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Abstract—The survey is about modern and classical methods that forms SOTA photogram-
metric pipeline for effectively constructing high-precision 3D point clouds and determining the
position of objects in space from a photo or video signal. The work pays special attention to
measurement error factors of the output 3D-reconstruction. Depending on the application, the
reconstructed 3D-points may correspond to contrasting features of the object’s texture, land-
scape, or special marks applied to the object’s surface. After the features matching, the bundle
adjustment optimization follows to restore the 3D coordinates of points in space. The survey
provides detailed overview of the algorithms and convenient and practical formulations of vari-
ous camera models and their distortions for bundle adjustment process. The experimental part
demonstrates the highest level of accuracy achievable in practice using the methods considered.
For close-range measurements repeatability, the proposed pipeline can outperfom professional
photogrammetry solution.

Keywords : precise photogrammetry, visual odometry, computer vision, feature matching, bundle
adjustment

DOI: 10.7868/S1608303225120011

1. INTRODUCTION

Photogrammetry—the science of measurements from photographs—has a long history and
has been actively developed both in Russia and worldwide since the late 19th century. The
term “photogrammetry” was introduced in 1867 by the German architect Albrecht Meydenbauer
(1834–1921), who had previously published his photogrammetric method for measuring buildings
in 1858. The mathematical foundations of photogrammetry were laid by the German mathemati-
cian S. Finsterwalder (Sebastian Finsterwalder, 1862–1951) [1]. Significant contributions to the
development of projection mathematical models, still in use today, were made by the American
researcher Duane Brown [2–4]. The founders of photogrammetry in Russia are considered to be the
following outstanding scientists and engineers, specialists from the Department of Photogrammetry
at the Moscow State University of Geodesy and Cartography, who made significant contributions
to the technology’s development: Professors N.M. Alexapolsky (1890–1942), F.V. Drobyshev [5],
A.N. Lobanov, L.N. Vasilyev, V.B. Dubinovsky [6], and many others.

One of the first domestic stereophotogrammetric systems was the “Talka” photogrammetric
system, developed by Soviet engineer D.V. Tyukavkin in the 1960s [7].

Historically, photogrammetry was applied in the fields of geodesy and cartography (Fig. 1).
However, over the past two decades, considering the rapid growth of computational power in
computer systems and the capabilities of image processing methods, including those using artificial
intelligence (AI), photogrammetry as a measurement technology has become widely adopted in
industry (industrial close-range photogrammetry). The use of photogrammetry methods primarily
enables the recovery or reconstruction of a 3D surface model of an object of interest from a set of
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1090 GUDYM, SOKOLOV

Fig. 1. Left: Polygonal mesh (3D model) of landscape surface obtained through photogrammetry.
Right: Original photo (crop) where circles indicate positions of SIFT feature points for matching and
triangulation in the photogrammetric optimization problem.

photographic images. Furthermore, the technology has a broad range of applications in modern
manufacturing processes [8–11]:

1) Contact technologies for measuring surface shape through probe/stylus positioning (tracking)
in coordinate measuring machine (CMM) mode;

2) Non-contact measurement of surface shape during laser 3D scanner tracking;

3) Monitoring the position of large-sized parts in the aerospace industry;

4) Control of precision machining of parts in mechanical engineering;

5) Tracking of robot manipulator links and the attached tool [12–15].

Industrial photogrammetry involves the application of numerous algorithms from the fields of
computer vision and image analysis (pattern recognition, 3D modeling). A renowned researcher in
the field of feature recognition and matching on photographic images is Yu.V. Vizilter [16].

The subject of this work is the description of methods constituting the modern photogrammetric
pipeline used in industrial photogrammetry. The methods considered in this work ensure efficient
and high-precision recovery of 3D point coordinates (hereinafter referred to as 3D points), matched
to various characteristic features identified on the surface of observed objects from photo or video
signals. The constructed 3D point cloud is used for reconstructing the object’s 3D surface model.

Known alternative technologies for 3D surface reconstruction include:

1) Projection 3D scanners with structured lighting or laser lines;

2) LIDAR scanners, measuring the time-of-flight delay of a laser beam;

3) Hybrid solutions – the use of structured lighting in combination with photogrammetry.

The advantage of alternative solutions is that they do not require the presence of contrasting
textural features on the object’s surface. At the same time, in terms of the ratio of measurement
error magnitude to object size, photogrammetry may only be inferior to LIDAR systems [9] (given
the very high cost of the latter), remaining an effective tool for measurements across a wide range
of sizes. For example, the same set of tools can measure objects with overall dimensions from 0.1
to 10 m. The error can be 1:100,000 [17] or even 1:200,000 [8] of the object’s overall size, i.e., ten
or five micrometers per 1 meter, respectively.

Within a short period, photogrammetry has become a standard tool for efficient (accurate and
fast) quality control, for example, in aerospace manufacturing. Photogrammetry is often used in
conjunction with projection 3D scanners for device positioning and subsequent point cloud merging
into a high-resolution output polygonal mesh.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



PRECISE INDUSTRIAL PHOTOGRAMMETRY METHODS SURVEY 1091

Fig. 2. Left: Example of robot’s tool positioning using images from multiple stationary cameras.
Right: Circular black-and-white markers (targets) used as features for 3D reconstruction.

Photogrammetry is a key tool for precise video-based navigation and a source of geodetic mea-
surements for unmanned aerial vehicles (UAVs) [14, 18–20]. An example of 3D landscape surface
reconstruction using a photogrammetric pipeline [21] with UAV aerial photography data [22] is
shown in Fig. 1. The right side of the image shows the positions of textural SIFT features, which
are a set of 2D coordinates and a vector of real numbers (a descriptor) that characterizes the
properties of the object’s texture in a small neighborhood of the feature.

A known advantage of photogrammetry compared to alternative 3D reconstruction methods is
its versatility and scalability – the same algorithms and camera models (Section 6.1) are applicable
both for long-range geodetic measurements and in completely different close-range scenarios when
the distance between the object and the camera does not exceed a few meters. In Fig. 2, the found
3D coordinates of markers on object surfaces are used to estimate the mutual position of bodies,
for example, the position of a robot manipulator’s end-effector relative to a reference object, whose
position is also reconstructed based on the identified positions of it’s markers.

This work pays special attention to the qualitative process of feature extraction using the ex-
ample of artificial circular markers, as this has a decisive impact on the accuracy of the obtained
3D coordinates. The factors determining this process are also relevant for natural textural features
in such well-known algorithms as: SIFT [23], SURF [24], SuperPoint [25], and others.

2. SURVEY STRUCTURE

Any photogrammetric system represents a hardware-software system. An example of the hard-
ware part of a photogrammetric system is presented in Section 4. The software part implements
algorithms designed to solve problems of the following two types, corresponding to the stages of
the photogrammetric pipeline:

1) Processing of input images (Section 5):

• Detection of the maximum number of feature points on the surface of the observed object
(Step 1);

• Construction of a descriptor invariant to affine transformations of the marker and optical
distortions of the signal (Step 2);

• Matching of descriptors – correspondences search (Step 3);

• Filtering of the found matches (Step 4);

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



1092 GUDYM, SOKOLOV

Fig. 3. Left: Test scene includes two measured objects with applied markers: steel welding
table ∼2000 mm, carbon fiber calibration plate ∼800 mm, and two carbon fiber scale bars.
Right: Photogrammetry result – high-precision reconstruction of markers as a 3D point
cloud.

2) Solving the bundle adjustment problem (Section 6) for projection rays based on found corre-
spondences:

• Determination of initial approximations for parameters (coordinates of observed features,
internal camera parameters and their positions) or simply auto-calibration (Step 5);

• Solving the optimization problem (Step 6).

The data-processing step (Section 5) heavily depends on the application scenario. For example,
in industrial measurements, simple circular or coded markers are applied to the object (Fig. 3). In
aerial or satellite photography, natural contrasting features on the terrain are detected.

The optimization stage, unlike data processing, is sufficiently universal and applicable to almost
any operational scenario.

Section 7 is devoted to the results of experiments with various factors of the bundle adjustment
problem. It also demonstrates a high level of accuracy, comparable to professional photogrammetric
products.

3. MATHEMATICAL NOTATION

Vector quantities are denoted in bold and represent column vectors of scalar quantities, e.g., p =
[p1, . . , pn]

T ∈ R
n. Homogeneous coordinates, used in projective geometry and being an extension of

Cartesian coordinates, are denoted by the superscript h, e.g.: ph = [ph1 , . . . , p
h
n, 1/λ]

T ∈ R
n+1, λ �= 0.

For homogeneous coordinates, the following holds: λphi = pi, where i ∈ [1. . n], which is convenient
for concise formulation of various matrix transformations.

Linear operators for coordinate system (CS) transformations typically contain notation indicat-
ing from where (subscript bottom right) and to where (superscript top left) the transition occurs.
For example, to describe the position of the object CS (subscript o, object) relative to the camera
CS (superscript c, camera), the matrix cTo ∈ SE3 ⊂ R

4×4,det(cTo) �= 0 (six degrees of freedom
or 6DoF ) is used:

cTo ·ph
o =

[
cRo

cto
0 1

]⎡⎢⎢⎢⎣
xo
yo
zo
1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xo
yo
zo
1

⎤⎥⎥⎥⎦ = ph
c , (1)

where:
cto is the translation of the object’s CS origin relative to the camera (3DoF),
ph
o is the point position relative to the object,

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025
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ph
c is the point position relative to the camera,

cRo ∈ SO3 ⊂ R
3×3 is the rotation matrix (three rotation parameters are mapped to the matrix,

e.g., by the Rodrigues formula [26] or using Euler angles),
SO3 is the special orthogonal group of rotations (cRT

o = cR−1o , det(cRo)=1, 3DoF),
SE3 is the Euclidean group of motion [27] or similarity transformation with unit scale, describing
possible body movements in space.

The significance of the mathematical “group” concept for engineering applications: if it is re-
quired to calculate the change or increment of the camera position in the time interval from ta
to tb, then multiplication by the inverse element1 should be used:

bTo · aT−1o · ph
a = bTo · oTa · ph

a = bTa · ph
a = ph

b ,

where:
aTo,

bTo are the positions of the object relative to the camera CS at time ta and tb, respectively,
bTa is the position of the camera at time ta relative to the camera CS at time tb,
ph
a, p

h
b are the positions of the 3D point relative to the camera at time ta and tb, respectively.

For better understanding of the formulations, one should assume the simultaneous existence
of all CSs associated with the states of the moving body and consider time moments as identi-
fiers of a particular CS. It also means that many definitions below are universal in the follow-
ing – the indices a, b may correspond to either two moments in time or two different cameras
at the same moment in time. I ∈ SE3 is the identity matrix, describing still object relatively
to the camera.

Careful notation for CS relationships in matrix indices is necessary for clarity in formulating
the photogrammetric optimization problem, in particular, for describing the camera model (Sub-
section 6.1).

4. HARDWARE FOR INDUSTRIAL PHOTOGRAMMETRY

Figure 3 shows an experimental scene for a 3D point cloud reconstruction from circular markers
(commonly called “targets”) attached to measured objects. The scene also contains two scale
bars – objects with calibrated distance between markers.2 Scale bars allow determining absolute
distance values between points identified in the scene. In the absence of scale bars, it is possible
to reconstruct scene or object geometry up to scale from a set of images [26]. Scale bars are often
made of carbon fiber, which provides a low coefficient of linear thermal expansion along its axis, as
well as low weight and sufficient strength.

For best results, minimizing measurement noise and maximizing operational range, industrial
systems often use special circular markers made of retroreflective material, e.g. “retro-targets”.
This property is extremely useful for increasing the contrast or sharpness of the marker’s contour.
When using a camera flash (to illuminate the object), the retroreflective material returns much
more energy strictly in the direction of the source, compared to the inverse-square law of light
intensity for ordinary materials.

To obtain high-quality images of key points on the surface of the measured object, a professional
DSLR camera can be used. For best results, a monochrome high-contrast sensor and high-resolution
optics are required. For example, the professional photogrammetric system “Hexagon DPA Pro”

1 Matrix elements of SE3 should not be multiplied by a scalar or subtracted – this is an invalid operation for a group
element.

2 The geometry of markers on the scale bar is measured or calibrated in advance under laboratory conditions.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025
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from Hexagon AB includes a Canon EOS 5DS camera with a monochrome sensor w×h = 8700×5800
(50 Mp); lens f= 28 mm.3

To achieve good measurement results, specialized optics (e.g., with low distortion) are not
mandatory [3]. The main factors are, naturally, those affecting signal quality (image contrast),
as well as geometric stability (rigidity) of the camera-sensor optical system4 during data acquisi-
tion [17, 28]. Geometric stability is influenced by the rigidity of the construction and lens mount-
ing methods, mass-dimensional characteristics, flash mounting method, and the device’s operating
temperature regime. Thus, for high-precision measurements, careful selection of the equipment is
required. Typical industrial photogrammetric system includes:

1) Calibrated carbon fiber scale bar;
2) High-resolution DSLR camera ensuring lens geometric stability;
3) Retroreflective adhesive-based markers;
4) Computational unit or PC implementing the photogrammetric pipeline stages described in

the following sections.

5. FEATURE DETECTION AND MATCHING

Feature detection and matching is an extremely broad field of research [21, 29–33] that, among
others, has numerous applications in photogrammetry, SfM (Structure from Motion [26]), SLAM5,
augmented reality, image retrieval, and contextual information analysis. This work focuses on the
potential applications of these techniques for precise measurements.

The goal of this stage is to identify the maximum number of connections or correspondences
between 3D points on the object (future measurements) and their observations – 2D points on
images. Many works [25, 32, 34] allow finding correspondences between only image pairs, thus
requiring additional grouping of points by their relation to a common surface point. In photogram-
metry, it is the correspondence between a 2D point on an image (or projection) (u, v) ∈ R

2 and
a 3D point on the object (x, y, z) ∈ R

3 that defines the future system of equations in the bundle
adjustment problem (Section 6.5). In Fig. 4 correspondences are found by matching binary coded
markers (color identify group or unique object point).

Fig. 4. Original photos of the test scene with 2D points matching results by binary descriptor. Color
denotes the group or unique 3D point on the object.

3 Field of view angles are Δϕhor = 64◦, Δϕver = 45◦, Δϕdiag = 73◦; maximum angular resolution ≈ 2
Δϕdiag√
w2+h2

=

0.014◦. Angular resolution is convenient for comparing sensors of different resolutions or technologies, e.g., SfM
and LIDAR.

4 Methods of dynamic sensor stabilization may be harmful in this context.
5 SLAM (Simultaneous Localization and Mapping) – a navigation method in mobile autonomous systems.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025
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5.1. Feature Detector

The first step of the photogrammetric pipeline (page 1091) is the extraction or detection of the

maximum number Na
pts of feature points Pa = {pk

a}
Na

pts

k=1 , p
k
a = [uka, v

k
a ]

T ∈ R
2 on the surface of the

measured object, observed in image a ∈ [1 . . . Nim] from a camera.6 This step is performed by a
detection algorithm or simply a detector. In general-purpose photogrammetry [21], without artifi-
cial markers, various natural features—points, circles, corners, crosses, or similar structures—are
detected on the object texture using Harris [35], GFTT [36], FAST [37] detectors. Some detectors
extract both the point and generalized information about the texture of the neighborhood in the
form of a multidimensional descriptor vector. The point coordinates together with the descriptor
are often called a feature. This task is solved by classical approaches SIFT [23], SURF [24] and
based on machine learning (ML) SuperPoint [25], DISK [38]. In this case, special areas most suit-
able for subsequent determination of a stable descriptor are identified. Typically, natural features
lack sufficient contrast or size for precise 2D localization and subsequent 3D reconstruction. This
can be seen from the difference between the observed 2D coordinates of features and the projec-
tions (on the image) of the corresponding 3D object points. This difference is commonly called the
reprojection error [26, 39]. For a high-precision measurement task, one standard deviation of the
reprojection error does not exceed 0.1 pixels (Fig. 11), hence the feature must be localized even
more accurately. The noise of detected coordinates for natural texture features often exceeds one
pixel [25, 32, 40]. With careful calibration in [41], but using corners, the reprojection error is still
∼ 0.33 pixels. Using ML for texture feature detection in [42] one observes ∼ 0.5 pixels. There-
fore, for industrial photogrammetric measurements, artificial black-and-white markers of circular
and, less frequently, square shape are often applied to the measured object’s surface (for further
detection).

A circular marker is preferable to corners and similar structures. To understand the reason,
let’s consider the main factors affecting localization stability, dividing them into two categories for
clarity:

1) Geometric factors determine observed feature’s shape (effects of perspective projection, lens
distortion, or object’s shape), Fig. 5;

2) Optical factors affect feature’s contrast, signal-to-noise ratio7 (illumination level and surface
reflectance, focusing, sensor resolution, photon leakage), Fig. 6.

Geometric factors of detection. All texture feature detectors mentioned earlier and similar ones
rely on surface’s continuity in the neighborhood of the point of interest. That is, the smoother,
closer to planar the surface, the more stable and reproducible on other images the found feature
will be. For example, the SIFT detector “suppresses” points on lines [23] in order to avoid object
boundaries and possible inclusion of background information.

The assumption that the neighborhood of a feature point is a small flat surface area in 3D means
that the mapping “3D surface – 2D image”8 can be performed via an affine transformation of the
observed area:

oAa =

⎡⎢⎣a11 a12 a13
a21 a22 a23
0 0 1

⎤⎥⎦ , det(oAa) �= 0.

It includes six degrees of freedom [26]: 2D translation, 2D scale, 1D diagonal shear, and 1D rotation.
In a more general case (without the assumption of a small area size), a projective or homographic

6 Several Nim stationary cameras or one mobile camera in Nim positions, depending on the application.
7 Signal usually refers to pixel intensity or color.
8 Similar to ray tracing in computer graphics – finding the intersection of a ray “from a pixel” and a 3D plane.
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(a) (b)

(c) (d)

Fig. 5. (a) Circular marker on object, (b) affine projection of marker on screen, (c) perspective
projection of marker, (d) dependence of perspective effect ||o− e||2 on distance to marker za.

transformation takes place:

oHa =

⎡⎢⎣h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤⎥⎦ , det(oHa) �= 0.

In computer graphics, affine transformation oAa corresponds to orthogonal projection, and oHa

to perspective projection. Transformation oAa transfers a feature from a flat object directly to
image a, preserving line parallelism and distance proportions along a line, unlike the more general
transformation oHa. The model of these transformations in homogeneous coordinates is:

λ

⎡⎢⎣uava
1

⎤⎥⎦ =

⎡⎢⎣h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤⎥⎦
⎡⎢⎣xoyo
1

⎤⎥⎦ , (2)

a, b ∈ [1. . Nim] – image indices, ua, va – point coordinates on the image (the feature itself or a
point in its 3D neighborhood, point index k omitted for brevity), xo, yo – point coordinates on the
object in the coordinate system of the feature’s 3D plane (zo = 0), λ – non-zero scale factor, easily
eliminated from the system of linear equations (2) by substitution if oHa needs to be found.

Consider an example. Suppose a circular marker with radius R = 5 mm is depicted on a flat
object (Fig. 5a). Under affine projection of the marker onto the screen (with observation angle

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025
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Fig. 6. Effect of sharpness reduction (left to right) for circle and square: unlike circular marker (top
row), square structure (bottom row) is significantly distorted. Dots indicate feature contour – pixels
with maximum signal gradient amplitude.

Fig. 7. Perspective or rectilinear camera model (6): 3D object relative to different coordinate systems
and its projection onto screen or sensor (detailed description in text).

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025
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β = 45◦, explanation in Fig. 7), the circle center o ∈ R
2 will perfectly correspond to the center

e ∈ R
2 of the observed ellipse (Fig. 5b). In reality, at a very close surface distance za = 15 mm,

strong projective distortion is observed (Fig. 5c), the magnitude of which depending on za is shown
in Fig. 5d. Experimental conditions are presented in Section 7, using a Canon EOS 5DS camera.

The dependence shown in Fig. 5d is valid for a marker with radius R = 5 mm and β = 45◦.
To build a similar dependence for a marker of a different radius, e.g., R′ = 10 mm, at the same
observation angle β, the abscissa on the presented graph (Fig. 5c) must be multiplied (scaled) by
the coefficient R

′
R .

The difference between operators oAa and oHa is clearly shown in Fig. 5. When the distance to
the surface is small and the area for extracting the feature center is large, an increasingly significant
deviation is observed between the detected point e and the projection o of the estimated 3D point
on the object. When the deviation exceeds 1:10 of the standard reprojection error in the bundle
adjustment problem (Fig. 5d, red line on the graph), then not only the 3D object point but also
the parameters of the surface patch orientation in space need to be optimized (Section 6).

In some applications, projective shape distortions allow reconstruction of object geometry from
two or more coplanar circles [43]. Besides projective distortions described above, the deviation
||o − e||2 can be caused by much more complex nonlinear effects, e.g., camera lens distortion [44]
or surface curvature. If the influence of these effects on the local feature geometry is significant, for
an accurate bundle adjustment solution, one can directly minimize the residual of intensity values
in each image pixel [26, 39]. This approach requires substantially more computational resources.
For example, instead of two residual equations for the center of each marker (bundle adjustment
problem, Section 6), there will be O(πR2) equations9 of color intensity differences in the feature
pixels. Moreover, the number of parameters increases: for each optimized 3D point, a 3D normal10

is added, i.e., at least five parameters per point instead of three. Such a solution is justified when
working with a wide-angle camera model That significantly different from the common perspective
model (Section 6.1).

Optical factors of detection. Extracting a feature from a large neighborhood creates difficulties
described earlier. It seems that a simple solution would be to reduce the area size. For example,
using a feature type like a cross, corner, or other line intersections on the object [45]. But under
strong optical blur or other contrast loss (e.g., during noise suppression), the structure of such a
feature can quickly degrade (Fig. 6).

The issue is that the high-frequency component of the signal,11 necessary for depicting sharp
edges of a corner, is gradually lost. Thus, a circle with a smooth contour structure remains the
most universal marker for the most precise measurements (even if only the contour, not the center,
is needed). Circular markers can be detected in real time using the following sequence of steps:

1) Coarse localization: “blobs” detector [35, 36];

2) Contour extraction [46, 47] or gradient extraction in the ellipse neighborhood [48];

3) Reliable and precise localization: quadratic function approximation of the ellipse as the locus
of contour points or gradient field.

It is worth noting that subpixel refinement during contour extraction may not be required. The
discretization noise of contour points eedge ∼ U(−0.5, 0.5), σedge =

1√
12

(in pixels) is significantly

averaged, so the noise in determining the marker center (mean of the random variable) is much

smaller and amounts to σcenter =
σedge√
Nedge

pts

, N edge
pts – number of points used to determine the center.

9 Two equations per pixel, the number of which is proportional to the area of the observed marker.
10 The orientation of a unit normal is defined by two angles.
11 In computer vision, spatial signal frequency is typically discussed, unlike time function in electronics.
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For example, for a circle with R = 25 pixels, the discretization noise level of the found center
coordinates σcenter will be 1/

√
12 · 2 · π · 25 = 0.02 pixels.

The number of features does not compensate for their low quality – a general rule for precise
photogrammetry. Since the parametric model of the ray (or camera) can be a high-order nonlin-
ear function (Section 6), especially at the edges of the field of view, this inevitably leads to the
overfitting.

5.2. Feature Descriptor

After key points detection a description for each point’s texture neighborhood Da = {dk
a}

Na
pts

k=1

is constructed (descriptor estimation, second step of the photogrammetric pipeline, page 1091).
The key property of a descriptor is its stability or invariance to geometric transformations (due to
camera or object motion) and to optical factors, e.g., due to illumination changes, defocusing, or
sensor noise. That is, under the most diverse image acquisition conditions, the same object point
should have identical, yet unique, descriptor. Descriptor invariance, in general, is unattainable,
hence there is a wide variety of approaches effective for different scenarios.

For example, in the SfM task for large objects, affine distortions practically do not change
angles in the feature structure, but rotations and scale changes are possible, similar to observations
of celestial bodies [49]. In close-range photogrammetry for quality control of medium and small
objects, on the contrary, noticeable projective distortions of features can occur (Fig. 5). Thus, the
effectiveness of descriptors can differ significantly under different conditions [30]. This is important
to consider when working with ML-based approaches [25, 31, 32, 34, 38] (when preparing the training
database), or when selecting a suitable descriptor based on comparative review results [29].

The descriptor of natural texture features can be a vector of real numbers: d ∈ R
n for SIFT [23],

SURF [24], SuperPoint [25], DISK [38] or a binary vector d ∈ {0, 1}n for BRIEF [50], ORB [51],
AKAZE [52]. Also, most artificial coded markers represent a binary descriptor [53–56]: QR-code,
ARTag, AprilTag, ArUco, CCTag, Schneider’s Coded Target (SCT), etc. SCT coded markers [53]
(Fig. 3) are used in the experimental part. Markers with concentric circles (CCTag, SCT, etc.) are
often used in industrial photogrammetry. “Decoding” markers or determining descriptor’s binary
sequence d ∈ {0, 1}n is significantly simplified by the ability to compensate for affine distortions
of the feature: knowing the center, rotation angle, and magnitude of the principal axes, the five
parameters of the affine transformation can be computed.

Machine learning can be effectively applied for decoding of specific key points and even arbitrary
image regions [57]. Architectures based on convolutional networks can be used, e.g., Resnet [58]
or Unet [59] encoding parts. As an output layer, a fully-connected bitwise classifier can be used,
e.g., 12 output neurons with a sigmoid activation function for a 12-bit binary marker. By batching
pixels from marker neighborhoods from several images, the decoding task can be efficiently solved
on a GPU in real time.

5.3. Descriptor Matching

At this step, the found descriptor vectors of features from each image Da = {dk
a}

Na
pts

k=1 , Db =

{dk
b }

Nb
pts

k=1 , a, b ∈ [1..Nim] are matched against each other (third step of the photogrammetric
pipeline, page 1091), forming a set of corresponding indices: Ma→b = {(ik, jk) | ik ∈ [1..Na

pts], j
k ∈

[1..N b
pts]}

Na→b
pairs

k=1 . For each descriptor from the source set Da with index i ∈ [1..Na
pts], a search for the

nearest neighbor with index j∗ in set Db is performed (l2-norm of the difference as an example):

j∗ = argmin
j∈[1..Nb

pts]

‖di
a − dj

b‖2. (3)
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In the simplest case, two sets Ma→b, Ma←b are built (arrow indicates search direction) with sub-
sequent filtering presented in Section 5.4. In the general case, optimal matching of more than
two discrete descriptor sets belongs to the NP-complete transportation problem. Matching meth-
ods using machine learning [31, 32, 34, 60] effectively approximate the discrete search problem by
combining local and global properties of descriptors.

If a pixel on the contour is used as a feature instead of a distinctive point (e.g., marker center),
strict correspondence of 2D points between an image pair may not exist. In this case, the coordinates
of the corresponding feature must be interpolated (assuming local smoothness or planarity of the
surface).

As a distance function, depending on the nature of the vector, the l2-norm (Euclidean dis-
tance) [23–25, 38, 61] is often used, or for binary descriptors [50–52] – the number of identical bits
(Hamming distance). In [61], an effective transformation of the distance function for the SIFT
descriptor d = [d1, . . . , d128]T is proposed, which significantly increases the probability of finding
correct connections between images. Originally, the distance between descriptors is defined via the
Euclidean norm, i.e., distE(da,db) = ‖da − db‖2. However, considering that ‖da‖2 = ‖db‖2 = 1,
the following holds:

‖da − db‖2 =
√√√√2− 2

128∑
l=1

dla dlb.

The basis of SIFT is a frequency histogram or distribution function of some characteristic of
the marker neighborhood. Histograms are also used when matching 3D features of point clouds,
e.g., FPFH [62]. For comparing distributions similarity, instead of the l2-norm, it is better to use
the Hellinger’s f-divergence [61]. As a result of l1-normalization and element-wise square root, the
distance between descriptors can be reduced to the corresponding form:

distH(da,db) =

√√√√2− 2
128∑
l=1

√
ca cb dla dlb,

where ca, cb are normalization coefficients. Thus, by varying the distance function, the number of
correct correspondences can be significantly increased.

Since the number of images Nim and the average number of found features Npts per image
can be large, the overall complexity of searching for similar descriptors among all images often
becomes unacceptably high O(N2

im · N2
pts) – as dozens of views (Nim) of a specific 3D point are

needed for reliable results, and their total number of key points (Npts) can easily exceed 1000. In
this case, accelerating structures in the form of random trees with approximate nearest neighbor
search [63]12 are primarily applied. For binary descriptors, the distance function differs from
Euclidean, so methods based on hash functions [65] are used. Approximate search may allow a
significant number of errors, but they can be filtered at the next stage.

Since images may not view the same object region, BoW techniques [61, 66] (abbreviation for
“Bag-of-Words”) are used to accelerate the selection of suitable pairs, allowing quick exclusion of
non-overlapping frames and the need to match all descriptors for an image pair against each other.

5.4. Filtering of Found Correspondences

The results of the correspondence search need to be filtered (fourth step of the photogrammetric
pipeline, page 1091) regardless of the matching methodology to minimize the number of errors or
outliers.
12 Ordinary kd-trees are inefficient – a problem known as the “curse of dimensionality,” where sequential search turns

out to be faster than tree traversal due to information distribution in multidimensional data structures [64].
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From (3) it follows that the search direction matters and the sets Ma→b and Ma←b may not
be identical. This is the basis for the “mutual correspondence” filter [30–32], i.e., mutually nearest
descriptors or the intersection of pairs from sets Ma→b and Ma←b are used, while the rest are
discarded. Another popular filter is based on descriptor “uniqueness” [23] – it discards match if
one of the descriptors (from original image) is relatively close to multiple others (on a different
image). Another common method is using repeatedly occurring descriptors forming a sequence
(e.g., “tracks” in video data analysis).

These and similar heuristics by themselves are not very effective and can remove a large number
of correct correspondences. This is because the local texture properties of the object, represented
by descriptors, vary greatly even within a single image. Essentially, the task of such filters is to
screen out the coarsest matching errors and accelerate subsequent steps.

The most effective filtering methods rely on global context [21, 30, 42], e.g., checking how well
the found correspondences satisfy the geometric properties of space and the perspective camera
model (Section 6.1). If the camera model significantly differs from perspective, e.g., for wide-angle
lenses, or has large distortion, then fast methods considering these distortions are required [40, 67].

First, the most universal and widely used criterion for geometric consistency is epipolar geome-
try – all correspondences on an image pair must satisfy the following epipolar line equation:

[
ua va 1

]
aFb

⎡⎢⎣ubvb
1

⎤⎥⎦ = 0, (4)

ua, va, ub, vb – coordinates of two projections of the same 3D point on images a and b respectively,
aFb ⊂ R

3×3 – the well-known fundamental matrix, rank(aFb) = 2. The geometric meaning of equa-
tion (4) is that matrix aFb establishes a point-line correspondence between an image pair:[
ua va 1

]
aFb – parameters of a line on image b, while

aFb

⎡⎢⎣ubvb
1

⎤⎥⎦ – a line on image a. Substituting eight pairs of corresponding points into (4), a system of

linear algebraic equations [68] is built for the unknown matrix aFb. Considering that rank(
aFb) = 2,

using seven point pairs, a system of nonlinear equations for finding aFb can be built [26]. Thus, by
repeatedly solving these equations for small groups of corresponding points, in statistical methods
like RANSAC [69] or PROSAC [70], a significant portion of matching errors can be filtered out.

Second, filtering reliability can be increased if it is known that the points lie on a plane or depth
variations on the object surface are significantly smaller than its dimensions. In this case, only
4 correspondences are required to define a 2D point transformation model when using methods like
RANSAC or DEGENSAC [71]:

λ

⎡⎢⎣uava
1

⎤⎥⎦ = aHb

⎡⎢⎣ubvb
1

⎤⎥⎦ , (5)

where aHb ⊂ R
3×3 is the projective transformation matrix or homography between corresponding

projections of a common 3D point, det(aHb) �= 0.

Machine learning methods allow extraction of distinctive points and building local descrip-
tors [25, 38]. In [31], texture features are extracted on practically homogeneous areas of natural
texture. In [31, 32, 34], features are supplemented with contextual information from some image
area calculated using a transformer-based neural network architecture or similar modifications for
computational efficiency. As a result of pairwise matching, a feature correspondence probability

matrix is obtained: P a,b ∈ R
Na

pts×Nb
pts ,

∑Na
pts

i=1 P a,b
ij � 1,

∑Nb
pts

j=1 P a,b
ij � 1. Thus, correspondences with
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the required reliability can be selected, excluding points invisible from both viewpoints. In the
context of precise photogrammetry, the presented ML-based solutions are excellent for finding a
reliable initial approximation and constructing approximate camera positions and 3D point clouds.
But unfortunately, they have low feature localization accuracy – the reprojection error in various
tasks often exceeds one pixel, and the angular error in position determination is over 5◦; often the
training dataset is built on flat scene areas, i.e., heavily relies on (5), and matching results still
require filtering [30, 32].

Practically regardless of design, the local descriptor in photogrammetry is used at the preliminary
stage of finding an initial approximation in the bundle adjustment problem, in the absence of prior
information about scene geometry and camera positions. When these parameters are known with
sufficient accuracy, feature matching can be performed along epipolar lines obtained from (4), which
significantly increases the number of correct correspondences.

6. PHOTOGRAMMETRIC OPTIMIZATION PROBLEM

6.1. Camera Model and Perspective

To solve the optimization problem in the photogrammetric pipeline, known as bundle adjustment
for projection rays, it is necessary to define the key component of the pipeline. The “heart” of this
technology, without exaggeration, is the camera model – a function for mapping or projecting points
from the surrounding 3D space onto an image (screen or sensor). A key property of any model
considered in this review is the rectilinear propagation of light; diffraction or chromatic aberrations
are considered as negligible. Through any 2D point on the sensor, a ray can be drawn that will hit
the corresponding 3D point on the object surface. Thus, the camera model defines the direction of
projection rays based on the 2D sensor point, internal parameters, and camera position in space.

The perspective or rectilinear pinhole camera model [3, 11, 26, 41, 72, 73] is the most common
in computer vision. Its characteristic feature is that 3D straight lines in object space are projected
into 2D straight lines in image space. This model is often assumed (explicitly or implicitly) as
the baseline in various studies. For example, it is used when finding homography (5), when deter-
mining mutual position between images [25, 31, 32, 34], or for 3D scene reconstruction [42]. This
model serves as the initial approximation for more complex parameterizations of projection rays,
considered further. The rectilinear camera model is defined by the projection matrix aPo ∈ R

3×4,
rank(aPo) = 3 and establishes the following relationship:

λqh
a = aPo ph

o =

⎡⎢⎣fu suv uc 0
0 fv vc 0
0 0 1 0

⎤⎥⎦ [
aRo

ato
0T 1

]
4×4

⎡⎢⎢⎢⎣
xo
yo
zo
1

⎤⎥⎥⎥⎦ =
[
K 0

]
3×4

aTo

⎡⎢⎢⎢⎣
xo
yo
zo
1

⎤⎥⎥⎥⎦ , (6)

qh
a = [ua, va, 1]

T – 2D coordinates on image a, result of projecting 3D point ph
o = [xo, yo, zo, 1]

T in
the object CS;
K – upper-triangular matrix of internal camera parameters det(K) �= 0 (five degrees of freedom,
in pixels), includes focal lengths fu, fv,

13 coordinates of the projection center c = [uc, vc]
T – the

point where the optical axis of the lens intersects the sensor (Fig. 7), and also the sensor diagonal
distortion suv;
aTo ∈ SE3 – matrix of external camera parameters (six degrees of freedom) defines the position
of the object relative to the camera at the moment of capturing image a and includes rotation
aRo ∈ SO3 and translation of the object CS origin ato;

13 In computer vision, unlike the classical optical model, two “focal lengths” are distinguished for convenience to
account for the possible non-square pixel shape in these quantities.
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parameter λ is set equal to za, where za – z-coordinate of the considered point or distance from
the origin Oa along axis Za to the point (Fig. 7).14

Based on (6), let’s define normalized homogeneous projection screen coordinates q̄h
a, which are

useful in the future. In object space, they correspond to the coordinates of 3D points on the plane
for which Za = 1 in front of the camera, or projection onto a camera with internal parameters
K = I3×3 (f = 1):

q̄h
a =

⎡⎢⎣ūav̄a
1

⎤⎥⎦ =

⎡⎢⎣
xa
za
ya
za
1

⎤⎥⎦ =
1

za

[
aRo

ato
] ⎡⎢⎢⎢⎣

xo
yo
zo
1

⎤⎥⎥⎥⎦ . (7)

The operation scheme of the rectilinear camera model is shown in Fig. 7. For clarity in the exam-
ple, one can set fu = fv = f , suv = 0 (often these assumptions hold for precise measurements [17]);
the physical pixel size, sensor size, and focal length f value are irrelevant for the mathematical
formulation, what matters is the ratio of quantities; the physical sensor (with reflected projection)
is located behind the camera CS center Oa (optical center of the lens), its mathematical model is
conventionally placed between the center and the object [72].

Using the structure of aPo from (6) and considering that aRT
o = aR−1o , one can easily construct

the projection ray equation for any 2D screen point and compute the 3D coordinates of point po

relative to the object CS:

po =

⎡⎢⎣xoyo
zo

⎤⎥⎦ = aRT
o (K

−1λqh
a − ato), (8)

where qh
a – screen point coordinates, λ = za – depth, and the internal and external camera param-

eters are given.

The central equation of photogrammetry – the triangulation problem consists in determining
the coordinates of a 3D point po from known projections qa, qb. For the rectilinear camera model,
considering (6), a system of linear algebraic equations can be built:

⎧⎨⎩λaq
h
a =

[
K 0

]
aTo ph

o ,

λbq
h
b =

[
K 0

]
bTo ph

o ,
(9)

where aTo,
bTo – matrices defining the mutual position of the object and observer/camera,

K – internal parameters of the camera (for multiple cameras scenario, the matrices may differ). In
the triangulation problem, K, aTo,

bTo are known and the presence of parallax is important, i.e.,
‖atb‖2 �= 0. System (9) contains six equations and five unknowns (λa, λb, po). Unknowns λa and
λb are easily expressed, resulting in an overdetermined system of linear algebraic equations (four
equations and three unknowns), which can be solved with the least squares approach (e.g., normal
equations) for the 3D coordinates po.

When solving the bundle adjustment problem (Section 6.5) in equation (9), the only known
quantities are the detected coordinates qa, qb (two residual equations for each observed 3D object
point on the image), all other parameters are optimized.

14 The three-dimensional representation of the surface is often stored in the form of depth maps relative to the optical
center of the lens.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



1104 GUDYM, SOKOLOV

6.2. Basic Projection Models

The rectilinear camera model (6) establishes the relationship between the angle ϕ between the
projection ray and the optical axis with the screen point coordinates qa (Fig. 7):

tan(ϕ) =
r

f
=

||qa − c||
f

= ||q̄a||.

In other words, this is the relationship between the angles of the ray from the surrounding space
(collinear with the radius vector pa, entering the camera lens) and the ray falling on the sensor
behind the lens; in the perspective mathematical camera model, both rays lie on the same straight
line passing through the optical center of the lens Oa in Fig. 7.

In the physical lens model, the scattered light beam is collected from a surface area and under-
goes a series of complex refractions; the presented mathematical models approximate this image
formation process. Depending on the lens shapes and construction, at least three basic projection
models can be distinguished [44]:

1) Rectilinear or perspective model: r = f tan(ϕ);

2) Stereographic model: r = 2f tan(ϕ2 );

3) Equidistant model: r = fϕ (ideal wide-angle optics, since sensor resolution does not depend
on angle ϕ).

In popular wide-angle cameras like Insta360 X4, two lenses with equidistant projection models
and field of view exceeding 180◦ each are used to provide a panoramic view in video mode. An
example of two projections is shown in Fig. 8.

(a) (b) (c)

r = f tanϕ, −60◦�ϕ�60◦ r = fϕ, −90◦�ϕ�90◦

Fig. 8. Realistic 3D model of children’s room (rendered in Blender 3D [84]) in two ideal projections
without distortion: a-rectilinear, b-equidistant.

Let us present the equations for mapping a certain 3D point in the camera CS pa = [xa, ya, za]
T

to a 2D point qa on the original image for various projection models. Let ϕ, α be the spherical
coordinates of the projection ray (3D point on a sphere), where ϕ is the angle between the optical
axis Za and the projection ray, α is the rotation angle of the projection ray around axis Za (Fig. 7):

cos(α) =
xa√

x2a + y2a
, sin(α) =

ya√
x2a + y2a

, tan(ϕ) =

√
x2a + y2a
za

. (10)
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As a result, the image point coordinates can be computed via polar coordinates α, ρ(ϕ):

qh
a = K

⎡⎢⎣ρ(ϕ) cos(α)ρ(ϕ) sin(α)
1

⎤⎥⎦, ρ(ϕ) =

⎧⎪⎨⎪⎩
tan(ϕ) – for rectilinear model,
2 tan(ϕ2 ) – for stereographic model,
ϕ – for equidistant model.

(11)

Substituting expressions (10) into (11), the 2D projection coordinates for any of the presented
models can be obtained. It is easy to see that for the rectilinear model, (11) takes the form of (6).

There exist models combining rectilinear, stereographic, and equidistant projections. In [44], a
parameter for smooth adjustment of the projection ray refraction model is introduced. This work
also emphasizes the importance of accounting for the entrance pupil shift or lens optical center for
wide-angle optics. Developing this idea, generalized camera’s projection models with individual ray
parameterization should be highlighted [45, 74, 75], where each image pixel is assigned its own ray
parameters. In practice, only a subset of such pixels is selected, and parameters for the rest are
interpolated. Naturally, such models easily “overfit” and require a lot of data for precise results.

In the photogrammetric pipeline, use of an appropriate projection model can significantly reduce
the magnitude of distortion and decrease the total number of parameters requiring good initial
approximation and careful calibration.

6.3. Distortion of Projection Models

Due to various factors, e.g., complexity of lens and optics manufacturing, sensor curvature, or
camera assembly errors, the actual projection often deviates from the model, especially near the
field of view or image borders. This phenomenon is called distortion. Often, the distortion refers
to the difference between basic projection models, e.g., curvature of straight lines or shape of 3D
objects in Fig. 8, since the distortion function approximates this effect [67, 76].

Typically, for the rectilinear camera model, radial and tangential distortion components are
distinguished [3, 4, 17, 72]. Despite its age and significant technological development, this model
works very effectively, as demonstrated in Section 7.

Radial distortion is the most significant factor distorting the rectilinear projection, with straight
lines curving in a “barrel” or “pincushion” shape. It is approximated by an even-degree polynomial,
as the distortion function is symmetric due to the central symmetry of lenses:

δr(q) = q(k1rr
2 + k2rr

4 + k3rr
6 + . . .), (12)

q = [u, v]T – some 2D point on the screen (distortion center at [0, 0]T);
kγr – radial distortion coefficients (γ ∈ N);
δr(q) – deviation of the observed 2D point from the rectilinear projection q (projection model (6))
due to radial distortion. The main contribution to the deviation from the rectilinear model is
typically made by the first term k1rr

2 on the right side of (12), while subsequent terms are often
omitted.

Tangential distortion is caused by installation errors of the lens system and, unlike δr(q), creates
asymmetric field distortion, formulated by [2]:

δτ (q) =

[
k2τ (r

2 + 2u2) + 2k1τuv
k1τ (r

2 + 2v2) + 2k2τuv

]
(1 + k3τ r

2 + k4τr
4 + . . .), (13)

where kγτ – tangential distortion coefficients (γ ∈ N).

Coefficients k3τ , k4τ , . . . are typically not accounted for, or the δτ (q) factor is entirely ignored.
However, the tangential distortion factor should not be completely neglected, especially in the
field of precise measurements with photogrammetry: in the foundational work [3], the distortion
center coordinates coincide with the projection center c from the camera’s internal parameters K.
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(a) (b)

Canon EOS 5DS 50 Mp Daheng Mercury2 12 Mp
k1r = −0.0905; k2r = 0.1049; k3r = −0.0034 k1r = −0.0588; k2r = 0.0313; k3r = 0.6787

k1τ = 0.0001; k2τ = 0 k1τ = 0.0003; k2τ = 0.0006

Fig. 9. Magnitude of distortion ||δr(q)+δτ (q)||2·f at each frame point (in pixels). Both optical systems
mainly demonstrate centrosymmetric deviation from the rectilinear model due to radial distortion.

Meanwhile, in works [67, 76, 77] neglecting tangential distortion, it is noted that c and the distortion
center coordinates significantly deviate. Although in [3, 17] it is indicated that tangential distortion
strongly correlates with the projection center position. Probably in [67, 76, 77], it is the unaccounted
tangential distortion that distorts the estimate of c.

Thus, the precise rectilinear projection model (6) accounting for distortion defines the relation-
ship between 3D coordinates and their 2D projections as follows:

K−1qh
a + δ(K−1qh

a) =
1

za

[
aRo

ato
] ⎡⎢⎢⎢⎣

xo
yo
zo
1

⎤⎥⎥⎥⎦ = q̄h
a, (14)

K – internal parameter matrix of the rectilinear camera model,15

qh
a – 2D coordinates of the found feature on the original image,

q̄h
a – normalized 2D coordinates of the projection of the corresponding 3D point from (7),

δ(qh) =

[
δr(q) + δτ(q)

0

]
3×1

– combined distortion for homogeneous coordinates.

The fundamental formula (14) is widespread in photogrammetric literature [2–4, 11, 17], where
the polynomial function corrects the distortion of the observed point qa. This differs from the
formulation in the popular category of “non-photogrammetric” works, e.g., [40, 41, 67, 72], where
the polynomial function, conversely, adds the distortion effect to normalized coordinates:

qh
a = K[ q̄h

a + δ(q̄h
a) ]. (15)

Section 7 provides a comparison of the effectiveness of models based on expressions (14) and (15).
A clear example of two calibrated cameras (distortion models) is presented in Fig. 9.

For the Daheng Mercury2 camera, asymmetry is noticeable – the contribution of tangential
distortion. Moreover, non-monotonicity (decrease) in the magnitude of radial distortion is observed
at the frame corners, and a very large value of k3r (Fig. 9b). All this is the result of instability in
the optimization problem solution due to lack of observations (markers), especially in areas with

15 Essentially, K−1 performs normalization of the image coordinate space.
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strong distortions. In other words, the distortion is approximated by a high-order polynomial, and
it incorrectly extrapolates the distortion magnitude [17].

As follows from the presented results, accounting for distortion is necessary, as its magnitude
is very significant. Therefore, rectilinear camera projection models with distortion (14) and (15)
are extremely widespread and found in numerous works on photogrammetry, SfM/SLAM, visual
odometry, augmented reality, etc. In this work, the experimental part considers the rectilinear
model with distortion (14) and (15).

6.4. Autocalibration

In photogrammetry, joint optimization of 3D coordinates of observed features, internal camera
parameters, and their positions is performed (Section 6.5). To perform the nonlinear optimization
procedure, an initial estimation for optimized parameters is found by the autocalibration proce-
dure [26, 78] (fifth step of the photogrammetric pipeline, page 1091). Methods for 3D reconstruction
with ML [42] also require such a procedure. For preliminary calibration and camera positioning in
professional photogrammetry “Hexagon DPA Pro”, special tools are used – groups of coded markers
placed on a known cross structures. This approach has significant inconveniences. The algorithms
presented below don’t need any special structures in the scene for parameters estimation.

In the most common photogrammetric scenario with a single rectilinear camera (page 1104),
moved against the measured object, the following optimized quantities can be distinguished:

1) 3D coordinates of observed features on the object surface:

{pi
o ∈ R

3}Npts

i=0 ;
2) Internal camera parameters (elements of K) and distortion coefficients:

{f, c, k1r , k2r , k3r , k1τ , k2τ , ...};
3) Camera positions at different moments of time:

{aTo ∈ SE3}Nim
a=2 , fixing the first position 1To = I4×4 as the object CS.16

Distortion at the autocalibration step can often be neglected – the found parameters will be
correct for the central area of the image (or sensor). Precise estimation of distortion parameters
will be performed at the next step. For the projection center c – the image center is typically a
good initial approximation.

If camera’s distortion is too large and prevents reliable autocalibration, or the projection model
differs from rectilinear due to a large field of view, then an iterative process of prior undistortion
and refinement of parameters is required. In most cases, it is the rectilinear projection model that
is used in autocalibration algorithms [78, 79]. In [79], autocalibration is reduced to determining
the mutual camera positions aRb,

atb, a, b ∈ [1...Nim], using previously found correspondences,
with (4) and the structure of the fundamental matrix:

aFb = K−T aEb K
−1 = K−T [atb]× aRb K

−1, (16)

[t]× =

⎡⎢⎣ 0 −t3 t2
t3 0 −t1
−t2 t1 0

⎤⎥⎦ – skew-symmetric matrix of the vector product.

The translation between cameras atb can be determined only up to scale (the vector specifies only
direction) – this is a theoretical limitation of autocalibration. To find aRb,

atb, it’s sufficient to have
five corresponding points to calculate residuals from (4), since aFb has five degrees of freedom [26].
The minimal number of correspondences allows effective application of RANSAC [69] to improve the
stability of the found solution. In [79], for autocalibration with two images (or camera positions),

16 In the general case, the photogrammetry problem is solved up to a SE3 transformation with an arbitrary scale of
the resulting point cloud [26], thus parameters of one position can be fixed.
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Fig. 10. Model images (1024x1024 pixels) of 9 tilted views for a flat object (circular markers) and
projection of found 3D coordinates (crosses) – result of the autocalibration algorithm [78], estimat-
ing internal and external camera parameters, 3D coordinates of object points. Root mean square
reprojection error according to (6) is 3.35 pixels with input observation noise amplitude of one pixel.

the internal camera parameters (matrix K) are required. At the same time, the focal length f is
difficult to estimate in advance, as it can vary significantly depending on the field of view. Moreover,
if the observed correspondences (for two views or camera positions) lie on a flat surface, then the
internal parameters cannot be estimated [26, 79]. Thus, the most reliable solution from [79] is to
use three or more images obtained from different positions.

An alternative approach [78] based on factorization of absolute quadric matrix was implemented
in this work. The problem reduces to solving a nonlinear system of equations:

K−1 Pb Ω PT
b K−T = λ I3×3 (17)

against the elements of the quadratic form matrix Ω = HHT ∈ R
4×4 and the internal parameter

matrix K,
λ – arbitrary scale coefficient,
Pb = K[ bRa|bta]3×4H−1 – known projective transformation matrix (6) (position b, for example),
which was obtained from factorization of the fundamental matrix aFb, and

aFb, in turn, was found
from correspondences between images a, b. Thus, knowing correspondences between several views
(at least three), the relative camera position bRa,

bta and its parameters K can be determined.

At the next step, unknown 3D point coordinates are computed via the triangulation equation (9),
followed by the bundle adjustment problem. Figure 10 shows the result of the autocalibration
algorithm for a flat object from correspondences from nine views. Various methods for estimating
relative position and camera parameters without initial approximation are also available in the
open-source library [80].

6.5. Bundle Adjustment

Measurements obtained by photogrammetry are the 3D coordinates of observed 2D features, as
well as the spatial position of objects (corresponding point clouds) relative to cameras. This requires
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joint optimization of the multiple parameters listed above. The central problem of photogrammetry
is minimizing the sum of squared residuals or reprojection errors (sixth step of the photogrammetric
pipeline, page 1091):

θ∗ = argmin
θ

L(θ), (18)

where θ – combined vector of optimized parameters (Section 6.4);
L(θ) – minimized objective or loss function.

The geometric meaning of the problem is bringing the bundle of projection rays to converge
at the corresponding 3D points by minimizing the reprojection error, hence the name “bundle
adjustment”.

The terms of the loss function are derived from the camera’s projection model. The type of
projection model is based, ideally, on the camera’s lens design, e.g., (6) for a rectilinear camera
without distortion (special lens design, for example), (11) for a wide-angle camera, (15) or (14) for a
precise rectilinear model with radial and tangential distortion. The loss function with reprojection
error from (14) has the following form:

L(θ) =
Nim∑
a=1

Npts∑
i=1

ea,i(θ) + wscale

∑
(i,j,d)∈S

(||pi
o − pj

o||2 − d)2,

ea,i(θ) =

∥∥∥∥K(θ)−1qma(i)
a + δθ(K(θ)−1qma(i)

a )− 1

za

aTo(θ) p
i
o

∥∥∥∥2
2
,

(19)

where ea,i(θ) – square of l2-norm of 2D residual or reprojection error for one point on the image;
pi
o (component of vector θ) – unknown 3D point on the object surface (e.g., marker in Fig. 3),

symbol h omitted for brevity;
ma(i) – mapping of the ith 3D point on the object to the index of its projection on image a
(assuming, for brevity, that all object points are visible on the image);
q·a – homogeneous 2D coordinates of the feature in pixels, original observations on image a;
S = {(i, j, d)|i, j ∈ [1..Npts], d ∈ R

+}Nscales
i=1 – scale bars (Nscales pieces) in the form of known points

and calibrated distances between them, e.g., coded markers on two scale bars in Fig. 3;
aTo(θ) – camera CS position includes rotation matrix aRo(θ) and origin ato (component of vector θ)
when capturing image a;
wscale – weight of the scale measurement error term. The weight is needed to balance the different
numbers of equations of two types. Moreover, the reprojection error can have different units: pixels
for (15) and normalized coordinates for (14).

For better numerical stability, it is desirable to normalize image coordinates so that qa ∈ [−1, 1]2.
This is common practice, but an important nuance can be missed – first, the origin must be shifted
from the center of the first pixel to the corner of the image to decouple the coordinate system from
the original image pixels. Thus, the resulting camera calibration K will not be tied to a specific
resolution.

A number of key aspects of the optimization problem (18) should be noted:
1) Relatively large number of optimized parameters: in the experimental scene, 71 cam-

era positions (six degrees of freedom each), and 430 markers on the object, i.e., at least
71 · 6 + 430 · 3 = 1716 parameters;

2) Sparsity of the equation system (Jacobian): each term in (19) – reprojection error includes
only one position, and not all object points are observed in every frame;

3) Presence of outliers or points with very high reprojection error: Fig. 11 shows that in almost
every position there are points with residuals multiple times higher the root mean square
error σrepr.
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Fig. 11. Distribution of reprojection error of 3D points from (19) (left Y-axis) in pixels across 71 camera
positions as box plots covering 99% of points. Circle denotes outlier (less than 1% of points). Dashed line
(right Y-axis) denotes number of residuals per position – two for each observed point.

Thus, it is necessary to use optimization methods robust to noise and outliers (even after careful
feature detection and filtering). As seen in Fig. 11, outliers occur more frequently than can be
predicted based on a normal or Gaussian distribution, as emphasized in [39]. It proposes replac-
ing ea,i(θ) in (19) with ρ(ea,i(θ)), where ρ(x) is a non-negative scalar function or “robust kernel”:
ρ(x) > 0, ∀x ∈ R, ρ′(0) = 0, which suppresses gradients of the loss function in case of outliers due
to ρ′(x) < 1. In the experimental part, the Huber function was used for this purpose:

ρt(x) =

{
x, if x < t2,

t2 (2
√
x/t2 − 1), otherwise,

(20)

where t = 0.05 pixels – normalization coefficient.

For residual values below t, the robust kernel function has no effect on the loss function; however,
in the outlier region above t, robust kernel significantly reduces outliers contribution to the loss
function (19).

For reliable solution of the bundle adjustment problem (18), approximate Newton methods with
regularization are used – at each algorithm’s iteration, step direction and magnitude adjustment
is performed [39]. The Levenberg–Marquardt optimization algorithm from this category was used
in the experimental part. An efficient implementation of various optimization methods, different
robust kernels and sparse matrix operations is available in [81].

7. EXPERIMENTAL PART

The experiments goal is to highlight the key factors of the optimization process (18) that affect
the accuracy of the reconstructed 3D point cloud. Original data (digital images) was acquired
with camera from “Hexagon DPA Pro” (HDP) hardware set, specifically, Canon EOS 5DS with a
monochrome sensor w × h = 8700 × 5800 (50 Mp) and lens f = 28 mm. It should be noted that
various professional DSLR camera models can be used for precise measurements [28].

The test scene and the reconstructed 3D point cloud of 430 markers are shown in Fig. 3. The
scene includes two rigid objects – a steel welding table with attached markers (overall dimension
∼2000mm) and a carbon fiber calibration plate (overall dimension ∼800mm, markers applied by the
manufacturer). Two scale bars of 1390mm and 790mm define metric units for the reconstructed
point cloud and provide redundant accuracy verification. Photography was performed carefully
with environmental temperature control (20 ◦C) in the lab. Two nearly identical datasets were
collected with a one-day interval (74 and 79 images). Image processing for each day was performed
both in the HDP software package and in the authors’ own software based on the Python language
and open-source mathematical libraries Jax [82], SciPy [83], OpenCV [72].

The photogrammetric pipeline of reconstruction included the following steps:

1) Photography of the test object from different positions (distance between camera and object
1.5–2 m), example in Fig. 4;
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Fig. 12. Comparison of photogrammetric reconstruction results of the test scene from “Hexagon DPA
Pro” and the current approach for two experiments (data from two days – upper and lower graphs).
Units in millimeters. X-axis shows measured distance ranges.

2) Computation of circular marker parameters (coded and regular) on images and matching
(grouping) of coded markers by binary code, Section 5;

3) Autocalibration estimating rough camera calibration (without accounting for distortion (12))
and its positions at different moments of time, Section 6.4;

4) Approximate bundle adjustment estimating cloud of 3D coordinates of coded markers and
camera calibration 6.5;

5) Matching (grouping) of all markers using the fundamental matrix equation (4), obtained from
camera calibration [26];

6) Precise bundle adjustment, result – cloud of 3D coordinates of all markers and accurate
camera calibration.

Next, we consider the results – reconstructed 3D point clouds obtained for various configura-
tions of the optimization problem (18). Let’s denote Brown’s projection model [3] (14) as Brown;
with residual stabilization (20) as Brown & ρ0.05. For the case without accounting for tangential
distortion (13) Brown & ρ0.05 & k0τ . Model (15) is denoted as OpenCV17 and, according to previous
definitions, we introduce OpenCV & ρ0.05, OpenCV & ρ0.05 & k0τ .

Figure 12 presents a comparison of reconstruction from HDP and the scheme Brown & ρ0.05.
Each graph includes k = 8 distributions (box plots) of distance differences between corresponding
point pairs of two clouds:

17 This formulation is given in [72].
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||pi
o −pj

o||2 − ||pi
hex−pj

hex||2, ∀i, j ∈ [1..Npts], where p
·
hex – points obtained from HDP, p·o – result

of optimization (18) with model Brown & ρ0.05. The distribution of deviations is given for a specific
interval [Lk, Uk) of distances between points. The red line indicates the maximum permissible error
of HDP for length measurement. It should be emphasized that HDP is a certified measurement
system according to the VDI / VDE 2634, part 1 standard. This guarantees volumetric measure-
ment accuracy within the limits indicated by the red line. Thus, the model Brown & ρ0.05 yields
results within the HDP error margin.

In HDP, both scale bars were used in the bundle adjustment problem. For all results obtained
by the author’s software, the loss function (19) included the length residual of only the larger bar
(1390mm, Nscales = 1), the 790mm bar was used for additional verification. By increasing wscale

in (19), zero error of the bar length can easily be achieved at the cost of projective distortion of
the resulting point cloud.

Table provides a comparison of distance deviations between point pairs for two clouds similar to
Fig. 12, but with the algorithm being common and data from different days. Thus, the repeatability
of results – a key characteristic of any measurement system and photogrammetry in particular –
can be evaluated. The scene contained two rigid objects – a steel welding table and a carbon
calibration plate; repeatability is evaluated separately for each point subset. Columns σtable and
σplate show the root mean squared error for table and plate points respectively. The largest error
in measuring the scale bar length (790mm) over two days ebar is also presented.

As seen from Table, the measurement repeatability of the small calibration plate σplate is almost
identical (with one exception) and does not depend on the algorithm configuration choice. For
the table, the difference can be significant – the best repeatability is achieved with optimization
suppressing outliers: Brown & ρ0.05 and OpenCV & ρ0.05 give the best results in their groups.
Moreover, without stabilization in configurations Brown and OpenCV, significant errors in scale bar
measurements ebar are observed. The results also confirm the necessity of accounting for tangential
distortion (13) in the bundle adjustment problem even for high-class optics (Canon EOS 5DS).
It’s interesting to note that Brown & ρ0.05 significantly outperforms HDP in σtable. In conclusion,
it should be emphasized that the main components for high-precision results are careful texture
feature extraction and accounting for the detection errors in the optimization problem (18).

Repeatability of distances for 3D point clouds obtained by one algorithm from
data of different days (smaller is better)

Algorithm σtable, μm σplate, μm ebar, μm

HDP 46.5 7.2 –2.918

Brown 80.4 22.5 138.7

Brown & ρ0.05 18.0 7.5 –6.9

Brown & ρ0.05 & k0τ 41.1 7.5 3.3

OpenCV 41.8 7.6 –154.2

OpenCV & ρ0.05 39.8 7.6 –9.0

OpenCV & ρ0.05 & k0τ 41.2 7.7 4.3

8. CONCLUSION

Within this work, a broad overview of algorithms constituting the photogrammetric pipeline
has been presented. Key factors determining the accuracy of the output 3D point cloud have been
demonstrated. A mathematical formulation of the photogrammetric optimization problem for
various camera models has been presented. In the experimental part, high accuracy indicators for
the described mathematical models on real hardware and application scenario have been confirmed.
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Abstract—This paper proposes an algorithm for constructing gain matrices in the spectrum
assignment problem of a continuous-time linear dynamic control system without any constraints
on the matrix coefficients of the system. The algorithm is based on constructing eigenvectors
and adjoined vectors corresponding to the given eigenvalues of the corresponding matrix. An
algorithm with a minimum number of simple algebraic operations is developed for their con-
struction. As a result, to solve the above problem, a complete set of gain matrices is constructed,
depending on a certain number of arbitrary scalar parameters. Cases of the uniqueness of such a
matrix are determined. Illustrative examples are provided in the cases of a simple spectrum and
a multiple one. Gain matrices are constructed for a dynamic system describing the operation
of a multi-chamber heating furnace.
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1. INTRODUCTION

The problem of stabilizing the programmed motion of a dynamic system is one of the most
important challenges in control theory, dictated by pressing practical demands.

The solution of the stabilization problem has a long history of over 150 years and an extensive
bibliography, including both purely theoretical and practical works. The history up to 2019 was
described in detail in [1], with a comprehensive list of references containing 107 items.

A more general problem is also of great interest: if a linear dynamic feedback control system
is described by a set of differential equations with respect to the unknown components of the
state vector of the system, it is required to determine an appropriate feedback (gain matrix) under
which the spectrum of the matrix coefficient at the state vector will possess definite properties. For
example, it should be located in a desired region of the complex plane. In particular, if this region
lies in the left half-plane of the complex plane, then the corresponding gain matrix is constructed
by stabilizing the programmed motion of the control system under consideration.

In a special case, the region for locating the spectrum points can be a finite set of arbitrarily
given numbers. In this case, the problem of finding the corresponding gain matrix is called pole
assignment, spectrum control, or spectrum assignment in the literature.
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In the monograph [2], V.I. Zubov studied a nonlinear time-varying control system and established
sufficient conditions for the existence of additional components that can be introduced into the
system to stabilize it; also, he provided a method for finding such additional components.

For a linear time-invariant control system of the form

ẋ = Ax+Bu, (1.1)

where x = x(t), x ∈ R
n, u = u(t), u ∈ R

m, ẋ = dx
dt , A : Rn → R

n, B : Rm → R
n, and t ∈ [t0, tk], the

spectrum assignment problem consists in the following:

For arbitrarily given numbers {λj}nj=1, it is required to construct a state-feedback control law

u = Kx (1.2)

under which the spectrum of the matrix A+BK will coincide with {λj}nj=1, i.e.,

det(A+BK − λj I) = 0. (1.3)

In the case of complex values λj, they must be pairwise ordered and complex conjugate.

For a linear time-invariant system with a one-dimensional control vector (scalar control),
V.I. Zubov essentially derived a sufficient condition for the solvability of the spectrum assign-
ment problem: this is the controllability condition of the system. The spectrum was considered
arbitrary, and the author passed to the spectrum located in the left half-plane of the complex plane
only to stabilize the system [2, pp. 153 and 154].

The complete result on the existence of a solution of problem (1.1)–(1.3) was obtained by
W.M. Wonham [3, 4, p. 79]:

Theorem 1. Problem (1.1)–(1.3) is solvable if and only if the pair (A,B) is controllable.

Consequently, the condition

rank(BAB . . . An−1B) = n

must hold.

The history of the proof of this theorem by some authors, with the aim of simplification, was
presented in [1].

A practical solution of problem (1.1)–(1.3) was obtained for the case m = 1 as a solution of the
equation

det(A+BK − λI) = f(λ),

where f(λ) is a polynomial of degree n with corresponding real coefficients that contains the
components of the row matrix K = (k1 k2 . . . kn). This equation is uniquely solvable with
respect to ki, i = 1, . . . , n, and the solution is given by the exact Bass–Gura and Ackermann for-
mulas [1, p. 579].

A numerical implementation of problem (1.1)–(1.3) in MATLAB, based on the full pole place-
ment method [5], was provided in [6].

For the controllable system (1.1) with given A and B, Ker B = {0}, a method for constructing
a set of gain matrices was described in [7]. For this purpose, Jordan chains of vectors of the matrix
(A− λI B) for each λ = λj were used, and additional parameterizing matrices were introduced.

The so-called cascade decomposition method for solving problem (1.1)–(1.3) without any con-
straints on A and B was proposed in [8]. (For brevity, it will be referred to as the cascade method.)
This method allows one to establish that either system (1.1) is uncontrollable (and the matrix K
cannot be constructed) or system controllability holds (in this case, the method yields a complete
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manifold of all matrices K corresponding to the given A, B, and {λj}nj=1). Thus, another proof of
Theorem 1 was obtained and, moreover, a method for constructing a complete set of gain matrices
was developed.

Problem (1.1)–(1.3) is solved as follows [8].

The equation

(A+BK)vj = λjvj (1.4)

is solved with respect to vj and K; first, a set of n linearly independent vectors vj corresponding
to the eigenvalues λj is constructed; then, the components of the matrix K are found. The cascade
method is used only to construct vj.

However, application of the cascade method is rather computationally intensive: it involves
decompositions of spaces into subspaces, projectors onto subspaces, and semi-inverse matrices.

The goal of this paper is to maximally simplify the solution of problem (1.1)–(1.3); the idea is
to create an algorithm for constructing n linearly independent eigenvectors and adjoined vectors of
the matrix A+BK that requires only solving systems of linear algebraic equations and checking
the linear independence of the resulting vectors at the last step of the algorithm, e.g., by computing
determinants.

Such a design of gain matrices appreciably simplifies the computational process and creates the
necessary prerequisites for developing simpler computational programs.

For the sake of comparison, note the following: Moore–Penrose pseudoinverse matrices were
used in [6] to solve the applied problem (1.1)–(1.3) in MATLAB; they were computed as the limit
of a sequence of certain matrices. In this case, only one matrix K is constructed, although there
exists a set of such matrices [8, p. 2024] for the problem considered in [6].

In this paper, we reveal a complete set of gain matrices for a particular problem by establishing
the dependence of the matrix on some numerical parameters, some being arbitrary while the others
satisfying certain conditions.

The manifold of gain matrices is very useful in applications: one can select an appropriate
matrix, e.g., with a smaller norm or with fewer nonzero components.

The number of steps in the algorithm for finding the eigenvectors and adjoined vectors of the
matrix A+BK can be determined in advance: there are exactly p of them, where p = min q and
the number q is given by the condition

rank(BAB . . . AqB) = n. (1.5)

The algorithm proposed below is based on the cascade method [8] and represents its significant
simplification. The algorithm for constructing the eigenvectors and adjoined vectors of the matrix
A+BK is justified in the Appendix.

As illustrative examples, we find gain matrices in the cases of a simple spectrum and a multiple
one and construct gain matrices for a dynamic system describing the operation of a multi-chamber
heating furnace.

2. SOLVING A LINEAR ALGEBRAIC EQUATION
WITH A SINGULAR MATRIX AT THE UNKNOWN

A linear system of the form
Cx = y (2.1)

with a singular matrix C can be solved with respect to x only under some constraint (condition)
imposed on y :

Qy = 0. (2.2)
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The solution x may be nonunique, i.e.,

x = C−y + z, (2.3)

where C− is some matrix, and z is an arbitrary vector such that Cz = 0.

The constraint (2.2) will be called the well-posedness condition for system (2.1), and the vec-
tor (2.3) will be called the solution of system (2.1).

For example, let C =

⎛⎜⎜⎜⎝
1 0 1
0 1 0
2 0 2
0 0 0

⎞⎟⎟⎟⎠ , i.e.,

x1 + x3 = y1,
x2 = y2,

2x1 + 2x3 = y3,
0 = y4;

(2.4)

then x =

⎛⎜⎝y1
y2
0

⎞⎟⎠+

⎛⎜⎝−x3
0
x3

⎞⎟⎠ is the solution of system (2.4) with an arbitrary value x3 under the

conditions

−2y1 + y3 = 0,

y4 = 0.

Consequently, Qy = 0, where Q =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
−2 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ . In this case, z =

⎛⎜⎝−x3
0
x3

⎞⎟⎠ .

System (2.4) can also be solved as follows:

x =

⎛⎜⎝ 0
y2
y1

⎞⎟⎠+

⎛⎜⎝ x1
0

−x1

⎞⎟⎠ for any x1 under the well-posedness condition

y1 − 1

2
y3 = 0,

y4 = 0.

But the solution set and the well-posedness condition are equivalent in this case; hence, the
particular form of the solution with the corresponding well-posedness condition does not matter in
practice.

3. THE ALGORITHM FOR CONSTRUCTING A GAIN MATRIX
IN THE CASE OF A SIMPLE SPECTRUM

3.1. Preliminary Transformations

A1. In the case of simple eigenvalues λj , j = 1, . . . , n, in equation (1.4)

(A+BK)v(λj) = λjv(λj), (3.1)
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introduce the designation
Kv(λj) = f(λj). (3.2)

A2. Write equation (3.1) as
Bf(λj) = (λI −A)v(λj). (3.3)

A3. Solve equation (3.3) with respect to f(λj) :

f(λj) = B−(λjI −A)v(λj) + z(λj) (3.4)

with an arbitrary vector z = z(λj) under the well-posedness condition

Q(λjI −A)v(λj) = 0. (3.5)

As a result of preliminary transformations, the relation (3.1) is replaced by an equivalent system
of the three relations (3.2), (3.4), and (3.5).

3.2. The Algorithm for Solving Equation (3.5) with Respect to the Vector v = v(λj)

Forward pass

The first step. A11. In equation (3.5) with the subscript j omitted for now, denote by w1 = w1(λ)
the coefficient at λ (i.e., Qv); then (3.5) is equivalent to the system

(3.6)

{
Qv = w1

QAv = λw1.

A12. Obtain the solution v of system (3.6) in the form

(3.7) v = G1(λ,w1) + z1

with some matrix G1 and an arbitrary vector z1 = z1(λ) under the well-posedness condition

(3.8) Q1(λ,w1) = 0.

The second step. A21. In the relation (3.8), denote by w2 = w2(λ) the coefficient at λ (i.e., Q1w1);
then (3.8) is equivalent to the system

(3.9)

{
Q1w1 = w2

Q11w1 = λw2

with some matrix Q11.

A22. Obtain the solution of this system in the form

w1 = G2(λ,w2) + z2

with some matrix G2 and an arbitrary vector z2 = z2(λ) under the well-posedness condition

Q2(λ,w2) = 0.

And so on . . . .

The ith step. Ai1. In the well-posedness condition identified at the (i− 1)th step,

(3.10) Qi−1(λ,wi−1) = 0, i = 2, 3, . . . ,
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denote by wi = wi(λ) the coefficient at λ; as a result, (3.10) is equivalent to the system

(3.11)

{
Qi−1wi−1 = wi

Qi−11wi−1 = λwi.

Ai2. Obtain the solution of this system in the form

(3.12) wi−1 = Gi(λ,wi) + zi

with some matrix Gi and an arbitrary vector zi = zi(λ) under the well-posedness condition

Qi(λ,wi) = 0.

And so on . . . .

The pth step. Ap2. As proved in [8], if system (1.1) is completely controllable, then for i = p
(see (1.5)) system (3.11) is solvable with respect to wp−1 without any well-posedness condition:

(3.13) wp−1 = Gp(λ,wp) + zp

with some matrix Gp and an arbitrary vector zp = zp(λ). The element wp = wp(λ) is also arbitrary.

Construct wp−1.

3.3. The Algorithm for Constructing the Vector v(λ)

Backward pass

B1. Substitute the vector wp−1 constructed at step Ap into (3.12) with i = p− 1, thereby deter-
mining the vector wp−2.

B2. Substitute the vector wp−2 constructed at the previous step into (3.12) with i = p− 2,
thereby determining the vector wp−3.

And so on . . . .

Bp−2. Substitute the vector w2 constructed at step Bp−3 into (3.12) with i = 2, thereby deter-
mining the vector w1.

Bp−1. Substitute the vector w1 constructed at step Bp−2 into (3.7), thereby determining the
vector v :

(3.14) v = G
(
wp(λ), zp(λ), zp−1(λ), . . . , z1(λ)

)
with some matrix G and arbitrary vector functions wp(λ) and zs(λ), s = 1, . . . , p.

3.4. Constructing the System of n Linearly Independent Vectors v(λj)

If system (1.1) is completely controllable, then for any set {λj}nj=1 there exist elements
wp(λ), zp(λ), zp−1(λ), . . . , z1(λ) such that the vectors v(λj) (3.14) with the above
wp−1(λ), zp(λ), zp−1(λ), . . . , z1(λ) are linearly independent [8].

The eigenvalues λj can also be complex, pairwise ordered.

If system (1.1) is not completely controllable, then n linearly independent vectors v(λj) cannot
be constructed, and the same applies to the matrix K [8].

Here, one should construct a vector v(λj) such that the vectors v(λ1), v(λ2), . . . , v(λn) are
linearly independent for any set {λj}nj=1.
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3.5. The Algorithm for Constructing a Gain Matrix in the Case of a Simple Spectrum

C1. Substitute the vectors vj = v(λj) constructed in Section 3.4 into formula (3.4), thereby
determining fj = fj(λj), j = 1, . . . , n.

C2. Substitute vj and fj into (3.2) for each value of j. As a result, n linear equations with
unknowns kij , i = 1, . . . ,m (the components of matrix K) are obtained.

C3. Extract from the above equations those containing the components k1j as the unknowns,
thereby forming a system of linear algebraic equations with the principal determinant 
1 made up
of the components of the linearly independent vectors v(λj); hence, 
1 �= 0.

C4. Solve the system obtained at step C3 with respect to k1j (the components of the first row
of the matrix K).

C5. Repeat steps C3 and C4 for i = 2, 3, . . . ,m, thereby determining the components of the ith
rows of the matrix K.

Example 1. Let A=

⎛⎜⎝0 0 0
1 0 0
0 1 0

⎞⎟⎠, B =

⎛⎜⎝1 1
1 1
1 1

⎞⎟⎠, and K = (kij), i= 1, 2, j = 1, 3.

We solve the equation Bf = (λ I −A)v, where f = (f1, f2) and v = (v1, v2, v3), with respect to f
(step A3):

f1 + f2 = λv1,

f1 + f2 = −v1 + λv2,

f1 + f2 = −v2 + λv3.

Consequently,

(3.15)
f1 = λv1 − z(λ),
f2 = z(λ)

with an arbitrary vector z(λ) ((3.15) is (3.4)) under the well-posedness condition (3.5):

λv1 = −v1 + λv2,
λv1 = −v2 + λv3,

or

(3.16)

{
λ(v1 − v2) = −v1
λ(v1 − v3) = −v2.

Following step A11, we denote

(3.17)
v1 − v2 = w11,
v1 − v3 = w12.

Then (3.16) becomes

(3.18)

{
−v1 = λw11

−v2 = λw12.

The system composed of (3.17) and (3.18) is system (3.6).

We solve system (3.17), (3.18) with respect to v1, v2, and v3 (see step A12, formula (3.7)):

(3.19)
v1 = −λw11,
v2 = −λw12,
v3 = −λw11 − w12

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



AN ALGORITHM FOR CONSTRUCTING GAIN MATRICES 1125

(here z1 = 0) under the well-posedness condition of system (3.17), (3.18): −λw11+λw12 = w11. As
a result, we arrive at the relation (3.8):

λ(−w11 + w12) = w11.

Following step A21, we denote
−w11 + w12 = w2;

then
w11 = λw2.

The last two equalities are system (3.9).

We solve this system with respect to w11 and w12 (see step A22) :

(3.20)
w11 = λw2,
w12 = (1 + λ)w2.

A solution exists for any w2 without any well-posedness condition; hence, step A22 is step Ap2 with
p = 2.

Substituting (3.20) into (3.19) yields formula (3.14):

(3.21) v(λ) = (λ2, λ+ λ2, 1 + λ+ λ2).

For different values of λ1, λ2, and λ3, the vectors v(λj) = (λ2
j , λj + λ2

j , 1 + λj + λ2
j), j = 1, 2, 3,

are linearly independent since the determinant 
1 made up of the components of the above vectors
for each j reduces to a Vandermonde determinant [9, p. 33], which is nonzero.

Then v(λj) are substituted into (3.15) (step C1) and, together with f1 and f2, are substituted
into (3.2) (step C2).

Two systems are formed from the resulting equalities.

For i = 1 (see step C3),⎧⎪⎪⎨⎪⎪⎩
λ2
1k11 + (λ1 + λ2

1)k12 + (1 + λ1 + λ2
1)k13 = λ3

1 − z(λ1)

λ2
2k11 + (λ2 + λ2

2)k12 + (1 + λ2 + λ2
2)k13 = λ3

2 − z(λ2)

λ2
3k11 + (λ3 + λ2

3)k12 + (1 + λ3 + λ2
3)k13 = λ3

3 − z(λ3);

for i = 2 (step C4), ⎧⎪⎪⎨⎪⎪⎩
λ2
1k21 + (λ1 + λ2

1)k22 + (1 + λ1 + λ2
1)k23 = z(λ1)

λ2
2k21 + (λ2 + λ2

2)k22 + (1 + λ2 + λ2
2)k23 = z(λ2)

λ2
3k21 + (λ3 + λ2

3)k22 + (1 + λ3 + λ2
3)k23 = z(λ3).

And the components of the matrix K are determined accordingly.

The nonunique form of the matrix K is ensured by the arbitrary function z(λ).

4. THE ALGORITHM FOR CONSTRUCTING A GAIN MATRIX
IN THE CASE OF A MULTIPLE SPECTRUM

For example, let λ1 have multiplicity k, k � n, and let λk+1, λk+2, . . . , λn be distinct arbitrary
numbers not equal to λ1.

The vectors v1 = v(λ1), vk+1 = v(λk+1), . . . , vn = v(λn) are constructed as described in Sec-
tion 3; as k − 1 vectors τj = τj(λ) we take the vectors τ1, τ2, . . . , τk−1 of the matrix A+BK that
are adjoined to v1 and correspond to the eigenvalue λ1 :

(A+BK)τj = λ1τj + τj−1, j = 1, . . . , k − 1, τ0 = v1.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



1126 ZUBOVA, RAETSKAYA

4.1. Preliminary Transformations

D1. Introduce the designation

(4.1) Kτj = gj .

D2. For each j = 1, . . . , k− 1, solve the equations Bgj = (λ1I −A)τj + τj−1 with respect to gj :

(4.2) gj = B−((λ1I −A)τj + τj−1) + zj ,

with an arbitrary vector zj such that Bzj = 0, under the well-posedness conditions

(4.3) Q((λ1I −A)τj + τj−1) = 0.

4.2. The Algorithm for Solving Equations (4.3) with Respect to τj

Forward pass

The first step. D11. In (4.3), denote by wj
1, j = 1, . . . , k − 1, the coefficients at λ1 (i.e., Qτj) :

(4.4) Qτj = wj
1;

as a result, (4.3) takes the form

(4.5) QAτj = λ1w
j
1 +Qτj−1,

where τ0 = v1 is a known function (see Section 3).

D12. Find the solutions of systems (4.4) and (4.5) in the form

(4.6) τj = Gj
1(λ1, w

j
1) + zj1

with some matrices Gj
1 and arbitrary vectors zj1 under the well-posedness conditions

Qj
1(λ1, wp, w

j
1) = 0.

The ith step. Di1. In the relations obtained at the (i− 1)th step of the algorithm,

(4.7) Qj
i−1(λ1, wp, w

j
i−1) = 0,

denote by wj
i the coefficients at λ1 :

(4.8) Qj
i−1w

j
i−1 = wj

i .

The expressions (4.7) become

(4.9) Qj
i−11w

j
i−1 = λ1w

j
i .

Di2. Solve systems (4.8) and (4.9) with respect to wj
i−1 :

(4.10) wj
i−1 = Gj

i (λ1, w
j
i ) + zji

with some matrices Gj
i and arbitrary vectors zji under the well-posedness conditions

(4.11) Qj
i (λ1, wp, w

j
i ) = 0,

and so on . . . .
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The pth step. Dp2. As proved in [8], if system (1.1) is completely controllable, then for each

j = 1, . . . , k − 1 and i = p, equations (4.11) are solvable with respect to wj
p−1 :

(4.12) wj
p−1 = Gj

p(λ1, wp, w
j
p) + zjp,

where Gj
p are some matrices and zjp, wp, and wj

p are arbitrary vectors. In this case, well-posedness
conditions are absent.

Form wj
p−1.

Backward pass

E1. For each j = 1, . . . , k − 1, substitute the vectors wj
p−1 (4.12), with as yet arbitrary wj

p and rjp,

into (4.10) with i = p− 1, thereby determining the vectors wj
p−2.

E2. Substitute wj
p−2 into (4.10) with i = p− 2. Thereby, the vectors wj

p−3 are obtained.

And so on . . . .

Ep−2. Substitute wj
2 (found at step Ep−3) into (4.10) with i = 2. Thereby, the vectors wj

1 are
obtained.

Ep−1. Determine τj from (4.6):

(4.13) τj = G(wp, w
j
p, z

j
p, z

j
p−1, . . . , z

j
1), j = 1, . . . , k − 1.

4.3. Constructing the System of n Linearly Independent Vectors
in the Case of a Multiple Spectrum

According to [8], in the case of the complete controllability of system (1.1), there exist vectors
wp, w

j
p, z

j
p, z

j
p−1, . . . , z

j
1 such that the vectors v1, τ1, . . . , τk−1, vk+1, . . . , vn are linearly independent.

Here, the vectors τ1, . . . , τk−1 are constructed using formulas (4.13), and vj = v(λj), j = 1, k +
1, . . . , n, using formulas (3.14).

If system (1.1) is not completely controllable, then n linearly independent vectors
v1, τ1, . . . , τk−1, vk+1, . . . , vn cannot be constructed for arbitrary values λ1, λk+1, . . . , λn, where λ1

is an eigenvalue of multiplicity k [8].

Select elements wp, w
j
p, z

j
p, z

j
p−1, . . . , z

j
1 such that the vectors v1, τ1, . . . , τk−1, vk+1, . . . , vn are lin-

early independent.

4.4. The Algorithm for Constructing a Gain Matrix in the Case of a Multiple Spectrum

Let λ1 be an eigenvalue of multiplicity k of the matrix A+BK, and let the other λk+1, . . . , λn

be simple eigenvalues.

G1. For each j = 1, k + 1, . . . , n, substitute the vectors vj = v(λj) constructed in Section 3
into (3.4), thereby determining fj.

G2. Substitute fj and vj into (3.2):

(4.14) Kv(λj) = f(λj), j = 1, k + 1, . . . , n.

G3. Substitute the vectors τ1, τ2, . . . , τk−1 obtained at step 4.3 into formulas (4.2), thereby
determining the vectors gj .

G4. Substitute gj and τj into (4.1):

(4.15) Kτj = gj , j = 1, . . . , k.
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G5. From equalities (4.14) and (4.15) extract those containing the components k1j of the first
row of the matrix K, j = 1, . . . , n. Thereby, a linear algebraic system with the unknowns k1i is
formed, with the principal determinant 
2 made up of the components of the linearly independent
vectors v1, τ1, . . . , τk−1, vk+1, . . . , vn; hence, 
2 �= 0.

G6. Solve the system constructed at the previous step, thereby obtaining the components of the
first row of the matrix K.

G7. Repeat steps G5 and G6 for i = 2, 3, . . . ,m, thereby determining the components of the
ith rows of matrix K.

Example 2. Let A and B be the matrices from Example 1, and let λ1 = λ2 = λ3. It is required
to construct three linearly independent vectors v1, τ1, τ2 such that

(A+BK)v1 = λ1v1, (4.16)

(A+BK)τ1 = λ1τ1 + v1, (4.17)

(A+BK)τ2 = λ1τ2 + τ1. (4.18)

The vector v1 has been constructed in Section 3: v1 = (λ2
1, λ1 + λ2

1, 1 + λ1 + λ2
1) (formula (3.21).

To construct τ1 = (τ11, τ12), in equation (4.17) we introduce the designation (equality (4.1)
with j = 1)

Kτ1 = g1, g1 = (g11, g12). (4.19)

This equation becomes
Bg1 = (λ1I −A)τ1 + v1;

therefore,

g11 = λ1τ11 + λ2
1 − z11 ,

g12 = z11
(4.20)

(this is (4.2) with j = 1) with an arbitrary value z11 under the well-posedness condition ((4.3)
with j = 1) {

λ1(τ11 − τ12 − 1) = −τ11
λ1(τ11 − τ13 − 1) = −τ12 + 1.

Next, the coefficients at λ1 in the last two relations are denoted as the new unknowns (see
step D11), e.g.,

τ11 − τ12 − 1 = a,

τ11 − τ13 − 1 = b.

(Here, a and b are used instead of w1
11 and w1

12 for the sake of simple notation, see (4.4).) The
further actions are performed as described in subsection 4.2. As a result, the vector τ1 = (2λ1, 1 +
2λ1, 1 + 2λ1) is determined.

Next (see subsection 4.1, j = 2), with the designations

Kτ2 = g2, g2 = (g21, g22), (4.21)

equation (4.18) takes the form

Bg2 = (λ · I −A)τ2 + τ1. (4.22)

From this equation we find

g21 = λ1τ21 + 2λ1 − z2,

g22 = z2
(4.23)
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with an arbitrary value z2 under the condition{
λ1(τ21 − τ22) = −τ21 + 1
λ1(τ21 − τ23) = −τ22 + 1.

Continuing to solve the last system by the method described in subsection 4.4, we get

τ2 = (1, 1, 1).

As is easily verified, the determinant 
2 made up of the components of the vectors v1, τ1, τ2 is
nonzero.

Next, using formulas (4.20) and (4.23), we determine g1 = (3λ2
1 − z11 , z

1
1) and g2 = (3λ2 − z2, z2)

with arbitrary values z11 and z2. The vector f is given by (3.15): f = (λ3
1 − z, z) with an arbitrary

value z.

Finally, a system consisting of the equations Kv1 = f1, (4.19), and (4.21) is formed.

As a result, two systems are obtained:⎧⎪⎪⎨⎪⎪⎩
λ2
1k11 + (λ1 + λ2

1)k12 + (1 + λ1 + λ2
1)k13 = λ3

1 − z

2λ2
1k11 + (1 + 2λ1)k12 + (1 + 2λ1)k13 = 3λ2

1 − z11

k11 + k12 + k13 = 3λ1 − z2

and ⎧⎪⎪⎨⎪⎪⎩
λ2
1k21 + (λ1 + λ2

1)k22 + (1 + λ1 + λ2
1)k23 = z

2λ1k21 + (1 + 2λ1)k22 + (1 + 2λ1)k23 = z11

k21 + k22 + k23 = z2.

They yield the components kij, i = 1, 2, 3, j = 1, 2, 3, of the matrixK in a nonunique way, depending
on arbitrary values z, z11 , and z2.

In a special case where λ = −1 is a triple eigenvalue of the matrix A+BK, we have K =(
c1 −2 + c2 −1− c3
−c1 −c2 c3

)
, where c1, c2, and c3 are linear combinations of arbitrary values z, z11 ,

and z2, therefore being arbitrary as well.

Direct verification shows that, for such K,

det(A+BK − λI) = −(λ+ 1)3.

5. ON THE NONUNIQUENESS OF THE GAIN MATRIX

The nonuniqueness of K for given A, B, and {λj}nj=1 arises if Ker B �= {0}, i.e., when the equa-
tion Bf = h with a fixed vector h ∈ R

n has a nonunique solution f = B−h+ z with an arbitrary
vector z ∈ R

m.

Also, the nonuniqueness of K arises if at least one of systems (3.11) or systems (4.8), (4.9) with
i = 1, . . . , p has a nonunique solution wi−1 or wj

i−1, j = 1, . . . , k, where k is the multiplicity of λs.

However, if Ker B = {0} and all systems (3.11) or (4.8), (4.9) are uniquely solvable, then K has
a unique form; see Example 2 in [8].

Note that the higher the multiplicity of an eigenvalue is, the more arbitrary parameters K may
contain.

For example, a unique matrix K was constructed in [6] for system (1.1) with the matrices

A =

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 1
0 5 0 0
7 0 0 0

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
0 0
0 0
1 0
0 1

⎞⎟⎟⎟⎠ and the eigenvalue λ = −1 of multiplicity 4.
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However, for this case, the algorithm proposed here yields a matrix K depending on eight
parameters, K = K(c1, c2, . . . , c8), connected only by the condition∣∣∣∣∣∣∣∣∣

c1 c2 0 0
c3 c4 c1 c2
c5 c6 c3 c4
c7 c8 c5 c6

∣∣∣∣∣∣∣∣∣ �= 0.

This condition arises due to the linear independence of the vectors v1, τ1, τ2, and τ3 [8].

For a particular dynamic system of the form (1.1) and a given arbitrary set {λj}nj=1, the method
proposed in this paper constructs precisely the complete set of gain matrices. This conclusion
follows from the equivalence of the transformations applied.

6. AN ILLUSTRATIVE EXAMPLE: GAIN MATRICES FOR STABILIZING
THE OPERATION OF A MULTI-CHAMBER HEATING FURNACE

The dynamic model and operation scheme of three furnaces for heating three chambers were
presented in [10].

Consider the case of three furnaces and five chambers:

ẋ1 = 2ax1 + bu1 + cu2,

ẋ2 = ax2 + cu2 + du3,

ẋ3 = ax3 + bu1 + 2cu2 + du3,

ẋ4 = 3ax4 + 2cu2 + 2du3,

ẋ5 = 3ax5 + 2bu1 + 3cu2 + du3,

(6.1)

where a � − 1
10 , b =

1
4 , c =

1
9 , and d = 1

5 . In the case of the unreachability of a given initial temper-
ature xi(t0) = x0i in the ith chambers, i = 1, 2, . . . , 5, it is required to correct the program control
(fuel supply) ur = ur(t) of the rth furnaces, r = 1, 2, 3, so that at a specified time instant t = tk
the temperature xi(tk) in the chambers is close to a desired one xki. For this purpose, a stabilizing
control law with a gain matrix K can be used to make the state of system (6.1) exponentially
tending to the program state.

Here, A =

⎛⎜⎜⎜⎜⎜⎝
2a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 3a 0
0 0 0 0 3a

⎞⎟⎟⎟⎟⎟⎠ and B =

⎛⎜⎜⎜⎜⎜⎝
1/4 1/9 0
0 1/9 1/5

1/4 2/9 1/5
0 2/9 2/5

2/4 3/9 1/5

⎞⎟⎟⎟⎟⎟⎠ .

The components of the matrix K = (kij) are found from the equation Kv = f, where f = f(λ)
and v = (v1, . . . , v5), and vi = vi(λ) are obtained from the equation Bf = (λI −A)v, or

(6.2)

f1 + f2 = (λ− 2a)v1,

f2 + f3 = (λ− a)v2,

f1 + 2f2 + f3 = (λ− a)v3,

2f2 + 2f3 = (λ− 3a)v4,

2f1 + 3f2 + f3 = (λ− 3a)v5,

where f = (4f1, 9f2, 5f3) to get rid of fractions in the matrix B.

The solution of system (6.2) is

(6.3)
f1 = (λ− 2a)v1 − z,
f2 = z,
f3 = (λ− a)v2 − z
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(formula (3.4)) with an arbitrary value z under conditions (3.5):

2(λ− a)v2 = (λ− 3a)v4,

(λ− 2a)v1 + (λ− a)v2 = (λ− a)v3,

2(λ− 2a)v1 + (λ− a)v2 = (λ− 3a)v5,

or

(6.4)
λ(2v2 − v4) = 2av2 − 3av4,

λ(v1 + v2 − v3) = 2av1 + av2 − av3,
λ(2v1 + v2 − v5) = 4av1 + av2 − 3av5.

Constructing the vector v(λ)

The first step. We introduce the designations (see step A11)

(6.5)
2v2 − v4 = aw11,

v1 + v2 − v3 = aw12,
2v1 + v2 − v5 = aw13.

Then from (6.4) it follows that

(6.6)
2v2 − 3v4 = λw11,

2v1 + v2 − v3 = λw12,
4v1 + v2 − 3v5 = λw13.

A12. System (6.5), (6.6), which contains six equations and five unknowns, is used to find vj
(step A12) :

v1 = (λ− a)w12,

v2 = −1

4
(λ− 3a)w11,

v3 = −1

4
(λ− 3a)w11 + (λ− 2a)w12,

v4 = −1

2
(λ− a)w11,

v5 = −1

4
(λ− 3a)w11 + 2(λ− a)w12 − aw13

(6.7)

(this is formula (3.7)) under the well-posedness condition of this system:

(λ− 3a)w11 − 4(λ− a)w12 − 2(λ− 3a)w13 = 0;

hence,

λ(w11 − 4w12 − 2w13) = a(3w11 − 4w12 − 6w13).

The second step. A21. Denoting (see step A21)

w11 − 4w12 − 2w13 = aw21, (6.8)

we have

3w11 − 4w12 − 6w13 = λw21. (6.9)
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A22. System (6.8), (6.9) is solved with respect to w1i (step A22) :

w11 =
1

2
(λ− a)w21 + 2w13,

w12 =
1

8
(λ− 3a)w21

(6.10)

for any w13 and w21. There is no well-posedness condition; consequently, p = 2.

Next, we substitute the values w11 and w12 (6.10) into formulas (6.7):

v1 =
1

8
(λ− a)(λ− 3a)w21,

v2 = −1

2
(λ− 3a)w13 − 1

8
(λ− a)(λ− 3a)w21,

v3 = −1

2
(λ− 3a)w13 − 1

8
a(λ− 3a)w21,

v4 = −(λ− a)w13 − 1

4
(λ− a)2w21,

v5 = −1

2
(λ− a)w13 +

1

8
(λ− a)(λ− 3a)w21

(6.11)

(this is (3.14) for p = 2)) with any w13(λ) and w21(λ) such that v(λj) are linearly independent:

det(v(λ1) v(λ2) v(λ3) v(λ4) v(λ5)) �= 0.

In particular, for w13 = −2 and w21 = 8λ2,

v(λ) =

⎛⎜⎜⎜⎜⎜⎝
(λ− a)(λ− 3a)λ2

(λ− 3a)
(
1− (λ− a)λ2

)
(λ− 3a)

(
1− aλ2

)
2(λ− a)

(
1− (λ− a)λ2

)
(λ− a)

(
1 + (λ− 3a)λ2

)

⎞⎟⎟⎟⎟⎟⎠ . (6.12)

As is easily verified, the determinant 
 made up of the components of this vector for differ-
ent values of λ = λj , j = 1, 2, . . . , 5, by transformations reduces to the Vandermonde determinant
W (λ1, λ2, λ3, λ4, λ5) and is therefore nonzero.

Thus, the vectors v(λj), j = 1, 2, . . . , 5, are linearly independent.
Constructing the gain matrix in the case of a simple spectrum

For each λ = λj, j = 1, 2, . . . , 5, we substitute the values v(λj) (6.12) and f(λj) (6.3) into the
relation Kv(λ) = f(λ).

The resulting system of fifteen equations is used to determine the components of the matrix K.

These equations are split into three systems of the form V1 ·

⎛⎜⎜⎜⎜⎜⎝
ki1
ki2
ki3
ki4
ki5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
fi(λ1)
fi(λ2)
fi(λ3)
fi(λ4)
fi(λ5)

⎞⎟⎟⎟⎟⎟⎠ , i = 1, 2, 3. In the

special case λj = −1
2(j + 1) and a = − 1

10 , we have

V1 =

⎛⎜⎜⎜⎜⎜⎝
63/100 −133/100 −77/100 −171/50 −27/100
189/50 −249/50 −147/100 −581/50 119/50
323/25 −731/50 −119/50 −817/25 551/50

33 −176/5 −143/40 −384/5 153/5
7047/100 −7317/100 −513/100 −7859/50 6757/100

⎞⎟⎟⎟⎟⎟⎠ , (6.13)
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f1 = (−252/125 − 4z, −2457/125 − 4z, −11 628/125 − 4z, −1518/5 − 4z, −98 658/125 − 4z),

f2 = (9z, 9z 9z 9z 9z),

f3 = (−65 201/2 − 50z, −136 255/8 − 25z, 17 431, −15 687/4, 62 181/8 + 25z).

As a result, V −11 fT
i are the elements of the ith row of the matrix K. Finally,

K=

⎛⎝128 394/5−40z1 134 253/10−20z2 −68 724/5 15 437/5 −61 163/10+20z3
90z1 45z2 0 0 −45z3

−65 201/2−50z1 −136 255/8−25z2 17 431 −15 687/4 62 181/8+ 25z3

⎞⎠
with arbitrary values z1, z2, and z3. Substituting the above matrix K into the expression A+BK−
λ · I yields

det(A+BK − λI) =

∣∣∣∣∣∣∣∣∣∣∣

12 839/2 − λ 134 253/40 −17 181/5 15 437/20 −61 163/40
−65 201/10 −136 259/40 − λ 17 431/5 −15 687/20 62 181/40
−502/5 −1001/20 499/10 − λ −25/2 509/20

−65 201/5 −27 251/4 34 862/2 −1569 − λ 62 181/20
63 193/10 132 251/40 −16 931/5 15 187/20 −60 157/40 − λ

∣∣∣∣∣∣∣∣∣∣∣
= −45

2
− 261

4
λ− 145

2
λ2 − 155

4
λ3 − 10λ4 − λ5

= (λ+ 1)

(
λ+

3

2

)
(λ+ 2)

(
λ+

5

2

)
(λ+ 3).

Note that in this example, the variability of the gain matrix depends on the choice of arbitrary
values z and on the values of w13 and w21 such that the vectors v(λj) (6.11) are linearly independent.

The case of a multiple spectrum

It is required to construct a matrix K such that λ = −2 is an eigenvalue of multiplicity 5 of the
matrix A+BK, where A and B are the matrices appearing in system (6.1).

The vector v(−2) = τ0 is constructed by formula (6.12) with a = − 1
10 and λ = −2; the com-

ponents of the vector v(−2) = τ0 are those of the third row of the matrix V1 (6.13). The vec-
tors τj, j = 1, 2, . . . , 4, are obtained from the well-posedness conditions of the equations BKτj =
(λI −A)τj + τj−1.

The components of the vectors τj are those of the jth rows of the matrix V2, where

V2 =

⎛⎜⎜⎜⎜⎜⎝
323/25 −731/50 −119/50 −817/25 551/50
−72/5 77/5 7/5 162/5 −67/5

4 −57/10 −17/10 −59/5 21/10
0 1 1 2 1
0 −17/10 −17/10 −38/10 −19/10

⎞⎟⎟⎟⎟⎟⎠ .

The equations Bgj = (λI −A)τj + τj−1 are used to find the solutions gj; in this case, for a
particular choice of arbitrary constants, we obtain

g1 = (−11 628/125− 4z, 3884/25− 4z, −432/5− 4z, 16− 4z, −4z),

g2 = (9z, 9z, 9z, 9z, 9z),

g3 = (13 889/100− 5z, −1097/5− 5z, 2623/20− 5z, −38− 5z, 423/20− 5z)

with an arbitrary value z.
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Solving the system

V2 ·

⎛⎜⎜⎜⎜⎜⎝
ki1
ki2
ki3
ki4
ki5

⎞⎟⎟⎟⎟⎟⎠ = gTi

yields kij , i = 1, 2, 3, j = 1, 2, . . . , 5.

Computations in Mathcad produced the result

K =

⎛⎝16 704/5 − 112z 9519/5 − 58z −8759/5 6613/20 −7973/10 + 54z
252z 261/2z 0 0 −243/2z

−4163− 140z −4765/2 − 145/2z 8509/4 −6363/16 8101/8 + 135/2z

⎞⎠ .

Direct check shows that

det(A+BK − λ · I)

=

∣∣∣∣∣∣∣∣∣∣∣

835 − λ 9519/20 −8759/20 6613/80 −7973/40
−4163/5 −2383/5 − λ 8509/20 −6363/80 8101/40
13/5 −11/20 −63/5 − λ 25/8 16/5

−8326/5 −953 8509/10 −1275/8 − λ 8101/20
4189/5 2377/5 −9009/20 6863/80 −785 740 − λ

∣∣∣∣∣∣∣∣∣∣∣
= −32− 80λ− 80λ2 − 40λ3 − 10λ4 − λ5 = −(λ+ 2)5.

Remark 1. In the case of a nonsingular matrix B, system (1.1) is controllable, and K is deter-
mined from the equations

Kvj = B−1(λjI −A)vj , j = 1, . . . , n,

or

Kvs = B−1(λjI −A)vs,

Kτj = B−1(λjI −A)τj +B−1τj−1, j = 1, . . . , k − 1, τ0 = vs,

where arbitrary linearly independent vectors can be taken for vj or v1, . . . , vs, τ1, . . . , τk−1, vk+1,
. . . , vn.

7. CONCLUSIONS

This paper has proposed a new algorithm for constructing gain matrices in the spectrum assign-
ment problem of a continuous-time linear dynamic system without any constraints on its matrix
coefficients, except for the controllability of the pair (A,B).

The algorithm is based on the cascade decomposition method developed in [8]. In contrast
to [8] (with expanding spaces into subspaces, constructing projectors onto them, and using semi-
inverse matrices), the algorithm in this paper involves elementary algebraic operations: solving
linear algebraic equations, making changes of variables, and checking the linear independence of
vectors.

Such a solution of the problem significantly simplifies the computational process and allows
creating simple computing programs.

In addition, the dependence of the gain matrix on a certain number of arbitrary or conditionally
related scalar parameters has been revealed, and the complete set of such matrices for each problem
has been determined.
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The case of a unique gain matrix has been identified as well.

Illustrative examples of constructing gain matrices have been provided.

Finally, various cases of constructing such a matrix for a dynamic system describing the operation
of a multi-chamber heating furnace have been considered.
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APPENDIX

JUSTIFICATION FOR THE ALGORITHM FOR CONSTRUCTING LINEARLY
INDEPENDENT VECTORS (SUBSECTIONS 3.4 AND 4.2)

Section 2 has presented the solution of a linear algebraic equation of the form Cx = y with a
singular matrix C : Rs → R

l, y ∈ R
l. This solution is explained as follows: using a mapping C, one

can expand spaces Rs and R
l into the direct sums of subspaces:

Rs = CoimC+̇KerC, Rl = ImC+̇Coker C, (A.1)

where Ker C, Im C, and Coker C stand for the kernel, image, and defect (defective) subspace
of C, respectively, and Coim C is the direct complement to Ker C in Rs. (Mappings and the
corresponding matrices are indicated identically.) Here, the narrowing of C̃ to Coim C has an
inverse mapping C̃− [11]. Let P and Q denote projectors onto Ker C and Coker C, respectively;
then the mapping C̃−(I−Q) is called semi-inverse [12, p. 164] and is denoted by C−. Here, I means
an identity mapping in any subspace.

The following result is well-known [8, 13–17].

Lemma. The relation Cx = y is equivalent to the system{
Qy = 0

x = C−y + z
(A.2)

for any z from Ker C.

Note that z = Px. The relation Qy = 0 in (A.2) is the well-posedness condition for the equality
Cx = y, and the second relation in (A.2) is the solution of this equation.

By this lemma, equation (3.3) with omitted j, Bf = (λI −A)v, has the solution

f = B−(λI −A)v + z (3.4) for any z ∈ Ker B under the well-posedness condition (3.5):

(A.3) Q(λ I −A)v = 0.

The first step. Denoting

Qv = w1, (I −Q)v = v1, QAQ = A1, QA(I −Q) = B1, (A.4)

we have

v = v1 + w1, (A.5)

and (A.3) can be written as

B1v1 = (λ I −A1)w1. (A.6)

Note that the designations Qv = w1 in (A.4) and (3.6) are identical.
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Next we study (A.6) with B1 : Im B → Coker B. Based on the decomposition

ImB = CoimB1+̇KerB1, CokerB = Im B1+̇Coker B1, (A.7)

equation (A.6) (see the lemma) has the solution

v1 = B−1 (λ I −A1)w1 + z̃1, ∀z̃1 ∈ KerB1, (A.8)

under the condition

Q1(λ I −A1)w1 = 0, (A.9)

where P1 and Q1 are projectors onto Ker B1 and Coker B1, respectively, corresponding to the
decomposition (A.7), and B−1 is the semi-inverse of B1. Formulas (A.5), (A.8), and (A.9) correspond
to formulas (3.7) and (3.8).

The second step. Denoting

Qw1 = w2, (I −Q1)w1 = v2, Q1A1Q1 = A2, Q1A1(I −Q1) = B2,

we have

w1 = v2 + w2, (A.10)

and (A.9) is

B2v2 = (λ I −A2)w2.

Note that the designation Qw1 = w2 appears in (3.9).

Applying the lemma to the last equation, we express v2 through w2 and an arbitrary vector z̃2 ∈
KerB2; using (A.10), we express w1 through λ, w2, and z̃2, this is (3.11) with i = 2. And so on . . . .

As a result, the relation (A.3) is equivalent to the system consisting of the relations (A.5), (A.8),
(A.10), and

wi = vi+1 + wi+1, (A.11)

vi+1 = B−i+1(λ I −Ai+1)wi+1 + z̃i+1, ∀z̃i+1 ∈ KerBi+1, (A.12)

Bpvp = (λ I −Ap)wp, (A.13)

where B−i+1 = QiAi(I −Qi), Ai+1 = QiAiQi, wi = Qi−1wi−1, vi+1 = (I −Qi)wi, Qi and Pi are pro-
jectors onto Coker Bi and Ker Bi, respectively, corresponding to the decomposition

ImBi−1 = CoimBi+̇KerBi, CokerBi−1 = Im Bi+̇Coker Bi,

B−i−1 = B̃−1i−1(I −Qi−1), B̃i−1 is the narrowing of Bi−1 to Coim Bi−1, i = 1, . . . , p, B0 = B, and
A0 = A.

Due to the controllability of the pair (A,B), equation (A.13) is solvable with respect to vp for
any wp ∈ Coker Bp−1 [8, 13–17]. From (A.11) with i = p− 1 we find wp−1; next, from (A.12) with
i = p− 2 we determine vp−1; then using formula (A.11) with i = p− 2 we construct wp−2, and so
on . . . . Finally, using formula (A.5) we obtain v = v(λ,wp, z̃1, z̃2, . . . z̃p) with arbitrary vectors
wp ∈ Coker Bp−1 and z̃s ∈ Ker Bs, s = 1, . . . , p.

Obviously, constructing v by the method proposed in this work—using linear changes of unknown
vectors and solving linear algebraic systems—significantly simplifies the design of gain matrices in
the spectrum assignment problem.
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Abstract—A comprehensive method is proposed to enhance the resolution and accuracy of radar
angular measurements for detecting and determining the coordinates of objects in the form of
closely spaced multiple aerial targets that cannot be resolved by direct observation. Solving
this problem improves the quality of controlling various types of unmanned aerial vehicles
(UAVs) located near such targets. The practical implementation of the method is particularly
important in calculating and modeling flight trajectories of autonomous and controlled aerial
vehicles when visual observation is difficult or ineffective. Mathematically, the problem reduces
to solving Fredholm integral equations of the first kind of convolution type with additional
constraints. Solutions with angular super-resolution are sought in the form of an expansion of
the unknown function over chosen systems of orthogonal functions. For group targets with high
object density, it is not always possible to obtain an adequate solution to this inverse problem.
In such cases, enhancing the achievable super-resolution degree is proposed based on a new
method called the separation method. It is based on excluding from the analyzed signal its
component formed by reflection from one or several targets distinguished by some means. The
use of nonlinear regression methods in research is justified. Results of numerical experiments
on a mathematical model are presented and analyzed.

Keywords : Rayleigh criterion, angular super-resolution, stability of inverse problem solutions
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1. INTRODUCTION

Angular super-resolution of a measurement or observation system refers to angular resolution
capability exceeding the Rayleigh criterion. The Rayleigh criterion is the minimum angular dis-
tance θR between two point objects at which the measurement system can still register them
separately:

θR = λ/L, (1)

where L is the linear size of the receiving system, λ is the wavelength used. The angle θR equals
the antenna beamwidth θ0.5, defined at the level of received power reduction by a factor of 2.

In measurements of angular coordinates, the obtained resolution does not exceed the Rayleigh
criterion. Results of digital signal processing using special algorithms allow systems to detail images
of studied objects with accuracy down to a previously unknown angle θs < θR. The value θs depends
on the signal-to-noise ratio (SNR) in the data, the digital processing method used, as well as the
angular reflection (or radiation) characteristics of the signals from the studied objects. Achieved
angular super-resolution improves measurement accuracy, enhances detection and identification
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probability characteristics. It becomes possible to observe and measure coordinates of individual
closely located objects within targets, called group targets, which previously, according to (1),
merged into a single extended object.

Consequently, the obtained dynamic picture enables improving the effectiveness of control-
ling unmanned aerial vehicles (UAVs) operating in zones containing many other UAVs and UAV
“swarms.”

Several dozen numerical methods for achieving super-resolution and their variations are known
[1–7]. However, there is no single universal method for solving the super-resolution achievement
problem. All methods and algorithms have various limitations. For example, for most methods,
super-resolution can only be achieved at SNR above 20–25 dB. The most well-known methods [5–7]
are effective only for solving one-dimensional problems. For two-dimensional problems, algorithms
become significantly more complex [8] and do not allow real-time use.

For each specific problem, one should choose its own, most effective method for processing mea-
surement or observation data under the given conditions. The quality of the obtained approximate
solution can be improved by combining several new methods into a single comprehensive method.
It is based on the sequential application, depending on the results obtained, of new specialized
processing methods described in Sections 4–6.

2. PROBLEM FORMULATION

Let a large number of closely located UAVs be present in the surveillance zone of a radar station
(ground-based or mounted on an aerial vehicle). A significant portion of objects, due to relatively
small distances between them, are not angularly resolved by direct observation. In this case, they
form a single large spatial object, i.e., a group target.

It is necessary to isolate the maximum possible number of individual objects in the surveillance
zone and determine their coordinates. The characteristics of the measurement system and the
received signal are assumed known.

Mathematical problem formulation.

Given: antenna pattern (AP) F (α,ϕ), the received signal U(α,ϕ) during scanning of the two-
dimensional surveillance sector Ψ in the form of a linear integral transform:

U(α,ϕ) =

∫
Ω

F (α− α′, ϕ− ϕ′)I(α′, ϕ′) dα′dϕ′, (2)

where Ω is an unknown two-dimensional angle within which signal sources are located, and Ω < Ψ.
It is required to find the angular distribution of the reflected signal amplitude I(α,ϕ), equal to zero
outside the region Ω.

The problem of finding the function I(α,ϕ) represents an inverse problem, ill-posed in the sense
of Hadamard, in the form of a Fredholm integral equation (IE) of the first kind. In such problems,
the third condition of well-posedness—stability of solutions with respect to input data—is violated.

It is well known that the stability of inverse problems can be improved by using any additional
data about the solution. Algebraic methods [9–15] are convenient for introducing various additional
constraints into solutions. Furthermore, the mentioned methods are relatively noise-resistant, and
their high speed allows real-time use. For the considered class of problems, they are the most
promising.

3. REGULARIZATION OF THE PROBLEM USING THE ALGEBRAIC METHOD

Algebraic methods involve representing one- or two-dimensional solutions (2) as expansions over
a given orthogonal system of functions in the region of source location.
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Consider a one-dimensional problem when scanning is performed along one coordinate. Gener-
alization of the obtained results to the two-dimensional case presents no fundamental difficulties.

Following the ideology of algebraic methods, the desired solution I(α) can be represented as

I(α) =
∞∑

m=1

bmgm(α) ∼=
M∑

m=1

bmgm(α), (3)

where gm(α), m = 1, . . . ,M is a chosen finite system of functions orthogonal in the region Ω,
bm are the desired expansion coefficients of I(α) in a series. Then the received signal (2) can be
represented as

U(α) =
∞∑

m=1

bmGm(α) ∼=
M∑

m=1

bmGm(α), Gm(α) =

∫
Ω

F (α− α′)gm(α′) dα′, (4)

and it turns out to be a superposition of non-orthogonal functionsGm(α). Thus, the inverse problem
becomes parameterized. Its approximate solution reduces to finding the vector of coefficients B
with elements bm, which are determined from a system of linear algebraic equations (SLAE) by
minimizing the mean square deviation of U(α) (4) from the received signal (2) [16–23]:

V = HB, (5)

Vn=

∫
Ω

U(α)Gn(α) d(α), Hn,m=

∫
Ω

Gm(α)Gn(α) d(α), n,m = 1, . . . ,M. (6)

If the signal is given as a discrete sequence of values, the problem reduces to solving an overdeter-
mined SLAE based on the least squares method.

The boundaries of the angular sector Ω, within which signal sources are located, are initially
chosen based on an estimate, considering a significant decrease in the level of the received signal
at the boundaries of Ω relative to its maximum value. Later, based on preliminary solutions, the
boundaries of sector Ω are refined, and the solution is sought in a new, usually smaller, angular
sector. As numerical experiments have shown, after several iterations, the size and boundaries of
sector Ω become close to the true ones.

The choice of the system of functions gm(α) for representing the solution (3) is based on using
a priori information about signal sources or, in its absence, on a reasonable model of physically
realizable source types.

Enhancing the achievable super-resolution level is based on increasing the number of functions
in the representation (3). However, in the considered inverse problems, matrices H in SLAE (5)
are ill-conditioned. Their condition numbers grow exponentially with increasing matrix dimension.
A stable approximate solution for UAV-type signal sources can only be obtained for the first few
functions from (3), which, at high SNR, allows exceeding the Rayleigh criterion by 2–4 times
[10, 13, 14].

To further improve the quality of the approximate solution by increasing the number of used
functions in (4)–(6), it is proposed to apply Tikhonov regularization method [16] to the stated
problem (2).

Formally, solving SLAE (5) is equivalent to minimizing the function

Φ(B) =‖ HB − V ‖2, (7)

where ‖ . ‖ denotes the vector or matrix norm. The Tikhonov regularization method allows finding
the normal solution of system (5) using representation (7), i.e., the vector B minimizing the norm
of vector ‖ HB − V ‖.
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Fig. 1. Solution of the problem for two close objects.

The solution consists in finding the vector B for which the function

Φ(B,λ) =‖ HB − V ‖2 +λ ‖ B ‖2 (8)

reaches the smallest value for a fixed positive λ. It is known that a solution to such a problem
exists and is unique [16].

The problem of minimizing function Φ(B,λ) (8), as can be easily shown, is equivalent to solving
the SLAE

(HTH + λE)B = HTV, (9)

where E is the identity matrix, HT is the transposed matrix. For λ = 0, equation (9) transforms
into the original SLAE.

The Tikhonov regularization method additionally allows accounting for a possible a priori ap-
proximate estimate of the solution, given in the form of expected coordinates of vector B as a
vector C.

Then instead of (8), (9) we obtain

Φ(B,λ) =‖ HB − V ‖2 +λ ‖ B − C ‖2,
(HTH + λE)B = HTV + λC.

(10)

Since in solving real problems related to measurement systems, the input data always contain
random components, to choose the best solution, it is necessary to perform calculations for various
values of the regularization parameter λ, close to the level of random components in the studied
signal. As a model example, the problem of achieving angular super-resolution for two closely
located identical small-size objects at high SNR was solved.

In Figs. 1 and subsequent figures, the zero direction is taken as the direction to the antenna plane;
the vertical axis—the amplitude value of signal sources and the received signal, normalized to unity;
the horizontal axis—the scanning angle α of the system in relative units of θ0.5 beamwidth; true
signal sources, simulating UAVs, are shown as a thin black solid broken line (curve 1). The angular
dependence of the received signal U(α), showing that during direct observation without signal
processing the sources merge into a single object, is presented by a dashed curve (curve 2). The thick
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Fig. 2. Solution of the problem for two close objects, SNR = 12dB: 1—true sources, 2—received signal U(α),
3—solution with super-resolution.

stepped line 3 is the solution by the algebraic method (3)–(6) without problem regularization. The
obtained inadequate solution is unstable and represents an oscillating function. The broken curve 4
is the stable solution obtained using Tikhonov regularization. Both true sources are observed
separately. The Rayleigh criterion is exceeded by a factor of 5.

When comparing super-resolution achievement methods, one of the main quality criteria is
the dependence of the degree of exceeding the Rayleigh criterion on SNR. This is because inverse
problems are being solved, which are significantly more sensitive to the level of random components
in the studied signals than direct problems. By this criterion, Tikhonov regularization allows
sharply improving the quality of the obtained solutions.

On Fig. 2, the solution of the same problem is presented in the same notations as in Fig. 1, but
at SNR = 12 dB. The obtained stable solution practically did not change, whereas for popular
super-resolution achievement methods [1–7] the minimally required SNR level is 20 dB.

4. REGULARIZATION OF THE PROBLEM BY THE SEPARATION METHOD

Suppose that from a group target, using M step functions, it was possible to isolate K separate
objects (or one object) and approximately determine their angular positions and amplitudes of
reflected signals. Then the number of objects in the new group target will be M −K. For the
isolated K objects, we assume that their locations gk(α) and amplitudes bk have been found:

Ik(α) = bkgk(α), k = M −K + j, j = 1, . . . ,K. (11)

The problem arises of separating the remaining objects in the new group. For this, a method based
on extracting from the received reflected signals U(α) only those that belong to the new group
target is proposed.

The signal received from the already isolated K sources

UK(α) =
M∑

k=P

∫
Γ

F (α − α′)Ik(α′) dα′ =
M∑

k=P

bk

∫
Γ

F (α− α′)gk(α′) dα′ =
M∑

k=P

bkGk(α), (12)
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where P = M −K + 1, Γ is the region of location of the isolated sources. For the new prob-
lem, signal UK(α) becomes interference, and strong interference at that, which prevents isolating
individual sources from the new group.

It is possible to largely neutralize the influence of this interference. For this, from the received
real signal U(α), one should subtract an artificially synthesized signal imitating the signal from
the previously separated K sources (12). Then the signal received from the remaining objects,
representing the new group target of P objects, becomes equal to

US(α) = U(α) − UK(α). (13)

The formed signal in the form (13) can be further used in solving the super-resolution achieve-
ment problem for the new group target similarly to (3)–(6). Introducing a new system of step
functions hm(α) for this, we finally obtain an SLAE of the form

W = QC, (14)

where the elements of vector W and matrix Q are represented as:

Wk =

∫
Φ

US(α)Hk(α) dα, Qk,q =

∫
Φ

Hk(α)Hq(α) dα,

Hk(α) =

∫
Φ

F (α− α′)hk(α′) dα′.
(15)

Here C is the vector with elements bk from (11), Φ is the region of location of the new group target.

Estimation of the position and boundaries of region Φ is now performed based on analysis of
the synthesized signal US(α) similarly to determining region Ω in (6). If the previously separated
K objects are located near the boundary of region Ω, then the size of region Φ becomes smaller
than Ω. If the separated objects are not located at the edge of the region, then the new region Φ also
turns out to be smaller than Ω, but doubly connected or even multiply connected. Constructing
a solution in a multiply connected region is performed according to the same scheme as in the
one-dimensional case, by introducing a finite system of functions orthogonal in region Φ.

In the new reduced region Φ, the same number of functions gm(α) as in region Ω in (3) provides
greater resolution without a substantial increase in the condition numbers of matrix H in (5).
In many cases, this allows angular resolution of objects of the new group target. The described
approach to the problem of analyzing a UAV swarm or other objects constituting a group target
can be called the separation method .

5. SEPARATION METHOD

It should be noted that the coefficients bm from (5), (6), and consequently US(α), are found with
some error. For direct problems, the error may be insignificant and can be neglected. However,
the considered problem is inverse, the stability of its solutions is significantly worse. To obtain
adequate results, it is necessary to refine the values of bm before their further use in (7)–(15).

Refinement of the values is proposed to be carried out according to the following scheme. Prob-
lem (3)–(6) is solved, but instead of signal U(α), signal US(α) is used, i.e., vector V is replaced by
vector W from (10). In the idealized case, i.e., if coefficients bm and US(α) were previously found
accurately, all coefficients bk in (7) turn out to be zero.

In the real case, we obtain values bm and bk satisfying the relation

US(α) = U(α) −
K∑

k=M−K+1

b0kGk(α) =
M−K∑
m=1

b1mGm(α) +
M∑

k=M−K+1

b1kGk(α), (16)
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Fig. 3. Separation of one object from a group target. 1—True sources, 2—synthesized signal US(α),
3—received signal, 4—solution with super-resolution.

where b0k are the values of bk, found with some error when solving problem (8)–(15) with the original
signal U(α), b1m are refined values of coefficients bm when solving the problem with the original
signal US(α), b

1
k are residual values of coefficients bk not equal to zero, arising due to errors in

determining b0k.

To reduce these errors, an iterative process [17] is then built. Instead of coefficients b0k in (8) at

the first step, we use b̃1k = b0k + b1k, and instead of US(α) in the form (9) U1
S(α) i.e.

US(α) = U(α) − UK(α), U1
K(α) =

M∑
k=M−K+1

b̃1kGk(α). (17)

Further, similarly to (14), (15), we obtain the second approximation b2k. At the next step, we use

b̃1k = b0k + b1k + b2k, etc. At the nth step, we arrive at the relation

Un
Sα) = U(α) − UK(α), U1

K(α) =
M∑

k=M−K+1

b̃1kGk(α). (18)

Numerical experiments showed that in several iterations bnk decrease significantly compared to
the initial values and become comparable to errors in the input data.

As an example of applying the separation method, consider a group target of four point objects
located in the angular sector [−1.1θ0.5; 1.5θ0.5], with small differences in signal amplitude values.

In Fig. 3, the original angular dependence of the received signal U(α) is shown as a dashed curve
(curve 3). The objects are not angularly resolved by direct observation. Solution by the algebraic
method (3)–(6) using eight step functions allowed isolating one object from the group target.

Using a larger number of functions leads to unstable inadequate solutions that cease to reflect
reality. Such solutions can be easily recognized, as coefficients bm begin to take values orders of
magnitude larger than real ones.

The degree of solution stability can be assessed using condition numbers of matrices H from (5).
Note that condition numbers of such matrices increase sharply (exponentially) with an increase
in the number of used functions. Consequently, the number of functions gm(α) in representing
solution (3) is always limited.
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Fig. 4. Solution of the problem based on the object separation method.

Figure 3 shows: as a thin broken line (curve 1)—positions of true point signal sources and the
introduced virtual source IN (α) (12) with negative polarity; as a thick solid curve (curve 2)—the
synthesized signal US(α), which was used to refine the signal amplitude reflected by the fourth
object, i.e., refining b4; dotted curve (curve 3)—the reflected signal; as a thick stepped curve
(curve 4)—the solution of the inverse problem (2) based on the synthesized signal US(α) in the
original region Ω.

The solution confirmed the correctness of isolating one object from the group target. However,
resolving the remaining objects in angle using the eight introduced step functions gm(α) in Ω was
not possible.

In this case, one should proceed to the second stage of solving the problem by the separation
method in the found new region Φ (15).

The second stage consists in using Un
S (α) instead of US(α) in (13)–(15) for the newly formed

group target.

On Fig. 4, the solution results are presented. As a thick dashed curve (curve 1), the synthesized
signal Un

S (α) (18) is shown. Thin broken line (curve 2)—true point signal sources, thick solid
broken line (curve 3)—the found solution using five step functions gm(α) in region Φ, the size of
which turned out to be 1.75 times smaller than the original region Ω.

Sufficient solution stability and the achieved super-resolution level in the considered example
allowed separately registering and determining the coordinates of all objects in the new group
target.

The second stage of solution does not always allow resolving objects of the group target. For
each specific target and specific measurement system, there exists an angular distance between
objects below which their resolution is impossible.

6. NONLINEAR REGRESSION

In cases where resolving objects of a group target using the proposed methodology fails, a more
complex approach is proposed in the comprehensive method.

Note that the above separation method is based on determining object amplitudes bj with high
accuracy. However, the accuracy of the angular position of each object does not change, as it is
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Fig. 5. Solution of the problem for a group target using nonlinear regression.

limited by the angular size of the used step function. More accurate determination of coordinates αj

simultaneously with searching for bj will improve the quality of obtained solutions.

Assume, as in the given examples, that angular coordinates of objects are negligibly small and
can be described using delta-functions δ(α − αj), where αj is the coordinate of the jth object,
j = 1, . . . N , N = M −K. Then instead of (3)–(4) we obtain further (19)–(20)

I(α) =
N∑

m=1

δ(α − αm), (19)

Un
S (α) =

N∑
m=1

F (α− αm). (20)

Search for new refined solutions αj and bj is proposed to be carried out based on applying
nonlinear regression [25–29]. We introduce a regression function similar to (16), i.e.

L(α) =
N∑

m=1

dmF (α− γm), (21)

where γm and dm are the desired parameters. We also use an additional condition in the form of
equality of received signal powers

∫
Φ

(
Un
S (α)

)2
dα =

∫
Φ

(
N∑

m=1

dmF (α− γm)

)2

dα. (22)

Solution based on minimizing the mean square deviation of (21) from Un
S (α) reduces to solving a

system of nonlinear equations. Then, using standard nonlinear regression algorithms, we determine
unknown parameters γm and dm minimizing the deviation.

Numerical search for solutions for several objects does not cause significant difficulties, since a
good initial approximation is used in the form of previously found bm and coordinates αm specified
within each previously used step function.

On Fig. 5, an example of solving the problem for three closely located objects with different
amplitudes of reflected signals is given. The real location of point sources and their amplitude
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values are shown by solid broken lines (curve 1). The useful signal Un
S (α) received during scanning

together with the noise component within angles [−θ0.5/2, θ0.5/2] is shown as a rapidly oscillating
curve (curve 3). Using the previously described methods did not allow resolving the targets.
Using nonlinear regression allowed obtaining an adequate solution, shown by a dashed broken line
(curve 2).

All objects are resolved, their location is determined with good accuracy, amounting
to 0.07 beamwidth. Amplitude values were found with less accuracy, but they are of secondary
importance. The resolution exceeded the Rayleigh criterion by more than four times.

Solving the system of nonlinear equations based on (19)–(22) is noticeably more stable than
solving SLAE (14). Numerical experiments showed that adequate solutions are obtained at SNR
down to 18 dB, i.e., at higher levels of random components than when using known super-resolution
methods.

In some cases, when UAVs are located with high density, resolving objects by the methods
described above fails. However, through a more complex approach and some complication of the
technical system, achieving super-resolution is possible in these cases as well. For this, it is proposed
to use a so-called harmonic radar .

7. NONLINEAR SECONDARY RADAR

Secondary, or harmonic radar (HR), upon reception uses a signal frequency two or three times
higher than the probing (or interrogation) signal frequency. The received signal is formed due
to reflection from nonlinear elements of the studied objects. As a result, the signal represents a
superposition of harmonics, multiples of the emitted frequency [24–29].

Ordinary radar objects exhibit nonlinear properties to a very small degree. Currently, HR
with specially built-in nonlinear elements are most often used in rescue operations under complex
conditions on land and sea for searching and measuring coordinates of objects.

In the considered problems, in the studied angular region at the emitted frequency f0, there
are many signals reflected from a large number of objects, including dangerous mobile objects.
Moreover, signals can represent interference at the used frequency f0, including intentionally created
ones. Ultimately, determining coordinates of individual objects by analyzing the total response
signal at frequency f0 turns out to be practically impossible.

At the same time, nonlinear HR detects only targets possessing nonlinear properties, using
frequencies 2f0 and 3f0, and any signals and interference at frequency f0 do not affect its operation.

The main disadvantage of HR is the weak reflected signal at the used, multiples of f0, frequencies
compared to reflection at the original frequency f0. This circumstance significantly limits the
range D of nonlinear radars. Various methods are proposed to increase it [24–29]. Ultimately, at
frequencies 2f0 and 3f0, a range up to D ∼ 1–5 km can be achieved.

Ensuring determination of coordinates of individual objects is possible when reducing the number
of objects in the studied region. For this, it is proposed to install lightweight small-size nonlinear
elements on certain types of UAVs. Simple antennas, including printed ones, in the form of dipoles
with a diode, can be used as such. Then, against the background of signals reflected by them at
frequencies 2f0 and 3f0, other UAVs will become practically unnoticeable.

In this case, it becomes possible to measure coordinates of selected types of UAVs at frequencies
2f0 and 3f0, including using super-resolution methods if necessary. At the main frequency f0,
the above-described method of separating objects in the form of selected types of UAVs with now
known coordinates becomes applicable. Consequently, the number of UAVs in the surveillance
zone decreases, and the problem of determining coordinates of the remaining UAVs of other types
is simplified. Its solution is now carried out according to the above scheme (3)–(6) and (7)–(10).
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Fig. 6. Improving the accuracy of angular measurements of airborne radars.

Low accuracy of angular measurements for aerial vehicles of relatively small size in autonomous
mode at frequencies 2f0 and 3f0 can significantly reduce the effectiveness of using the presented
separation method. This drawback can be largely compensated by using algebraic signal processing
methods of airborne radars (3)–(6) to achieve super-resolution at frequencies 2f0 and 3f0. An
example of such compensation is given in Fig. 6.

As a sparse grid, the two-dimensional received signal U(α,ϕ) at frequency 2f0 is shown. The true
distribution of the emitted signal amplitude was a point source and a small background emission
at the second harmonic. When solving direct problems, the background emission can be neglected
without any noticeable error. However, when solving inverse unstable problems in the form of IE (2),
it can noticeably distort solutions.

The received signal U(α,ϕ) very roughly estimates the angular coordinates of the source. In the
considered problem, this is the region covered by the sparse grid. The approximate solution found
by the algebraic method (4)–(6), i.e., distribution I(α,ϕ) considering the interfering background
emission, is shown as a dense grid. The obtained solution of the IE shows that the point source is
located within the peak of I(α,ϕ).

The accuracy of determining the coordinates of signal sources and its localization improved by
more than five times. Noise in the form of background emission slightly distorted the true solution
and did not allow obtaining even more accurate source coordinates.

For HR, further improvement of angular measurement accuracy and angular resolution is pos-
sible. For this, one should simultaneously analyze received signals at the second U2(α,ϕ) and
third U3(α,ϕ) harmonics. The simplest method of analysis is summing the amplitudes of these
signals during scanning:

U(α,ϕ) = U2(α,ϕ) + kU3(α,ϕ)

=

∫
Ω

[
f2(α − α′, ϕ− ϕ′)I2(α′, ϕ′) + kf3(α− α′, ϕ− ϕ′)I3(α′, ϕ′)

]
dα′ dϕ′, (23)

where I2(α,ϕ) and I3(α,ϕ) describe the same angular position of the source but with different
amplitude values. For signals at the third harmonic, a gain coefficient k is introduced. Since the
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Fig. 7. Solution of IE for the sum of two harmonics.

Fig. 8. Solution when separating one object of known type. The solution of the problem of determining angular
coordinates of a complex object using HR is presented. The object represented a group target consisting of
three closely located point targets—thin broken line (curve 1). The original signal U(α) (2) is shown as a thin
smooth curve (curve 2).

amplitude of signals at the third harmonic is significantly lower than at the second, coefficient k
is chosen from the condition of approximate equality of maximum values of U2(α,ϕ) and U3(α,ϕ).
The condition of equality of maxima ensures approximately equal contribution of harmonics to the
desired solution. An additional advantage of summing harmonics is that noises present in signals
U2(α,ϕ) and U3(α,ϕ) are non-coherent, and their addition ensures an increase in SNR in (23)
compared to SNR at each of frequencies 2f0 and 3f0. In Fig. 7, results of solving IE (23) for the same
problem as in Fig. 6 are shown, in the same notations. As expected, the localization accuracy of the
true source noticeably increased—by a factor of two. This ensured an improvement in the accuracy
of solving the problem of separating an object of known type from a group target. Resolving targets
is not possible either by direct observation or using known super-resolution methods.

One of the objects, namely the one located close to the left boundary of zone Ω, at frequencies
2f0 and 3f0, is identified by HR as an object of known type. At these frequencies, its angular

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



1150 LAGOVSKY, RUBINOVICH

coordinate α1 is measured. According to the separation method (12)–(14) at frequency f0, a com-
pensating signal with negative polarity is synthesized:

US(α) = U(α) −AF (α1). (24)

The reflection coefficient A at frequency f0 is not known in advance and is initially set based on
a reasonable estimate. Then it is subject to refinement during the iterative process of solving the
problem similar to (16)–(18).

The final signal US(α) (14) is shown in Fig. 8 as a thick dashed curve (curve 3).

For representing the solution, Gaussian functions were used as functions gm(α) in (3). The
found solution without the previously identified UAV with angular coordinate α1 is shown as a
thick curve (curve 4). In the final solution, the source was represented as a superposition of five
Gaussian functions gm(α):

I(α) =
5∑

m=1

bmgm(α−Δαm) (25)

with distance Δ = 0.23θ0.5 between maxima of adjacent gm(α).

True, near-point signal sources together with the virtual compensating source Aδ(α − α1) are
shown as a thin broken line (curve 1).

The appearance in the solution of many small objects, the radiation intensity I2(α) of which is
an order of magnitude lower than that of the others, is usually caused by the influence of noise and
interference. Such targets are considered false.

Consequently, the obtained solution allowed resolving all objects of the group target and deter-
mining their angular coordinates with good accuracy.

8. CONCLUSION

1. A new comprehensive method for digital processing of radar signals reflected from multiple
objects is theoretically justified and tested in numerical experiments. The method allows measure-
ment systems to achieve angular resolution significantly exceeding the Rayleigh criterion.

2. The proposed separation method, as shown by analytical and numerical results, is applicable
for detecting and determining coordinates of individual objects within group targets, including
those consisting of UAV “swarms.” Creating an artificially synthesized signal during processing
of the obtained information allows substantially increasing the achievable super-resolution level
compared to known methods.

3. New signal processing algorithms based on nonlinear regression methods allow improving
the accuracy of determining angular coordinates and enhancing localization of studied objects
by 2–5 times.

4. Using mathematical models, it is shown that nonlinear regression methods allow solving super-
resolution achievement problems at higher levels of noise and interference than known methods.

5. The use of harmonic radar for achieving angular resolution allowing the isolation of dangerous
UAVs within group targets is justified.

6. Algorithms based on the proposed comprehensive method are relatively simple and can be
applied in real time.

FUNDING

The work was partially supported by the Russian Science Foundation (project no. 23-29-00448).

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



COMPREHENSIVE METHOD FOR ANGULAR SUPER-RESOLUTION 1151

REFERENCES

1. Morse, P. and Feshbach, H., Methods of Theoretical Physics, McGraw-Hill, 1953.

2. Uttam, S. and Goodman, N.A., Superresolution of coherent sources in real-beam Data, IEEE Trans.
Aerosp. Electron. Syst., 2010, vol. 46, no. 3, pp. 1557–1566.

3. Park, S.C., Park, M.K., and Kang, M.G., Super-resolution image reconstruction: a technical overview,
IEEE Signal Process. Mag., 2003, vol. 20, no. 3, pp. 21–36.

4. Kasturiwala, S.B. and Ladhake, S.A., Superresolution: A novel application to image restoration, Int. J.
Comput. Sci. Eng., 2010, no. 5, pp. 1659–1664.

5. Waweru, N.P., Konditi, D.B.O., and Langat, P.K., Performance analysis of MUSIC Root-MUSIC and
ESPRIT, Int. J. Electr. Comput. Energ. Electron. Commun. Eng., 2014, vol. 8, no. 1, pp. 209–216.

6. Lavate, T.B., Kokate, V.K., and Sapkal, A.M., Performance analysis of MUSIC and ESPRIT, Proc. 2nd
Int. Conf. Comput. Netw. Technol. (ICCNT), 2010, pp. 308–311.

7. Almeida, M.S. and Figueiredo, M.A., Deconvolving images with unknown boundaries using the alter-
nating direction method of multipliers, IEEE Trans. Image Process., 2013, vol. 22, no. 8, pp. 3074–3086.

8. Evdokimov, N.A., Lukyanenko, D.V., and Yagola, A.G., Application of multiprocessor systems to solving
the two-dimensional convolution-type Fredholm integral equations of the first kind for vector-functions,
Numer. Methods Program., 2009, vol. 10, p. 263.

9. Lagovsky, B.A. and Rubinovich, E.Y., Algebraic methods for achieving superresolution by digital an-
tenna arrays, Mathematics, 2023, vol. 11, no. 4, pp. 1–9. https://doi.org/10.3390/math11041056

10. Lagovsky, B., Samokhin, A., and Shestopalov, Y., Angular Superresolution Based on A Priori Informa-
tion, Radio Sci., 2021, vol. 5, no. 3, pp. 1–11. https://doi.org/10.1029/2020RS007100

11. Lagovsky, B.A. and Rubinovich, E.Y., A modified algebraic method of mathematical signal processing
in radar problems, Results Control Optim., 2024, vol. 14, no. 3, p. 100405.
https://doi.org/10.1016/j.rico.2024.100405

12. Alexandrov, A.E., Borisov, S.P., Bunina, L.V., Bikovsky, S.S., Stepanova, I.V., and Titov, A.P., Statis-
tical model for assessing the reliability of non-destructive testing systems by solving inverse problems,
Russ. Technol. J., 2023, vol. 11, no. 3, pp. 56–69.

13. Lagovsky, B. and Rubinovich, E., Algorithms for Digital Processing of Measurement Data Providing
Angular Superresolution, Mekhatronika, Avtomatizatsiya, Upravlenie, 2021, vol. 22, no. 7, pp. 349–356.

14. Lagovsky, B. and Rubinovich, E., Achieving Angular Superresolution of Control and Measurement
Systems in Signal Processing, Adv. Syst. Sci. Appl., 2021, vol. 21, no. 2, pp. 104–116.

15. Lagovsky, B.A. and Rubinovich, E.Y., A modified algebraic method of mathematical signal processing
in radar problems, Results Control Optim., 2024, vol. 14, no. 3, p. 100405.
https://doi.org/10.1016/j.rico.2024.100405

16. Tikhonov, A.N. and Arsenin, V.Y., Methods for Solving Ill-Posed Problems, Nauka, 1979.

17. Lagovsky, B.A. and Rubinovich, E.Y., Enhancing angular resolution and range of measurement systems
using ultra-wideband signals, Avtom. Telemekh., 2023, no. 10, pp. 72–90.
https://doi.org/10.31857/S0005231023100070

18. Kelley, C.T., Iterative Methods for Optimization, SIAM, 1999.

19. Marquardt, D.W., An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind.
Appl. Math., 1963, vol. 11, no. 2, pp. 431–441. https://doi.org/10.1137/0111030

20. Lourakis, M.I.A. and Argyros, A.A., Is Levenberg-Marquardt the Most Efficient Optimization Algo-
rithm for Implementing Bundle Adjustment, Proc. 10th IEEE Int. Conf. Comput. Vis. (ICCV), 2005,
pp. 1526–1531. https://doi.org/10.1109/ICCV.2005.128

21. Nocedal, J. and Wright, S.J., Numerical Optimization, Springer, 2006.
https://doi.org/10.1007/978-0-387-40065-5

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



1152 LAGOVSKY, RUBINOVICH

22. Seber, G.A.F. and Wild, C.J., Nonlinear Regression, Wiley, 1989.

23. Oosterbaan, R.J., Frequency and Regression Analysis, in Drainage Principles and Applications,
H.P. Ritzema, Ed., ILRI, 1994, vol. 16, pp. 175–224.

24. Lavrenko, A., Cavers, J.K., and Woodward, G.K., Harmonic Radar With Adaptively Phase-Coherent
Auxiliary Transmitters, IEEE Trans. Signal Process., 2022, vol. 70, pp. 1788–1802.
https://doi.org/10.1109/TSP.2022.3164183

25. Harzheim, T., Muhmel, M., and Heuermann, H., A SFCW harmonic radar system for maritime search
and rescue using passive and active tags, Int. J. Microw. Wirel. Technol., 2021, vol. 13, no. 7, pp. 691–707.
https://doi.org/10.1017/S1759078721000520

26. Mazzaro, G.J. and Martone, A.F., Multitone harmonic radar, Proc. SPIE, 2013, vol. 8714, p. 87140E.
https://doi.org/10.1117/12.2014241

27. Kumar, D., Mondal, S., Karuppuswami, S., Deng, Y., and Chahal, P., Harmonic RFID communication
using conventional UHF system, IEEE J. Radio Freq. Identif., 2019, vol. 3, no. 4, pp. 227–235.

28. Mondal, S., Kumar, D., and Chahal, P., Recent advances and applications of passive harmonic RFID
systems, Micromachines, 2021, vol. 12, no. 4, pp. 1–22.

29. Viikari, V., Sepp, H., and Kim, D.-W., Intermodulation read-out principle for passive wireless sensors,
IEEE Trans. Microw. Theory Tech., 2011, vol. 59, no. 4, pp. 1025–1031.

This paper was recommended for publication by B.M. Miller, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 12 2025



ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2025, Vol. 86, No. 12, pp. 1153–1167.
c© The Author(s), 2025 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2025.
Russian Text c© The Author(s), 2025, published in Avtomatika i Telemekhanika, 2025, No. 12, pp. 85–103.

STOCHASTIC SYSTEMS

Generalized H2 Control

of a Continuous-Time Markov Jump Linear System

on a Finite Horizon

R. S. Biryukov∗,a and E. S. Bubnova∗,b
∗Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

e-mail: aruslan.biryukov@itmm.unn.ru, bbubnova@itmm.unn.ru

Received April 2, 2025

Revised June 10, 2025

Accepted June 30, 2025

Abstract—For continuous-time Markov jump linear systems, the concept of the generalized H2

norm is introduced as the worst-case value of the maximum of the expected squared Euclidean
norm of the target output on a finite horizon, provided that the sum of the squared energy
of an exogenous disturbance and a quadratic form of the initial state is equal to one. This
norm is characterized in terms of coupled Riccati differential matrix equation solutions and
in terms of linear matrix inequalities. Linear dynamic state-feedback controllers ensuring an
upper bound for the H2 norm of the closed-loop system are designed by solving a semidefinite
programming problem. The effectiveness of the approach is demonstrated by the results of
numerical simulations.

Keywords : generalizedH2 norm, linear matrix inequalities (LMIs), homogeneous Markov chains,
multi-objective control
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1. INTRODUCTION

Random structure systems, particularly Markov jump systems [1–6], are widespread in modern
control problems. Such systems have a finite number of distinct operation modes, and the dynamics
in each mode are described by a specific system of differential equations. Jumps between modes oc-
cur at random time instants, determined by the evolution of a homogeneous Markov chain (Markov
jumps, also called Markovian switching in the literature). The simplest problems leading to random
structure systems are control with failures and disruptions [2], synchronization in variable topology
networks [3, 4], multi-agent control [5, 6], and others.

The stability problem for random structure systems was pioneered by I.Ia. Kats and
N.N. Krasovskii [7]. Later, various formulations of control problems for such systems were consid-
ered in [8–10]; in particular, a linear-quadratic controller was designed. In [1, 11–14], H∞ and H2

control problems were solved for Markov jump systems. The H∞ and H2 norms allow assessing
the quality of transients on average. However, it is often necessary to guarantee that the maximum
value of a transient (target output) will not exceed a given threshold, i.e., to estimate the maximum
value of the system’s target output. One possible approach to solving this problem is based on the
generalized H2 norm.

For continuous-time systems, the concept of the generalized H2 norm, corresponding to the
maximum deviation of a system under an exogenous disturbance of bounded energy and zero
initial conditions, was introduced in [15]. The generalized H2 norm characterizes the system gain
when the input signal has a bounded L2 norm and the output signal is measured by the L∞ norm
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(the maximum value of the Euclidean norm of the target output over time). For a linear continuous
time-varying system, the concept of the maximum deviation was introduced in [16, 17] as a natural
extension of the generalized H2 norm to systems with nonzero initial conditions, and an algorithm
for its calculation was presented therein as well. As shown in [16, 17], multi-objective control
problems with generalized H2 norms as performance criteria can be effectively solved using the
apparatus of linear matrix inequalities (LMIs).

In [18], an estimate of the generalized H2 norm was calculated for continuous-time Markov
jump linear systems on an infinite horizon. For such systems, suboptimal generalized H2 control
was designed in [19]. Another definition of the generalized H2 norm, differing from the classical one,
was used in [20]: estimates for the first absolute moment of the system output components under
bounded-energy disturbances were constructed. In [21], the problem of generalized H2 filtering
for semi-Markovian systems was considered. Problems of generalized H2 filtering and control for
discrete-time Markov jump systems were studied in [22–24]. In all the works mentioned, the
dynamics of systems in each operation mode were described by time-invariant systems.

In this paper, the concept of the generalized H2 norm for linear continuous-time Markov jump
systems is considered on a finite horizon, and the systems are generally supposed to be time-varying
in each operation mode. Several algorithms are proposed for calculating this characteristic. Also, we
demonstrate how to find its upper bound rather simply; hence, suboptimal generalized H2 control
can be designed in the case where the state of the Markov chain is available to the controller.

The remainder of this paper is organized as follows. In Section 2, we introduce the concept of the
generalized H2 norm for continuous-time Markov jump linear systems on a finite horizon and present
algorithms for its calculation. Section 3 provides the solution of the suboptimal generalized H2

control design problem in the cases where the state of the Markov chain is available and unavailable
to the controller. In Section 4, we solve the multi-objective control problem. Numerical simulations
demonstrating the above results are given in Section 5.

2. GENERALIZED H2 NORM

Let (Ω,F , (Ft)t∈[ts,tf ],P) be a probability space with filtration (Ft)t∈[ts,tf ]. We denote by

LΩ
2 ([ts, tf ],R

nv
2 ) the space of Ft-adapted processes v = {v(t) ∈ R

nv
2 , t ∈ [ts, tf ]} such that

E‖v‖22 = E

tf∫
ts

v�(t)v(t)dt < ∞,

where E(·) indicates the mathematical expectation operator.

On a fixed time interval (finite horizon) [ts, tf ], we consider a continuous-time linear system with
a random structure changing according to the evolution of a stationary Markov chain:

ẋ = Aθ(t)(t)x+Bθ(t)(t)v, x(ts) = x0,

z = Cθ(t)(t)x,
(1)

where x ∈ R
nx
2 is the system state; v ∈ LΩ

2 ([ts, tf ],R
nv
2 ) is an exogenous disturbance; z ∈ R

nz
2 is the

target output; θ(t) is a homogeneous continuous-time Markov chain defined by the initial distri-
bution πj = P{θ(ts) = j} and the matrix of transition rates P (τ) = (pij(τ)), i, j ∈ S = {1, . . . , S},
where pij(τ) is the probability that the system, being in state i at some time instant t, will pass to
state j in time τ, i.e. pij(τ) = P{θ(t+ τ) = j|θ(t) = i}. Assume that

P{θ(t+ τ) = j|θ(t) = i} =

{
λijτ + o(τ), i �= j,

1 + λijτ + o(τ), i = j,
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where λij are the elements of the stationary intensity matrix Λ with the following properties:

S∑
j=1

λij = 0, λij � 0, λii < 0.

Note that a continuous-time homogeneous Markov chain can be defined using the intensity matrix,
which is related to the transition rate matrix by P (τ) = eΛτ [1].

Let the target output of the system be represented as

z = column(z1, z2, . . . , zM ), zm = Cm,θ(t)(t)x, m = 1, . . . ,M.

We define the generalized ∞ norm of the target output by the relation

‖z‖2g∞ = sup
t∈[ts,tf ]

max
m=1,...,M

E
{|zm(t)|22

}
, |zm(t)|22 = z�m(t)zm(t). (2)

System (1) generates a linear operator mapping the initial conditions and exogenous disturbance
into the target output, i.e., S : (x0, v) �→ z. We define the generalized H2 norm of system (1) as the
norm of the operator S as follows:

‖S‖2g2 = sup
(x0,v)�=0

‖z‖2g∞
E‖v‖22 + x�0 Rx0

, (3)

where R = R� 
 0 is a given weight matrix reflecting the relative importance of considering un-
certainties in the initial conditions and exogenous disturbances.

Theorem 1. The generalized H2 norm of the Markov jump linear system (1) on the finite horizon
[ts, tf ] can be calculated as

‖S‖g2 = sup
T∈[ts,tf ]

γ(T ),

where γ(T ) is the solution of the following semidefinite programming problem with respect to the
unknown matrices Ql(t) = Q�l (t) � 0 :

infγ2⎡⎢⎣Q̇l(t) +A�l (t)Ql(t) +Ql(t)Al(t) +

S∑
j=1

λljQj(t) Ql(t)Bl(t)

B�l (t)Ql(t) −I

⎤⎥⎦� 0, t∈ [ts, T ],

S∑
l=1

πlQl(ts)−R � 0,

[
Ql(T ) C�m,l(T )

Cm,l(T ) γ2I

]
� 0, m = 1, . . . ,M, l ∈ S.

(4)

Let
t∗ = arg sup

T∈[ts,tf ]
γ(T ),

and let the matrix functions Qθ(t)(t) be obtained by solving inequalities (4) on the horizon [ts, t
∗].

Then the worst-case exogenous disturbance v∗(t) and the vector of initial conditions x∗0 are given
by

x∗0 = emax

(
R−1

S∑
l=1

πlQl(ts)

)
, v∗(t)=

⎧⎨⎩B�θ(t)(t)Qθ(t)(t)x(t), t ∈ [ts, t
∗],

0, t ∈ (t∗, tf ],
(5)

where x(t) is the solution of the Cauchy problem for the system

ẋ =
(
Aθ(t) +Bθ(t)B

�
θ(t)(t)Qθ(t)(t)

)
x(t), x(ts) = x∗0. (6)
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Remark 1. Note that in the case of deterministic exogenous disturbances v ∈ L2([ts, tf ],R
nv
2 ),

the generalized H2 norm satisfies the estimate

sup
(x0,v)�=0

‖z‖2g∞
‖v‖2L2

+ x�0 Rx0
� ‖S‖g2, (7)

since the domain for calculating the supremum is reduced. Thus, by calculating the generalized
H2 norm for stochastic disturbances (3), one obtains an upper bound for the case of deterministic
disturbances (7).

To find the generalized H2 norm using the matrix inequalities (4), we perform discretization.
Let us introduce, e.g., a uniform grid with step h :

t0 = ts, tk = tk−1 + h, k = 1, . . . ,K; h =
T − ts
K

. (8)

Then the discrete counterparts of inequalities (4) have the form⎡⎢⎢⎣Ql,k+1 −Ql,k + h
(
A�l,kQl,k +Ql,kAl,k +

S∑
j=1

λljQj,k

)
hQl,kBl,k

hB�l,kQl,k −hI

⎤⎥⎥⎦ � 0,

S∑
l=1

πlQl,0 −R � 0,

[
Ql,K C�m,l,K

Cm,l,K γ2I

]
� 0, m = 1, . . . ,M, l ∈ S,

(9)

where Al,k = Al(tk), Bl,k = Bl(tk), Cm,l,k = Cm,l(tk), and Ql,k = Ql(tk), k = 0, . . . ,K − 1.

Corollary 1. The generalized H2 norm of the Markov jump linear system (1) on the finite horizon
[ts, tf ] can be calculated as

‖S‖g2 = sup
T∈[ts,tf ]

γ(T ),

where γ(T ) is the solution of the semidefinite programming problem

infγ2[
−Ẏl(t) +Al(t)Yl(t) + Yl(t)A

�
l (t) +Bl(t)B

�
l (t) + λllYl(t) Vl(t)

V �l (t) −Wl(t)

]
� 0,

[
Yl(T ) Yl(T )C

�
m,l(T )

Cm,l(T )Yl(T ) γ2I

]
� 0, m = 1, . . . ,M, l ∈ S, t ∈ [ts, T ],

L(Y1(ts), . . . , YS(ts)
)
� 0,

(10)

where

Vl(t) =
[√

λl1Yl(t) . . .
√
λl,l−1Yl(t)

√
λl,l+1Yl(t) . . .

√
λl,SYl(t)

]
,

Wl(t) = diag(Y1(t), . . . , Yl−1(t), Yl+1(t), . . . , YS(t)),

L(
Y1(ts), . . . , YS(ts)

)
=

⎡⎢⎢⎢⎢⎣
R

√
π1I . . .

√
πSI√

π1I Y1(ts) . . . 0
...

...
. . .

...√
πSI 0 . . . YS(ts)

⎤⎥⎥⎥⎥⎦ .

(11)
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To find the generalized H2 norm of system (1) using Corollary 1, it is necessary to solve prob-
lem (10) for each time instant T ∈ [ts, tf ], which is a computationally intensive process. We formu-
late a theorem yielding an upper bound for the generalized H2 norm of system (1) rather easily. It
will also be used below to design suboptimal generalized H2 control in the case where the state of
the Markov chain is available to the controller.

Theorem 2. The generalized H2 norm of the Markov jump linear system (1) on the finite horizon
[ts, tf ] satisfies the inequality

‖S‖g2 � γ,

where γ is the solution of the following semidefinite programming problem with respect to the un-
known matrices Yl = Y �l � 0, l ∈ S :

infγ2⎡⎣−Ẏl(t) +Al(t)Yl(t) + Yl(t)A
�
l (t) +Bl(t)B

�
l (t) + λllYl(t) Vl(t)

V �l (t) −Wl(t)

⎤⎦ � 0,

⎡⎣ Yl(t) Yl(t)C
�
m,l(t)

Cm,l(t)Yl(t) γ2I

⎤⎦ � 0, m = 1, . . . ,M, l∈S, ∈ [ts, tf ],

L(
Y1(ts), . . . , YS(ts)

)
� 0,

(12)

where Vl(t) and Wl(t) are given by formula (11).

3. CONTROL LAW DESIGN

Consider a linear controlled plant with a random structure and dynamics described by the
equations

ẋ = Aθ(t)(t)x+Bθ(t)(t)v +Bu
θ(t)(t)u, x(ts) = x0,

z = Cθ(t)(t)x+Dθ(t)(t)u,
(13)

where x ∈ R
nx
2 is the plant’s state; v(t) ∈ R

nv
2 is a stochastic exogenous disturbance; z ∈ R

nz
2 is

the target output; u ∈ R
nu
2 is the control vector (input); θ(t) is a continuous-time homogeneous

Markov chain defined by the initial distribution πj = P{θ(ts) = j} and the transition rate matrix
P (τ) = (pij(τ)), i, j ∈ S.

3.1. Feedback Control Considering the Markov Chain State

Let us pose the following problem: it is required to design a linear state-feedback controller
considering the Markov chain state,

u(t) = Θθ(t)(t)x(t), θ(t) ∈ S, (14)

that minimizes the generalized H2 norm of the closed-loop system

ẋ = (Aθ(t)(t) +Bu
θ(t)(t)Θθ(t)(t))x+Bθ(t)(t)v, x(ts) = x0,

z = (Cθ(t)(t) +Dθ(t)(t)Θθ(t)(t))x
(15)

(system (13) with the controller (14)).

Substituting the matrices of the closed-loop system (15) into inequalities (10), we arrive at the
following result.
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Theorem 3. The gain matrices Θ(t) = (Θ1(t), . . . ,ΘS(t)) of the controllers (14) minimizing the
generalized H2 norm of system (13) are obtained by solving the problem

‖S‖g2 = inf
Θ(t),t∈[ts ,tf ]

sup
T∈[ts,tf ]

γΘ(T ), (16)

where γΘ(T ) is the solution of the semidefinite programming problem

infγ2⎡⎣−Ẏl +AlYl + YlA
�
l +Bu

l ΘlYl + YlΘ
�
l B

u�
l +BlB

�
l + λllYl ∗

V �l −Wl

⎤⎦ � 0,

⎡⎣ Yl(T ) ∗
Cm,l(T )Yl(T ) +Dm,l(T )ΘlYl(T ) γ2I

⎤⎦ � 0,

L(
Y1(ts), . . . , YS(ts)

)
� 0, t∈ [ts, T ], m = 1, . . . ,M, l ∈ S.

(17)

For brevity, the argument t of matrix functions in the first inequality is omitted, and ∗ indicates a
symmetric element.

Problem (16) cannot be solved using the existing apparatus since it is necessary to search for the
infimum over all possible controller parameters Θ(t). This problem vanishes under the conditions
of Theorem 2: the feedback parameters can be calculated within the semidefinite programming
problem (12). In this case, it seems reasonable to find a controller minimizing the norm bound,
the so-called suboptimal generalized H2 controller.

Theorem 4. The gain matrices Θl(t) of the controllers (14) minimizing the bound of the gener-
alized H2 norm of system (13) have the form Θl(t) = Zl(t)Y

−1
l (t), where Yl = Y �l � 0 and Zl are

obtained by solving the semidefinite programming problem

infγ2⎡⎣−Ẏl +AlYl + YlA
�
l +Bu

l Zl + Z�l B
u�
l +BlB

�
l + λllYl ∗

V �l −Wl

⎤⎦ � 0,

⎡⎣ Yl(t) ∗
Cm,l(t)Yl(t) +Dm,l(t)Zl(t) γ2I

⎤⎦ � 0,

L(
Y1(ts), . . . , YS(ts)

)
� 0, t∈ [ts, tf ], m = 1, . . . ,M, l∈S.

(18)

3.2. Feedback Control Independent of the Markov Chain State

Next, we design a controller whose parameters are independent of the Markov chain state:

u(t) = Θ(t)x(t). (19)

In this case, the corresponding closed-loop system (system (13) with the controller (19)) takes the
form

ẋ =
(
Aθ(t)(t) +Bu

θ(t)(t)Θ(t)
)
x+Bθ(t)(t)v, x(ts) = x0,

z =
(
Cθ(t)(t) +Dθ(t)(t)Θ(t)

)
x.

(20)
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Theorem 5. The generalized H2 norm of system (20) satisfies the inequality ‖S‖g2 � γ with some
positive γ if there exists ρ > 0 such that the following LMIs are valid for the matrices P (t) = P�(t),
Z(t), and Yl(t) = Y �l � 0, l ∈ S:⎡⎢⎢⎣

−Ẏl+AlYl+YlA
�
l +Bu

l Z+Z�Bu�
l +BlB

�
l +λllYl ∗ ∗

V �l −Wl ∗
ρZ�Bu�

l + Yl − P 0 −2ρP

⎤⎥⎥⎦� 0,

⎡⎢⎣ Yl(t) ∗ ∗
Cm,l(t)Yl(t) +Dm,l(t)Z(t) γ2I ∗

P − Yl ρZ�(t)D�m,l(t) 2ρP

⎤⎥⎦ � 0,

L(
Y1(ts), . . . , YS(ts)

)
� 0, t ∈ [ts, tf ], m = 1, . . . ,M, l ∈ S,

(21)

where Θ(t) = Z(t)P−1(t).

4. MULTI-OBJECTIVE CONTROL

Consider a linear controlled plant with a random structure and dynamics described by the
equations

ẋ = Aθ(t)(t)x+Bθ(t)(t)v +Bu
θ(t)(t)u, x(ts) = x0,

z(k) = C
(k)
θ(t)(t)x+D

(k)
θ(t)(t)u, k = 1, . . . , N,

(22)

where x ∈ R
nx
2 is the plant’s state; v(t) ∈ R

nv
2 is a stochastic exogenous disturbance; z(k) ∈ R

nzk
2 are

the target outputs; u ∈ R
nu
2 is the control vector (input); θ(t) is a continuous-time homogeneous

Markov chain defined by the initial distribution πj = P{θ(ts) = j} and the transition rate matrix
P (τ) = (pij(τ)), i, j ∈ S.

Each target output (vector) z(k), k = 1, . . . , N, is represented as the set of vectors

z(k) = column
(
z
(k)
1 , z

(k)
2 , . . . , z

(k)
Mk

)
,

z(k)m = C
(k)
m,θ(t)(t)x+D

(k)
m,θ(t)(t)u, m = 1, . . . ,Mk.

Assume that the impact of the exogenous disturbance on the kth target output is characterized
by the performance criterion

J2
k = sup

(x0,v)�=0

‖z(k)‖2g∞
E‖v‖22 + x�0 Rx0

, (23)

i.e., it represents the generalized H2 norm. Therefore, it is possible to formulate and solve a multi-
objective control problem: min{J1, . . . , JN}. Following [16], we define the auxiliary performance
criterion Jα; then, according to Theorem 4.1 [16], Pareto optimal solutions of the above multi-
objective problem can be obtained by solving the problem

min
u

Jα, Jα = max
k=1,...,N

Jk
αk

,

α ∈ A :=

{
α = (α1, . . . , αN ) : αk > 0,

N∑
k=1

αk = 1

}
,

(24)
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where the performance criterion Jα represents the Germeier convolution and, moreover, is the
generalized H2 norm of the system

ẋ =
(
Aθ(t)(t) +Bu

θ(t)(t)Θα,θ(t)(t)
)
x+Bθ(t)(t)v, x(ts) = x0,

ζ =
(Cθ(t)(t) +Dθ(t)(t)Θα,θ(t)(t)

)
x,

(25)

where

ζ = column
(
α−11 z

(1)
1 , . . . , α−11 z

(1)
M1

, α−12 z
(2)
1 , . . . , α−12 z

(2)
M2

, . . . , α−1N z
(N)
1 , . . . , α−1N z

(N)
MN

)
,

Cθ(t) = column
(
α−11 C

(1)
θ(t), . . . , α

−1
N C

(N)
θ(t)

)
, Dθ(t) = column

(
α−11 D

(1)
θ(t), . . . , α

−1
N D

(N)
θ(t)

)
.

A controller u(t) = Θα,θ(t)(t)x(t), α ∈ A, will be called a multi-objective optimal generalized H2

controller if it ensures the minimum possible values of the generalized H2 norm of system (25).
Based on Theorem 4, we arrive at the following statement.

Theorem 6. The gain matrices Θα,l(t) of the Pareto suboptimal controllers in terms of the per-
formance criteria Jk, k = 1, . . . , N, have the form Θα,l(t) = Zl(t)Y

−1
l (t), where Yl = Y �l � 0 and Zl

are obtained by solving the semidefinite programming problem

infγ2[−Ẏl +AlYl + YlA
�
l +Bu

l Zl + Z�l B
u�
l +BlB

�
l + λllYl ∗

V �l −Wl

]
� 0,

⎡⎣ Yl(t) ∗
C

(k)
m,l(t)Yl(t) +D

(k)
m,l(t)Zl(t) α2

kγ
2I

⎤⎦ � 0,
m = 1, . . . ,M,

k = 1, . . . , N,

L(
Y1(ts), . . . , YS(ts)

)
� 0, t ∈ [ts, tf ], l ∈ S.

(26)

5. NUMERICAL SIMULATIONS

As an illustration of the above results, we consider a continuous-time linear system with Markov
jumps between two states:

ẋ = Aθ(t)(t)x+Bθ(t)(t)v +Bu
θ(t)(t)u, x(ts) = x0,

z(k) = C
(k)
θ(t)(t)x+D

(k)
θ(t)(t)u, k = 1, 2,

(27)

with the matrices

A1 =

[
1.2 −2.0
0.1 1.1

]
, A2 =

[
0.2 0.0
2.0 0.3

]
, B1 = Bu

1 =

[
0
1

]
, B2 = Bu

2 =

[
1
0

]
,

C
(1)
1 =C

(1)
2 =

[
1 0
0 1

]
, D

(1)
1 =D

(1)
2 = 0, C

(2)
1 =C

(2)
2 = 0, D

(2)
1 =D

(2)
2 =

[
1
1

]
.

This system is considered on the horizon [0, 2], the parameters of the Markov chain and the weight
matrix are given by

π =

[
0.3
0.7

]
, Λ =

[
−10 10
5 −5

]
, R =

[
1 0
0 1

]
.
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Fig. 1. The Pareto set on the criteria plane (J1, J2).

Fig. 2. An example of a Markov process realization.

We introduce two performance criteria J1 and J2, which are the generalized H2 norms of the
system with respect to the target outputs z(1) and z(2), respectively:

J2
1 = sup

(x0,v)�=0

‖z(1)‖2g∞
E‖v‖22 + x�0 Rx0

, J2
2 = sup

(x0,v)�=0

‖z(2)‖2g∞
E‖v‖22 + x�0 Rx0

. (28)

Let us perform discretization on the horizon [0, 2] with a step of h = 0.001 and calculate the
generalized H2 norm of system (27) without control. Since the target output is z(2) = 0, the
generalized H2 norm of the system coincides with the criterion J1. The value ‖S‖g2 = 5.7882 was
obtained by solving inequalities (10).

The controllers Θα,l(t) = [Θ1
α,l,Θ

2
α,l], l = 1, 2, were designed using Theorem 4, and the corre-

sponding values of the criteria J1 and J2 were calculated using Corollary 1. In Fig. 1a, the solid
line depicts the Pareto optimal curve on the criteria plane (J1, J2). Point A(1.5509; 2.2492) cor-
responds to the convolution parameter α = 0.4. Figures 1b and 1c show the graphs of the Pareto
optimal gains Θα,l(t) depending on time: the solid curve corresponds to the gain Θ1

α,l(t) whereas

the dashed one to the gain Θ2
α,l(t).
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Fig. 3. The coefficients of the gain matrix Θ(t) and control input u(t).

Next, Fig. 2 presents an example of a Markov process realization: the graphs of the Markov
chain state (Fig. 2a), the worst-case disturbances (Fig. 2b), the components x1 and x2 ( curve) of
the system state vector (the solid and dashed curves in Fig. 2c, respectively), and the control input
(Fig. 2d).

Note that the gains can be considered slowly varying on the horizon selected. There-
fore, it is interesting to compare the values of the criteria under the suboptimal dynamic con-
troller and the static controller corresponding to the average values Θ1(t) ≡ [0.2402; −1.2928] and
Θ2(t) ≡ [−1.2366; −0.6797] (see point A(1.5959; 2.3158) in Fig. 1a). According to the data pre-
sented, the losses in control performance can be considered acceptable, and they are compensated
for by the relatively simple-to-implement static controller.

5.1. Control Independent of the Markov Chain State

Now we design a controller whose parameters are independent of the state of the Markov pro-
cess (19). To solve inequalities (21), let us choose the parameter ρ = 0.2, leaving the other simu-
lation parameters unchanged. In Fig. 1a, the upper bound of the Pareto optimal front is plotted
by the dashed curve; point B(2.3697; 3.4030) corresponds to the criteria values for α = 0.4. For the
chosen α, Fig. 3a shows the graphs of the Pareto optimal gains Θα(t) depending on time (the solid
curve corresponds to the gain Θ1

α(t) whereas the dashed one to the gain Θ2
α(t)). In Fig. 3b, the

control graph for a Markov process realization is presented.

Similar to the previous case, we analyze the behavior of the performance criteria if
the dynamic controller is replaced by the static one corresponding to the average values
Θ(t) ≡ [−0.5538; −1.2106] (see point B(2.4413; 3.9778) in Fig. 1a). Clearly, the resulting values of
the criteria are worse, but the static controller is simpler to implement, so this approach can be
considered justified.

6. CONCLUSIONS

For linear systems with a random structure on a finite horizon, the concept of the generalized H2

norm has been introduced, and algorithms for its calculation have been presented based on solving
both coupled matrix Riccati differential equations and systems of LMIs. Suboptimal generalized
H2 dynamic linear state-feedback control has been designed in the cases where the state of the
Markov chain is available and unavailable to the controller. Also, it has been demonstrated how to
solve multi-objective control problems if the criteria are generalized H2 norms.
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APPENDIX

Before proceeding to the proofs of the above theorems, for convenience, we introduce the notation

X = (X1,X2, . . . ,XS), Xl(t) = X�l (t) � 0, l ∈ S, (A.1)

Rl(X) = Ẋl(t) +A�l (t)Xl(t) +Xl(t)Al(t) +Xl(t)Bl(t)B
�
l (t)Xl(t) +

S∑
j=1

λljXj(t) (A.2)

and establish an auxiliary result.

Lemma 1. Let X = (X1,X2, . . . ,XS) be the solution of the equations

Rl(X) +Ml = 0, Xl(tf ) = X0
l , l ∈ S, t ∈ [ts, tf ], (A.3)

and let Y = (Y1, Y2, . . . , YS) be the solution of the equations

Rl(Y) +Nl = 0, Xl(tf ) = Y 0
l , l ∈ S, t ∈ [ts, tf ], (A.4)

where 0 � Ml(t) � Nl(t) and 0 � X0
l � Y 0

l , l ∈ S, t ∈ [ts, tf ]. Then

Xl(t) � Yl(t), l ∈ S, t ∈ [ts, tf ]. (A.5)

Proof of Lemma 1. Consider the system of Lyapunov equations

Ṗl + (Al +BlB
�
l Xl)

�Pl + Pl(Al +BlB
�
l Xl) +

S∑
j=1

λljPj

+ (Xl − Yl)BlB
�
l (Xl − Yl) +Nl −Ml = 0

(A.6)

on the time interval [ts, tf ] with the boundary conditions Pl(tf ) = Y 0
l −X0

l , l ∈ S. This equation
has a unique solution Pl(t), l ∈ S, with Pl(t) � 0 since (Xl − Yl)BlB

�
l (Xl − Yl) +Nl −Ml � 0 and

Pl(tf ) � 0 [1, 25]. Note that Pl(t) = Yl(t)−Xl(t) is the solution of equation (A.6), which finally
gives (A.5).

Proof of Theorem 1. We write the functional (3) in the following form:

‖S‖g2 = sup
T∈[ts, tf ]

max
m=1,...,M

γm(T ), γ2m(T ) = sup
(x0,v)�=0

E|zm(T )|22
E‖v‖22 + x�0 Rx0

.

Due to the linearity of the operator S, the last equality can be written as

sup
(x0,v)�=0

E

{
|zm(T )|22 − γ2

(‖v‖22 + x�0 Rx0
)}

= 0. (A.7)

(Hereinafter, for brevity, the argument and index γm(T ) are omitted.) We introduce the Bellman
function at a time instant t :

V (t, xt, l) = sup
v

E

⎧⎨⎩z�m(T )zm(T )−γ2
T∫
t

v�(τ)v(τ)dτ
∣∣∣x(t) = xt, θ(t) = l

⎫⎬⎭. (A.8)

Then the relation (A.7) becomes

sup
x0 �=0

E

{
V (ts, x0, θ0)− γ2x�0 Rx0

}
= 0, θ0 = θ(ts). (A.9)
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Let us calculate V (ts, x0, θ0) using the stochastic Bellman equation [26]

max
v

{LvV (t, x(t), l) − γ2v�(t)v(t)
}
= 0,

V (T, x(T ), l) = x�(T )C�m,l(T )Cm,l(T )x(T ),
(A.10)

where the infinitesimal generator Lv has the form

Lvg(t, x, l) =
∂g(t, x, l)

∂t
+

(
Al(t)x+Bl(t)v

)�∇xg(t, x, l)+
S∑

j=1

λljg(t, x, j). (A.11)

We seek a solution in the class of quadratic forms V (t, x(t), l) = x�(t)Xl(t)x(t),
Xl(t) = X�l (t) � 0. From this point onwards, for brevity again, the arguments of the functions
x(t) and v(t) will be omitted. Substituting the infinitesimal generator (A.11) into equation (A.10)
yields

max
v

{
x�Ẋl(t)x+ 2(Al(t)x+Bl(t)v)

�Xl(t)x+
S∑

j=1

λljx
�Xj(t)x− γ2v�v

}
= 0. (A.12)

Since the expression in curly braces is a concave functional in the variable v, a solution of this
problem does exist. To obtain it, we find the stationary point v∗ :

v∗ = γ−2B�l (t)Xl(t)x. (A.13)

Omitting the arguments of matrix functions and substituting (A.13) into (A.12), after straightfor-
ward simplifications, we get

x�
⎛⎝Ẋl +A�l Xl +XlAl + γ−2XlBlB

�
l Xl +

S∑
j=1

λljXj

⎞⎠x = 0. (A.14)

Equality (A.14) must hold for any value of x; therefore, one arrives at the differential matrix
equation

Ẋl +A�l Xl +XlAl + γ−2XlBlB
�
l Xl +

S∑
j=1

λljXj = 0 (A.15)

with the boundary conditions Xl(T ) = C�m,l(T )Cm,l(T ). Then, at the initial time, we have

V (ts, x0, θ0) = x�0 Xθ0(ts)x0, and the calculation of (A.9) reduces to

sup
x0 �=0

x�0

(
S∑
l=1

πlXl(ts)− γ2R

)
x0. (A.16)

This expression is a quadratic form in the variable x0 and reaches its maximum at the point

x∗0 = emax

(
R−1

S∑
l=1

πlXl(ts)

)
(A.17)

under the condition

S∑
l=1

πlXl(ts)− γ2R � 0; (A.18)
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in this case, the value of γ is given by

γ = λ1/2
max

(
R−1

S∑
l=1

πlXl(ts)

)
. (A.19)

Writing condition (A.19) using an LMI with the minimum value of γ, after the change of variables
Xl(t) = γ2Ql(t), we obtain the following optimization problem on the interval [ts, T ] for calculat-
ing γm(T ) :

inf γ2

Rl(Q) = 0,
S∑
l=1

πlQl(ts)−R� 0, Ql(T ) = γ−2C�m,l(T )Cm,l(T ), l ∈S.
(A.20)

Next, we show that γm(T ) can be found by solving the following semidefinite programming
problem on the interval [ts, T ] :

inf γ2

Rl(Q)� 0,
S∑
l=1

πlQl(ts)−R� 0, Ql(T )� γ−2C�m,l(T )Cm,l(T ), l ∈S.
(A.21)

Let γ1 be the solution of problem (A.20), and let γ2 and Q = (Q1, Q2, . . . , QS) be obtained by
solving (A.21). The solution of (A.20) is a solution of (A.21) if the corresponding inequalities hold
as equalities, therefore γ2 � γ1.

Assume that γ2 < γ1. Let X = (X1,X2, . . . ,XS) be the solution of the equations Rl(X) = 0,
l ∈ S, on the interval [ts, T ] with the boundary conditions Xl(T ) = γ−22 C�m,l(T )Cm,l(T ). Then, due
to Lemma 1, we have

Xl(t) � Ql(t), l ∈ S, t ∈ [ts, T ]. (A.22)

Since πl � 0, l ∈ S, the relations

S∑
l=1

πlXl(ts) �
S∑
l=1

πlQl(ts) � R (A.23)

hold at the initial time instant. Hence, X is a solution of the problem (A.20) for γ2 < γ1, which
contradicts the condition γ21 = inf γ2; consequently, the assumption γ2 < γ1 is false, and γ1 = γ2.

Note that for a fixed m, solving problem (A.21) yields γm(T ). To find max
m=1,...,M

γm(T ), it is

necessary to supplement inequalities (A.21) with enumeration over all possible values of m, i.e.,
solve (A.21) for m = 1, . . . ,M. Applying the Schur complement lemma to inequalities (A.21), we
finally arrive at conditions (4). The proof of Theorem 1 is complete.

Proof of Corollary 1. In inequalities (A.21), we make the change of variables Yl(t) = Q−1l (t),
l ∈ S, and multiply the first and third inequalities by Yl(t) on the left and right. After that, using
the Schur complement lemma, we get the expressions (10). The proof of Corollary 1 is complete.

Proof of Theorem 2. Let the generalized H2 norm of system (1), ‖S‖g2, be achieved at a time
instant t∗, i.e.,

‖S‖g2 = sup
T∈[ts,tf ]

γ(T ), t∗ = arg sup
T∈[ts,tf ]

γ(T ),

where γ(T ) is the solution of problem (10). Thus, for T = t∗, we obtain inf γ2 = γ2(t∗) = ‖S‖2g2 in
problem (10).
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Let solving problem (12) yield a value γ̂ and matrices Ŷl(t), t ∈ [ts, tf ]. Assume that γ̂ < ‖S‖g2;
then for T = t∗ and Yl(t) = Ŷl(t), t ∈ [ts, t

∗], problem (10) has a solution γ̂2 < ‖S‖2g2, which contra-
dicts the condition inf γ2 = ‖S‖2g2. Hence, the assumption γ̂ < ‖S‖g2 is false, and ‖S‖g2 � γ̂. The
proof of Theorem 2 is complete.

Proof of Theorem 4. We substitute the matrices of the closed-loop system (15) into inequali-
ties (12) and apply the changes Θl(t)Yl(t) = Zl(t), making the inequalities linear. These transfor-
mations lead to inequalities (18). The proof of Theorem 4 is complete.

Proof of Theorem 5. Let us utilize the approach outlined in [27]. Multiplying the first and
second inequalities of (21) on the left and right by[

I 0 ρ−1(Yl − P )P−1

0 I 0

]
and

[
I 0 ρ−1(Yl − P )P−1

0 I 0

]�
,

respectively, we obtain[
−Ẏl +

(
Al +Bu

l Θ
)
Yl + Yl

(
Al +Bu

l Θ
)�

+BlB
�
l + λllYl Vl

V �l −Wl

]
� 0,

[
Yl Yl(t)

(
Cm,l +Dm,lΘ

)�(
Cm,l +Dm,lΘ

)
Yl γ2I

]
� 0.

(A.24)

Together with the third inequality of (21), they are the conditions for calculating the bound of the
generalized H2 norm of system (20) using Theorem 2. The proof of Theorem 5 is complete.
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Abstract—This paper considers the problem of estimating the probability of the following event:
a continuous random process will first reach a given level at some time from a given variation
interval of the independent variable. The general results obtained previously are specified
for a smooth Gaussian process. The estimates are calculated for different values of process
parameters, and the corresponding numerical results are presented.
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1. INTRODUCTION. PROBLEM STATEMENT AND PREVIOUS RESULTS

Let ξ(x) be a random process continuous with probability 1, and let y be a given number.
As the domain of the process ξ(t) we consider two intervals, namely, a) a half-interval (x0, x

′′]
or b) a closed interval [x0, x

′′]. In case a), by assumption,

(1) lim
x→x0

P{ξ(x) > y} = 1,

and x0 can be either a finite number or −∞. In case b), we suppose P{ξ(x0) > y} = 1.

Consider an arbitrary value x′ ∈ (x0, x
′′). Let us define the events

Z =
{∃ x̃ ∈ (x′, x′′) ∀x ∈ (x0, x̃) ξ(x) > y, ξ(x̃) = y

}
and

L =
{∃ x̂ ∈ (x0, x

′′] ∀x ∈ (x0, x̂) ξ(x) > y
}
.

Event L means that at the initial time, the trajectory ξ(x) is above level y; and event Z means
that level y will be first reached by the trajectory at some time within the interval (x′, x′′) (see
Fig. 1). It is required to find the conditional probability P{Z|L} of event Z given the occurrence
of event L.

This problem is a special case of the one posed in [1]. For non-Markov smooth processes, it
was studied, in particular, in the author’s publications [2–5]; related problems were considered
in many well-known works, e.g., [6–13]. A more detailed bibliography can be found in [5]. For
diffusion Markov processes, this problem can be reduced to solving a mixed problem for a partial
differential equation, which was shown back in [1]. In this paper, as in [2–5], we consider the case
of a non-Markov smooth random process ξ(x). Note that, in contrast to [3–5], a somewhat different
procedure for forming lower estimates of the desired probability was proposed in [2]. This paper is
a continuation of [2].
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Fig. 1. Some realization of the process ξ(x).

In applications, the above problem arises when investigating various stochastic systems; for
example, see [14]. For instance, the probabilistic estimation of the accuracy and safety of aircraft
landing reduces to this problem [15–19], which confirms its practical importance.

Following [10], we denote by Gy(x0, x
′′) the set of scalar functions continuous on [x0, x

′′] or
(x0, x

′′] (depending on the domain of the process ξ(x) selected) that are not identically equal to y
on any subinterval of (x0, x

′′). For functions from Gy(x0, x
′′), we define the concepts of a crossing

of level y, a touching of level y, an upcrossing of level y [10], and a downcrossing of level y [10], as
done in [10].

If1 1) the sample functions ξ(x) belong to the set Gy(x0, x
′′) and have no touchings of level y

with probability 1 and 2) the mean2 number N(x0, x
′′) of crossings of level y by the process ξ(x)

on the interval (x0, x
′′) is finite, then, in view of condition (1), it is not difficult to show that

P{Z|L} = P{Z}. In other words, one can deal with estimating the unconditional probability P{Z}
instead of estimating the conditional one P{Z|L}.

For the process ξ(x), we denote by N+(x1, x2) and N−(x1, x2) the mean number of upcrossings
and downcrossings of level y, respectively, on an interval (x1, x2). Also, we denote by my(x1, x2)
the mean number of local maxima of the process ξ(x) located above level y on an interval (x1, x2).
The following result was established in [2].

Theorem. Assume that:

1) The sample functions ξ(x) belong to the set Gy(x0, x
′′) and have no touchings of level y on

the interval (x0, x
′′) with probability 1, and N(x0, x

′′) < ∞.

2) P{ξ(x′) = y} = 0.

3) Condition (1) holds.

Let x∗ be any point from the interval (x0, x
′′) such that P{ξ(x∗) = y} = 0, my(x

∗, x′′) < ∞. Then

N−(x′, x′′)−
(
N+(x0, x

∗) +my(x
∗, x′′)

)
� P{Z} � N−(x′, x′′).

If the process ξ(x) is mean-square differentiable, then the numbers N−(x1, x2), N+(x1, x2), and
my(x1, x2) can be calculated by Rice’s formulas [6, 8, 10]:

N−(x1, x2) = −
x2∫

x1

dx

0∫
−∞

vfx(y, v)dv, (2)

N+(x1, x2) =

x2∫
x1

dx

∞∫
0

vfx(y, v)dv, (3)

my(x1, x2) = −
x2∫

x1

dx

∞∫
y

du

0∫
−∞

zwx(u, 0, z)dz, (4)

1 Sufficient conditions for assumptions 1) and 2) were formulated in [2].
2 Here, “mean” refers to the mathematical expectation of a random variable.
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where fx(u, v) is the joint probability density of the random variables ξ(x) and ξ′(x), and wx(u, v, z)
is the joint probability density of the random variables ξ(x), ξ′(x), and ξ′′(x). In addition, ξ′(x)
and ξ′′(x) stand for the first and second mean-square derivatives of the process ξ(x).

2. SPECIFICATION FOR A GAUSSIAN PROCESS

Let the process ξ(x) have the form

ξ(x) = a1x+ a0 + η(x), x ∈ (−∞, x′′],

where a1 < 0 and a0 are constants, η(x) is a stationary centered Gaussian process with continuous
realizations and the correlation function

r(τ) ≡ E{η(x)η(x + τ)}/σ2,

where σ2 indicates the variance of the processes ξ(x) and η(x), and E is the mathematical expecta-
tion operator. If there exists a finite second derivative r′′(0), then the process ξ(x) is mean-square
differentiable, and Rice’s formulas (2) and (3) can be used to calculate the numbers N− and N+.
If there exists a finite fourth derivative rIV (0), then the process ξ(x) is twice mean-square differ-
entiable, and the number my can be calculated by Rice’s formula (4).

In the case under consideration, the conditions of the theorem are satisfied, and for any x∗ from
the interval (−∞, x′′), we have the inequalities

N−(x′, x′′)−
(
N+(−∞, x∗) +my(x

∗, x′′)
)
� P{Z} � N−(x′, x′′), (5)

where N+(−∞, x∗) = lim
x→−∞N+(x, x∗).

We denote by σ2
1 and σ2

2 the variance of the processes ξ′(x) and ξ′′(x), respectively, and by ρ
the correlation coefficient of the random variables ξ(x) and ξ′′(x). Note that

σ2
1 = −σ2r′′(0), σ2

2 = σ2rIV (0), ρ = r′′(0)/
√
rIV (0).

According to these relations, in the nondegenerate case (i.e., σ �= 0, σ1 �= 0, and σ2 �= 0), which is
studied here, the correlation coefficient ρ takes only negative values.

For the process ξ(x) under consideration, the formulas for fx(u, v) and wx(u, v, z) become3

fx(u, v) =
1

2πσσ1
exp

{
−(u− a0 − a1x)

2

2σ2
− (v − a1)

2

2σ2
1

}
, (6)

wx(u, v, z) =
1√
2πσ1

exp

{
−(v − a1)

2

2σ2
1

}
1

2πσσ2
√
1− ρ2

× exp

{
− 1

2(1− ρ2)

[
(u− a0 − a1x)

2

σ2
− 2ρ

(u− a0 − a1x)z

σσ2
+

z2

σ2
2

]}
.

(7)

3 Since the process ξ(x) is Gaussian, the probability densities fx(u, v) and wx(u, v, z) will be Gaussian (e.g.,
see [10, 15]); in other words, fx(u, v) and wx(u, v, z) are two- and three-dimensional Gaussian probability den-
sities, respectively. In addition, for any x, the correlation coefficient of the random variables ξ(x) and ξ′(x) and
that of the random variables ξ′(x) and ξ′′(x) are equal to zero due to the stationarity of the process η(x) (e.g.,
see [14, 15]). These circumstances finally bring to formulas (6) and (7).
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Fig. 2. Crossing of the zero level y = 0 by some realization of the process ξ(x) and by its mean E{ξ(x)}
for a0 = 0.

For the sake of definiteness, assume that y = 0, a0 = 0, and x′′ > 0 (Fig. 2). Then event Z means
that the zero level will be first reached by the process ξ(x) = a1x + η(x) at some point from the
interval (x′, x′′).

We introduce the parameters4

α = −a1/σ1 and β = −a1x
′′/σ.

Then, see the Appendix, formulas (2)–(4) yield

N−(x′, x′′) =

[
1√
2πα

exp

{
−α2

2

}
+Φ(α)

] [
Φ(β)− Φ

(
β
x′

x′′

)]
, (2′)

N+(−∞, x∗) =

[
1√
2πα

exp

{
−α2

2

}
− Φ(−α)

]
Φ

(
β
x∗

x′′

)
, (3′)

my(x
∗, x′′) = − β

2πρα
exp

{
−α2

2

}

×
1∫

x∗/x′′

[
Φ

(
− β√

1− ρ2
v

)
− ρΦ

(
− ρβv√

1− ρ2

)
exp

{
−β2v2

2

}]
dv,

(4′)

where

Φ(z) =
1√
2π

z∫
−∞

exp{−x2/2}dx. (8)

3. PROBABILITY ESTIMATES: ACCURACY ANALYSIS

Inequalities (5) can be written as

N−(x′, x′′)− f(x∗) � P{Z} � N−(x′, x′′),

where

f(x∗) = N+(−∞, x∗) +my(x
∗, x′′), x∗ ∈ (−∞, x′′].

4 In a physical interpretation, the value of the parameter α shows how strongly, on average, the slope of the real-
izations of the process ξ(x) differs from that of its mean E{ξ(x)} : for small α, this difference is large, and vice
versa.
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Fig. 3. (a) Curves f(w) for different β, α = 0.5, and ρ = −0.5 and (b) curves f ′(w) for different β, α = 0.5,
and ρ = −0.5.

With the dimensionless variable w = x∗/x′′, the estimates (5) take the form

(5′) N−(x′, x′′)− f(w) � P{Z} � N−(x′, x′′),

where w ∈ (−∞, 1] and

f(w) = N+(−∞, w) +my(w, 1),

N+(−∞, w) =

[
1√
2πα

exp

{
−α2

2

}
−Φ(−α)

]
Φ(βw),

my(w, 1) = − β

2πρα
exp

{
−α2

2

} 1∫
w

[
Φ

(
− β√

1− ρ2
v

)
− ρΦ

(
− ρβv√

1− ρ2

)
exp

{
−β2v2

2

}]
dv.

Let us investigate the behavior of the function f(w) on the interval (−∞, 1]. The smaller the values
of f(w) are, the higher accuracy the estimates (5′) of the probability P{Z} will have.

Consider the behavior of the function f(w) depending on three parameters: α, β, and ρ. The
region of interest is w ∈ [−1, 1] since, by the physical meaning of the numbers N+(−∞, w) and
my(w, 1), the function f(w), w < −1, is monotonically decreasing, so the minimum values of f(w)
will be achieved for w > −1.

Figure 3a shows the behavior of the function f(w) for different β, α = 0.5, and ρ = −0.5. As
it turned out, for any value combination of the parameters α, β, and ρ, the function f(w) is
monotonically decreasing on the interval (−∞, 1]. This conclusion follows from the analysis of the
derivative f ′(w). Based on the well-known formula for the derivative of a definite integral with
variable limits,

d

dt

φ2(t)∫
φ1(t)

h(v)dv = −h(φ1(t))
dφ1(t)

dt
+ h(φ2(t))

dφ2(t)

dt
,
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Fig. 4. (a) Curves f(w) for different β, α = 0.5, and ρ = −0.8 and (b) curves f ′(w) for different β, α = 0.5,
and ρ = −0.8.

Fig. 5. (a) Curves f(w) for different β, α = 0.5, and ρ = −0.999 and (b) curves f ′(w) for different β, α = 0.5,
and ρ = −0.999.

we obtain the following expression for the derivative of the function f(w) :

df(w)

dw
=

[
1√
2πα

exp

{
−α2

2

}
− Φ(−α)

]
1√
2π

exp

{
−β2w2

2

}
β

+
β

2πρα
exp

{
−α2

2

}[
Φ

(
− βw√

1− ρ2

)
− ρΦ

(
− ρβw√

1− ρ2

)
exp

{
−β2w2

2

}]
.

Figure 3b shows the behavior of the derivative f ′(w) for different β, α = 0.5, and ρ = −0.5.
According to the numerical calculations, f ′(w) < 0 for all w ∈ (−∞, 1]. So the minimum values of
the function f(w) are achieved at w = 1. However, the nature of change of the derivative f ′(w)
strongly depends on the parameters α, β, and ρ. For example, for β = 10, the values of f ′(w) are
negligibly small on the interval (0.5, 1); therefore, f(w) is almost independent of w on this interval.
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Fig. 6. (a) Curves f(w) for different β, α = 1, and ρ = −0.8 and (b) curves f ′(w) for different β, α = 1, and
ρ = −0.8.

Fig. 7. (a) Curves f(w) for different β, α = 1.5, and ρ = −0.8 and (b) curves f ′(w) for different β, α = 1.5,
and ρ = −0.8.

Direct comparison of Figs. 3a–5a demonstrates changes in the behavior of the function f(w) de-
pending on the correlation coefficient ρ : ρ = −0.5 for Fig. 3a, ρ = −0.8 for Fig. 4a, and ρ = −0.999
for Fig. 5a. The corresponding changes in the behavior of the derivatives f ′(w) are shown in
Figs. 3b–5b. If w is close to 1, then the values of f(w) change very weakly. If w is below 1, then
the values of f(w) decrease under the transition {ρ = −0.5} → {ρ = −0.8} → {ρ = −0.999}; the
smaller w is, the greater this decrease will be. Moreover, this conclusion holds for all β.

Direct comparison of Figs. 4a and 6a–9a demonstrates changes in the behavior of the func-
tion f(w) depending on the parameter α : α = 0.5 for Fig. 4a, α = 1 for Fig. 6a, α = 1.5 for Fig. 7a,
α = 2 for Fig. 8a, and α = 3 for Fig. 9a. The corresponding changes in the behavior of the deriva-
tives f ′(w) are shown in Figs. 4b and 6b–9b. Clearly, for any fixed β, increasing α leads to a
decrease in f(w). If α = 3 (Fig. 9a), then the values of f(w) are less than 0.008 for β = 10 and
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Fig. 8. (a) Curves f(w) for different β, α = 2, and ρ = −0.8 and (b) curves f ′(w) for different β, α = 2, and
ρ = −0.8.

Fig. 9. (a) Curves f(w) for different β, α = 3, and ρ = −0.8 and (b) curves f ′(w) for different β, α = 3, and
ρ = −0.8.

β = 3 and less than 0.001 for β = 1 and β = 0.5. For all value combinations of the parameters α,
β, and ρ under consideration, the minimum value of the function f(w) is achieved at w = 1. Also
note that for α > 3, the values of f(w) are negligibly small. In this case, inequalities (5′) allow
determining the probability P{Z} almost exactly.

The Maple package was used for the numerical calculations.

4. CONCLUSIONS

A special stationary Gaussian process ξ(x) with drift has been considered, and the estimates (5)
for the probability P{Z} [2] of the process have been analyzed numerically. That is, the accuracy
of these estimates has been studied depending on the choice of the point x∗ and the parameters
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α, β, and ρ of the process ξ(x). The accuracy is given by f(w), w ∈ (−∞, 1], (see (5′)), where the
value w is uniquely determined by the choice of the point x∗. The smaller value f(w) takes, the
more accurate the resulting probability P{Z} will be. As it turned out, for Gaussian processes, the
minimum value of f(w) is obtained at w = 1 for any value combination of the parameters α, β, and ρ.
The values of f(w) strongly depend on the parameter α : the larger α is, the smaller f(w) will be.
If α > 3, then the values of f(w) are negligibly small, and the probability P{Z} is determined
almost exactly.

APPENDIX

We find the number N+(x1, x2) by formula (3), substituting the expression (6) for the density
fx(u, v) with u = y. As a result,

N+(x1, x2) =
1

2πσσ1

x2∫
x1

exp

{
−(y − a0 − a1x)

2

2σ2

}
dx

∞∫
0

v exp

{
−(v − a1)

2

2σ2
1

}
dv.

Both integrals here are easily calculated:

x2∫
x1

exp

{
−(y − a0 − a1x)

2

2σ2

}
dx = − σ

a1

√
2π

[
Φ

(
y − a0 − a1x2

σ

)
− Φ

(
y − a0 − a1x1

σ

)]
,

∞∫
0

v exp

{
−(v − a1)

2

2σ2
1

}
dv = σ2

1 exp

{
− a21
2σ2

1

}
+

√
2πa1σ1Φ

(
a1
σ1

)
,

where the function Φ(·) is given by (8). Consequently,

N+(x1, x2) =

[
σ1√
2πa1

exp

{
− a21

2σ2
1

}
+Φ

(
a1
σ1

)][
Φ

(
y − a0 − a1x1

σ

)
− Φ

(
y − a0 − a1x2

σ

)]
.

In this relation, letting y = 0, a0 = 0, and x2 = x∗ and denoting α = −a1/σ1 and β = −a1x
′′/σ

(by analogy with the main text of the paper), one finally arrives at formula (3′) as x1 → −∞ since
a1 < 0.

Similarly, substituting the expression (6) for the density fx(u, v) with u = y, by formula (2) we
obtain the number

N−(x1, x2) =

[
σ1√
2πa1

exp

{
− a21

2σ2
1

}
− Φ

(
− a1

σ1

)] [
Φ

(
y − a0 − a1x1

σ

)
− Φ

(
y − a0 − a1x2

σ

)]
.

In this relation, letting y = 0, a0 = 0, x1 = x′, and x2 = x′′ and denoting α = −a1/σ1 and
β = −a1x

′′/σ (by analogy with the main text of the paper), one finally arrives at formula (2′).
Now, using formula (4), let us determine the number my(x1, x2) if the density wx(u, 0, z) is

calculated by (7) with v = 0. With the new variables ũ = u−a0−a1x, z̃ = z, and x̃ = x, we obtain

my(x1, x2) = −
x2∫

x1

dx̃

∞∫
y−a0−a1x̃

dũ

0∫
−∞

z̃√
2πσ1

exp

{
− a21
2σ2

1

}

× 1

2πσσ2
√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
ũ2

σ2
− 2ρ

ũz̃

σσ2
+

z̃2

σ2
2

]}
dz̃.
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After additional changes of the variables, ū = ũ/σ, z̄ = z̃/σ2, and x̄ = x̃, it follows that

my(x1, x2) = −
x2∫

x1

dx̄

∞∫
y−a0−a1x̄

σ

σdū

0∫
−∞

σ2z̄√
2πσ1

exp

{
− a21
2σ2

1

}

× 1

2πσσ2
√
1− ρ2

exp

{
− ū2 − 2ρūz̄ + z̄2

2(1− ρ2)

}
σ2dz̄

= −σ2(1− ρ2)−
1
2

2π
√
2πσ1

exp

{
− a21
2σ2

1

} x2∫
x1

dx̄

∞∫
y−a0−a1x̄

σ

exp

{
− ū2

2(1− ρ2)

}
dū

0∫
−∞

z̄ exp

{
− z̄2 − 2ρūz̄

2(1− ρ2)

}
dz̄.

The exponent index in the last integral can be transformed as

− z̄2 − 2ρūz̄

2(1− ρ2)
= −(z̄ − ρū)2 − ρ2ū2

2(1 − ρ2)
.

Then we make the change of variables

λ = ū, μ = z̄ − ρū, τ = x̄

to get

my(x1, x2) = −σ2(1− ρ2)−
1
2

2π
√
2πσ1

exp

{
− a21
2σ2

1

}

×
x2∫

x1

dτ

∞∫
y−a0−a1τ

σ

exp

{
− λ2

2(1− ρ2)

}
dλ

−ρλ∫
−∞

(μ+ ρλ) exp

{
−μ2 − ρ2λ2

2(1− ρ2)

}
dμ

= −σ2(1− ρ2)−
1
2

2π
√
2πσ1

exp

{
− a21
2σ2

1

} x2∫
x1

dτ

∞∫
y−a0−a1τ

σ

exp

{
−λ2

2

}
dλ

−ρλ∫
−∞

(μ+ ρλ) exp

{
− μ2

2(1− ρ2)

}
dμ.

Let g(λ) denote the inner integral with respect to μ. Direct calculations yield

g(λ) ≡
−ρλ∫
−∞

(μ+ ρλ) exp

{
− μ2

2(1− ρ2)

}
dμ

= −(1− ρ2) exp

{
− ρλ2

2(1− ρ2)

}
+ ρλ

−ρλ∫
−∞

exp

{
− μ2

2(1− ρ2)

}
dμ,

or, using the function Φ(·) introduced above,

g(λ) = −(1− ρ2) exp

{
− ρλ2

2(1− ρ2)

}
+

√
2π(1− ρ2)ρλΦ

(
− ρλ√

1− ρ2

)
.

Thus,

my(x1, x2) = −σ2(1− ρ2)−
1
2

2π
√
2πσ1

exp

{
− a21
2σ2

1

} x2∫
x1

I(τ)dτ, (A.1)
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where

I(τ) = I1(τ) + I2(τ),

I1(τ) =

∞∫
y−a0−a1τ

σ

−(1− ρ2) exp

{
− λ2

2(1− ρ2)

}
dλ,

I2(τ) =

∞∫
y−a0−a1τ

σ

√
2π(1− ρ2)ρλ exp

{
−λ2

2

}
Φ

(
− ρλ√

1− ρ2

)
dλ.

Based on the integration by parts, we bring I2(τ) to the form

I2(τ) =
√
2π(1 − ρ2)ρΦ

(
−ρ(y − a0 − a1τ)

σ
√
1− ρ2

)
exp

{
−(y − a0 − a1τ)

2

2σ2

}

− ρ2
∞∫

y−a0−a1τ
σ

exp

{
− λ2

2(1− ρ2)

}
dλ,

which allows writing I(τ) as

I(τ) = −
∞∫

y−a0−a1τ

σ

exp

{
− λ2

2(1− ρ2)

}
dλ

+
√
2π(1− ρ2)ρΦ

(
−ρ(y − a0 − a1τ)

σ
√
1− ρ2

)
exp

{
−(y − a0 − a1τ)

2

2σ2

}
.

Expressing the first term here through the above function Φ(·), we find

−
∞∫

y−a0−a1τ
σ

exp

{
− λ2

2(1 − ρ2)

}
dλ = −

√
2π(1− ρ2)

[
1− Φ

(
y − a0 − a1τ

σ
√
1− ρ2

)]
.

Hence, due to (A.1),

my(x1, x2) = − σ2
2πσ1

exp

{
− a21
2σ2

1

}

×
x2∫

x1

[
−1 + Φ

(
y − a0 − a1τ

σ
√
1− ρ2

)
+ ρΦ

(
− ρ(y − a0 − a1τ)

σ
√
1− ρ2

)
exp

{
− (y − a0 − a1τ)

2

2σ2

}]
dτ.

In this relation, letting y = 0, a0 = 0, x1 = x∗, and x2 = x′′ and utilizing the identity 1 − Φ(z) =
Φ(−z), we obtain

my(x
∗, x′′) =

σ2
2πσ1

exp

{
− a21
2σ2

1

} x′′∫
x∗

[
Φ

(
a1τ

σ
√
1− ρ2

)
− ρΦ

(
ρa1τ

σ
√
1− ρ2

)
exp

{
− (a1τ)

2

2σ2

}]
dτ.

With the new integration variable ν = τ/x′′, it follows that

my(x
∗, x′′) =

σ2x
′′

2πσ1
exp

{
− a21
2σ2

1

} 1∫
x∗/x′′

[
Φ

(
a1x
′′ν

σ
√
1− ρ2

)
− ρΦ

(
ρa1x

′′ν
σ
√
1− ρ2

)
exp

{
− (a1νx

′′)2

2σ2

}]
dν.

Finally, letting α = −a1/σ1 and β = −a1x
′′/σ (by analogy with the main text of the paper), one

finally arrives at formula (4′).
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