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Abstract—This paper proposes an algorithm for constructing gain matrices in the spectrum
assignment problem of a continuous-time linear dynamic control system without any constraints
on the matrix coefficients of the system. The algorithm is based on constructing eigenvectors
and adjoined vectors corresponding to the given eigenvalues of the corresponding matrix. An
algorithm with a minimum number of simple algebraic operations is developed for their con-
struction. As a result, to solve the above problem, a complete set of gain matrices is constructed,
depending on a certain number of arbitrary scalar parameters. Cases of the uniqueness of such a
matrix are determined. Illustrative examples are provided in the cases of a simple spectrum and
a multiple one. Gain matrices are constructed for a dynamic system describing the operation
of a multi-chamber heating furnace.
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1. INTRODUCTION

The problem of stabilizing the programmed motion of a dynamic system is one of the most
important challenges in control theory, dictated by pressing practical demands.

The solution of the stabilization problem has a long history of over 150 years and an extensive
bibliography, including both purely theoretical and practical works. The history up to 2019 was
described in detail in [1], with a comprehensive list of references containing 107 items.

A more general problem is also of great interest: if a linear dynamic feedback control system
is described by a set of differential equations with respect to the unknown components of the
state vector of the system, it is required to determine an appropriate feedback (gain matrix) under
which the spectrum of the matrix coefficient at the state vector will possess definite properties. For
example, it should be located in a desired region of the complex plane. In particular, if this region
lies in the left half-plane of the complex plane, then the corresponding gain matrix is constructed
by stabilizing the programmed motion of the control system under consideration.

In a special case, the region for locating the spectrum points can be a finite set of arbitrarily
given numbers. In this case, the problem of finding the corresponding gain matrix is called pole
assignment, spectrum control, or spectrum assignment in the literature.
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AN ALGORITHM FOR CONSTRUCTING GAIN MATRICES 1119

In the monograph [2], V.I. Zubov studied a nonlinear time-varying control system and established
sufficient conditions for the existence of additional components that can be introduced into the
system to stabilize it; also, he provided a method for finding such additional components.

For a linear time-invariant control system of the form
& = Az + Bu, (1.1)

where z = z(t), r € R", u = u(t), u € R™, & = ‘Cil—”tj, A:R" - R" B:R™— R" and t € [to, tg], the

spectrum assignment problem consists in the following:

For arbitrarily given numbers {A;}7_;, it is required to construct a state-feedback control law
u= Kz (1.2)
under which the spectrum of the matrix A + BK will coincide with {A;}7_,, i.e.,
det(A+ BK — ;1) =0. (1.3)

In the case of complex values \;, they must be pairwise ordered and complex conjugate.

For a linear time-invariant system with a one-dimensional control vector (scalar control),
V.I. Zubov essentially derived a sufficient condition for the solvability of the spectrum assign-
ment problem: this is the controllability condition of the system. The spectrum was considered
arbitrary, and the author passed to the spectrum located in the left half-plane of the complex plane
only to stabilize the system [2, pp. 153 and 154].

The complete result on the existence of a solution of problem (1.1)—(1.3) was obtained by
W.M. Wonham [3, 4, p. 79]:

Theorem 1. Problem (1.1)—(1.3) is solvable if and only if the pair (A, B) is controllable.

Consequently, the condition
rank(BAB ... A""'B)=n

must hold.

The history of the proof of this theorem by some authors, with the aim of simplification, was
presented in [1].
A practical solution of problem (1.1)-(1.3) was obtained for the case m = 1 as a solution of the
equation
det(A+ BK — X)) = f()),

where f(A) is a polynomial of degree n with corresponding real coefficients that contains the
components of the row matrix K = (k; ko ... k,). This equation is uniquely solvable with
respect to k;, i = 1,...,n, and the solution is given by the exact Bass—Gura and Ackermann for-
mulas [1, p. 579].

A numerical implementation of problem (1.1)—(1.3) in MATLAB, based on the full pole place-
ment method [5], was provided in [6].

For the controllable system (1.1) with given A and B, Ker B = {0}, a method for constructing
a set of gain matrices was described in [7]. For this purpose, Jordan chains of vectors of the matrix
(A— Xl B) for each A = \; were used, and additional parameterizing matrices were introduced.

The so-called cascade decomposition method for solving problem (1.1)-(1.3) without any con-
straints on A and B was proposed in [8]. (For brevity, it will be referred to as the cascade method.)
This method allows one to establish that either system (1.1) is uncontrollable (and the matrix K
cannot be constructed) or system controllability holds (in this case, the method yields a complete
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1120 ZUBOVA, RAETSKAYA

manifold of all matrices K corresponding to the given A, B, and {\;}}_;). Thus, another proof of
Theorem 1 was obtained and, moreover, a method for constructing a complete set of gain matrices
was developed.

Problem (1.1)—(1.3) is solved as follows [8].

The equation
(A—i—BK)’Uj = )\jvj (1.4)

is solved with respect to v; and K first, a set of n linearly independent vectors v; corresponding
to the eigenvalues ); is constructed; then, the components of the matrix K are found. The cascade
method is used only to construct v;.

However, application of the cascade method is rather computationally intensive: it involves
decompositions of spaces into subspaces, projectors onto subspaces, and semi-inverse matrices.

The goal of this paper is to maximally simplify the solution of problem (1.1)—(1.3); the idea is
to create an algorithm for constructing n linearly independent eigenvectors and adjoined vectors of
the matrix A + BK that requires only solving systems of linear algebraic equations and checking
the linear independence of the resulting vectors at the last step of the algorithm, e.g., by computing
determinants.

Such a design of gain matrices appreciably simplifies the computational process and creates the
necessary prerequisites for developing simpler computational programs.

For the sake of comparison, note the following: Moore—Penrose pseudoinverse matrices were
used in [6] to solve the applied problem (1.1)-(1.3) in MATLAB; they were computed as the limit
of a sequence of certain matrices. In this case, only one matrix K is constructed, although there
exists a set of such matrices [8, p. 2024] for the problem considered in [6].

In this paper, we reveal a complete set of gain matrices for a particular problem by establishing
the dependence of the matrix on some numerical parameters, some being arbitrary while the others
satisfying certain conditions.

The manifold of gain matrices is very useful in applications: one can select an appropriate
matrix, e.g., with a smaller norm or with fewer nonzero components.

The number of steps in the algorithm for finding the eigenvectors and adjoined vectors of the
matrix A + BK can be determined in advance: there are exactly p of them, where p = min ¢ and
the number ¢ is given by the condition

rank(BAB ... AIB) = n. (1.5)

The algorithm proposed below is based on the cascade method [8] and represents its significant
simplification. The algorithm for constructing the eigenvectors and adjoined vectors of the matrix
A + BK is justified in the Appendix.

As illustrative examples, we find gain matrices in the cases of a simple spectrum and a multiple
one and construct gain matrices for a dynamic system describing the operation of a multi-chamber
heating furnace.

2. SOLVING A LINEAR ALGEBRAIC EQUATION
WITH A SINGULAR MATRIX AT THE UNKNOWN

A linear system of the form
Cxr=y (2.1)

with a singular matrix C' can be solved with respect to x only under some constraint (condition)
imposed on y :
Qy = 0. (2.2)
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AN ALGORITHM FOR CONSTRUCTING GAIN MATRICES 1121
The solution = may be nonunique, i.e.,
r=C"y+z, (2.3)

where C~ is some matrix, and z is an arbitrary vector such that Cz = 0.
The constraint (2.2) will be called the well-posedness condition for system (2.1), and the vec-
tor (2.3) will be called the solution of system (2.1).

101
010 .
For example, let C' = 9 0 2| 1€
000
1+ T3 = Y1,
T2 = Y2,
2.4
2x1 + 223 = y3, (2.4)
0 =yu;
Y1 —3
then x= |y | +| O is the solution of system (2.4) with an arbitrary value x3 under the
0 T3
conditions
_2y1 + Y3 = 07
ys = 0.
0 00O .
0 000 . s
Consequently, Qy = 0, where Q = 2010l In this case, z = 0
0 001 3
System (2.4) can also be solved as follows:
0 I
z= |y | +] O for any z1 under the well-posedness condition
Y1 -1
1
Y1 — 593 = 07
y4 = 0.

But the solution set and the well-posedness condition are equivalent in this case; hence, the
particular form of the solution with the corresponding well-posedness condition does not matter in

practice.

3. THE ALGORITHM FOR CONSTRUCTING A GAIN MATRIX
IN THE CASE OF A SIMPLE SPECTRUM

3.1. Preliminary Transformations

Aj. In the case of simple eigenvalues \;, j = 1,...,n, in equation (1.4)
(A+ BE)v(;) = Aju(d)), (3.1)
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1122 ZUBOVA, RAETSKAYA

introduce the designation

Ay. Write equation (3.1) as
BF(\) = (A = A)u(,). (33)

As. Solve equation (3.3) with respect to f();) :
FAj) =B~ (M1 = Aju(d)) + 2(X) (3.4)
with an arbitrary vector z = z(\;) under the well-posedness condition
QNI — A)v(N;) =0. (3.5)

As a result of preliminary transformations, the relation (3.1) is replaced by an equivalent system
of the three relations (3.2), (3.4), and (3.5).

3.2. The Algorithm for Solving Equation (3.5) with Respect to the Vector v = v(\;)

Forward pass

The first step. A11. In equation (3.5) with the subscript j omitted for now, denote by w; = w; ()
the coefficient at A (i.e., Qv); then (3.5) is equivalent to the system

Qu =w;
(3.6) { QAv = dw;.

Ajz. Obtain the solution v of system (3.6) in the form
(3.7) v=Gi1(\w1) + =
with some matrix G; and an arbitrary vector z; = z1(\) under the well-posedness condition
(3.8) Q1(A,w1) = 0.

The second step. Ag;. In the relation (3.8), denote by wa = wa(\) the coefficient at A (i.e., Qiw1);
then (3.8) is equivalent to the system

(39) { Qlwl = w2

Quiwi = Aws

with some matrix (11.
Ass. Obtain the solution of this system in the form

wy = Go(\, we) + 29
with some matrix Gy and an arbitrary vector zo = z9(\) under the well-posedness condition
QQ()\, ’UJQ) =0.

Andsoon ....
The ith step. A4;1. In the well-posedness condition identified at the (i — 1)th step,

(3.10) Q,;_l()\,wi_l) = O, 1= 2, 3, ey
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denote by w; = w;(\) the coefficient at \; as a result, (3.10) is equivalent to the system

(3.11) { Qi—1wi—1 = w;

Qi—11wi—1 = Aw;.
A;o. Obtain the solution of this system in the form
(3.12) wi—1 = Gi(\,w;) + 2
with some matrix G; and an arbitrary vector z; = z;(\) under the well-posedness condition
QN w;) =0.

Andsoon ....

The pth step. Apz. As proved in [8], if system (1.1) is completely controllable, then for i = p
(see (1.5)) system (3.11) is solvable with respect to w,_; without any well-posedness condition:

(3.13) wp—1 = Gp(\, wp) + 2

with some matrix G, and an arbitrary vector z, = z,(A). The element w, = wy(A) is also arbitrary.
Construct wy,_1.

3.3. The Algorithm for Constructing the Vector v(\)

Backward pass

By . Substitute the vector w,_; constructed at step A, into (3.12) with ¢ = p — 1, thereby deter-
mining the vector w,_».

Bs. Substitute the vector w,_o constructed at the previous step into (3.12) with i =p — 2,
thereby determining the vector wy_s.

Andsoon ....

By_». Substitute the vector wy constructed at step Bj,_3 into (3.12) with ¢ = 2, thereby deter-
mining the vector wj.

By_1. Substitute the vector w; constructed at step B,_» into (3.7), thereby determining the
vector v :

(3.14) v =G(wp(N), zp(A), 2p—1(A), ..., z1(N))

with some matrix G and arbitrary vector functions w,(A) and zs(X), s=1,...,p.

3.4. Constructing the System of n Linearly Independent Vectors v(\;)

If system (1.1) is completely controllable, then for any set {);}7_; there exist elements
wp(A), 2p(A), 2p—1(A), ..., z1(A) such that the vectors v()\;) (3.14) with the above
wp—1(A), 2p(A), 2p—1(A), ..., z1(A) are linearly independent [8].

The eigenvalues \; can also be complex, pairwise ordered.

If system (1.1) is not completely controllable, then n linearly independent vectors v(\;) cannot
be constructed, and the same applies to the matrix K [8].

Here, one should construct a vector v(\;) such that the vectors v(A1), v(A2), ..., v(A,) are
linearly independent for any set {\;}7_;.

AUTOMATION AND REMOTE CONTROL Vol. 8 No. 12 2025



1124 ZUBOVA, RAETSKAYA

3.5. The Algorithm for Constructing a Gain Matriz in the Case of a Simple Spectrum

(. Substitute the vectors v; = v(\;) constructed in Section 3.4 into formula (3.4), thereby
determining f; = f;(A;), j=1,...,n.

(5. Substitute v; and f; into (3.2) for each value of j. As a result, n linear equations with
unknowns k;j;,7 = 1,...,m (the components of matrix K) are obtained.

Cs. Extract from the above equations those containing the components k1, as the unknowns,
thereby forming a system of linear algebraic equations with the principal determinant A; made up
of the components of the linearly independent vectors v(\;); hence, Ay # 0.

Cy. Solve the system obtained at step C3 with respect to ki; (the components of the first row
of the matrix K).

C5. Repeat steps C3 and Cy for i = 2,3,...,m, thereby determining the components of the ith
rows of the matrix K.

000 11
Ezample 1. Let A=[1 0 0|, B=|1 1|, and K = (k;;), i =1,2, j =T1,3.
010 11
We solve the equation Bf = (AT — A)v, where f = (f1, f2) and v = (v1, v, v3), with respect to f
(step As):
Ji+ fa = vy,
Ji+ fo=—v1 + Avg,
J1+ fo = —v2 + Avs.
Consequently,
f1 = )\’Ul — Z()\),
3.15
(319) fa = =)

with an arbitrary vector z(A) ((3.15) is (3.4)) under the well-posedness condition (3.5):

/\Ul = —v1 + )\UQ,
Avp = —vg + Avs,

or
)\(’Ul — UQ) = —U1
3.16
( ) { A(’Ul — ’1}3) = —72.
Following step A11, we denote
(3 17) V1 — V2 = W11,

U1 — U3 = wW12.

Then (3.16) becomes

—v1 = Awyy
(3'18) { —V2 = )\’wlg.

The system composed of (3.17) and (3.18) is system (3.6).
We solve system (3.17), (3.18) with respect to vy, ve, and vs (see step Ajo, formula (3.7)):

v = —Awiy,
(319) Vo = _Aw127
V3 = — w1 — W12
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AN ALGORITHM FOR CONSTRUCTING GAIN MATRICES 1125

(here z; = 0) under the well-posedness condition of system (3.17), (3.18): —Awi1 + Awiz = wyy. As
a result, we arrive at the relation (3.8):

)\(—wll + wlg) = w1i1.
Following step Ao, we denote
—wi1 + Wiz = wa;
then

wi1 = )\’wQ.

The last two equalities are system (3.9).

We solve this system with respect to wi; and wiy (see step Ag) :
Wil = Awg,

3.20
( ) w19 = (1 + A)'LUQ

A solution exists for any wy without any well-posedness condition; hence, step Agy is step Ay with
p=2.
Substituting (3.20) into (3.19) yields formula (3.14):

(3.21) v(A) = (A, A+ A5 1+ A+ 02,

For different values of A1, A2, and A3, the vectors v();) = ()\3, Aj+ A?, 1+ X+ )\?), j=1,2,3,
are linearly independent since the determinant AA; made up of the components of the above vectors
for each j reduces to a Vandermonde determinant [9, p. 33], which is nonzero.

Then v(A;) are substituted into (3.15) (step C;) and, together with fi; and fs, are substituted
into (3.2) (step Cb).
Two systems are formed from the resulting equalities.
For ¢ =1 (see step Cs),
APk11 + (A 4+ ADk1z + (L+ AL+ A)kis = A} — 2(A)
Ask11 + (A2 + A5)kia + (14 A2 + A9)kiz = A3 — 2(\o)
)\gkn + (A3 + )\g)ku +(1+ X3+ )\%)km = )\g —2(A3);

for i = 2 (step Cy),

MEor 4+ (A + Ak 4+ (14 A 4+ A koz = 2(\1)
Akar + (A2 4+ A)kag + (1 + Ao + A3)kaz = 2(No)
A2Eo1 4+ (A3 + A2)kao 4+ (14 A3 4+ A)kas = 2(N3).

And the components of the matrix K are determined accordingly.

The nonunique form of the matrix K is ensured by the arbitrary function z(\).

4. THE ALGORITHM FOR CONSTRUCTING A GAIN MATRIX
IN THE CASE OF A MULTIPLE SPECTRUM

For example, let A\; have multiplicity k, & < n, and let A\g41, Agy2,- .., An be distinct arbitrary
numbers not equal to Aj.

The vectors v; = v(\1), Vg1 = V(Ak+1),--.,0n = v(\,) are constructed as described in Sec-
tion 3; as k — 1 vectors 7; = 7;(\) we take the vectors 71,7y,...,7,—; of the matrix A+ BK that
are adjoined to v; and correspond to the eigenvalue \j :

(A-i—BK)Tj:AlTj-i-Tj_l, j=1..., k-1, To = V1.

AUTOMATION AND REMOTE CONTROL Vol. 8 No. 12 2025



1126 ZUBOVA, RAETSKAYA

4.1. Preliminary Transformations

D;. Introduce the designation
(4.1) Ktj =g;.

Dy. For each j =1,...,k — 1, solve the equations Bg; = (A1 — A)1j + 7j_1 with respect to g; :
(4.2) gj = B7((MI — A1 +7j-1) + 25,
with an arbitrary vector z; such that Bz; = 0, under the well-posedness conditions

(4.3) QUMI — A)ry +73-1) = 0.

4.2. The Algorithm for Solving Equations (4.3) with Respect to T;

Forward pass

The first step. D11. In (4.3), denote by w{, j=1,...,k —1, the coeflicients at A\; (i.e., Q7;) :
(4.4) Qrj = w{;
as a result, (4.3) takes the form
(45) QATj = )\1’[1){ + QTj_l,

where 79 = v; is a known function (see Section 3).
D15. Find the solutions of systems (4.4) and (4.5) in the form

(4.6) 7 = Gl (A, wl) +
with some matrices G{ and arbitrary vectors z{ under the well-posedness conditions
Q{(Al,wp,w{) =0.
The ith step. D;1. In the relations obtained at the (i — 1)th step of the algorithm,
(4.7) Q1 (M, wp,wl 1) =0,
denote by wg the coefficients at Aq :
(4.8) J 1wzj"—1 = wl.

The expressions (4.7) become

(4.9) Q_jwl = \uwl.
Djs. Solve systems (4.8) and (4.9) with respect to wg_l :
(4.10) wl_ | =GO, wl) + 2
with some matrices G{ and arbitrary vectors zf under the well-posedness conditions
(4.11) Q! (M, wp, w!) =0,
and soon... .
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The pth step. Dpa. As proved in [8], if system (1.1) is completely controllable, then for each
j=1,...,k—1and i = p, equations (4.11) are solvable with respect to w;_l :

(4.12) wi_l = G;()\l,wp,wg) + zg,

where G, are some matrices and 2}, wy, and w), are arbitrary vectors. In this case, well-posedness
conditions are absent.

Form ;_1.
Backward pass

Fy. Foreach j =1,...,k — 1, substitute the vectors wg_l (4.12), with as yet arbitrary wg; and 7“]7;,

into (4.10) with ¢ = p — 1, thereby determining the vectors w;_Q.
Ey. Substitute w;_Q into (4.10) with ¢ = p — 2. Thereby, the vectors w;;_?) are obtained.
Andsoon....

E,_5. Substitute w% (found at step E,_3) into (4.10) with i = 2. Thereby, the vectors w{ are
obtained.

E,_1. Determine 7; from (4.6):

(4.13) Tj = G(wp,wg,zg,z;_l, .. .,z{), j=1,....k—1.

4.3. Constructing the System of n Linearly Independent Vectors
in the Case of a Multiple Spectrum

According to [8], in the case of the complete controllability of system (1.1), there exist vectors

wp,wg;, zg;, fg_l, ..., 2] such that the vectors vy, 7i,...,Tk—1,Vk4+1,-- ., Uy are linearly independent.
Here, the vectors 7i,...,7,_; are constructed using formulas (4.13), and v; = v(};), j = 1,k +
1,...,n, using formulas (3.14).

If system (1.1) is not completely controllable, then n linearly independent vectors
V1, Tly -« «s Th—1, Vk+1, - - - , Up, cannot be constructed for arbitrary values A1, Agy1,..., An, where Ay
is an eigenvalue of multiplicity & [8].

Select elements w), wg, Zg, z;_l, ..., 2] such that the vectors vy, Ty, ..., Tk_1, Vgs1,- - -, Up are lin-
early independent.

4.4. The Algorithm for Constructing a Gain Matriz in the Case of a Multiple Spectrum

Let A; be an eigenvalue of multiplicity k£ of the matrix A + BK, and let the other Agy1,..., A\,
be simple eigenvalues.

Gp. For each j=1,k+1,...,n, substitute the vectors v; = v(};) constructed in Section 3
into (3.4), thereby determining f;.

G». Substitute f; and v; into (3.2):
(4.14) Kv(\) =f(N\), j=1Lk+1,...,n.

G3. Substitute the vectors 11,79,...,7Tx_1 obtained at step 4.3 into formulas (4.2), thereby
determining the vectors g;.

G4. Substitute g; and 7; into (4.1):
(415) KTj:gj, ]:1,,]{}

AUTOMATION AND REMOTE CONTROL Vol. 8 No. 12 2025



1128 ZUBOVA, RAETSKAYA

Gs. From equalities (4.14) and (4.15) extract those containing the components ki; of the first

row of the matrix K, j =1,...,n. Thereby, a linear algebraic system with the unknowns ky; is
formed, with the principal determinant As made up of the components of the linearly independent
vectors vy, Ty, ..., Tk—1, Vk+1,- - - » Un; hence, Ag # 0.

G- Solve the system constructed at the previous step, thereby obtaining the components of the
first row of the matrix K.

G7. Repeat steps G5 and Gg for ¢« = 2,3, ..., m, thereby determining the components of the
1th rows of matrix K.

Example 2. Let A and B be the matrices from Example 1, and let Ay = Ay = A3. It is required
to construct three linearly independent vectors vy, 7, 7o such that

(A+ BK)vy = A1, (4.16)
(A+ BK)m = M1 + vy, (4.17)
(A+BK)T2:)\1T2+T1. (4.18)

The vector v1 has been constructed in Section 3: v1 = (A2, A\; + A3, 1+ A\ + A3) (formula (3.21).
To construct 7 = (711, 712), in equation (4.17) we introduce the designation (equality (4.1)

with j =1)
Kt =g1, g1 =(911,912) (4.19)

This equation becomes
Bgl = (Alf — A)Tl +U1;
therefore,
= M1+ A — 2,
gu AT AT A (4.20)
912 = 2z

(this is (4.2) with j =1) with an arbitrary value 2{ under the well-posedness condition ((4.3)
with j =1)

M(m1— 12— 1) = —713
)\1(7'11 — T13 — 1) = —T12 + 1.

Next, the coefficients at A; in the last two relations are denoted as the new unknowns (see
step D11), e.g.,

1 — 7112 — 1 =a,
1 —T13 — 1 =0.
(Here, a and b are used instead of w}, and wi, for the sake of simple notation, see (4.4).) The
further actions are performed as described in subsection 4.2. As a result, the vector 71 = (2A1,1 +
2A1,1+4 2);) is determined.
Next (see subsection 4.1, j = 2), with the designations
Kty =g, 92 = (921,922), (4.21)
equation (4.18) takes the form
Bgo=(A-1—A)1o + 71. (4.22)
From this equation we find
go1 = A1T21 + 2A1 — 22,

(4.23)
g22 = 22
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AN ALGORITHM FOR CONSTRUCTING GAIN MATRICES 1129

with an arbitrary value zo under the condition

A (m21 — To2) = —791 + 1
)\1(7'21 — ng) = —799 + 1.

Continuing to solve the last system by the method described in subsection 4.4, we get
T2 = (17 1> 1)

As is easily verified, the determinant As made up of the components of the vectors vy, 7,7 is
nonzero.

Next, using formulas (4.20) and (4.23), we determine g; = (3A? — 21, 2}) and go = (3)\? — 23, 29)
with arbitrary values z{ and z3. The vector f is given by (3.15): f = (A} — 2, 2) with an arbitrary
value z.

Finally, a system consisting of the equations Kv; = fi, (4.19), and (4.21) is formed.
As a result, two systems are obtained:

M4+ M+ 2Dk + (T+ M+ A)kiz3 = A3 — 2
QA%]{JH + (1 + 2)\1)]€12 + (1 + 2A1)]€13 = 3A% — Z%
ki1 + k12 + k13 = 3\ — 29

and Nhot + (A1 + A)kao + (1 + A1 + M\)ko3 = 2
2)\1]{321 + (1 + 2A1)]€22 + (1 + 2A1)]€23 = Z%
ko1 + koo + kos = 2o.

They yield the components k;;, i = 1,2,3, j = 1,2, 3, of the matrix K in a nonunique way, depending
on arbitrary values z, z{, and 2».

In a special case where A\ = —1 is a triple eigenvalue of the matrix A+ BK, we have K =

C1 -2+ C9 -1 - C3

—C1 —C2 C3
and 2, therefore being arbitrary as well.

, where c1,co, and c3 are linear combinations of arbitrary values z, 21,

Direct verification shows that, for such K,

det(A+ BK — X) = —(A +1)3.

5. ON THE NONUNIQUENESS OF THE GAIN MATRIX

The nonuniqueness of K for given A, B, and {\;}_; arises if Ker B # {0}, i.e., when the equa-
tion Bf = h with a fixed vector h € R™ has a nonunique solution f = B~h + z with an arbitrary
vector z € R™.

Also, the nonuniqueness of K arises if at least one of systems (3.11) or systems (4.8), (4.9) with
i=1,...,p has a nonunique solution w;_; or w!_;, j =1,...,k, where k is the multiplicity of \s.

However, if Ker B = {0} and all systems (3.11) or (4.8), (4.9) are uniquely solvable, then K has
a unique form; see Example 2 in [8].

Note that the higher the multiplicity of an eigenvalue is, the more arbitrary parameters K may
contain.

For example, a unique matrix K was constructed in [6] for system (1.1) with the matrices

0010 00

0001 00 . - o
A= 0500 , B = 10 and the eigenvalue A = —1 of multiplicity 4.

7000 01
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However, for this case, the algorithm proposed here yields a matrix K depending on eight
parameters, K = K(cy, ca,...,cs), connected only by the condition

C1 C2 0 0
C3 C4 C1 C2
Cs Ce C3 C4
Cr Cg C5 Cp

£ 0.

This condition arises due to the linear independence of the vectors vy, 71, 72, and 73 [8].

For a particular dynamic system of the form (1.1) and a given arbitrary set {\;}}_;, the method
proposed in this paper constructs precisely the complete set of gain matrices. This conclusion
follows from the equivalence of the transformations applied.

6. AN ILLUSTRATIVE EXAMPLE: GAIN MATRICES FOR STABILIZING
THE OPERATION OF A MULTI-CHAMBER HEATING FURNACE

The dynamic model and operation scheme of three furnaces for heating three chambers were
presented in [10].

Consider the case of three furnaces and five chambers:
1 = 2ax1 + buy + cua,
To9 = axo + cusg + dug,
I3 = axg + buy + 2cus + dug, (6.1)
T4 = 3ax4 + 2cusy + 2dus,
x5 = 3axs + 2bu; + 3cus + dus,

where a < —%, b= i, c= é, and d = % In the case of the unreachability of a given initial temper-

ature x;(to) = xo; in the ith chambers, i = 1,2,...,5, it is required to correct the program control
(fuel supply) u, = u,(t) of the rth furnaces, r = 1,2,3, so that at a specified time instant ¢t = t;,
the temperature x;(tx) in the chambers is close to a desired one zy;. For this purpose, a stabilizing
control law with a gain matrix K can be used to make the state of system (6.1) exponentially
tending to the program state.

2000 0 0 1/4 1/9 0
0 a0 0 0 0 1/9 1/5
Here, A= 0 0 a 0 O |andB=| 1/4 2/9 1/5
0 00 3a O 0 2/9 2/5
0 00 0 3a 2/4 3/9 1/5

The components of the matrix K = (k;;) are found from the equation Kv = f, where f = f()\)
and v = (vy1,...,v5), and v; = v;(\) are obtained from the equation Bf = (Al — A)v, or
fi+ fa=(A—2a)vy,
fot fs=(A—a)vs,
(6.2) fi+2fo+ fz3=(A—a)vs,
2f2+2f35 = (A —3a)vs,
2f1 +3f2+ f3 = (A — 3a)vs,
where f = (4f1,9f2,5f3) to get rid of fractions in the matrix B.
The solution of system (6.2) is
fi=A\=2a)v, — z,
(6.3) f2 =7z,
fa=A—a)vy —z
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(formula (3.4)) with an arbitrary value z under conditions (3.5):

2(X — a)vy = (A — 3a)vy,
(A —=2a)v1 + (A —a)va = (A — a)vs,
2(X = 2a)vy + (A — a)vy = (A — 3a)vs,

or

A(2v9 —vg) = 2av9 — 3avy,
(6.4) A(v1 + v — v3) = 2av; + ave — avs,
A(2v1 + vy — v5) = davy + avy — 3avs.

Constructing the vector v(\)
The first step. We introduce the designations (see step Aj;)

2u9 — vy = awny,
(6.5) U1 + Vg — V3 = awi2,
21 + vo — U5 = awq3.

Then from (6.4) it follows that

27./2 — 37./4 = )\wn,
(6.6) 201 + vg — v3 = Awra,
4u1 4+ v9 — 3vs = Awss.

1131

Aj3. System (6.5), (6.6), which contains six equations and five unknowns, is used to find v,

(step Aqa) :
v = (A — a)wia,

1
Vo = _Z()\ — 3(1)1(111,

1

V3 = _Z()\ — 3(1)1(111 + ()\ — 2a)w12,
1

vy = —=(A — a)wiy,

2
1
v5 = _Z()\ —3a)wi1 + 2(A — a)wiy — awis
(this is formula (3.7)) under the well-posedness condition of this system:
()\ — 3a)w11 — 4()\ — (I)UJH — 2()\ — 3a)w13 = 0;

hence,
)\(wll — 4w12 — 2w13) = CL(3U}11 — 4w12 — 6w13).

The second step. Ag;. Denoting (see step Asq)
wyy — 4wz — 2wz = awoy,
we have

3UJ11 — 4UJ12 — 6w13 = )\w21.
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Asyy. System (6.8), (6.9) is solved with respect to wy; (step Ags) :

1
w1l = 5()\ — a)way + 2wi3,

(6.10)
w19 = g()\ — 3(1)1(121
for any wyz and ws1. There is no well-posedness condition; consequently, p = 2.
Next, we substitute the values wi; and wiy (6.10) into formulas (6.7):
1
v = =(A — a)(A — 3a)ws,
8
1 1
vy = —5()\ — 3a)wiz — g()\ —a)(\ — 3a)wsy,
1 1
vy = —5()\ — 3a)wiz — ga()\ — 3a)woy, (6.11)
1
Vg4 = —()\ — a)w13 — —()\ — (1)211)21,

4
1 1
v5 = —5()\ —a)wiz + g(/\ —a)(A — 3a)wa
(this is (3.14) for p = 2)) with any wi3(A) and w1 (A) such that v();) are linearly independent:

det(v(A1) v(A2) v(A3) v(Ag) v(A5)) # 0.

In particular, for w3 = —2 and wa; = 8\?,
(A —a)(\ — 3a)\?
(A =3a)(1 = (A = a))?)
v(\) = (A —3a)(1 —a)?) ) (6.12)
20 —a)(1 = (A = a)\?)
(A —a)(1+ (X =3a)A?)

As is easily verified, the determinant A made up of the components of this vector for differ-
ent values of A = A;, j =1,2,...,5, by transformations reduces to the Vandermonde determinant
W (A1, A2, A3, Ag, As) and is therefore nonzero.

Thus, the vectors v(}\;), j =1,2,...,5, are linearly independent.

Constructing the gain matrixz in the case of a simple spectrum

For each A = \;, j =1,2,...,5, we substitute the values v(\;) (6.12) and f()\;) (6.3) into the
relation Kv(A) = f(A).

The resulting system of fifteen equations is used to determine the components of the matrix K.

ki1 fi(A1)
kia fi(A2)
These equations are split into three systems of the form V; - | ki3 | = | fi(A3) |, i =1,2,3. In the
Kia fi(Aa)
Kis fi(As)
special case \j = —2(j + 1) and a = —5, we have

63/100 —133/100 —77/100 —171/50 —27/100
189/50  —249/50 —147/100 —581/50  119/50
Vi=| 323/25 —731/50 —119/50 —817/25 551/50 |, (6.13)
33 —176/5  —143/40 —384/5  153/5
7047/100 —7317/100 —513/100 —7859/50 6757/100
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fi = (—252/125 — 4z, —2457/125 — 4z, —11628/125 — 4z, —1518/5 — 4z, —98658/125 — 4z),
fo=1(92, 929292 9z),
f3 = (—65201/2 — 50z, —136255/8 — 252, 17431, —15687/4, 62181/8 + 252).

As a result, Vl_1 f¥ are the elements of the ith row of the matrix K. Finally,

128394/5 40z, 134253/10 — 20z —68724/5 15437/5 —61163/10+2023
K= 9021 4522 0 0 —4523
—65201/2—502; —136255/8—2529 17431 —15687/4 62181/8+ 2523

with arbitrary values z1, zo, and z3. Substituting the above matrix K into the expression A+ BK —
A - I yields

12839/2 — X 134253/40  —17181/5 15437/20  —61163/40
—65201/10 —136259/40 — A 17431/5 —15687/20  62181/40
det(A+ BK — M) =| —502/5 ~1001/20  499/10 — A\ —25/2 509,/20
—65201/5 —27251/4 34862/2 —1569 — A 62181/20
63193/10 132251/40  —16931/5 15187/20 —60157/40 — A
45 261, 145 , 155 4 4 s
=5 A A AT 10X A

=(A+1) <A+g> (A+2) (A+g> (A+3).

Note that in this example, the variability of the gain matrix depends on the choice of arbitrary
values z and on the values of w3 and ws; such that the vectors v();) (6.11) are linearly independent.
The case of a multiple spectrum
It is required to construct a matrix K such that A = —2 is an eigenvalue of multiplicity 5 of the
matrix A + BK, where A and B are the matrices appearing in system (6.1).

The vector v(—2) = 7y is constructed by formula (6.12) with a = —7 and A = —2; the com-
ponents of the vector v(—2) = 7y are those of the third row of the matrix V; (6.13). The vec-
tors 75, j = 1,2,...,4, are obtained from the well-posedness conditions of the equations BKT1; =
()\I — A)Tj + Tj—1-

The components of the vectors 7; are those of the jth rows of the matrix V5, where

323/25 —731/50 —119/50 —817/25 551/50

—72/5  T7/5 7/5 162/5 —67/5
Vo=| 4  —57/10 —17/10 —59/5 21/10

0 1 1 2 1

0 —17/10 —17/10 —38/10 —19/10

The equations Bgj = (M — A)7; + 71 are used to find the solutions g;; in this case, for a
particular choice of arbitrary constants, we obtain

g1 = (—11628/125 — 4z, 3884/25— 4z, —432/5—4z, 16—4z, —4z),
g2=1092, 9z, 9z, 9z, 9z2),
gs = (13889/100 — 5z, —1097/5—5z, 2623/20—5z, —38—5z, 423/20—5z)

with an arbitrary value z.
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Solving the system
Voo |kis | =g

yields k5,7 =1,2,3, 7 =1,2,...,5.
Computations in Mathcad produced the result

16704/5 — 112z 9519/5 — 58z —8759/5 6613/20 —7973/10 4 54z
K= 252z 261/2z 0 0 —243/2z
—4163 — 140z  —4765/2 — 145/2z 8509/4 —6363/16 8101/8 4+ 135/22
Direct check shows that

det(A+ BK — \-1)

835 — A  9519/20  —8759/20  6613/80 —7973/40
—4163/5 —2383/5— A 8509/20  —6363/80 8101/40

=| 13/5 —~11/20  —63/5 — A 25/8 16/5
~8326/5  —953 8509/10 —1275/8 — A  8101/20
4189/5  2377/5  —9009/20  6863/80  —785740 — A

= —32 — 80X — 80AZ — 40X3 — 10A* — N> = — (A + 2)5.

Remark 1. In the case of a nonsingular matrix B, system (1.1) is controllable, and K is deter-
mined from the equations

Kv; = B~Y\ I — A)v;, j=1,...,n,

or
Kvs = B~Y\T — A),
Krj=B '\ - A7+ B 'rjy, j=1,....;k—1, 10="u,,
where arbitrary linearly independent vectors can be taken for v; or vi,...,vs,T1,. .., Th—1, Vg+1,

oy Up.

7. CONCLUSIONS

This paper has proposed a new algorithm for constructing gain matrices in the spectrum assign-
ment problem of a continuous-time linear dynamic system without any constraints on its matrix
coefficients, except for the controllability of the pair (A, B).

The algorithm is based on the cascade decomposition method developed in [8]. In contrast
to [8] (with expanding spaces into subspaces, constructing projectors onto them, and using semi-
inverse matrices), the algorithm in this paper involves elementary algebraic operations: solving
linear algebraic equations, making changes of variables, and checking the linear independence of
vectors.

Such a solution of the problem significantly simplifies the computational process and allows
creating simple computing programs.

In addition, the dependence of the gain matrix on a certain number of arbitrary or conditionally
related scalar parameters has been revealed, and the complete set of such matrices for each problem
has been determined.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



AN ALGORITHM FOR CONSTRUCTING GAIN MATRICES 1135

The case of a unique gain matrix has been identified as well.
Illustrative examples of constructing gain matrices have been provided.

Finally, various cases of constructing such a matrix for a dynamic system describing the operation
of a multi-chamber heating furnace have been considered.
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APPENDIX

JUSTIFICATION FOR THE ALGORITHM FOR CONSTRUCTING LINEARLY
INDEPENDENT VECTORS (SUBSECTIONS 3.4 AND 4.2)

Section 2 has presented the solution of a linear algebraic equation of the form Cz =y with a
singular matrix C' : R® — R!, y € R’ This solution is explained as follows: using a mapping C, one
can expand spaces R® and R! into the direct sums of subspaces:

R® = CoimC+KerC,  R!=ImC+Coker C, (A.1)

where Ker C, Im C, and Coker C stand for the kernel, image, and defect (defective) subspace
of C, respectively, and Coim C' is the direct complement to Ker C' in R°. (Mappings and the
corresponding matrices are indicated identically.) Here, the narrowing of C' to Coim C' has an
inverse mapping C'~ [11]. Let P and @ denote projectors onto Ker C' and Coker C, respectively;
then the mapping C~ (I — Q) is called semi-inverse [12, p. 164] and is denoted by C~. Here, I means
an identity mapping in any subspace.

The following result is well-known [8, 13-17].

Lemma. The relation Cx =y is equivalent to the system

Qy=0
{ r=C"y+=z (A-2)

for any z from Ker C.

Note that z = Pz. The relation Qy = 0 in (A.2) is the well-posedness condition for the equality
Cz =y, and the second relation in (A.2) is the solution of this equation.

By this lemma, equation (3.3) with omitted j, Bf = (A — A)v, has the solution
f=B" (A — A)v+ z (3.4) for any z € Ker B under the well-posedness condition (3.5):

(A.3) QNI —A)v =0.
The first step. Denoting
Qu=wi, (I-Qu=uv, QAQ=A4, QA -Q)= b, (A.4)
we have
v =1 + wi, (A.5)
and (A.3) can be written as
Bivy = (A1 — Ay)w;. (A.6)
Note that the designations Qv = w; in (A.4) and (3.6) are identical.
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Next we study (A.6) with By : Im B — Coker B. Based on the decomposition
Im B = Coim B;+Ker By, Coker B = Im B;+Coker Bj, (A.7)
equation (A.6) (see the lemma) has the solution
vy =By (A — A)wi + 71, VZ € Ker By, (A.8)
under the condition
Q1AM — Ap)wy =0, (A.9)

where P; and ()1 are projectors onto Ker B; and Coker Bj, respectively, corresponding to the
decomposition (A.7), and By is the semi-inverse of B;. Formulas (A.5), (A.8), and (A.9) correspond
to formulas (3.7) and (3.8).

The second step. Denoting

Qui =w2, (I —Q1wr=v2, Q1A1Q1=A2, Q1AI(I—Q1)= By,
we have
wy, = Vg + wa, (A.10)
and (A.9) is
Bovg = (AN — Ag)ws.

Note that the designation Qw; = wg appears in (3.9).
Applying the lemma to the last equation, we express vy through wy and an arbitrary vector Zo €
Ker By; using (A.10), we express wy through A, wo, and Zs, this is (3.11) with ¢ =2. And soon ....

As a result, the relation (A.3) is equivalent to the system consisting of the relations (A.5), (A.8),
(A.10), and

Wi = Vig1 + Wit1, (All)
Vi1 = B;H()\I — Ai+1)wi+1 + Ziy1, VZi41 € Ker By, (A.12)
Bpvy, = (A — Ap)wy, (A.13)

where B | = Q;Ai(I — Qi), Aix1 = QiAiQi, wi = Qi 1wi—1, vit1 = (I — Q;)w;, Q; and P; are pro-
jectors onto Coker B; and Ker B;, respectively, corresponding to the decomposition

Im B;_; = Coim B;+Ker B;, Coker B;_; = Im B;+Coker B;,

B, = B;ll(l —Qi_1), Bi_1 is the narrowing of B;_; to Coim B;j_y, i =1,...,p, By = B, and
Ag = A.

Due to the controllability of the pair (A, B), equation (A.13) is solvable with respect to v, for
any wy, € Coker B, [8, 13-17]. From (A.11) with ¢ = p — 1 we find wy,_1; next, from (A.12) with
i = p — 2 we determine v,_1; then using formula (A.11) with ¢ = p — 2 we construct wy_s, and so
on .... Finally, using formula (A.5) we obtain v = v(\,wp, Z1, 22, ... Zp) with arbitrary vectors
wy € Coker By_1 and Z, € Ker By, s =1,...,p.

Obviously, constructing v by the method proposed in this work—using linear changes of unknown
vectors and solving linear algebraic systems—significantly simplifies the design of gain matrices in
the spectrum assignment problem.
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