎜⎝
2a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 3a 0
0 0 0 0 3a

⎞⎟⎟⎟⎟⎟⎠ and B =

⎛⎜⎜⎜⎜⎜⎝
1/4 1/9 0
0 1/9 1/5

1/4 2/9 1/5
0 2/9 2/5

2/4 3/9 1/5

⎞⎟⎟⎟⎟⎟⎠ .

The components of the matrix K = (kij) are found from the equation Kv = f, where f = f(λ)
and v = (v1, . . . , v5), and vi = vi(λ) are obtained from the equation Bf = (λI −A)v, or

(6.2)

f1 + f2 = (λ− 2a)v1,

f2 + f3 = (λ− a)v2,

f1 + 2f2 + f3 = (λ− a)v3,

2f2 + 2f3 = (λ− 3a)v4,

2f1 + 3f2 + f3 = (λ− 3a)v5,

where f = (4f1, 9f2, 5f3) to get rid of fractions in the matrix B.

The solution of system (6.2) is

(6.3)
f1 = (λ− 2a)v1 − z,
f2 = z,
f3 = (λ− a)v2 − z
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(formula (3.4)) with an arbitrary value z under conditions (3.5):

2(λ− a)v2 = (λ− 3a)v4,

(λ− 2a)v1 + (λ− a)v2 = (λ− a)v3,

2(λ− 2a)v1 + (λ− a)v2 = (λ− 3a)v5,

or

(6.4)
λ(2v2 − v4) = 2av2 − 3av4,

λ(v1 + v2 − v3) = 2av1 + av2 − av3,
λ(2v1 + v2 − v5) = 4av1 + av2 − 3av5.

Constructing the vector v(λ)

The first step. We introduce the designations (see step A11)

(6.5)
2v2 − v4 = aw11,

v1 + v2 − v3 = aw12,
2v1 + v2 − v5 = aw13.

Then from (6.4) it follows that

(6.6)
2v2 − 3v4 = λw11,

2v1 + v2 − v3 = λw12,
4v1 + v2 − 3v5 = λw13.

A12. System (6.5), (6.6), which contains six equations and five unknowns, is used to find vj
(step A12) :

v1 = (λ− a)w12,

v2 = −1

4
(λ− 3a)w11,

v3 = −1

4
(λ− 3a)w11 + (λ− 2a)w12,

v4 = −1

2
(λ− a)w11,

v5 = −1

4
(λ− 3a)w11 + 2(λ− a)w12 − aw13

(6.7)

(this is formula (3.7)) under the well-posedness condition of this system:

(λ− 3a)w11 − 4(λ− a)w12 − 2(λ− 3a)w13 = 0;

hence,

λ(w11 − 4w12 − 2w13) = a(3w11 − 4w12 − 6w13).

The second step. A21. Denoting (see step A21)

w11 − 4w12 − 2w13 = aw21, (6.8)

we have

3w11 − 4w12 − 6w13 = λw21. (6.9)
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A22. System (6.8), (6.9) is solved with respect to w1i (step A22) :

w11 =
1

2
(λ− a)w21 + 2w13,

w12 =
1

8
(λ− 3a)w21

(6.10)

for any w13 and w21. There is no well-posedness condition; consequently, p = 2.

Next, we substitute the values w11 and w12 (6.10) into formulas (6.7):

v1 =
1

8
(λ− a)(λ− 3a)w21,

v2 = −1

2
(λ− 3a)w13 − 1

8
(λ− a)(λ− 3a)w21,

v3 = −1

2
(λ− 3a)w13 − 1

8
a(λ− 3a)w21,

v4 = −(λ− a)w13 − 1

4
(λ− a)2w21,

v5 = −1

2
(λ− a)w13 +

1

8
(λ− a)(λ− 3a)w21

(6.11)

(this is (3.14) for p = 2)) with any w13(λ) and w21(λ) such that v(λj) are linearly independent:

det(v(λ1) v(λ2) v(λ3) v(λ4) v(λ5)) �= 0.

In particular, for w13 = −2 and w21 = 8λ2,

v(λ) =

⎛⎜⎜⎜⎜⎜⎝
(λ− a)(λ− 3a)λ2

(λ− 3a)
(
1− (λ− a)λ2

)
(λ− 3a)

(
1− aλ2

)
2(λ− a)

(
1− (λ− a)λ2

)
(λ− a)

(
1 + (λ− 3a)λ2

)

⎞⎟⎟⎟⎟⎟⎠ . (6.12)

As is easily verified, the determinant 
 made up of the components of this vector for differ-
ent values of λ = λj , j = 1, 2, . . . , 5, by transformations reduces to the Vandermonde determinant
W (λ1, λ2, λ3, λ4, λ5) and is therefore nonzero.

Thus, the vectors v(λj), j = 1, 2, . . . , 5, are linearly independent.
Constructing the gain matrix in the case of a simple spectrum

For each λ = λj, j = 1, 2, . . . , 5, we substitute the values v(λj) (6.12) and f(λj) (6.3) into the
relation Kv(λ) = f(λ).

The resulting system of fifteen equations is used to determine the components of the matrix K.

These equations are split into three systems of the form V1 ·

⎛⎜⎜⎜⎜⎜⎝
ki1
ki2
ki3
ki4
ki5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
fi(λ1)
fi(λ2)
fi(λ3)
fi(λ4)
fi(λ5)

⎞⎟⎟⎟⎟⎟⎠ , i = 1, 2, 3. In the

special case λj = −1
2(j + 1) and a = − 1

10 , we have

V1 =

⎛⎜⎜⎜⎜⎜⎝
63/100 −133/100 −77/100 −171/50 −27/100
189/50 −249/50 −147/100 −581/50 119/50
323/25 −731/50 −119/50 −817/25 551/50

33 −176/5 −143/40 −384/5 153/5
7047/100 −7317/100 −513/100 −7859/50 6757/100

⎞⎟⎟⎟⎟⎟⎠ , (6.13)
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f1 = (−252/125 − 4z, −2457/125 − 4z, −11 628/125 − 4z, −1518/5 − 4z, −98 658/125 − 4z),

f2 = (9z, 9z 9z 9z 9z),

f3 = (−65 201/2 − 50z, −136 255/8 − 25z, 17 431, −15 687/4, 62 181/8 + 25z).

As a result, V −11 fT
i are the elements of the ith row of the matrix K. Finally,

K=

⎛⎝128 394/5−40z1 134 253/10−20z2 −68 724/5 15 437/5 −61 163/10+20z3
90z1 45z2 0 0 −45z3

−65 201/2−50z1 −136 255/8−25z2 17 431 −15 687/4 62 181/8+ 25z3

⎞⎠
with arbitrary values z1, z2, and z3. Substituting the above matrix K into the expression A+BK−
λ · I yields

det(A+BK − λI) =

∣∣∣∣∣∣∣∣∣∣∣

12 839/2 − λ 134 253/40 −17 181/5 15 437/20 −61 163/40
−65 201/10 −136 259/40 − λ 17 431/5 −15 687/20 62 181/40
−502/5 −1001/20 499/10 − λ −25/2 509/20

−65 201/5 −27 251/4 34 862/2 −1569 − λ 62 181/20
63 193/10 132 251/40 −16 931/5 15 187/20 −60 157/40 − λ

∣∣∣∣∣∣∣∣∣∣∣
= −45

2
− 261

4
λ− 145

2
λ2 − 155

4
λ3 − 10λ4 − λ5

= (λ+ 1)

(
λ+

3

2

)
(λ+ 2)

(
λ+

5

2

)
(λ+ 3).

Note that in this example, the variability of the gain matrix depends on the choice of arbitrary
values z and on the values of w13 and w21 such that the vectors v(λj) (6.11) are linearly independent.

The case of a multiple spectrum

It is required to construct a matrix K such that λ = −2 is an eigenvalue of multiplicity 5 of the
matrix A+BK, where A and B are the matrices appearing in system (6.1).

The vector v(−2) = τ0 is constructed by formula (6.12) with a = − 1
10 and λ = −2; the com-

ponents of the vector v(−2) = τ0 are those of the third row of the matrix V1 (6.13). The vec-
tors τj, j = 1, 2, . . . , 4, are obtained from the well-posedness conditions of the equations BKτj =
(λI −A)τj + τj−1.

The components of the vectors τj are those of the jth rows of the matrix V2, where

V2 =

⎛⎜⎜⎜⎜⎜⎝
323/25 −731/50 −119/50 −817/25 551/50
−72/5 77/5 7/5 162/5 −67/5

4 −57/10 −17/10 −59/5 21/10
0 1 1 2 1
0 −17/10 −17/10 −38/10 −19/10

⎞⎟⎟⎟⎟⎟⎠ .

The equations Bgj = (λI −A)τj + τj−1 are used to find the solutions gj; in this case, for a
particular choice of arbitrary constants, we obtain

g1 = (−11 628/125− 4z, 3884/25− 4z, −432/5− 4z, 16− 4z, −4z),

g2 = (9z, 9z, 9z, 9z, 9z),

g3 = (13 889/100− 5z, −1097/5− 5z, 2623/20− 5z, −38− 5z, 423/20− 5z)

with an arbitrary value z.
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Solving the system

V2 ·

⎛⎜⎜⎜⎜⎜⎝
ki1
ki2
ki3
ki4
ki5

⎞⎟⎟⎟⎟⎟⎠ = gTi

yields kij , i = 1, 2, 3, j = 1, 2, . . . , 5.

Computations in Mathcad produced the result

K =

⎛⎝16 704/5 − 112z 9519/5 − 58z −8759/5 6613/20 −7973/10 + 54z
252z 261/2z 0 0 −243/2z

−4163− 140z −4765/2 − 145/2z 8509/4 −6363/16 8101/8 + 135/2z

⎞⎠ .

Direct check shows that

det(A+BK − λ · I)

=

∣∣∣∣∣∣∣∣∣∣∣

835 − λ 9519/20 −8759/20 6613/80 −7973/40
−4163/5 −2383/5 − λ 8509/20 −6363/80 8101/40
13/5 −11/20 −63/5 − λ 25/8 16/5

−8326/5 −953 8509/10 −1275/8 − λ 8101/20
4189/5 2377/5 −9009/20 6863/80 −785 740 − λ

∣∣∣∣∣∣∣∣∣∣∣
= −32− 80λ− 80λ2 − 40λ3 − 10λ4 − λ5 = −(λ+ 2)5.

Remark 1. In the case of a nonsingular matrix B, system (1.1) is controllable, and K is deter-
mined from the equations

Kvj = B−1(λjI −A)vj , j = 1, . . . , n,

or

Kvs = B−1(λjI −A)vs,

Kτj = B−1(λjI −A)τj +B−1τj−1, j = 1, . . . , k − 1, τ0 = vs,

where arbitrary linearly independent vectors can be taken for vj or v1, . . . , vs, τ1, . . . , τk−1, vk+1,
. . . , vn.

7. CONCLUSIONS

This paper has proposed a new algorithm for constructing gain matrices in the spectrum assign-
ment problem of a continuous-time linear dynamic system without any constraints on its matrix
coefficients, except for the controllability of the pair (A,B).

The algorithm is based on the cascade decomposition method developed in [8]. In contrast
to [8] (with expanding spaces into subspaces, constructing projectors onto them, and using semi-
inverse matrices), the algorithm in this paper involves elementary algebraic operations: solving
linear algebraic equations, making changes of variables, and checking the linear independence of
vectors.

Such a solution of the problem significantly simplifies the computational process and allows
creating simple computing programs.

In addition, the dependence of the gain matrix on a certain number of arbitrary or conditionally
related scalar parameters has been revealed, and the complete set of such matrices for each problem
has been determined.
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The case of a unique gain matrix has been identified as well.

Illustrative examples of constructing gain matrices have been provided.

Finally, various cases of constructing such a matrix for a dynamic system describing the operation
of a multi-chamber heating furnace have been considered.
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APPENDIX

JUSTIFICATION FOR THE ALGORITHM FOR CONSTRUCTING LINEARLY
INDEPENDENT VECTORS (SUBSECTIONS 3.4 AND 4.2)

Section 2 has presented the solution of a linear algebraic equation of the form Cx = y with a
singular matrix C : Rs → R

l, y ∈ R
l. This solution is explained as follows: using a mapping C, one

can expand spaces Rs and R
l into the direct sums of subspaces:

Rs = CoimC+̇KerC, Rl = ImC+̇Coker C, (A.1)

where Ker C, Im C, and Coker C stand for the kernel, image, and defect (defective) subspace
of C, respectively, and Coim C is the direct complement to Ker C in Rs. (Mappings and the
corresponding matrices are indicated identically.) Here, the narrowing of C̃ to Coim C has an
inverse mapping C̃− [11]. Let P and Q denote projectors onto Ker C and Coker C, respectively;
then the mapping C̃−(I−Q) is called semi-inverse [12, p. 164] and is denoted by C−. Here, I means
an identity mapping in any subspace.

The following result is well-known [8, 13–17].

Lemma. The relation Cx = y is equivalent to the system{
Qy = 0

x = C−y + z
(A.2)

for any z from Ker C.

Note that z = Px. The relation Qy = 0 in (A.2) is the well-posedness condition for the equality
Cx = y, and the second relation in (A.2) is the solution of this equation.

By this lemma, equation (3.3) with omitted j, Bf = (λI −A)v, has the solution

f = B−(λI −A)v + z (3.4) for any z ∈ Ker B under the well-posedness condition (3.5):

(A.3) Q(λ I −A)v = 0.

The first step. Denoting

Qv = w1, (I −Q)v = v1, QAQ = A1, QA(I −Q) = B1, (A.4)

we have

v = v1 + w1, (A.5)

and (A.3) can be written as

B1v1 = (λ I −A1)w1. (A.6)

Note that the designations Qv = w1 in (A.4) and (3.6) are identical.
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Next we study (A.6) with B1 : Im B → Coker B. Based on the decomposition

ImB = CoimB1+̇KerB1, CokerB = Im B1+̇Coker B1, (A.7)

equation (A.6) (see the lemma) has the solution

v1 = B−1 (λ I −A1)w1 + z̃1, ∀z̃1 ∈ KerB1, (A.8)

under the condition

Q1(λ I −A1)w1 = 0, (A.9)

where P1 and Q1 are projectors onto Ker B1 and Coker B1, respectively, corresponding to the
decomposition (A.7), and B−1 is the semi-inverse of B1. Formulas (A.5), (A.8), and (A.9) correspond
to formulas (3.7) and (3.8).

The second step. Denoting

Qw1 = w2, (I −Q1)w1 = v2, Q1A1Q1 = A2, Q1A1(I −Q1) = B2,

we have

w1 = v2 + w2, (A.10)

and (A.9) is

B2v2 = (λ I −A2)w2.

Note that the designation Qw1 = w2 appears in (3.9).

Applying the lemma to the last equation, we express v2 through w2 and an arbitrary vector z̃2 ∈
KerB2; using (A.10), we express w1 through λ, w2, and z̃2, this is (3.11) with i = 2. And so on . . . .

As a result, the relation (A.3) is equivalent to the system consisting of the relations (A.5), (A.8),
(A.10), and

wi = vi+1 + wi+1, (A.11)

vi+1 = B−i+1(λ I −Ai+1)wi+1 + z̃i+1, ∀z̃i+1 ∈ KerBi+1, (A.12)

Bpvp = (λ I −Ap)wp, (A.13)

where B−i+1 = QiAi(I −Qi), Ai+1 = QiAiQi, wi = Qi−1wi−1, vi+1 = (I −Qi)wi, Qi and Pi are pro-
jectors onto Coker Bi and Ker Bi, respectively, corresponding to the decomposition

ImBi−1 = CoimBi+̇KerBi, CokerBi−1 = Im Bi+̇Coker Bi,

B−i−1 = B̃−1i−1(I −Qi−1), B̃i−1 is the narrowing of Bi−1 to Coim Bi−1, i = 1, . . . , p, B0 = B, and
A0 = A.

Due to the controllability of the pair (A,B), equation (A.13) is solvable with respect to vp for
any wp ∈ Coker Bp−1 [8, 13–17]. From (A.11) with i = p− 1 we find wp−1; next, from (A.12) with
i = p− 2 we determine vp−1; then using formula (A.11) with i = p− 2 we construct wp−2, and so
on . . . . Finally, using formula (A.5) we obtain v = v(λ,wp, z̃1, z̃2, . . . z̃p) with arbitrary vectors
wp ∈ Coker Bp−1 and z̃s ∈ Ker Bs, s = 1, . . . , p.

Obviously, constructing v by the method proposed in this work—using linear changes of unknown
vectors and solving linear algebraic systems—significantly simplifies the design of gain matrices in
the spectrum assignment problem.
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