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Abstract—The survey is about modern and classical methods that forms SOTA photogram-
metric pipeline for effectively constructing high-precision 3D point clouds and determining the
position of objects in space from a photo or video signal. The work pays special attention to
measurement error factors of the output 3D-reconstruction. Depending on the application, the
reconstructed 3D-points may correspond to contrasting features of the object’s texture, land-
scape, or special marks applied to the object’s surface. After the features matching, the bundle
adjustment optimization follows to restore the 3D coordinates of points in space. The survey
provides detailed overview of the algorithms and convenient and practical formulations of vari-
ous camera models and their distortions for bundle adjustment process. The experimental part
demonstrates the highest level of accuracy achievable in practice using the methods considered.
For close-range measurements repeatability, the proposed pipeline can outperfom professional
photogrammetry solution.
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1. INTRODUCTION

Photogrammetry—the science of measurements from photographs—has a long history and
has been actively developed both in Russia and worldwide since the late 19th century. The
term “photogrammetry” was introduced in 1867 by the German architect Albrecht Meydenbauer
(1834-1921), who had previously published his photogrammetric method for measuring buildings
in 1858. The mathematical foundations of photogrammetry were laid by the German mathemati-
cian S. Finsterwalder (Sebastian Finsterwalder, 1862-1951) [1]. Significant contributions to the
development of projection mathematical models, still in use today, were made by the American
researcher Duane Brown [2-4]. The founders of photogrammetry in Russia are considered to be the
following outstanding scientists and engineers, specialists from the Department of Photogrammetry
at the Moscow State University of Geodesy and Cartography, who made significant contributions
to the technology’s development: Professors N.M. Alexapolsky (1890-1942), F.V. Drobyshev [5],
A.N. Lobanov, L.N. Vasilyev, V.B. Dubinovsky [6], and many others.

One of the first domestic stereophotogrammetric systems was the “Talka” photogrammetric
system, developed by Soviet engineer D.V. Tyukavkin in the 1960s [7].

Historically, photogrammetry was applied in the fields of geodesy and cartography (Fig. 1).
However, over the past two decades, considering the rapid growth of computational power in
computer systems and the capabilities of image processing methods, including those using artificial
intelligence (AI), photogrammetry as a measurement technology has become widely adopted in
industry (industrial close-range photogrammetry). The use of photogrammetry methods primarily
enables the recovery or reconstruction of a 3D surface model of an object of interest from a set of
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Fig. 1. Left: Polygonal mesh (3D model) of landscape surface obtained through photogrammetry.
Right: Original photo (crop) where circles indicate positions of SIFT feature points for matching and
triangulation in the photogrammetric optimization problem.

photographic images. Furthermore, the technology has a broad range of applications in modern
manufacturing processes [8-11]:

1) Contact technologies for measuring surface shape through probe/stylus positioning (tracking)
in coordinate measuring machine (CMM) mode;

) Non-contact measurement of surface shape during laser 3D scanner tracking;

3) Monitoring the position of large-sized parts in the aerospace industry;

) Control of precision machining of parts in mechanical engineering;

5) Tracking of robot manipulator links and the attached tool [12-15].

Industrial photogrammetry involves the application of numerous algorithms from the fields of
computer vision and image analysis (pattern recognition, 3D modeling). A renowned researcher in
the field of feature recognition and matching on photographic images is Yu.V. Vizilter [16].

The subject of this work is the description of methods constituting the modern photogrammetric
pipeline used in industrial photogrammetry. The methods considered in this work ensure efficient
and high-precision recovery of 3D point coordinates (hereinafter referred to as 3D points), matched
to various characteristic features identified on the surface of observed objects from photo or video
signals. The constructed 3D point cloud is used for reconstructing the object’s 3D surface model.

Known alternative technologies for 3D surface reconstruction include:

1) Projection 3D scanners with structured lighting or laser lines;

2) LIDAR scanners, measuring the time-of-flight delay of a laser beam;

3) Hybrid solutions — the use of structured lighting in combination with photogrammetry.

The advantage of alternative solutions is that they do not require the presence of contrasting
textural features on the object’s surface. At the same time, in terms of the ratio of measurement
error magnitude to object size, photogrammetry may only be inferior to LIDAR systems [9] (given
the very high cost of the latter), remaining an effective tool for measurements across a wide range
of sizes. For example, the same set of tools can measure objects with overall dimensions from 0.1
to 10 m. The error can be 1:100,000 [17] or even 1:200,000 [8] of the object’s overall size, i.e., ten
or five micrometers per 1 meter, respectively.

Within a short period, photogrammetry has become a standard tool for efficient (accurate and
fast) quality control, for example, in aerospace manufacturing. Photogrammetry is often used in
conjunction with projection 3D scanners for device positioning and subsequent point cloud merging
into a high-resolution output polygonal mesh.
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Fig. 2. Left: Example of robot’s tool positioning using images from multiple stationary cameras.
Right: Circular black-and-white markers (targets) used as features for 3D reconstruction.

Photogrammetry is a key tool for precise video-based navigation and a source of geodetic mea-
surements for unmanned aerial vehicles (UAVs) [14, 18-20]. An example of 3D landscape surface
reconstruction using a photogrammetric pipeline [21] with UAV aerial photography data [22] is
shown in Fig. 1. The right side of the image shows the positions of textural SIFT features, which
are a set of 2D coordinates and a vector of real numbers (a descriptor) that characterizes the
properties of the object’s texture in a small neighborhood of the feature.

A known advantage of photogrammetry compared to alternative 3D reconstruction methods is
its versatility and scalability — the same algorithms and camera models (Section 6.1) are applicable
both for long-range geodetic measurements and in completely different close-range scenarios when
the distance between the object and the camera does not exceed a few meters. In Fig. 2, the found
3D coordinates of markers on object surfaces are used to estimate the mutual position of bodies,
for example, the position of a robot manipulator’s end-effector relative to a reference object, whose
position is also reconstructed based on the identified positions of it’s markers.

This work pays special attention to the qualitative process of feature extraction using the ex-
ample of artificial circular markers, as this has a decisive impact on the accuracy of the obtained
3D coordinates. The factors determining this process are also relevant for natural textural features
in such well-known algorithms as: SIFT [23], SURF [24], SuperPoint [25], and others.

2. SURVEY STRUCTURE

Any photogrammetric system represents a hardware-software system. An example of the hard-
ware part of a photogrammetric system is presented in Section 4. The software part implements
algorithms designed to solve problems of the following two types, corresponding to the stages of
the photogrammetric pipeline:

1) Processing of input images (Section 5):

e Detection of the maximum number of feature points on the surface of the observed object
(Step 1);

e Construction of a descriptor invariant to affine transformations of the marker and optical
distortions of the signal (Step 2);

e Matching of descriptors — correspondences search (Step 3);

o Filtering of the found matches (Step 4);

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025
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Fig. 3. Left: Test scene includes two measured objects with applied markers: steel welding
table ~2000 mm, carbon fiber calibration plate ~800 mm, and two carbon fiber scale bars.
Right: Photogrammetry result — high-precision reconstruction of markers as a 3D point
cloud.

2) Solving the bundle adjustment problem (Section 6) for projection rays based on found corre-
spondences:
e Determination of initial approximations for parameters (coordinates of observed features,
internal camera parameters and their positions) or simply auto-calibration (Step 5);
e Solving the optimization problem (Step 6).

The data-processing step (Section 5) heavily depends on the application scenario. For example,
in industrial measurements, simple circular or coded markers are applied to the object (Fig. 3). In
aerial or satellite photography, natural contrasting features on the terrain are detected.

The optimization stage, unlike data processing, is sufficiently universal and applicable to almost
any operational scenario.

Section 7 is devoted to the results of experiments with various factors of the bundle adjustment
problem. It also demonstrates a high level of accuracy, comparable to professional photogrammetric
products.

3. MATHEMATICAL NOTATION

Vector quantities are denoted in bold and represent column vectors of scalar quantities, e.g., p =
[p1,..,pn)T € R™. Homogeneous coordinates, used in projective geometry and being an extension of
Cartesian coordinates, are denoted by the superscript h, e.g.: p" = [ph, ..., pR 1/AT € RPFL N #£ 0.
For homogeneous coordinates, the following holds: /\p? = p;, where i € [1..n], which is convenient
for concise formulation of various matrix transformations.

Linear operators for coordinate system (CS) transformations typically contain notation indicat-
ing from where (subscript bottom right) and to where (superscript top left) the transition occurs.
For example, to describe the position of the object CS (subscript o, object) relative to the camera
CS (superscript ¢, camera), the matrix ¢T, € SE3 C R**4 det(°T,) # 0 (six degrees of freedom
or 6DoF) is used:

Ty r1 T2 T13 tz| [Zo
‘R, “to| |y ro1 To2 To3 t Y h
e h _ 0 o o _ Y ol _ 1
o'Po 0 1] 2o r31 T32 733 to| | %o Pe M)
1 O 0 0 1 1

where:
“t, is the translation of the object’s CS origin relative to the camera (3DoF),
p! is the point position relative to the object,
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p! is the point position relative to the camera,

°R, € SO3 C R3*3 is the rotation matrix (three rotation parameters are mapped to the matrix,
e.g., by the Rodrigues formula [26] or using Euler angles),

SO3 is the special orthogonal group of rotations (‘RI =¢R;!, det(°R,)=1, 3DoF),

SE3 is the Euclidean group of motion [27] or similarity transformation with unit scale, describing
possible body movements in space.

The significance of the mathematical “group” concept for engineering applications: if it is re-
quired to calculate the change or increment of the camera position in the time interval from t,
to tp, then multiplication by the inverse element!' should be used:

T, T, -py = T, °T.-py = "T. pi =P},
where:

oT. . YT, are the positions of the object relative to the camera CS at time ¢, and t;, respectively,
T, is the position of the camera at time ¢, relative to the camera CS at time t;,

pg, p]bl are the positions of the 3D point relative to the camera at time ¢, and ¢, respectively.

For better understanding of the formulations, one should assume the simultaneous existence
of all CSs associated with the states of the moving body and consider time moments as identi-
fiers of a particular CS. It also means that many definitions below are universal in the follow-
ing — the indices a, b may correspond to either two moments in time or two different cameras
at the same moment in time. I € SE3 is the identity matrix, describing still object relatively
to the camera.

Careful notation for CS relationships in matrix indices is necessary for clarity in formulating
the photogrammetric optimization problem, in particular, for describing the camera model (Sub-
section 6.1).

4. HARDWARE FOR INDUSTRIAL PHOTOGRAMMETRY

Figure 3 shows an experimental scene for a 3D point cloud reconstruction from circular markers
(commonly called “targets”) attached to measured objects. The scene also contains two scale
bars — objects with calibrated distance between markers.? Scale bars allow determining absolute
distance values between points identified in the scene. In the absence of scale bars, it is possible
to reconstruct scene or object geometry up to scale from a set of images [26]. Scale bars are often
made of carbon fiber, which provides a low coefficient of linear thermal expansion along its axis, as
well as low weight and sufficient strength.

For best results, minimizing measurement noise and maximizing operational range, industrial
systems often use special circular markers made of retroreflective material, e.g. “retro-targets”.
This property is extremely useful for increasing the contrast or sharpness of the marker’s contour.
When using a camera flash (to illuminate the object), the retroreflective material returns much
more energy strictly in the direction of the source, compared to the inverse-square law of light
intensity for ordinary materials.

To obtain high-quality images of key points on the surface of the measured object, a professional
DSLR camera can be used. For best results, a monochrome high-contrast sensor and high-resolution
optics are required. For example, the professional photogrammetric system “Hexagon DPA Pro”

! Matrix elements of SE3 should not be multiplied by a scalar or subtracted — this is an invalid operation for a group
element.
2 The geometry of markers on the scale bar is measured or calibrated in advance under laboratory conditions.
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from Hexagon AB includes a Canon EOS 5DS camera with a monochrome sensor wxh = 8700x 5800
(50 Mp); lens f=28 mm.?

To achieve good measurement results, specialized optics (e.g., with low distortion) are not
mandatory [3]. The main factors are, naturally, those affecting signal quality (image contrast),
as well as geometric stability (rigidity) of the camera-sensor optical system* during data acquisi-
tion [17, 28]. Geometric stability is influenced by the rigidity of the construction and lens mount-
ing methods, mass-dimensional characteristics, flash mounting method, and the device’s operating
temperature regime. Thus, for high-precision measurements, careful selection of the equipment is
required. Typical industrial photogrammetric system includes:

1) Calibrated carbon fiber scale bar;

2) High-resolution DSLR camera ensuring lens geometric stability;

3) Retroreflective adhesive-based markers;

4) Computational unit or PC implementing the photogrammetric pipeline stages described in
the following sections.

5. FEATURE DETECTION AND MATCHING

Feature detection and matching is an extremely broad field of research [21, 29-33] that, among
others, has numerous applications in photogrammetry, SfM (Structure from Motion [26]), SLAM?,
augmented reality, image retrieval, and contextual information analysis. This work focuses on the
potential applications of these techniques for precise measurements.

The goal of this stage is to identify the maximum number of connections or correspondences
between 3D points on the object (future measurements) and their observations — 2D points on
images. Many works [25, 32, 34] allow finding correspondences between only image pairs, thus
requiring additional grouping of points by their relation to a common surface point. In photogram-
metry, it is the correspondence between a 2D point on an image (or projection) (u,v) € R? and
a 3D point on the object (z,y,z) € R? that defines the future system of equations in the bundle
adjustment problem (Section 6.5). In Fig. 4 correspondences are found by matching binary coded
markers (color identify group or unique object point).

100
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Fig. 4. Original photos of the test scene with 2D points matching results by binary descriptor. Color
denotes the group or unique 3D point on the object.

Apgiag

Vurind
0.014°. Angular resolution is convenient for comparing sensors of different resolutions or technologies, e.g., STM
and LIDAR.

4 Methods of dynamic sensor stabilization may be harmful in this context.

5 SLAM (Simultaneous Localization and Mapping) — a navigation method in mobile autonomous systems.

3 Field of view angles are Appor = 64°, Apyer = 45°, Aaiay = 73°; maximum angular resolution = 2
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5.1. Feature Detector

The first step of the photogrammetric pipeline (page 1091) is the extraction or detection of the

Na
maximum number N of feature points P, = {p%}, 27, pk = [uf,v¥]" € R? on the surface of the

measured object, observed in image a € [1... Nj,] from a camera.® This step is performed by a
detection algorithm or simply a detector. In general-purpose photogrammetry [21], without artifi-
cial markers, various natural features—points, circles, corners, crosses, or similar structures—are
detected on the object texture using Harris [35], GFTT [36], FAST [37] detectors. Some detectors
extract both the point and generalized information about the texture of the neighborhood in the
form of a multidimensional descriptor vector. The point coordinates together with the descriptor
are often called a feature. This task is solved by classical approaches SIFT [23], SURF [24] and
based on machine learning (ML) SuperPoint [25], DISK [38]. In this case, special areas most suit-
able for subsequent determination of a stable descriptor are identified. Typically, natural features
lack sufficient contrast or size for precise 2D localization and subsequent 3D reconstruction. This
can be seen from the difference between the observed 2D coordinates of features and the projec-
tions (on the image) of the corresponding 3D object points. This difference is commonly called the
reprojection error [26, 39]. For a high-precision measurement task, one standard deviation of the
reprojection error does not exceed 0.1 pixels (Fig. 11), hence the feature must be localized even
more accurately. The noise of detected coordinates for natural texture features often exceeds one
pixel [25, 32, 40]. With careful calibration in [41], but using corners, the reprojection error is still
~ 0.33 pixels. Using ML for texture feature detection in [42] one observes ~ 0.5 pixels. There-
fore, for industrial photogrammetric measurements, artificial black-and-white markers of circular
and, less frequently, square shape are often applied to the measured object’s surface (for further
detection).

A circular marker is preferable to corners and similar structures. To understand the reason,
let’s consider the main factors affecting localization stability, dividing them into two categories for
clarity:

1) Geometric factors determine observed feature’s shape (effects of perspective projection, lens

distortion, or object’s shape), Fig. 5;
2) Optical factors affect feature’s contrast, signal-to-noise ratio” (illumination level and surface
reflectance, focusing, sensor resolution, photon leakage), Fig. 6.
Geometric factors of detection. All texture feature detectors mentioned earlier and similar ones
rely on surface’s continuity in the neighborhood of the point of interest. That is, the smoother,
closer to planar the surface, the more stable and reproducible on other images the found feature
will be. For example, the SIFT detector “suppresses” points on lines [23] in order to avoid object
boundaries and possible inclusion of background information.
The assumption that the neighborhood of a feature point is a small flat surface area in 3D means

that the mapping “3D surface — 2D image”® can be performed via an affine transformation of the
observed area:

aip arz2 ais
OAQ = |a21 G292 as3| , det(OAa) 75 0.
0 0 1

It includes six degrees of freedom [26]: 2D translation, 2D scale, 1D diagonal shear, and 1D rotation.
In a more general case (without the assumption of a small area size), a projective or homographic

6 Several Ni,, stationary cameras or one mobile camera in Nj,, positions, depending on the application.
7 Signal usually refers to pixel intensity or color.
& Similar to ray tracing in computer graphics — finding the intersection of a ray “from a pixel” and a 3D plane.
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Fig. 5. (a) Circular marker on object, (b) affine projection of marker on screen, (c) perspective
projection of marker, (d) dependence of perspective effect |jo — e||2 on distance to marker z,.

transformation takes place:

hi1 hi2 his
°H, = |ho1 hos haosl|, det(OHa) £ 0.
h31 hsa hs3

In computer graphics, affine transformation °A, corresponds to orthogonal projection, and °H,
to perspective projection. Transformation °A, transfers a feature from a flat object directly to
image a, preserving line parallelism and distance proportions along a line, unlike the more general
transformation °H,. The model of these transformations in homogeneous coordinates is:

Ug hi1 hiz hiz| |7,
Ao | = [hat haa hos| |Yol, (2)
1 h31 hsp hss| |1

a,b € [1.. N;,] — image indices, u,, v, — point coordinates on the image (the feature itself or a
point in its 3D neighborhood, point index k& omitted for brevity), z,, y, — point coordinates on the
object in the coordinate system of the feature’s 3D plane (z, = 0), A — non-zero scale factor, easily
eliminated from the system of linear equations (2) by substitution if °H, needs to be found.
Consider an example. Suppose a circular marker with radius R = 5 mm is depicted on a flat
object (Fig. 5a). Under affine projection of the marker onto the screen (with observation angle
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Fig. 6. Effect of sharpness reduction (left to right) for circle and square: unlike circular marker (top
row), square structure (bottom row) is significantly distorted. Dots indicate feature contour — pixels
with maximum signal gradient amplitude.

Fig. 7. Perspective or rectilinear camera model (6): 3D object relative to different coordinate systems
and its projection onto screen or sensor (detailed description in text).
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8 = 45°, explanation in Fig. 7), the circle center o € R? will perfectly correspond to the center
e € R? of the observed ellipse (Fig. 5b). In reality, at a very close surface distance z, = 15 mm,
strong projective distortion is observed (Fig. 5¢), the magnitude of which depending on z, is shown
in Fig. 5d. Experimental conditions are presented in Section 7, using a Canon EOS 5DS camera.

The dependence shown in Fig. 5d is valid for a marker with radius R = 5 mm and 5 = 45°.
To build a similar dependence for a marker of a different radius, e.g., R’ = 10 mm, at the same
observation angle (3, the abscissa on the presented graph (Fig. 5¢) must be multiplied (scaled) by
the coefficient %

The difference between operators °A, and °H, is clearly shown in Fig. 5. When the distance to
the surface is small and the area for extracting the feature center is large, an increasingly significant
deviation is observed between the detected point e and the projection o of the estimated 3D point
on the object. When the deviation exceeds 1:10 of the standard reprojection error in the bundle
adjustment problem (Fig. 5d, red line on the graph), then not only the 3D object point but also
the parameters of the surface patch orientation in space need to be optimized (Section 6).

In some applications, projective shape distortions allow reconstruction of object geometry from
two or more coplanar circles [43]. Besides projective distortions described above, the deviation
|lo — el|2 can be caused by much more complex nonlinear effects, e.g., camera lens distortion [44]
or surface curvature. If the influence of these effects on the local feature geometry is significant, for
an accurate bundle adjustment solution, one can directly minimize the residual of intensity values
in each image pixel [26, 39]. This approach requires substantially more computational resources.
For example, instead of two residual equations for the center of each marker (bundle adjustment
problem, Section 6), there will be O(7R?) equations? of color intensity differences in the feature
pixels. Moreover, the number of parameters increases: for each optimized 3D point, a 3D normal'®
is added, i.e., at least five parameters per point instead of three. Such a solution is justified when
working with a wide-angle camera model That significantly different from the common perspective
model (Section 6.1).

Optical factors of detection. Extracting a feature from a large neighborhood creates difficulties
described earlier. It seems that a simple solution would be to reduce the area size. For example,
using a feature type like a cross, corner, or other line intersections on the object [45]. But under
strong optical blur or other contrast loss (e.g., during noise suppression), the structure of such a
feature can quickly degrade (Fig. 6).

The issue is that the high-frequency component of the signal,'’ necessary for depicting sharp
edges of a corner, is gradually lost. Thus, a circle with a smooth contour structure remains the
most universal marker for the most precise measurements (even if only the contour, not the center,
is needed). Circular markers can be detected in real time using the following sequence of steps:

1) Coarse localization: “blobs” detector [35, 36];
2) Contour extraction [46, 47] or gradient extraction in the ellipse neighborhood [48];

3) Reliable and precise localization: quadratic function approximation of the ellipse as the locus
of contour points or gradient field.

It is worth noting that subpixel refinement during contour extraction may not be required. The

discretization noise of contour points ecqge ~ U(—0.5,0.5), Tedge = \/% (in pixels) is significantly

averaged, so the noise in determining the marker center (mean of the random variable) is much

_Tedge pyedge

pts — number of points used to determine the center.

smaller and amounts to gcenter = ,
Nedge
pts

9 Two equations per pixel, the number of which is proportional to the area of the observed marker.
10 The orientation of a unit normal is defined by two angles.
1 In computer vision, spatial signal frequency is typically discussed, unlike time function in electronics.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



PRECISE INDUSTRIAL PHOTOGRAMMETRY METHODS SURVEY 1099

For example, for a circle with R = 25 pixels, the discretization noise level of the found center
coordinates ocenter will be 1/4/12 -2 - - 25 = 0.02 pixels.

The number of features does not compensate for their low quality — a general rule for precise
photogrammetry. Since the parametric model of the ray (or camera) can be a high-order nonlin-
ear function (Section 6), especially at the edges of the field of view, this inevitably leads to the
overfitting.

5.2. Feature Descriptor

After key points detection a description for each point’s texture neighborhood D, = {dk}k ps
is constructed (descriptor estimation, second step of the photogrammetric pipeline, page 1091).
The key property of a descriptor is its stability or invariance to geometric transformations (due to
camera or object motion) and to optical factors, e.g., due to illumination changes, defocusing, or
sensor noise. That is, under the most diverse image acquisition conditions, the same object point
should have identical, yet unique, descriptor. Descriptor invariance, in general, is unattainable,
hence there is a wide variety of approaches effective for different scenarios.

For example, in the SfM task for large objects, affine distortions practically do not change
angles in the feature structure, but rotations and scale changes are possible, similar to observations
of celestial bodies [49]. In close-range photogrammetry for quality control of medium and small
objects, on the contrary, noticeable projective distortions of features can occur (Fig. 5). Thus, the
effectiveness of descriptors can differ significantly under different conditions [30]. This is important
to consider when working with ML-based approaches [25, 31, 32, 34, 38] (when preparing the training
database), or when selecting a suitable descriptor based on comparative review results [29].

The descriptor of natural texture features can be a vector of real numbers: d € R” for SIFT [23],
SURF [24], SuperPoint [25], DISK [38] or a binary vector d € {0,1}" for BRIEF [50], ORB [51],
AKAZE [52]. Also, most artificial coded markers represent a binary descriptor [53-56]: QR-code,
ARTag, AprilTag, ArUco, CCTag, Schneider’s Coded Target (SCT), etc. SCT coded markers [53]
(Fig. 3) are used in the experimental part. Markers with concentric circles (CCTag, SCT, etc.) are
often used in industrial photogrammetry. “Decoding” markers or determining descriptor’s binary
sequence d € {0,1}" is significantly simplified by the ability to compensate for affine distortions
of the feature: knowing the center, rotation angle, and magnitude of the principal axes, the five
parameters of the affine transformation can be computed.

Machine learning can be effectively applied for decoding of specific key points and even arbitrary
image regions [57]. Architectures based on convolutional networks can be used, e.g., Resnet [58]
or Unet [59] encoding parts. As an output layer, a fully-connected bitwise classifier can be used,
e.g., 12 output neurons with a sigmoid activation function for a 12-bit binary marker. By batching
pixels from marker neighborhoods from several images, the decoding task can be efficiently solved
on a GPU in real time.

5.3. Descriptor Matching

At thls step, the found descriptor vectors of features from each image D, = {dk}k ps , Dy =

{dk}k p“, a,b € [1..N;y,] are matched against each other (third step of the photogrammetric
pipeline, page 1091), forming a set of corresponding indices: M, = {(i¥, j*) | i* € [1.Ng.],j* €

a—b

N
1. Npts] 1. For each descrlptor from the source set D, with index i € [1..Ny, ], a search for the

nearest nelghbor with index j* in set Dy is performed (/2-norm of the difference as an example):

j* = argmin ||} — d|>. (3)
je[l..Nb,,
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In the simplest case, two sets M,_.p, My p are built (arrow indicates search direction) with sub-
sequent filtering presented in Section 5.4. In the general case, optimal matching of more than
two discrete descriptor sets belongs to the NP-complete transportation problem. Matching meth-
ods using machine learning [31, 32, 34, 60] effectively approximate the discrete search problem by
combining local and global properties of descriptors.

If a pixel on the contour is used as a feature instead of a distinctive point (e.g., marker center),
strict correspondence of 2D points between an image pair may not exist. In this case, the coordinates
of the corresponding feature must be interpolated (assuming local smoothness or planarity of the
surface).

As a distance function, depending on the nature of the vector, the [2-norm (Euclidean dis-
tance) [23-25, 38, 61] is often used, or for binary descriptors [50-52] — the number of identical bits
(Hamming distance). In [61], an effective transformation of the distance function for the SIFT
descriptor d = [d},...,d"?%]" is proposed, which significantly increases the probability of finding
correct connections between images. Originally, the distance between descriptors is defined via the
Euclidean norm, i.e., distg(ds,dp) = ||dy — dpll2. However, considering that ||dg|l2 = [|dp]l2 = 1,
the following holds:

128
[da — dbll2 = (|22 d} d.
=1

The basis of SIFT is a frequency histogram or distribution function of some characteristic of
the marker neighborhood. Histograms are also used when matching 3D features of point clouds,
e.g., FPFH [62]. For comparing distributions similarity, instead of the {2-norm, it is better to use
the Hellinger’s f-divergence [61]. As a result of /1-normalization and element-wise square root, the
distance between descriptors can be reduced to the corresponding form:

128
diStH(da,db) = J? — QZ Ca Cp dfz dé,

where c,, ¢, are normalization coefficients. Thus, by varying the distance function, the number of
correct correspondences can be significantly increased.

Since the number of images N;, and the average number of found features N,;s per image
can be large, the overall complexity of searching for similar descriptors among all images often
becomes unacceptably high O(NZ, - N2,,) — as dozens of views (Njy) of a specific 3D point are
needed for reliable results, and their total number of key points (V) can easily exceed 1000. In
this case, accelerating structures in the form of random trees with approximate nearest neighbor
search [63]!2 are primarily applied. For binary descriptors, the distance function differs from
Euclidean, so methods based on hash functions [65] are used. Approximate search may allow a

significant number of errors, but they can be filtered at the next stage.

Since images may not view the same object region, BoW techniques [61, 66] (abbreviation for
“Bag-of-Words”) are used to accelerate the selection of suitable pairs, allowing quick exclusion of
non-overlapping frames and the need to match all descriptors for an image pair against each other.

5.4. Filtering of Found Correspondences

The results of the correspondence search need to be filtered (fourth step of the photogrammetric
pipeline, page 1091) regardless of the matching methodology to minimize the number of errors or
outliers.

12 Ordinary kd-trees are inefficient — a problem known as the “curse of dimensionality,” where sequential search turns
out to be faster than tree traversal due to information distribution in multidimensional data structures [64].
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From (3) it follows that the search direction matters and the sets M,_,; and M, may not
be identical. This is the basis for the “mutual correspondence” filter [30-32], i.e., mutually nearest
descriptors or the intersection of pairs from sets M, ,; and M, are used, while the rest are
discarded. Another popular filter is based on descriptor “uniqueness” [23] — it discards match if
one of the descriptors (from original image) is relatively close to multiple others (on a different
image). Another common method is using repeatedly occurring descriptors forming a sequence
(e.g., “tracks” in video data analysis).

These and similar heuristics by themselves are not very effective and can remove a large number
of correct correspondences. This is because the local texture properties of the object, represented
by descriptors, vary greatly even within a single image. Essentially, the task of such filters is to
screen out the coarsest matching errors and accelerate subsequent steps.

The most effective filtering methods rely on global context [21, 30, 42], e.g., checking how well
the found correspondences satisfy the geometric properties of space and the perspective camera
model (Section 6.1). If the camera model significantly differs from perspective, e.g., for wide-angle
lenses, or has large distortion, then fast methods considering these distortions are required [40, 67].

First, the most universal and widely used criterion for geometric consistency is epipolar geome-
try — all correspondences on an image pair must satisfy the following epipolar line equation:

[ta va 1] "By ZZ =0, (4)
1

Ug, Vg, Up, Vp — coordinates of two projections of the same 3D point on images a and b respectively,
¢[;, € R3*3 — the well-known fundamental matrix, rank(®F,) = 2. The geometric meaning of equa-
tion (4) is that matrix *F} establishes a point-line correspondence between an image pair:
[ua Vg 1} @ Fy — parameters of a line on image b, while
Up
®Fy |vp| —aline on image a. Substituting eight pairs of corresponding points into (4), a system of
1
linear algebraic equations [68] is built for the unknown matrix *Fy,. Considering that rank(*F) = 2,
using seven point pairs, a system of nonlinear equations for finding Fj, can be built [26]. Thus, by
repeatedly solving these equations for small groups of corresponding points, in statistical methods
like RANSAC [69] or PROSAC [70], a significant portion of matching errors can be filtered out.
Second, filtering reliability can be increased if it is known that the points lie on a plane or depth
variations on the object surface are significantly smaller than its dimensions. In this case, only

4 correspondences are required to define a 2D point transformation model when using methods like
RANSAC or DEGENSAC [71]:

Ug up
Avg| = “Hy |vp |, (5)
1 1

where ¢Hj, C R3*3 is the projective transformation matrix or homography between corresponding
projections of a common 3D point, det(*Hp) # 0.

Machine learning methods allow extraction of distinctive points and building local descrip-
tors [25, 38]. In [31], texture features are extracted on practically homogeneous areas of natural
texture. In [31, 32, 34|, features are supplemented with contextual information from some image
area calculated using a transformer-based neural network architecture or similar modifications for
computational efficiency. As a result of pairwise matching, a feature correspondence probability

L. . a b N¢ b NPb b .
matrix is obtained: P%® € RVpts*Npes | $° Pt PZ‘; <1y j:ptf PZ‘; < 1. Thus, correspondences with
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the required reliability can be selected, excluding points invisible from both viewpoints. In the
context of precise photogrammetry, the presented ML-based solutions are excellent for finding a
reliable initial approximation and constructing approximate camera positions and 3D point clouds.
But unfortunately, they have low feature localization accuracy — the reprojection error in various
tasks often exceeds one pixel, and the angular error in position determination is over 5°; often the
training dataset is built on flat scene areas, i.e., heavily relies on (5), and matching results still
require filtering [30, 32].

Practically regardless of design, the local descriptor in photogrammetry is used at the preliminary
stage of finding an initial approximation in the bundle adjustment problem, in the absence of prior
information about scene geometry and camera positions. When these parameters are known with
sufficient accuracy, feature matching can be performed along epipolar lines obtained from (4), which
significantly increases the number of correct correspondences.

6. PHOTOGRAMMETRIC OPTIMIZATION PROBLEM
6.1. Camera Model and Perspective

To solve the optimization problem in the photogrammetric pipeline, known as bundle adjustment
for projection rays, it is necessary to define the key component of the pipeline. The “heart” of this
technology, without exaggeration, is the camera model — a function for mapping or projecting points
from the surrounding 3D space onto an image (screen or sensor). A key property of any model
considered in this review is the rectilinear propagation of light; diffraction or chromatic aberrations
are considered as negligible. Through any 2D point on the sensor, a ray can be drawn that will hit
the corresponding 3D point on the object surface. Thus, the camera model defines the direction of
projection rays based on the 2D sensor point, internal parameters, and camera position in space.

The perspective or rectilinear pinhole camera model [3, 11, 26, 41, 72, 73] is the most common
in computer vision. Its characteristic feature is that 3D straight lines in object space are projected
into 2D straight lines in image space. This model is often assumed (explicitly or implicitly) as
the baseline in various studies. For example, it is used when finding homography (5), when deter-
mining mutual position between images [25, 31, 32, 34], or for 3D scene reconstruction [42]. This
model serves as the initial approximation for more complex parameterizations of projection rays,
considered further. The rectilinear camera model is defined by the projection matrix P, € R3*4,
rank(®P,) = 3 and establishes the following relationship:

To Lo
fu Suv Ue O ap  ag y Y

R L S P I o B O 4 4 PR
0 0 10 4x4 1” 1”

qZ = [Uqa, Va, 1]T — 2D coordinates on image a, result of projecting 3D point pg = [Zo, Yo, %o 1]T in
the object CS;

K — upper-triangular matrix of internal camera parameters det(K) # 0 (five degrees of freedom,
in pixels), includes focal lengths f,, f,,'® coordinates of the projection center ¢ = [u.,v.]T — the
point where the optical axis of the lens intersects the sensor (Fig. 7), and also the sensor diagonal
distortion sy,;

T, € SE3 — matrix of external camera parameters (six degrees of freedom) defines the position
of the object relative to the camera at the moment of capturing image a and includes rotation
“R, € SO3 and translation of the object CS origin *t,;

13 In computer vision, unlike the classical optical model, two “focal lengths” are distinguished for convenience to
account for the possible non-square pixel shape in these quantities.
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parameter A\ is set equal to z,, where z, — z-coordinate of the considered point or distance from
the origin O, along axis Z, to the point (Fig. 7).14

Based on (6), let’s define normalized homogeneous projection screen coordinates ¢, which are
useful in the future. In object space, they correspond to the coordinates of 3D points on the plane
for which Z, =1 in front of the camera, or projection onto a camera with internal parameters

K =1I5:3 (f=1):

I Za o
a Za 1
a= || = 2] == ["R, “t] |7 (7)
1 1 @ 1"

The operation scheme of the rectilinear camera model is shown in Fig. 7. For clarity in the exam-
ple, one can set f,, = f, = f, suy = 0 (often these assumptions hold for precise measurements [17]);
the physical pixel size, sensor size, and focal length f value are irrelevant for the mathematical
formulation, what matters is the ratio of quantities; the physical sensor (with reflected projection)
is located behind the camera CS center O, (optical center of the lens), its mathematical model is
conventionally placed between the center and the object [72].

Using the structure of “P, from (6) and considering that *R} = “R>!, one can easily construct
the projection ray equation for any 2D screen point and compute the 3D coordinates of point p,
relative to the object CS:

Lo
Po= (Y | = QRE(K_l)\qZ_ “t), (8)
Zo

where qg — screen point coordinates, A = z, — depth, and the internal and external camera param-
eters are given.

The central equation of photogrammetry — the triangulation problem consists in determining
the coordinates of a 3D point p, from known projections qq, qp. For the rectilinear camera model,
considering (6), a system of linear algebraic equations can be built:

’ (9)

where ®T,, °T, — matrices defining the mutual position of the object and observer/camera,
K — internal parameters of the camera (for multiple cameras scenario, the matrices may differ). In
the triangulation problem, K, °T,, T, are known and the presence of parallax is important, i.e.,
[|ts||2 # 0. System (9) contains six equations and five unknowns (As, Ay, Po). Unknowns A\, and
Ap are easily expressed, resulting in an overdetermined system of linear algebraic equations (four
equations and three unknowns), which can be solved with the least squares approach (e.g., normal
equations) for the 3D coordinates p,.

When solving the bundle adjustment problem (Section 6.5) in equation (9), the only known
quantities are the detected coordinates qq, qp (two residual equations for each observed 3D object
point on the image), all other parameters are optimized.

14 The three-dimensional representation of the surface is often stored in the form of depth maps relative to the optical
center of the lens.
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6.2. Basic Projection Models

The rectilinear camera model (6) establishes the relationship between the angle ¢ between the
projection ray and the optical axis with the screen point coordinates q, (Fig. 7):

tanp) = - = el g,

In other words, this is the relationship between the angles of the ray from the surrounding space
(collinear with the radius vector p,, entering the camera lens) and the ray falling on the sensor
behind the lens; in the perspective mathematical camera model, both rays lie on the same straight
line passing through the optical center of the lens O, in Fig. 7.

In the physical lens model, the scattered light beam is collected from a surface area and under-
goes a series of complex refractions; the presented mathematical models approximate this image
formation process. Depending on the lens shapes and construction, at least three basic projection
models can be distinguished [44]:

1) Rectilinear or perspective model: r = f tan(yp);
2) Stereographic model: r = 2f tan(%);
3) Equidistant model: r = f¢ (ideal wide-angle optics, since sensor resolution does not depend

on angle ).

In popular wide-angle cameras like Insta360 X4, two lenses with equidistant projection models
and field of view exceeding 180° each are used to provide a panoramic view in video mode. An
example of two projections is shown in Fig. 8.

(a) (b) (c)
r = ftany, —60° > ¢ >60° r = fp, —90°>¢>90°
'y ° S
250 250 i
500 500 ,’f
750 750 o :
1000 1000 (//
1250 1250
1500 1500
1750 1750
2000 2000 % 10 20 30 40 50 60 70 80 90
0 500 1000 1500 2000 0 500 1000 1500 2000 ®,°

Fig. 8. Realistic 3D model of children’s room (rendered in Blender 3D [84]) in two ideal projections
without distortion: a-rectilinear, b-equidistant.

Let us present the equations for mapping a certain 3D point in the camera CS p, = T4, Ya, 2o~
to a 2D point q, on the original image for various projection models. Let ¢, a be the spherical
coordinates of the projection ray (3D point on a sphere), where ¢ is the angle between the optical
axis Z, and the projection ray, « is the rotation angle of the projection ray around axis Z, (Fig. 7):

__Pa Yo tan(p) = —2—2 va + y‘%. (10)
Va2 +y2 Vaz 4 y2’ Zq
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As a result, the image point coordinates can be computed via polar coordinates «, p(p):

p(p) cos(a) tan(p)  — for rectilinear model,
Q" = K |p(p)sin(a) |, ple) = 2tan(%) — for stereographic model, (11)
1 %) — for equidistant model.

Substituting expressions (10) into (11), the 2D projection coordinates for any of the presented
models can be obtained. It is easy to see that for the rectilinear model, (11) takes the form of (6).

There exist models combining rectilinear, stereographic, and equidistant projections. In [44], a
parameter for smooth adjustment of the projection ray refraction model is introduced. This work
also emphasizes the importance of accounting for the entrance pupil shift or lens optical center for
wide-angle optics. Developing this idea, generalized camera’s projection models with individual ray
parameterization should be highlighted [45, 74, 75], where each image pixel is assigned its own ray
parameters. In practice, only a subset of such pixels is selected, and parameters for the rest are
interpolated. Naturally, such models easily “overfit” and require a lot of data for precise results.

In the photogrammetric pipeline, use of an appropriate projection model can significantly reduce
the magnitude of distortion and decrease the total number of parameters requiring good initial
approximation and careful calibration.

6.3. Distortion of Projection Models

Due to various factors, e.g., complexity of lens and optics manufacturing, sensor curvature, or
camera assembly errors, the actual projection often deviates from the model, especially near the
field of view or image borders. This phenomenon is called distortion. Often, the distortion refers
to the difference between basic projection models, e.g., curvature of straight lines or shape of 3D
objects in Fig. 8, since the distortion function approximates this effect [67, 76].

Typically, for the rectilinear camera model, radial and tangential distortion components are
distinguished [3, 4, 17, 72]. Despite its age and significant technological development, this model
works very effectively, as demonstrated in Section 7.

Radial distortion is the most significant factor distorting the rectilinear projection, with straight
lines curving in a “barrel” or “pincushion” shape. It is approximated by an even-degree polynomial,
as the distortion function is symmetric due to the central symmetry of lenses:

or(q) = q(k:}r2 + k:fr4 + ki’r6 +...), (12)

q = [u,v]T — some 2D point on the screen (distortion center at [0,0]%);

k) — radial distortion coefficients (y € N);

or(q) — deviation of the observed 2D point from the rectilinear projection q (projection model (6))
due to radial distortion. The main contribution to the deviation from the rectilinear model is
typically made by the first term k'r? on the right side of (12), while subsequent terms are often
omitted.

T

Tangential distortion is caused by installation errors of the lens system and, unlike dr(q), creates
asymmetric field distortion, formulated by [2]:

| R2(r? + 2u?) + 2kt

3,2 4.4
or(q) = KL(r? 4+ 202) + 2k2uw (L+E2re + kor® +..0), (13)
where k) — tangential distortion coefficients (v € N).
Coefficients k2, k2, ... are typically not accounted for, or the §7(q) factor is entirely ignored.

However, the tangential distortion factor should not be completely neglected, especially in the
field of precise measurements with photogrammetry: in the foundational work [3], the distortion
center coordinates coincide with the projection center ¢ from the camera’s internal parameters K.
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(a) (b)
Canon EOS 5DS 50 Mp Daheng Mercury2 12 Mp
kL = —0.0905; k2 = 0.1049; k2 = —0.0034 kL = —0.0588; k2 = 0.0313; k2 = 0.6787
kL =0.0001; k2 =0 kL =0.0003; k2 = 0.0006
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Fig. 9. Magnitude of distortion ||dr(q)+d7(q)||2-f at each frame point (in pixels). Both optical systems
mainly demonstrate centrosymmetric deviation from the rectilinear model due to radial distortion.

Meanwhile, in works [67, 76, 77] neglecting tangential distortion, it is noted that ¢ and the distortion
center coordinates significantly deviate. Although in [3, 17] it is indicated that tangential distortion
strongly correlates with the projection center position. Probably in [67, 76, 77], it is the unaccounted
tangential distortion that distorts the estimate of c.

Thus, the precise rectilinear projection model (6) accounting for distortion defines the relation-
ship between 3D coordinates and their 2D projections as follows:

Zo
~1_h ~1_h L, a Yo ~h
K qa + 6(K qa) = |: RO t0:| = qa) (14)
Za Zo
1
K — internal parameter matrix of the rectilinear camera model,'®

q” — 2D coordinates of the found feature on the original image,
q! — normalized 2D coordinates of the projection of the corresponding 3D point from (7),

5(qh) = or(a) —g o7(a) — combined distortion for homogeneous coordinates.
3x1
The fundamental formula (14) is widespread in photogrammetric literature [2—4, 11, 17], where
the polynomial function corrects the distortion of the observed point q,. This differs from the
formulation in the popular category of “non-photogrammetric” works, e.g., [40, 41, 67, 72], where
the polynomial function, conversely, adds the distortion effect to normalized coordinates:

q) = K[ a} +o@) . (15)

Section 7 provides a comparison of the effectiveness of models based on expressions (14) and (15).
A clear example of two calibrated cameras (distortion models) is presented in Fig. 9.

For the Daheng Mercury2 camera, asymmetry is noticeable — the contribution of tangential
distortion. Moreover, non-monotonicity (decrease) in the magnitude of radial distortion is observed
at the frame corners, and a very large value of k2 (Fig. 9b). All this is the result of instability in
the optimization problem solution due to lack of observations (markers), especially in areas with

5 Essentially, K ' performs normalization of the image coordinate space.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



PRECISE INDUSTRIAL PHOTOGRAMMETRY METHODS SURVEY 1107

strong distortions. In other words, the distortion is approximated by a high-order polynomial, and
it incorrectly extrapolates the distortion magnitude [17].

As follows from the presented results, accounting for distortion is necessary, as its magnitude
is very significant. Therefore, rectilinear camera projection models with distortion (14) and (15)
are extremely widespread and found in numerous works on photogrammetry, SfM/SLAM, visual
odometry, augmented reality, etc. In this work, the experimental part considers the rectilinear
model with distortion (14) and (15).

6.4. Autocalibration

In photogrammetry, joint optimization of 3D coordinates of observed features, internal camera
parameters, and their positions is performed (Section 6.5). To perform the nonlinear optimization
procedure, an initial estimation for optimized parameters is found by the autocalibration proce-
dure [26, 78] (fifth step of the photogrammetric pipeline, page 1091). Methods for 3D reconstruction
with ML [42] also require such a procedure. For preliminary calibration and camera positioning in
professional photogrammetry “Hexagon DPA Pro”, special tools are used — groups of coded markers
placed on a known cross structures. This approach has significant inconveniences. The algorithms
presented below don’t need any special structures in the scene for parameters estimation.

In the most common photogrammetric scenario with a single rectilinear camera (page 1104),
moved against the measured object, the following optimized quantities can be distinguished:
1) 3D coordinates of observed features on the object surface:
{p, € RO}
2) Internal camera parameters (elements of K) and distortion coefficients:
{fc, k’%v kzv kgv k71-> k72'7 o}
3) Camera positions at different moments of time:
{T, € SE3}ZIV;'”2“, fixing the first position T, = I;.4 as the object CS.'6
Distortion at the autocalibration step can often be neglected — the found parameters will be
correct for the central area of the image (or sensor). Precise estimation of distortion parameters
will be performed at the next step. For the projection center ¢ — the image center is typically a

good initial approximation.

If camera’s distortion is too large and prevents reliable autocalibration, or the projection model
differs from rectilinear due to a large field of view, then an iterative process of prior undistortion
and refinement of parameters is required. In most cases, it is the rectilinear projection model that
is used in autocalibration algorithms [78, 79]. In [79], autocalibration is reduced to determining
the mutual camera positions *Ry, “tp, a,b € [1...Nyy], using previously found correspondences,
with (4) and the structure of the fundamental matrix:

‘B, = KT B, K71 = K=7 [%]« Ry, K1, (16)
0 —ts t9
[t]x = | ts 0 —t1| — skew-symmetric matrix of the vector product.
—ta 01 0

The translation between cameras “t;, can be determined only up to scale (the vector specifies only
direction) — this is a theoretical limitation of autocalibration. To find *Ry, “ty, it’s sufficient to have
five corresponding points to calculate residuals from (4), since *F}, has five degrees of freedom [26].
The minimal number of correspondences allows effective application of RANSAC [69] to improve the
stability of the found solution. In [79], for autocalibration with two images (or camera positions),

16 In the general case, the photogrammetry problem is solved up to a SE3 transformation with an arbitrary scale of
the resulting point cloud [26], thus parameters of one position can be fixed.
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Fig. 10. Model images (1024x1024 pixels) of 9 tilted views for a flat object (circular markers) and
projection of found 3D coordinates (crosses) — result of the autocalibration algorithm [78], estimat-
ing internal and external camera parameters, 3D coordinates of object points. Root mean square
reprojection error according to (6) is 3.35 pixels with input observation noise amplitude of one pixel.

the internal camera parameters (matrix K) are required. At the same time, the focal length f is
difficult to estimate in advance, as it can vary significantly depending on the field of view. Moreover,
if the observed correspondences (for two views or camera positions) lie on a flat surface, then the
internal parameters cannot be estimated [26, 79]. Thus, the most reliable solution from [79] is to
use three or more images obtained from different positions.

An alternative approach [78] based on factorization of absolute quadric matrix was implemented
in this work. The problem reduces to solving a nonlinear system of equations:

K1'P QP KT =) I3 (17)

against the elements of the quadratic form matrix Q = HH" € R*** and the internal parameter
matrix K,
A — arbitrary scale coefficient,
Py = K[ °R,|’t4)3xaH ™' — known projective transformation matrix (6) (position b, for example),
which was obtained from factorization of the fundamental matrix ¢Fy, and ®Fj, in turn, was found
from correspondences between images a, b. Thus, knowing correspondences between several views
(at least three), the relative camera position ’R,, "t, and its parameters K can be determined.
At the next step, unknown 3D point coordinates are computed via the triangulation equation (9),
followed by the bundle adjustment problem. Figure 10 shows the result of the autocalibration
algorithm for a flat object from correspondences from nine views. Various methods for estimating
relative position and camera parameters without initial approximation are also available in the
open-source library [80].

6.5. Bundle Adjustment

Measurements obtained by photogrammetry are the 3D coordinates of observed 2D features, as
well as the spatial position of objects (corresponding point clouds) relative to cameras. This requires
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joint optimization of the multiple parameters listed above. The central problem of photogrammetry
is minimizing the sum of squared residuals or reprojection errors (sixth step of the photogrammetric
pipeline, page 1091):
0* = argmin £(6), (18)
6

where 6 — combined vector of optimized parameters (Section 6.4);
L(6) — minimized objective or loss function.

The geometric meaning of the problem is bringing the bundle of projection rays to converge
at the corresponding 3D points by minimizing the reprojection error, hence the name “bundle
adjustment”.

The terms of the loss function are derived from the camera’s projection model. The type of
projection model is based, ideally, on the camera’s lens design, e.g., (6) for a rectilinear camera
without distortion (special lens design, for example), (11) for a wide-angle camera, (15) or (14) for a
precise rectilinear model with radial and tangential distortion. The loss function with reprojection
error from (14) has the following form:

Nim NPtS
‘C(e) = Z Z ea,i(a) + Wscale Z (||p§) - pg)||2 - d)2,
a=1 i=1 (3,4,d)€S (19)

2
eaﬂ- (9) =

9

2

. . 1 .
]Kw)—lq;na(“ L ap(K0) @) — Lt 9) p

Za

where e, ;(6) — square of 2-norm of 2D residual or reprojection error for one point on the image;
p. (component of vector §) — unknown 3D point on the object surface (e.g., marker in Fig. 3),
symbol A omitted for brevity;

me (i) — mapping of the ith 3D point on the object to the index of its projection on image a
(assuming, for brevity, that all object points are visible on the image);

q, — homogeneous 2D coordinates of the feature in pixels, original observations on image a;

S ={(i,4,d)|i,j € [1.Nps),d € R*}ZN;{“Z“ — scale bars (Ngeqies pieces) in the form of known points
and calibrated distances between them, e.g., coded markers on two scale bars in Fig. 3;

2Ty(0) — camera CS position includes rotation matrix “R,(#) and origin “t, (component of vector )
when capturing image a;

Wseale — Weight of the scale measurement error term. The weight is needed to balance the different
numbers of equations of two types. Moreover, the reprojection error can have different units: pixels
for (15) and normalized coordinates for (14).

For better numerical stability, it is desirable to normalize image coordinates so that q, € [—1,1]2.
This is common practice, but an important nuance can be missed — first, the origin must be shifted
from the center of the first pixel to the corner of the image to decouple the coordinate system from
the original image pixels. Thus, the resulting camera calibration K will not be tied to a specific
resolution.

A number of key aspects of the optimization problem (18) should be noted:

1) Relatively large number of optimized parameters: in the experimental scene, 71 cam-
era positions (six degrees of freedom each), and 430 markers on the object, i.e., at least
71-6 4430 -3 = 1716 parameters;

2) Sparsity of the equation system (Jacobian): each term in (19) — reprojection error includes
only one position, and not all object points are observed in every frame;

3) Presence of outliers or points with very high reprojection error: Fig. 11 shows that in almost
every position there are points with residuals multiple times higher the root mean square
eITOr Trepy-
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Fig. 11. Distribution of reprojection error of 3D points from (19) (left Y-axis) in pixels across 71 camera
positions as box plots covering 99% of points. Circle denotes outlier (less than 1% of points). Dashed line
(right Y-axis) denotes number of residuals per position — two for each observed point.

Thus, it is necessary to use optimization methods robust to noise and outliers (even after careful
feature detection and filtering). As seen in Fig. 11, outliers occur more frequently than can be
predicted based on a normal or Gaussian distribution, as emphasized in [39]. It proposes replac-
ing eq,i(#) in (19) with p(eq(0)), where p(z) is a non-negative scalar function or “robust kernel”:
p(x) >0, Vx € R, p'(0) = 0, which suppresses gradients of the loss function in case of outliers due
to p/(z) < 1. In the experimental part, the Huber function was used for this purpose:

(@) x, if ¢ < 12,
xTr) =
pr t? (2¢/z/t2 — 1), otherwise,

where t = 0.05 pixels — normalization coefficient.

(20)

For residual values below ¢, the robust kernel function has no effect on the loss function; however,
in the outlier region above t, robust kernel significantly reduces outliers contribution to the loss
function (19).

For reliable solution of the bundle adjustment problem (18), approximate Newton methods with
regularization are used — at each algorithm’s iteration, step direction and magnitude adjustment
is performed [39]. The Levenberg-Marquardt optimization algorithm from this category was used
in the experimental part. An efficient implementation of various optimization methods, different
robust kernels and sparse matrix operations is available in [81].

7. EXPERIMENTAL PART

The experiments goal is to highlight the key factors of the optimization process (18) that affect
the accuracy of the reconstructed 3D point cloud. Original data (digital images) was acquired
with camera from “Hexagon DPA Pro” (HDP) hardware set, specifically, Canon EOS 5DS with a
monochrome sensor w x h = 8700 x 5800 (50 Mp) and lens f = 28 mm. It should be noted that
various professional DSLR camera models can be used for precise measurements [28].

The test scene and the reconstructed 3D point cloud of 430 markers are shown in Fig. 3. The
scene includes two rigid objects — a steel welding table with attached markers (overall dimension
~2000mm) and a carbon fiber calibration plate (overall dimension ~800mm, markers applied by the
manufacturer). Two scale bars of 1390mm and 790mm define metric units for the reconstructed
point cloud and provide redundant accuracy verification. Photography was performed carefully
with environmental temperature control (20 °C) in the lab. Two nearly identical datasets were
collected with a one-day interval (74 and 79 images). Image processing for each day was performed
both in the HDP software package and in the authors’ own software based on the Python language
and open-source mathematical libraries Jax [82], SciPy [83], OpenCV [72].

The photogrammetric pipeline of reconstruction included the following steps:

1) Photography of the test object from different positions (distance between camera and object
1.5-2 m), example in Fig. 4;
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Fig. 12. Comparison of photogrammetric reconstruction results of the test scene from “Hexagon DPA
Pro” and the current approach for two experiments (data from two days — upper and lower graphs).
Units in millimeters. X-axis shows measured distance ranges.

2) Computation of circular marker parameters (coded and regular) on images and matching
(grouping) of coded markers by binary code, Section 5;

3) Autocalibration estimating rough camera calibration (without accounting for distortion (12))
and its positions at different moments of time, Section 6.4;

4) Approximate bundle adjustment estimating cloud of 3D coordinates of coded markers and
camera calibration 6.5;

5) Matching (grouping) of all markers using the fundamental matrix equation (4), obtained from
camera calibration [26];

6) Precise bundle adjustment, result — cloud of 3D coordinates of all markers and accurate

camera calibration.

Next, we consider the results — reconstructed 3D point clouds obtained for various configura-
tions of the optimization problem (18). Let’s denote Brown’s projection model [3] (14) as Brown;
with residual stabilization (20) as Brown & pg5. For the case without accounting for tangential
distortion (13) Brown & po.5 & k2. Model (15) is denoted as OpenCV'" and, according to previous
definitions, we introduce OpenCV & pg.05, OpenCV & po.o5 & kg.

Figure 12 presents a comparison of reconstruction from HDP and the scheme Brown & pg.o5.
Each graph includes k = 8 distributions (box plots) of distance differences between corresponding
point pairs of two clouds:

7 This formulation is given in [72].
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1PL — Plll2 — [|Phes — Phoyll2s Viyj € [1..Npts], where pj,., — points obtained from HDP, p;, — result
of optimization (18) with model Brown & pg 5. The distribution of deviations is given for a specific
interval [Ly, Uy ) of distances between points. The red line indicates the maximum permissible error
of HDP for length measurement. It should be emphasized that HDP is a certified measurement
system according to the VDI / VDE 2634, part 1 standard. This guarantees volumetric measure-
ment accuracy within the limits indicated by the red line. Thus, the model Brown & pg.g5 yields
results within the HDP error margin.

In HDP, both scale bars were used in the bundle adjustment problem. For all results obtained
by the author’s software, the loss function (19) included the length residual of only the larger bar
(1390mm, Ngeqres = 1), the 790mm bar was used for additional verification. By increasing wscqie
in (19), zero error of the bar length can easily be achieved at the cost of projective distortion of
the resulting point cloud.

Table provides a comparison of distance deviations between point pairs for two clouds similar to
Fig. 12, but with the algorithm being common and data from different days. Thus, the repeatability
of results — a key characteristic of any measurement system and photogrammetry in particular —
can be evaluated. The scene contained two rigid objects — a steel welding table and a carbon
calibration plate; repeatability is evaluated separately for each point subset. Columns oy and
Oplate sShow the root mean squared error for table and plate points respectively. The largest error
in measuring the scale bar length (790mm) over two days ep,, is also presented.

As seen from Table, the measurement repeatability of the small calibration plate 0,44 is almost
identical (with one exception) and does not depend on the algorithm configuration choice. For
the table, the difference can be significant — the best repeatability is achieved with optimization
suppressing outliers: Brown & pgos and OpenCV & pgos give the best results in their groups.
Moreover, without stabilization in configurations Brown and OpenCV, significant errors in scale bar
measurements ey, are observed. The results also confirm the necessity of accounting for tangential
distortion (13) in the bundle adjustment problem even for high-class optics (Canon EOS 5DS).
It’s interesting to note that Brown & pg.g5 significantly outperforms HDP in oy4p.. In conclusion,
it should be emphasized that the main components for high-precision results are careful texture
feature extraction and accounting for the detection errors in the optimization problem (18).

Repeatability of distances for 3D point clouds obtained by one algorithm from
data of different days (smaller is better)

Algorithm Otable, WM | Oplate, M Ebars M
HDP 46.5 7.2 -2.918
Brown 80.4 22.5 138.7
Brown & pg.os 18.0 7.5 —6.9
Brown & po.o5 & kY 41.1 7.5 3.3
OpenCV 41.8 7.6 —154.2
OpenCV & po.05 39.8 7.6 -9.0
OpenCV & po.o5 & KO 41.2 7.7 4.3

8. CONCLUSION

Within this work, a broad overview of algorithms constituting the photogrammetric pipeline
has been presented. Key factors determining the accuracy of the output 3D point cloud have been
demonstrated. A mathematical formulation of the photogrammetric optimization problem for
various camera models has been presented. In the experimental part, high accuracy indicators for
the described mathematical models on real hardware and application scenario have been confirmed.
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