
ISSN 0005-1179Volume , Number 
202 CODEN: AURCAT

AUTOMATION AND 
REMOTE CONTROL

Editor-in-Chief
Andrey A. Galyaev

A
utom

ation and R
em

ote C
ontrol

V
ol. 

, N
o. 

, 
202



Automation and Remote Control
ISSN 0005-1179

Editor-in-Chief
Andrey A. Galyaev

Deputy Editors-in-Chief M.V. Khlebnikov and E.Ya. Rubinovich

Coordinating Editor A.S. Samokhin

Editorial Board

F.T. Aleskerov, A.V. Arutyunov, N.N. Bakhtadze, A.A. Bobtsov, P.Yu. Chebotarev, A.G. Chkhartshvili,

L.Yu. Filimonyuk, A.L. Fradkov, O.N. Granichin, M.F. Karavai, E.M. Khorov, M.M. Khrustalev,

A.I. Kibzun, S.A. Krasnova, A.P. Krishchenko, A.G. Kushner, N.V. Kuznetsov, A.A. Lazarev,

A.I. Lyakhov, A.I. Matasov, S.M. Meerkov (USA), R.V. Mescheryakov, A.I. Mikhal’skii, B.M. Miller,

O.V. Morzhin, R.A. Munasypov, A.V. Nazin, A.S. Nemirovskii (USA), D.A. Novikov, A.Ya. Oleinikov,

P.V. Pakshin, D.E. Pal’chunov, A.E. Polyakov (France), V.Yu. Protasov, L.B. Rapoport, I.V. Rodionov,

N.I. Selvesyuk, P.S. Shcherbakov, A.N. Sobolevski, O.A. Stepanov, A.B. Tsybakov (France),

D.V. Vinogradov, V.M. Vishnevskii, K.V. Vorontsov, and L.Yu. Zhilyakova

Staff Editor E.A. Martekhina

SCOPE

Automation and Remote Control is one of the first journals on control theory. The scope of the journal is control theory

problems and applications. The journal publishes reviews, original articles, and short communications (deterministic, stochastic,

adaptive, and robust formulations) and its applications (computer control, components and instruments, process control, social

and economy control, etc.).

Automation and Remote Control is abstracted and/or indexed in ACM Digital Library, BFI List, CLOCKSS, CNKI, CNPIEC

Current Contents/Engineering, Computing and Technology, DBLP, Dimensions, EBSCO Academic Search, EBSCO Advanced

Placement Source, EBSCO Applied Science & Technology Source, EBSCO Computer Science Index, EBSCO Computers &

Applied Sciences Complete, EBSCO Discovery Service, EBSCO Engineering Source, EBSCO STM Source, EI Compendex,

Google Scholar, INSPEC, Japanese Science and Technology Agency (JST), Journal Citation Reports/Science Edition, Mathe-

matical Reviews, Naver, OCLC WorldCat Discovery Service, Portico, ProQuest Advanced Technologies & Aerospace Database,

ProQuest-ExLibris Primo, ProQuest-ExLibris Summon, SCImago, SCOPUS, Science Citation Index, Science Citation Index

Expanded (Sci-Search), TD Net Discovery Service, UGC-CARE List (India), WTI Frankfurt eG, zbMATH.

Journal website: http://ait.mtas.ru

c© The Author(s), 2025 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences.

Automation and Remote Control participates in the Copyright Clearance Center (CCC) Transactional Reporting Service.

Available via license: CC BY 4.0

0005-1179/25. Automation and Remote Control (ISSN: 0005-1179 print version, ISSN: 1608-3032 electronic version) is published

monthly by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 65 Profsoyuznaya street, Moscow 117997,
Russia.
Volume 86 (12 issues) is published in 2025.

Publisher: Trapeznikov Institute of Control Sciences, Russian Academy of Sciences.

65 Profsoyuznaya street, Moscow 117997, Russia; e-mail: redacsia@ipu.rssi.ru; http://ait.mtas.ru, http://ait-arc.ru

Automation and Remote Control c© 2025 by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences



Contents

Automation and Remote Control

Vol. 86, No. 10, 2025

Nonlinear Systems

Pseudo-Optimal Solution of a Variational Problem with a Free Right End and a Specified Time
of Ending the Transient Process

V. N. Afanas’ev 893

Design of Hybrid Nonlinear Control Systems Based on a Quasilinear Approach

A. R. Gaiduk 907

The Green’s Function Method in the Problem of Fuzzy Signal Transformation by a Linear Dynamic
System

V. L. Khatskevich 923

Stochastic Systems

The Asymptotic Behavior of Anisotropic DOF Controller at Infinitesimal Values of Upper Bound
of Input’s Mean Anisotropy

I. R. Belov and A. Yu. Kustov 942

Application of a Linear Pseudomeasurement Filter to Tracking and Positioning Based on Observations
with Random Delays

A. V. Bosov 953

Batch Quasi-Poisson Models in the Queue Analysis of Packet Telecommunication Traffic

B. Ya. Lichtzinder and A. Yu. Privalov 969

Notes, Chronicles, Information

Dykhta Vladimir Aleksandrovich (1949–2025)

O. V. Morzhin 980





ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2025, Vol. 86, No. 10, pp. 893–906.
c© The Author(s), 2025 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2025.
Russian Text c© The Author(s), 2025, published in Avtomatika i Telemekhanika, 2025, No. 10, pp. 3–20.

NONLINEAR SYSTEMS
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Abstract—The problem of optimal control of the final state of the system in a sense is the core of
any other optimization problem. The formulation of such problems includes a description of the
dynamic object itself, constraints imposed on the controls and states of the object, and a quality
functional, in general, the Bolz’s functional. The necessary optimality conditions in the problem
of synthesizing the corresponding controls have written in the form of the canonical Euler–
Lagrange system with the assignment of the corresponding boundary conditions. The synthesis
of the corresponding controls faces the problem of the need to find solutions to boundary value
problems, which has usually realized by numerical methods. The paper proposes an alternative
to such methods for solving two-point boundary value problems based on the assumption of the
validity of R. Bellman’s inverse optimality principle, which consists in preserving the functional
relationship between the components of a two-point boundary value problem in the entire
control interval. The obtained theoretical results have confirmed by modeling the control system
with synthesized control.

Keywords : optimal control, Hamiltonian of the system, canonical Euler–Lagrange system, bound-
ary conditions of the canonical system

DOI: 10.31857/S0005117925100018

1. INTRODUCTION

Control systems described by ordinary differential equations quite fully reflect many real pro-
cesses and therefore are the most common objects to which mathematical methods of constructing
controls are applied. The task of constructing an optimal dynamic control system with complete
information in relation to a set of goals, a quality functional, a set of admissible controls, a set of
states and the initial state of the object at the start of control is to find a control belonging to an
admissible set of controls that minimizes a given quality functional on the solutions of the object
equation [1–5]. The solution to the problem has carried out using variation methods [4–7].

The synthesis of an optimal control system has carried out using necessary and sufficient con-
ditions for the minimum of the quality functional [2–5]. It should be note that the existence of
optimal control is not necessary: the set of admissible controls may not include controls at all that
transfer the object from the initial state to a given set of goals.

The necessary conditions for the existence of optimal control are described by a two-point
boundary value problem and the condition for choosing the control itself in the form of a certain
function depending on the behavior of the Hamiltonian on the optimal trajectory. The main
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894 AFANAS’EV

problem of finding optimal control is associated with finding a solution to a two-point boundary
value problem. Such boundary value problems for systems of differential equations have rarely
solved analytically and require the use of numerical methods, which are divided into two types —
iterative and non-iterative. For linear problems, a solution can be obtained without iterations, while
iterative methods are indispensable when solving nonlinear problems [8–12]. Such methods include:
Euler’s method, linear interpolation method, finite difference method, shooting method [10]. The
essence of this method is to reduce the boundary value problem to a multiple solution of the
Cauchy problem. A certain development of the shooting method is the differential sweep method,
in which auxiliary Cauchy problems have solved not for the original differential equation, but for
other equations of a lower order.

In general, the problem of solving two-point problems is relevant, and methods for solving it
have proposed today, some of them based on the use of neural networks [13–19].

One of the methods for solving boundary value problems is the method of successive approxima-
tions. This method, which has not yet received wide application, reduces the original problem to a
certain sequence of linear-quadratic problems. The paper [15] presents a method for synthesizing
optimal control with feedback for one class of nonlinear systems using a quadratic criterion. This
method has based on a special method of successive approximations, the convergence of which
allows one to prove the existence of optimal control and obtain a procedure for constructing it.
The paper considers an analytical and numerical study of this method and its implementation in
the MathCloud system.

To solve variation problems, two non-classical methods has intensively developed since the end
of the 20th century. The first method has based on the Differential Transform Method (DTM),
which seeks an analytical solution in the form of a certain functional series [18–20]. The second
method is based on a neural network based on mathematical models of natural sciences (Physics-
Informed Neural Network, PINN), where artificial intelligence in the form of a neural network is
used to solve a differential equation [19, 20].

The first method, DTM, has characterized by its flexibility both in the form of the differential
equation and in the boundary conditions. One of its strengths is its scalability to handle approxi-
mate solutions of various orders, and sometimes it even allows predicting the exact solution based
on the form of the found coefficients of the original equation. The disadvantage of this method is
the difficulty of automating the process of solving a given problem.

The second method (PINN) uses neural networks to solve the corresponding differential equa-
tion. One of the advantages of this method is its relatively simple implementation and flexibility.
Once a differential equation model has trained, it can provide solutions for different grids without
recalculating the problem each time.

In this paper, an alternative to numerical methods for solving two-point boundary value problems
is proposed, based on the assumption of the validity of R. Bellman’s inverse optimality principle [21],
which consists in preserving the functional connection between the components of a two-point
boundary value problem in the entire control interval.

2. TERMINAL OPTIMAL CONTROL PROBLEM

2.1. Statement of the Problem

The article considers an object that is described by an ordinary differential equation

d

dt
x(t) = f(t, x(t)) + g(t)u(t), x(t0) = x0,

f, g : T × Ωs → R
n, (t, x) → f(t, x), g(t).

(1)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



PSEUDO-OPTIMAL SOLUTION OF A VARIATIONAL PROBLEM 895

Here T is the control interval [t0, tf ]; u ∈ {u(t) ∈ R
r ⊂ U, t ∈ [t0, tf ]} is the control to be found,

the matrices f(t, x), g(t) are real and continuous; U is a compact set of admissible controls; Ωx is
the set of trajectories x(·) : [t0, tf ] → R

n, that satisfy the initial condition of x(t0) = x0 and the
differential inclusion {dx(t)/dt} ∈ co{[f(t, x(t)) + g(t)u(t)] : u ∈ U}.

It is assumed that for all (t, x) the pair of {f(t, x(t)), g(t)} is controllable. In addition, we will
assume that the functions f(t, x(t)), g(t) are smooth enough so that one and only one solution (1)
of the x(t, t0, x0) ∈ Ωx passes through any (t0, x0) ∈ T ×X0.

The set of goals in this problem is defined as S ∈ R
n × [t0, tf ]. The elements of the set of

goals are pairs (t, x), consisting of a state X and a point t from the interval of definition of the
system [t0, tf ].

Considering the problem of synthesis of the control law, we introduce the Boltz’s functional

J(x(·), u(·)) = K(x(tf )) +

tf∫
t0

{L(t, x(t), u(t))}dt. (2)

Let be L(t, x(t), u(t)) a continuous real function defined on R
n × R

r × [t0, tf ], and K(x(tf )) be a
real function on R

n × tf .

Proposition 1. On the properties of a function f(t, x) and a functional L(t, x, u) [2–4].

1. Functions f(t, x), L(t, x, u) and K(x(tf )) are continuous and satisfy the constraints

‖f(t, x)‖ ≤ (1 + ‖x‖)Rf , |L(t, x, u)| ≤ (1 + ‖x‖)RL, K(x(t)) ≤ (1 + ‖x‖)RK
for all (t, x, u) ∈ [t0, tf ]× R

n × U (here Rf , RL, RK are positive numbers).

2. We will assume that the functions f(t, x(t)) and L(t, x, u) satisfy the Lipschitz’s condition for
the variable x:

‖f(t, x+ y)− f(t, x)‖+ |L(t, x+ y, u)− L(t, x, u)| ≤ λup‖y‖
for all (t, x) ∈ [t0, tf ]× R

n, y ∈ R
n.

3. Functions f(t, x(t)), L(t, x(t), u(t)) and their partial derivatives with respect to t, x, u, i.e.

fi(t, x(t)),
∂fi(t, x(t))

∂t
,

∂fi(t, x(t))

∂x
, i = 1, . . . , n,

L(t, x(t), u(t)),
∂L(t, x(t), u(t))

∂t
,

∂L(t, x(t), u(t))

∂x
,

∂L(t, x(t), u(t))

∂u
,

are continuous on R
n × R

r × [t0, tf ].

Note that for a number of problems the existence of continuous partial derivatives L(t, x(t), u(t))
with respect to u is not required.

4. The finite cost function K(x(tf )), defined on R
n × tf , is a real function such that

K(x(t)),
∂K(x(t))

∂x
,

∂2K(x(t))

∂x2

are continuous on R
n × [t0, tf ].

Additional assumptions about the properties of the vector f(t, x(t)) will be made below (Sec-
tion 4 of the article).

Let the element ξ = (x(t), u(t), t0, tf ), for which all the specified conditions and constraints
of the problem are met, be an admissible controlled process. We will consider the admissible ele-
ments ξ = (x(t), u(t), t0, tf ) in the stated problem to be functions of the class x(·) ∈ C1([t0, tf ],R

n),
u(·) ∈ C([t0, tf ],R

r). The type of restrictions imposed on control are specified below.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



896 AFANAS’EV

The control problem consists of constructing an optimal strategy, i.e. finding an admissible
controlled process ξ0 = (x0(t), u0(t), tf ), that minimizes a functional of the form (2) on an object (1),
where the control objective is specified in the form S ∈ R

n × [t0, tf ].

2.2. Necessary Optimality Conditions

Let us write the Hamiltonian of the system H(t, x(t), u(t), λ(t)):

H(t, x(t), u(t), λ(t)) = L(t, x(t), u(t)) + λT(t)[f(t, x) + g(t)u(t)]. (3)

Here λ(t) is the Lagrange function.

The necessary optimality conditions have the form [1, 2, 7]

d

dt
x(t) =

{
∂H(t, x(t), u(t), λ(t))

∂λ

}T

, x(t0) = x0, (4)

d

dt
λ(t) = −

{
∂H(t, x(t), u(t), λ(t))

∂x

}T

, λ(tf ) =

{
∂K(x(tf ))

∂x

}T

. (5)

It is known [1–4] that the optimal control u(t), the synthesis of which is performed using the
Hamiltonian (3), leads to the need to solve the two-point boundary value problem (4), (5). However,
it should be noted that the Hamiltonian does not contain any information about the functional
relationship of the processes x(t) and λ(t).

In the problem under consideration, taking into account the assumptions made above, the nec-
essary condition must be met

H0(t, x(t), u(t), λ(t)) = min
u(t)

H(t, x(t), u(t), λ(t)), t ∈ [t0, tf ], (6)

where λ(t) is the solution of system (5). In the case where the set of admissible controls U coincides
with the entire space Rn, i.e. U = R

n, then condition (6) can be satisfied only at a stationary point,
i.e.

∂H(t, x(t), u(t), λ(t))

∂u
=
∂L(t, x(t), u(t))

∂u
+ g�(t)λ(t) = 0, t ∈ [t0, tf ]. (7)

However, if the set U is closed and U �= R
n, then relation (7) is not satisfied in the general case

and Pontryagin’s principle [2–4] should be applied to synthesize optimal control.

Let us assume that there exists an optimal control satisfying the necessary conditions (6) or (7),
which we write in the form

u(t) = −ϕ(x(t))λ(t), (8)

where is a matrix function ϕ(x(t)) ∈ R
r×n such that

g(t)ϕ(x(t)) ≤ Φ ∈ R
n×n. (9)

Here Φ is a parametrically specified matrix that determines the set of possible values of the param-
eters of the matrix ϕ(x(t)) given the known matrix g(t); which means that the restrictions imposed
on the control u(t) ⊂ U , are specified in the form of condition (9). The issue of the connection
between the established restrictions on the parameters of the regulator will be considered in the
fourth section of the article when specifying the type of functions L(t, x(t), u(t)) and K(x(tf )) the
quality criterion (2).

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



PSEUDO-OPTIMAL SOLUTION OF A VARIATIONAL PROBLEM 897

Thus, the synthesis of the optimal admissible process ξ = {x(t), u(t), t0, tf} is replaced by the
search for a matrix ϕ(x(t)), in which control u(t) = −ϕ(x(t))λ(t) ⊂ U ensures the fulfillment of
condition (9) and minimizes the functional (2).

Let us rewrite conditions (4), (5) taking into account (8):

d

dt
x(t) = f(t, x(t))− g(t)ϕ(x(t))λ(t), x(t0) = x0, (10)

d

dt
λ(t) = −

{
∂f(t, x(t))

∂x

}T

λ(t)−
{
∂L(t, x(t), u(t))

∂x

}T

, λ(tf ) =

{
∂K(x(tf ))

∂x

}T

. (11)

Thus, the successful solution of the optimal control synthesis problem in the form u(t) =
−ϕ(x(t))λ(t) depends on the possibility of successfully solving the two-point boundary value prob-
lem (10), (11).

3. PSEUDO-OPTIMAL SOLUTION OF THE SYNTHESIS PROBLEM

It should be noted that the above stages of constructing optimal control are based on the use
of the properties of the Hamiltonian (3), however, the Hamiltonian does not contain information
regarding the boundary conditions of the control system. Only the condition K(x(tf )) in the

functional (2), that is λ(tf ) = {∂K(x(tf ))/∂x}T in the boundary condition of equation (11), can
connect the variables x(t) and λ(t) at the moment tf . In addition, it should be noted that since
system (1) is described by a nonlinear differential equation, then constraint (9), imposed on the
optimal control, in the general case, may not contain control actions that achieve the control
objective for given initial conditions x0 ∈ X0 and, moreover, provide uniform. asymptotic stability
to the system [1–4].

To justify the proposed method for solving the problem of constructing pseudo-optimal control,
we use the inverse Bellman optimality principle [4, 21], which assumes that optimal control has the
property that for any initial state and the initial control used, the value of the criterion on the final
interval is affected by the control on this interval and the value of the phase vector at the end of
the interval. For the problem considered in this paper, we will clarify this definition.

Definition 1. Inverse principle of optimality. For the optimality of the admissible process ξ0 =
(x0(t), u0(t), t0, tf ) in problem (1), (2) it is necessary that for any of the subintervals [t0, τ ] ⊂ [t0, tf ],
τ ≤ tf the admissible process starting at time t0, be optimal with respect to the control on this
interval and the value of the phase vector at the end of the interval x(τ), which determines the
value of the function of the auxiliary variable λ(τ), i.e. ξ0 = (x0(t), u0(t), t0, τ).

Based on this definition, we make the following proposition:

Proposition 2. Noting that the condition connecting the variables x(t) and λ(t) at the moment tf ,

is defined as λ(tf ) = {∂K(x(tf ))/∂x}T, we will assume, based on the inverse principle of optimality,

that the relation λ̃(τ) = {∂K(x̃(τ))/∂x̃}T is valid for all τ ∈ [t0, tf ].

The fulfillment of Proposition 2 means that for all t ∈ [t0, tf ] the variable λ̃(t) is a function of
the state x̃(t).

Definition 2. The control ũ(t) = −ϕ(x̃(t))λ̃(t), whose synthesis is based on the adoption of
Proposition 2 is called pseudo-optimal control.

Let us rewrite equations (10), (11) with admissible control ũ(t) = −ϕ(x̃(t))λ̃(t) in the form

d

dt
x̃(t) = f(t, x̃(t))− g(t)ϕ(x̃(t))λ̃(t), x̃(t0) = x0, (12)

d

dt
λ̃(t) = −

{
∂f(t, x̃(t))

∂x̃

}T

λ̃(t)−
{
∂L(t, x̃(t), u(t))

∂x̃

}T

, λ̃(tf ) = λ(tf ) =

{
∂K(x(tf ))

∂x

}T

. (13)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



898 AFANAS’EV

When Proposition 2 is fulfilled, the first full derivatives of the main and auxiliary equations are
related by the relation

d

dt
λ̃(t) =

{
∂2K(x̃(t))

∂x̃2

}
d

dt
x̃(t), t ∈ [t0, tf ]. (14)

Substituting dx(t)/dt and dλ(t)/dt, defined in (12) and (13), we get

−
{
∂f(t, x̃(t))

∂x̃

}T

λ̃(t)−
{
∂L(t, x̃(t), u(t))

∂x̃

}T

=

{
∂2K(x̃(t))

∂x̃2

}
f(t, x̃(t))−

{
∂2K(x̃(t))

∂x̃2

}
g(t)ϕ(x̃(t))λ̃(t).

From where, bringing similar terms and taking into account (9), we obtain

λ̃(t) =

[
−
{
∂f(t, x̃(t))

∂x̃

}T

+

{
∂2K(x̃(t))

∂x̃2

}
Φ

]−1

×
[{

∂2K(x̃(t))

∂x̃2

}
f(t, x̃(t)) +

{
∂L(t, x̃(t), u(t))

∂x̃

}T
]
.

(15)

It is obvious that the expression
{
∂2K(x̃(t))/∂x̃2

}
Φ − {∂f(t, x̃(t))/∂x̃}T must not be negative or

equal to zero. This condition can be ensured by choosing the appropriate elements of the terminal
penalty function of the functional (2). Let us establish for definiteness that the matrix[{

∂2K(x̃(t))

∂x̃2

}
Φ−

{
∂f(t, x̃(t))

∂x̃

}T
]−1

is positive definite, which will be taken into account when analyzing the stability of a system with
synthesized control.

Pseudo-optimal control of the form (8) will be determined by the following expression

ũ(t) = −ϕ(x̃(t))
[{

∂2K(x̃(t))

∂x̃2

}
Φ−

{
∂f(t, x̃(t))

∂x̃

}T
]−1

×
[{

∂2K(x̃(t))

∂x̃2

}
f(t, x̃(t)) +

{
∂L(t, x̃(t), u(t))

∂x̃

}T
]
.

(16)

To establish the uniform asymptotic requirements that system (12) with control (16), must meet,
we introduce the Lyapunov function

VL(t) = x̃T(t)x̃(t). (17)

The total derivative of the Lyapunov function (17) has the form

d

dt
VL(t) = fT(t, x̃(t))x̃(t)− λ̃T(t)ΦTx̃(t) + x̃T(t)f(t, x̃(t))− x̃T(t)Φλ̃(t) ≤ 0, (18)

where λ̃(t) is determined by equation (15). Thus, system (12) is uniformly asymptotically stable if
the condition

fT(t, x̃(t))x̃(t) + x̃T(t)f(t, x̃(t)) ≤ λ̃T(t)ΦTx̃(t) + x̃T(t)Φλ̃(t) (19)

is satisfied.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



PSEUDO-OPTIMAL SOLUTION OF A VARIATIONAL PROBLEM 899

It can be noted that the fulfillment of condition (19) depends on the matrix Φ, which limits the
control capabilities.

Let us formulate the theorem.

Theorem 1. A pseudo-optimal solution to the control problem of a nonlinear dynamic object (1)
with functional (2) exists if and only if{

∂2K(x̃(t))

∂x̃2

}
Φ−

{
∂f(t, x̃(t))

∂x̃

}T

> 0, ∀(t, x̃) ∈ [t0, tf ]× Ωx. (20)

In this case, the trajectory x̃0(t) of system (1), originating from x̃(t0) = x(t0) and corresponding to
pseudo-optimal control ũ0(t), is a solution to the equation

d

dt
x̃(t) = f(t, x̃(t))− g(t)ϕ(x̃(t))

[{
∂2K(x̃(t))

∂x̃2

}
Φ−

{
∂f(t, x̃(t))

∂x̃

}T
]−1

×
[{

∂2K(x̃(t))

∂x̃2

}
f(t, x̃(t)) +

{
∂L(t, x̃(t), u(t))

∂x̃

}T
]
.

(21)

Satisfaction of condition (20) taking into account the restrictions (9) imposed on the parameters
of the control action allows us to determine the region of initial conditions of the system (21),
under which pseudo-optimal control (16) will provide the nonlinear system with uniform asymptotic
stability: {

∂2K(x̃(t))

∂x̃2

}
t=t0

Φ−
{
∂f(t, x̃(t))

∂x̃

}T

t=t0

	 0. (22)

4. PROBLEM WITH A QUADRATIC QUALITY FUNCTIONAL

The problem of dynamic system control by a quadratic criterion is a classical problem of mod-
ern control theory. For linear systems, this problem has been completely solved and its solution
has been fully and thoroughly described in many books (see, for example, [1–3]). For nonlinear
systems, one of its first considerations has given in book [4]. It describes a certain scheme of suc-
cessive approximations, which in some cases provides optimal control in the form of a law with
feedback. A feature of the method is that the system operator changes from iteration to iteration.
This complicates the analytical study of the problem and greatly complicates the computational
procedure. Therefore, this method has not found wide application. In works [6–8], various aspects
of the problem has considered (from constructing optimal control to proving the existence of its
solution). In work [17], a modified scheme of successive approximations for the problem of optimal
control of a nonlinear system by a quadratic quality functional has described. This scheme provides
a solution to the problem in many important cases. However, the question of the convergence of
the method on an arbitrary finite horizon remains open and is a topic for further research.

This article considers the problem of controlling an object of the form (1)

d

dt
x(t) = f(t, x(t)) + g(t)u(t), x(t0) = xs,

y(t) = Cx(t),

f, g : T × Ωx → R
n, (t, x) → f(t, x(t)), g(t),

(23)

with the functional

J(x(·), u(·)) = 1

2
xT(tf )Fx(tf ) +

1

2

tf∫
t0

{
xT(t)CTQCx(t) + uT(t)Ru(t)

}
dt. (24)

The matrices F,Q,R are positive definite.
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The control problem consists of constructing an optimal strategy, i.e. finding an admissible
controlled process ξ0 = (x0(t), u0(t), t0, tf ), that minimizes a functional of the form (24) on the
object (23), where the control objective is specified in the form S ∈ R

n × [t0, tf ].

Let us assume that there exists an optimal control satisfying the necessary conditions (6) or (7),
which we write in the form

u(t) = −ϕ(x(t))λ(t), (25)

where the matrix function ϕ(x(t)) ∈ R
r×n, taking into account (10), is such that

g(t)R−1gT(t) = g(t)ϕ(x(t)) ≤ Φ ∈ R
n×n. (26)

Here Φ is a parametrically specified matrix that elementwise determines the set of possible values
of the parameters of the matrix ϕ(x(t)) with a known matrix g(t), which means that the restrictions
imposed on the control of u(t) ⊂ U , are specified in the form of condition (26).

Proposition 3. By assigning the penalty matrices F,Q,R of the quality functional (24) it is
possible, when determining the optimal control, to ensure that condition (26) is satisfied.

The two-point boundary value problem in this subproblem, taking into account (26) has the
form

d

dt
x(t) = f(t, x(t))− Φλ(t), x(t0) = x0, (27)

d

dt
λ(t) = −

{
∂f(t, x(t))

∂x̃

}T

λ(t)− CTQCx(t), λ(tf ) = Fx(tf ). (28)

Thus, the successful solution of the optimal control synthesis problem in the form u(t) =
−ϕ(x(t))λ(t) depends on the possibility of successfully solving the two-point boundary value prob-
lem (27), (28).

When Proposition 2 made above is fulfilled in the problem under consideration with a quadratic
quality functional, the functions λ̃(t) and x̃(t) are linearly related by the relation λ̃(t) = Fx̃(t).
Thus, the full derivatives of the main and auxiliary equations have the form

d

dt
λ̃(t) = F

d

dt
x̃(t), t ∈ [t0, tf ]. (29)

Substituting dx̃(t)/dt and dλ̃(t)/dt, defined in (28), we have

−
{
∂f(t, x̃(t))

∂x̃

}T

λ̃(t) + FΦλ̃(t) = Ff(t, x̃(t)) + CTQCx̃(t).

Whence, by reducing similar terms, we obtain

λ̃(t) =

[
FΦ−

{
∂f(t, x̃(t))

∂x̃

}T
]−1 [

Ff(t, x̃(t)) + CTQCx̃(t)
]
. (30)

Here we assume that

FΦ−
{
∂f(t, x̃(t))

∂x̃

}T

> 0, ∀(t, x̃) ∈ [t0, tf ]× Ωx. (31)

As can be seen, the fulfillment of condition (31) under the given constraints (26) depends on the
purpose of the matrix F in the functional (24).
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Control (27) taking into account (30) takes the form

ũ(t) = −ϕ(x(t))
[
FΦ−

{
∂f(t, x̃(t))

∂x̃

}T
]−1 [

Ff(t, x̃(t)) + CTQCx̃(t)
]
. (32)

Let us write the original system (23) with control (32) (taking into account (25) and (26)):

d

dt
x̃(t) = f(t, x̃(t))− Φ

[
FΦ−

{
∂f(t, x̃(t))

∂x̃

}T
]−1 [

Ff(t, x̃(t)) + CTQCx̃(t)
]
,

x̃(t0) = x0.

(33)

To check the stability of the system (33), let’s first introduce some notations: let

S(x̃(t)) =

[
FΦ−

{
∂f(t, x̃(t))

∂x̃

}T
]−1

> 0. (34)

Let us rewrite (33) taking into account the notation made:

d

dt
x̃(t) = [I − ΦS(x̃(t))F ]f(t, x̃(t))− ΦS(x̃(t))CTQCx̃(t), x̃(t0) = x0. (35)

Let us introduce the Lyapunov function [22] in the form

VLx̃(t) = x̃T(t)x̃(t). (36)

The total derivative of the Lyapunov function is determined by the expression

d

dt
VLx̃(t) = fT(t, x̃(t))[I − ΦS(x̃(t))F ]Tx̃(t)−CTQCx̃(t)ST(x̃(t))ΦTx̃(t)

+ x̃T(t)[I − ΦS(x̃(t))F ]f(t, x̃(t))− x̃T(t)ΦS(x̃(t))CTQCx̃(t) ≤ 0.
(37)

By assigning the matrices Q and F in the functional (24) accordingly, it is possible to ensure
that inequality (37) is satisfied, under which the dynamic system (33) has the property of uniform
asymptotic stability.

Generalizing the result obtained above, we formulate Theorem 2.

Theorem 2. A pseudo-optimal solution to the control problem of a nonlinear dynamic object (23)
with functional (24) exists if and only if

FΦ−
{
∂f(t, x̃(t))

∂x̃

}T

> 0, ∀(t, x̃) ∈ [t0, tf ]× Ωx. (38)

In this case, the trajectory x̃0(t) of system (23), originating from x̃(t0) = x(t0) and corresponding
to pseudo-optimal control ũ0(t), is a solution to the equation

d

dt
x̃(t) = f(t, x̃(t))− Φ

[
FΦ−

{
∂f(t, x̃(t))

∂x̃

}T
]−1 [

Ff(t, x̃(t)) + CTQCx̃(t)
]
. (39)

Satisfaction of condition (31) allows us to determine the region of initial conditions of system (33),
under which pseudo-optimal control (32) will provide the nonlinear system with uniform asymptotic
stability: {

FΦ−
{
∂f(t, x̃(t))

∂x̃

}T
}
t=t0

	 0. (40)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



902 AFANAS’EV

The result presented above will be extended to a certain class of nonlinear systems represented
using the SDC-parameterization method (State Dependent Coefficient, [23, 24]). To do this, we
will make several assumptions.

Proposition 4. The vector function f = f(t, x̃(t)) is continuous and differentiable by x ∈ Ωx, i.e.
f(·) ∈ C1(Ωx).

Proposition 5. Without loss of generality, we assume that the condition x̃ = 0 ⊂ Ωx is an equi-
librium point of the system such that f(t, 0) = 0.

Proposition 6. We assume [23] that

|f(t, x̃(t))|
|x̃| → 0 for |x| → 0. (41)

Taking into account the assumptions made regarding the property f(t, x̃(t)), we move from the
description of the original system (23) to its SDC representation [23]. Writing f(t, x̃(t)) in the form

f(t, x̃(t)) = [A(t) +A(x̃(t))]x(t) = A(t, x̃)x̃(t), (42)

we have

d

dt
x̃(t) = A(t, x̃)x̃(t) + g(t)u(t), x̃(t0) = x0,

y(t) = Cx̃(t),

A(t, x̃)x̃(t), g(t) : T × Ωx → R
n, (t, x) → f(t, x), g(t).

(43)

Proposition 7. Let us assume that the pair {A(t, x̃), g(t)} is controlled, {A(t, x̃), C} is observable.

Let us write the equation of the object (39) with control takes the form

d

dt
x̃(t) = A(t, x̃)x̃(t)− Φ

[
FΦ−

{
∂A(t, x̃)x̃(t)

∂x̃

}T
]−1

×
[
FA(t, x̃) + CTQC

]
x̃(t),

y(t) = Cx̃(t), x(t0) = x0.

(44)

Obviously, a solution to this equation exists if and only if a condition similar to condition (31) is
satisfied

FΦ−
{
∂A(t, x̃)x̃(t)

∂x̃

}T

> 0, ∀(t, x̃) ∈ [t0, tf ]× Ωx. (45)

To check the stability of system (44) we first introduce some notations: let

S(x̃(t)) =

[
FΦ−

{
∂A(t, x̃)x̃(t)

∂x̃

}T
]−1

> 0, (46)

i.e. the controlled system (44), taking into account the notations made, takes the form (35).

Taking into account (45) and taking into account (37), we write the total derivative of the
Lyapunov function

d

dt
VL(t, x̃) = x̃T(t)AT(t, x̃) [I − ΦS(x̃(t))F ]T x̃(t)− x̃T(t)CTQCx̃(t)ST(x̃(t))ΦTx̃(t)

+ x̃T(t) [I − ΦS(x̃(t))F ]A(t, x̃)x̃(t)− x̃T(t)ΦS(x̃(t))CTQCx̃(t) ≤ 0.
(47)

Thus, the asymptotic stability of the controlled system (44) must ensure that the condition is met

AT(t, x̃) [I − ΦS(x̃(t))F ]T + [I − ΦS(x̃(t))F ]A(t, x̃)

≤ CTQCST(x̃(t))ΦT +ΦS(x̃(t))CTQC.
(48)

The fulfillment of conditions (26) and (48) for a given matrix Φ can be ensured by appropriately
assigning the penalty matrices F,Q,R of the quality functional (24).
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5. EXAMPLE

To illustrate the obtained theoretical results, let us consider an example [25] of the synthesis of
pseudo-optimal control for a system of the form (23)

d

dt
x1(t) = x2(t) +

[
x51(t)− x31(t)− x1(t) + x1(t)x

4
2(t)

]
+ x1(t)u1(t),

d

dt
x2(t) = −x1(t)− x2(t) +

[
x52(t)− x32(t)− x2(t) + x2(t)x

4
1(t)

]
+ x2(t)u2(t).

(49)

Here, in accordance with Section 4 of the article,

A =

(
0 1
−1 −1

)
,

(
f1(x(t))

f2(x(t))

)
=

(
x51(t)− x31(t)− x1(t) + x1(t)x

4
2(t)

x52(t)− x32(t)− x2(t) + x2(t)x
4
1(t)

)
,

g(x(t))u(t) =

(
g1(x(t))u1(t)

g2(x(t))u2(t)

)
=

(
x1(t)u1(t)

x2(t)u2(t)

)
=

(
x1(t) 0

0 x2(t)

)(
u1(t)

u2(t)

)
.

A quadratic quality functional of the form (24) has given with parameters

F =

(
1 0
0 1

)
, Q =

(
10 0
0 10

)
, R =

(
1 0
0 1

)
.

Control interval [t0, tf ] = [0, 2].

Constraints imposed on controls for a given matrix F and

Φ =

(
0.5 0
0 0.5

)
, (50)

are defined as follows:

g(x(t))R−1gT(x(t)) =

(
x21(t) 0
0 x22(t)

)
≤ Φ. (51)

The synthesized pseudo-optimal control, according to (32), has the form

ũ(t) = −ϕ(x(t))
[
FΦ−

{
∂f(t, x(t))

∂x

}T
]−1 [

Ff(t, x(t)) +CTQCx(t)
]
, (52)

where the matrix ϕ(x(t)) satisfies condition (50), and C =

(
1 0
0 1

)
.

The constraints imposed on the controls for a given matrix F will be such that condition (40),
is satisfied, in this example:⎛⎝−5x41(t) + 4x21(t) + 1− x42(t) −4x2(t)x

3
1(t) + 1

−4x1(t)x
3
2(t)− 1 −5x42(t) + 4x22 + 2− x41(t)

⎞⎠ 	 0,∀x̃(t) ∈ Ω. (53)

System (49) with control (52) has the form

d

dt
x(t) = [Ax(t) + f(t, x(t))]

− Φ

[
FΦ−

{
∂f(t, x(t))

∂x

}T
]−1

F [Ax(t) + f(t, x(t)) +Qx(t)] ,

x(t0) = x0.

(54)
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Fig. 1. Graphs of transient processes.

According to the condition (53), which defines the control capabilities of (52), the system is
stable, as shown in the graphs (Figure), with initial conditions |x1(t0)| ≤ 0.72; |x2(t0)| ≤ 0.72 The
system becomes unstable under the initial conditions |x1(t0)| = 0.73; |x2(t0)| = 0.73.

This is consistent with the conclusions of Theorem 2 ((40)) and the condition (53).

6. CONCLUSION

The Euler-Lagrange canonical system with the assignment of the corresponding boundary con-
ditions is the basis of the necessary optimality conditions in the problem of synthesizing optimal
controls for a dynamic object, while the synthesis of these controls has carried out based on the
analysis of the Hamiltonian behavior on the optimal trajectory. However, the Hamiltonian does
not contain any information on the relationship between the processes included in the canonical
system. The success of synthesizing optimal control as a whole depends on the possibility of solving
the canonical system with the specified boundary conditions. It should be noted that the func-
tional relationship between the processes of a two-point boundary value problem exists only in the
partial derivative with respect to the first term of the Bolza quality functional. In this paper,
an alternative to numerical methods for solving two-point boundary value problems is proposed,
based on the assumption of the validity of R. Bellman’s inverse optimality principle, which consists
in preserving the functional relationship between the components of a two-point boundary value
problem in the entire control interval.

In this paper, an alternative to numerical methods for solving two-point boundary value problems
is proposed, based on the assumption of the validity of R. Bellman’s inverse optimality principle,
which consists in preserving the functional connection between the components of a two-point
boundary value problem in the entire control interval.

Because of the study of the control synthesis problem for a nonlinear dynamic system described
by an ordinary differential equation and the Bolza functional, an analytical expression for pseudo-
optimal control has obtained, and a theorem on the necessary conditions for the optimality of this
control has formulated. For a problem with a quadratic quality functional, SDC representation
of a nonlinear dynamic object and the corresponding pseudo-optimal control, a theorem on the
asymptotic stability of the control system has proved. The conditions that must be met by the
penalty matrices of the quality functional are obtained, under which the required quality of transient
processes of the controlled nonlinear system is ensured when the established constraints on the
control are met. The theoretical results obtained have confirmed by modeling the control system
with synthesized control.
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Abstract—A method for designing hybrid nonlinear control systems for plants with differen-
tiable nonlinearities and a measurable state vector is developed based on continuous quasilinear
models and quasilinear discretization. The hybrid system is designed with an increased control
discretization period and zero static error for a reference signal. A solution of the control de-
sign problem exists if the nonlinear plant satisfies state and output controllability criteria and
some additional conditions. The stability of the hybrid system is proven using the Aizerman–
Pyatnitsky “technical” approach and the Lyapunov function method. The effectiveness of the
design method proposed for hybrid control systems is illustrated by a numerical example. This
method can be applied to create hybrid control systems for different-purpose nonlinear plants.

Keywords : differentiable nonlinearity, quasilinear model, state controllability criterion, output
controllability criterion, quasilinear discretization, hybrid system, stability, static error
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1. INTRODUCTION

Recently, significant attention has been paid to the development of methods for designing hybrid
nonlinear control systems, which are characterized by continuous and discrete nonlinear dynamics,
requiring the use of differential and difference equations [1–3]. In reality, such systems represent
a combination of continuous (hardware) and digital (programmable) elements [4]. In known pub-
lications, a wide variety of systems are referred to as hybrid.

Hybrid systems of the first class include either one nonlinear plant operating in switched modes
or several plants that must be switched on in a certain sequence. In this case, difference equations
describe the digital part, which ensures the switching of the continuous part elements [1, 5–8].
To create hybrid nonlinear optimal control systems, the Hybrid Necessary Principle was used in [1].
This principle allows considering the constraints due to the switching strategy. In [5], the same
goal was achieved by applying the Hamilton–Jacobi–Bellman equation and the spectral Galerkin
method.

The hybrid nature of the control system considered in [6] is due to the switching of several
continuous subsystems, while that of the one created in [7] is due to the switching of its operating
modes. A quadcopter with in-flight switchable morphology was considered in [8]. Its hybrid control
system includes a nonlinear PID controller and a discrete controller that stabilize the control system
for all possible quadcopter configurations.

The second class of hybrid systems seems to be more defined [2, 3]. Here, a controlled continu-
ous plant is equipped with a discrete (digital) controller. The main problem is ensuring the stable
operation of the hybrid system with a relatively large period of the digital controller’s operation.
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This necessity arises when creating control systems for inertial plants, such as baking ovens, in-
cubators, greenhouses, etc., as well as plants operating under harsh temperature conditions where
controller cooling is difficult. Due to the large period, the conditions of the Kotelnikov theorem
fail, violating the stability of the system, which holds in classical cases with a sufficiently small
discretization period. Therefore, various methods are employed to create hybrid control systems of
this class [2, 3, 9–12]. For example, predictive control based on quadratic and integer programming
was used in [2]. The effectiveness of the approach was illustrated by an example of designing a
hybrid control system for a plant with three spherical tanks.

A hybrid terminal control method with an identified model of the controlled plant was developed
in [3]. A two-layer artificial neural network was proposed for identifying nonlinear plants. For
nonlinear plants with delay and parametric uncertainty, hybrid control systems were designed
in [9–11] using the hyperstability criterion, the L-dissipativity condition, and a filter-corrector.
The discrete control was obtained by discretizing a continuous one. The problem of tracking a
given trajectory by a quadcopter under uncertainty was considered in [12]. A hybrid autopilot
implementing predictive and fuzzy control was applied in the tracking system.

This paper develops a new method for designing hybrid nonlinear control systems for single-
input single-output (SISO) plants with differentiable nonlinearities and a measurable state vector.
Quasilinear models of nonlinear plants and the quasilinear discretization method [13–17] are used.
By assumption, the plant satisfies state and output controllability criteria and some additional con-
ditions. Hybrid systems of the second class with an increased discretization period are designed,
which significantly reduces the performance requirements for computing resources. The main lim-
itation of the developed method is the differentiability of the plant’s nonlinearities. If the state
vector is unmeasurable, a state observer can be used.

2. PROBLEM STATEMENT

Consider control-affine nonlinear SISO plants described by the following equations in deviations:

ẋ = ϕ(x, u, f), y = ξ(x, u), (1)

where x = [∼x1, . . . , ∼xn]
T ∈ Rn denotes the vector of state variables; u, f, y ∈ R are scalar control sig-

nal, disturbance, and controlled output, respectively; ϕ(x, u, f) is a nonlinear n-dimensional vector
function, and ξ(x, u) is a scalar nonlinear function. These functions are bounded and differentiable
in all arguments; moreover, ϕ(0, 0, 0) = 0 and ξ(0, 0) = 0. The state vector x and the output y or
the deviation ε = g − y are measured. Here, 0 ∈ Rn stands for the zero vector, g = g(t) ∈ R and
f = f(t) ∈ R are a reference signal and disturbance, representing arbitrary time-varying functions
bounded by absolute value, and f(t) is not measured.

Since the nonlinearities ϕ(x, u, f) and ξ(x, u) in (1) are differentiable, the method described
in [15, 16] yields a quasilinear model (QLM) of the form

ẋ = A(x)x+ b(x)u+ h(x)f, y = cT(x)x+ d(x)u, (2)

where A(x) ∈ Rn×n and b(x), h(x), c(x) ∈ Rn are functional matrix and vectors, respectively, whose
all elements, as well as d(x) ∈ R, are known bounded differentiable nonlinear functions or numbers.
Let us emphasize that QLMs describe the corresponding plants with differentiable nonlinearities
with the same accuracy as equations (1). In other words, the properties of equations (2) fully
match those of (1). Various methods for building QLMs have long been known. For example,
the equation ẋ = D(x)x was used by N.N. Krasovskii et al. to construct Lyapunov functions for
nonlinear systems as early as the middle of the previous century [18].
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By assumption, the QLM (2) satisfies the state controllability criterion

detUs(x) = det[b(x) A(x)b(x) . . . An−1(x)b(x)] �= 0, ∀x ∈ ΩUs, (3)

as well as the output controllability criterion

γpl(x) �= 0, ∀x ∈ ΩUo, (4)

where γpl(x) is the output controllability index of the plant (1), defined by the expression

γpl(x) = d(x) detA(x)− cT(x)adjA(x) b(x). (5)

In (3)–(5), ΩUs = {x ∈ Rn : detUs(x) �= 0}; ΩUo = {x ∈ Rn : γpl(x) �= 0}; adjA(x) is the adjoint
matrix for A(x) [19]; ΩUu = ΩUo ∩ ΩUs is the set of vectors x ∈ Rn for which conditions (3) and (4)
hold; moreover, both ΩUs and ΩUo include the vector x = 0.

The objective of this work is to develop a method for designing second-class hybrid control
systems for nonlinear plants of the form (1). The discretization periods of these systems must be
significantly larger than those of discrete control systems created by conventional methods. To
solve this problem, we apply a piecewise-constant control obtained by the quasilinear discretization
method of nonlinear plants [17].

3. THE QUASILINEAR DISCRETIZATION METHOD

In this method, not the equations of nonlinear plants but their quasilinear models are discretized
using the trapezoidal method. It is possible due to the boundedness of the right-hand sides of the
QLM equations (2) for bounded x, u, g, and f.

Let T be a certain discretization period for the solutions x = x(t) ∈ ΩUu of the differential
equation (2). With each time instant t = kT , k = 0, 1, 2, . . . , a discrete value xk = x(kT ) of this
solution is associated. The exact value xk+1 = x(kT + T ) is given by the expression

xk+1 = xk +

kT+T∫
kT

F (t)dt, (6)

where F (t) = A(x)x+ b(x)u+ h(x)f(t )|x=x(t) is the right-hand side of the first equation in (2).
Assume that the input u = uk is a bounded and piecewise constant function. Nowadays, exact
methods for computing the integrals (6) are unknown, so based on the modified trapezoidal method,
the integrand in (6) is replaced by

F̄ = 0.5[Akxk +Akxk+1 + 2bkuk + 2hkfk] + Δk,

where Δk =0.5[(Ak+1−Ak)xk+1+ bk+1uk+1− bkuk+hk+1fk+1−hkfk]. (For brevity, Ak = A(xk),
bk = b(xk), and hk = h(xk).) Replacing F (t) in (6) with F̄ for Δk = 0 and integrating, we obtain
the difference equation

[E − 0.5TA(xk)]xk+1 = [E + 0.5TA(xk)]xk + Tb(xk)uk + Th(xk)fk, xk ∈ ΩUu. (7)

Note that the modification of the trapezoidal method consists in adding and subtracting the sum
Akxk+1 + bkuk + hkfk when deriving the expression for F̄ (kT ) from F (t).

Equation (7) can be solved for xk+1 if the matrix [E − 0.5TA(xk)] has an inverse, i.e., under the
following condition imposed on the choice of the period T :

det[E − 0.5TA(x)] �= 0, x ∈ ΩUu. (8)
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To find T, we determine the roots ηi of the auxiliary equation det[E − 0.5ηA(x)] = 0. Let this
equation for x ∈ ΩUu have 0 < m(x) ≤ n [20] positive real roots, of which m1(x) are independent
of x and m2(x) = m(x)−m1(x) depend on x. Then

0 < T < min{ηmin,1, ηmin,2}, (9)

where ηmin,1 =min{ηi, i= 1,m1(x), x∈ΩUu}, ηmin,2 = inf{η > 0 : ηi = ηi(x), i= 1,m2(x), x∈ΩUu}.
Ifm(x) ≡ 0 (i.e., the equation det[E − 0.5ηA(x)] = 0 has no positive real roots ηi), the condition

on the matrix [E − 0.5TA(xk)] will not imply any constraints on T.

In this case, the value of T in (8) is taken arbitrarily, based on constructive constraints; and the
value of T can be refined later.

If the period T is chosen according to (8), then from (7) and the second equation in (2) it follows
that

xk+1 = Ad(xk)xk + bd(xk)uk + hd(xk)fk,

yk = cT(xk)xk + d(xk)uk, xk ∈ ΩUu,
(10)

where

Ad(xk) = [E − 0.5TA(xk)]
−1[E + 0.5TA(xk)], (11)

bd(xk) = [E − 0.5TA(xk)]
−1Tb(xk),

hd(xk) = [E − 0.5TA(xk)]
−1Th(xk).

(12)

The relations (6)–(12) represent the quasilinear discretization method, and the expressions (10)–
(12) are the discrete quasilinear model (DQLM) of the plant (1) [17]. In contrast to the exact
QLM (2), this model is approximate. However, as shown below under certain conditions, some
control signal uk stabilizing the equilibrium of the DQLM (10) also ensures the stability of the
equilibrium of the control system for the plant (1). In this sense, quasilinear discretization is
analogous to classical linearization in the continuous case, where the control law based on first-
approximation equations stabilizes the equilibrium of the nonlinear system in the small.

The application of the DQLM (10)–(12) allows hybrid systems to have a significantly larger
discretization period compared to conventional approaches, thereby substantially reducing the per-
formance requirements for system controllers.

4. STABILIZING CONTROL

This control is constructed by the algebraic polynomial-matrix (APM) method [21, 22]. Let the
period T be chosen so that condition (8) holds, and let the corresponding DQLM (10)–(12) satisfy
the state controllability criterion1 for nonlinear discrete plants:

detUd(xk) = det[bd(xk) Ad(xk)bd(xk) . . . A
n−1
d (xk)b(xk)] �=0, xk ∈ΩUd, (13)

where ΩUd = {xk ∈ ΩUu : detUd(xk) �= 0}. In other words, ΩUd ⊂ ΩUu is the domain where condi-
tions (3), (4), (8), and (13) hold, and it contains the point x = 0.

The discrete control law stabilizing system (10)–(12) has the form

uk(xk) = −lT(xk)xk = −[l1(xk) l2(xk) . . . ln(xk)]xk. (14)

The gains li(xk) are determined by the algorithm with the following steps [21].

1 The question of whether condition (13) holds under conditions (3) and (8) is open.
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1) Using (11) and (12), it is necessary to find the functional polynomials

Ad(z, xk) = det[zE −Ad(xk)] = zn + αn−1(xk)z
n−1 + . . . + α1(xk)z + α0(xk), (15)

Vd,i(z, xk) = eTi adj [zE −Ad(xk)]bd(xk) = vi,n−1(xk)z
n−1 + vi,n−2(xk)z

n−2 + . . .+ vi,0(xk), (16)

where ei is the ith column of the identity matrix E of dimensions n× n; αj(xk) and vi,j(xk) are
functional or numerical coefficients, i = 1, . . . , n, and j = 0, 1, . . . , n− 1.

2) This step is to form the polynomial

D∗(z) =
n∏
i=1

(z − σ∗i ) = zn + δ∗n−1z
n−1 + . . .+ δ∗1z + δ∗0 , (17)

where σ∗i are real numbers for which there exist 0 < ς1 < 1 and 0 < ς2, independent of i and κ, such
that

|σ∗i | ≤ 1− ς1, ς2 < |σ∗i − σ∗κ| , i �= κ, i, κ = 1, . . . , n. (18)

3) One determines the coefficients of the difference

D∗(z)−Ad(z, xk) = ρn−1(xk)z
n−1 + . . .+ ρ1(xk)z + ρ0(xk), (19)

where ρj(xk) = δ∗j − αj(xk), j = 0, 1, . . . , n− 1. Next, it is necessary to equate the coefficients of the
sum of the products of the polynomials Vd,i(z, xk) (16) by the coefficients li(xk) (14), i = 1, . . . , n,
to those of the polynomial (19) at the same powers of z. The resulting equations, written in the
vector-matrix form, constitute the system of linear algebraic equations (SLAE)

⎡⎢⎢⎢⎢⎣
v10(xk) v20(xk) · · · vn0(xk)

v11(xk) v21(xk) · · · vn1(xk)
...

...
. . .

...
v1,n−1(xk) v2,n−1(xk) · · · vn,n−1(xk)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
l1(xk)

l2(xk)
...

ln(xk)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ρ0(xk)

ρ1(xk)
...

ρn−1(xk)

⎤⎥⎥⎥⎥⎦ . (20)

The SLAE (20) has a unique solution due to condition (13). Its solution—the vector l(xk)—
is substituted into (14), and the resulting control law uk is then substituted into the DQLM
equation (10). Thus, one arrives at the following equation of the virtual discrete system:

xk+1 = Dd(xk)xk + hd(xk)fk, xk ∈ ΩUd, = 0, 1, 2, . . . , (21)

where

Dd(xk) = Ad(xk)− bd(xk)l
T(xk). (22)

The lemma below establishes the effectiveness of the APM method.

Lemma 1. Under condition (13), the SLAE (20) has a unique solution l(xk). Moreover, for
any xk ∈ ΩUd, the eigenvalues of the matrix Dd(xk) (22) coincide with the roots of the polynomial
D∗(z) (17), i.e., they do not depend on xk, are real, distinct, and less than one by absolute value.

The proof of Lemma 1 is postponed to the Appendix. We emphasize that the relations (8)–(22)
can be used for designing discrete nonlinear control systems [17, 22].
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5. HYBRID SYSTEM DESIGN

Proceeding to the solution of this problem, we introduce the matrix

D̃(x) = [E − 0.5Tb(x)lT(x)]Hg(x), (23)

with Hg(x) = [Dd(x)− E][Dd(x) + E]−1, the matrix Dd(x) (22), and the vector l(x) = l(xk) for
xk = x.

Let λ
D̃(x)
i be the eigenvalues of the matrix D̃(x) ∈ Rn×n. Assume that the period T in (10)–(20)

and (23) satisfies conditions (8) and (13) and the inequalities

Reλ
D̃(x)
i < 0, i = 1, . . . , n, x ∈ Ωsys, (24)

where Ωsys = {x ∈ ΩUd : Reλ
D̃(x)
i < 0, i = 1, . . . , n}. In other words, the eigenvalues of the matrix

D̃(x) can be either real or complex conjugate but with negative real parts (i.e., the matrix D̃(x) is
Hurwitz in the domain Ωsys). Note that the choice of T can be iterative: if condition (24) fails for
some value of the period T, then this value in (8)–(20) and (23) is decreased.

Under conditions (3), (4), (8), (13), and (24), the control law of the hybrid system is a discrete,
piecewise-constant function of the form

u = uhyb(xk, gk) = lg(xk)gk − lT(xk)xk, k = 0, 1, 2, . . . , (25)

where xk ∈ Ωsys; gk = g(t )|t=kT are the values of the reference signal g(t); the gain lg(x) and the
matrix Dhyb(x) ∈ Rn×n are given by

lg(x) = detDhyb(x)/γpl(x) (26)

and

Dhyb(x) = A(x)− b(x)lT(x), (27)

respectively. From now on, the vector x = x(t) ∈ Rn is the solution of system (1), (25) or (2), (25).

From the expressions (2) and (25) we derive the following QLM equations of the hybrid system:

ẋ = A(x)x− b(x)lT(xk)xk + b(x)lg(xk)gk + h(x)f, kT ≤ t < (k + 1)T, (28)

y = cT(x)x− d(x)lT(xk)xk + d(x)lg(xk)gk, kT ≤ t < (k + 1)T, k = 0, 1, 2, . . . . (29)

According to the definition (25), on the surfaces ϕ(t, x) = t− kT = 0, k = 1, 2, 3, . . . , the con-
trol signal u = u(t) undergoes discontinuities of the first kind, i.e., instantaneously changes its
value [23]. Such instantaneously changing controls were used as admissible in [24–26]. In the
case under consideration, for each k ≥ 1, the above discontinuity surfaces form two continuity
sectors for both the control signal u (25) and the right-hand side of equation (28) [23]. By for-
mula (25), in the left continuity sectors kT − T < t < kT , the control law is given by the expression
u−(t) = lg(xk−1)gk−1 − lT (xk−1)xk−1; in the right continuity sectors kT < t < kT + T , by the ex-
pression u+(t) = lg(xk)gk − lT (xk)xk. Here, xk are the values of the solution of the differential
system (28) on the discontinuity surfaces, i.e., at t = kT , k = 1, 2, 3, . . . . Following [24] or [25], we
assume the existence of finite right and left limits in each continuity sector.

However, the values xk are not determined by the differential system (28) in the classical sense
due to the discontinuities of its right-hand side. There are several approaches to overcome this
problem [26]. The so-called “technical” [23] (or “physical” [26]) one was proposed by M.A. Aizer-
man and E.S. Pyatnitsky: the idea is to consider the physical meaning of the problem, using
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“additional information about the ‘original system’ to narrow the domain of possible solutions”
on the discontinuity surfaces [23, p. 39]. Recall that x0 is given, and the subsequent values of xk,
k = 1, 2, 3, . . . , are measured in the hybrid system of the above type. Having this in mind, we
assume that the solution of equation (28) in the left continuity sectors is given by

x−(t) = xk−1 +

t∫
kT−T

[A(x(τ))x(τ) − b(x(τ))lT (xk−1)xk−1 + υ−(τ)]dτ,

kT − T ≤ t < kT, k = 1, 2, 3, . . . ,

(30)

where x0 = x(0), υ−(τ) = b(x(τ))lg(xk−1)gk−1 + h(x(τ))f(τ), and the integral is a Lebesgue inte-
gral [23]. Following [24], it seems convenient to define the measured values as xk = limt→kT x

−(t).
Replacing the subscript k with k + 1 in equality (30), we derive an explicit expression for x(t) in
the right continuity sectors:

x+(t) = xk +

t∫
kT

[A(x(τ))x(τ) − b(x(τ))lT (xk)xk + υ+(τ)]dτ,

kT ≤ t < kT + T, k = 1, 2, 3, . . . ,

(31)

where υ+(τ) = b(x(τ))lg(xk)gk + h(x(τ))f(τ).

Due to the assumed existence of right and left limits in each continuity sector, both formu-
las (30) and (31) yield the same value: xk = limt→kT x

−(t) = limt→kT x
+(t). Thus, the Aizerman–

Pyatnitsky approach allows obtaining the values of the continuous solution x(t) of the differential
system (28) for all t under the piecewise-constant control law (25) by utilizing the additional infor-
mation about the properties of the hybrid system.

Let us formulate a theorem on the properties of system (1), (25).

Theorem. Assume that conditions (3), (4), (8), (13), (18), and (24) hold, and the vector l(xk)
in (25) is given by the solution of the SLAE (20). Then for g(t) = f(t) ≡ 0 and all t ≥ 0, there
exists a set of solutions x(t, x0) of equation (28) such that

lim
t→∞x(t, x0) = 0, x ∈ Ωsys. (32)

If the gain lg(xk) in (25) is given by (26), then the static error of system (1), (25) with respect to
the reference signal g(t) is zero:

lim
t→∞ εg(t) = lim

t→∞[g(t)− yg(t)] = 0 (33)

for g(t) = g01(t) and f(t) ≡ 0.

Here, 1(t) indicates the unit step function (the Heaviside function); yg(t) is the response of sys-
tem (28), (29), i.e., (1), (25) with f(t) ≡ 0, to the reference signal g(t) = g01(t) for some x0 = x(0)
and g0 such that x(t, x0, g0) ∈ Ωsys, t ≥ 0.

The proof of this theorem is provided in the Appendix. The following lemma establishes that the
controllability of the plant implies the “controllability” of the closed-loop system, i.e., the possibility
of ensuring the necessary change in the system output by an appropriate reference signal.

Lemma 2. If the matrices Us(x) and Dhyb(x) are given by (3) and (27), then

detQhyb(x) = det[b(x) Dhyb(x)b(x) . . . Dn−1
hyb (x)b(x)] = detUs(x), x ∈ Ωsys. (34)
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The proof of Lemma 2 can be found in the Appendix. The relations (2), (5), (9)–(20), (22),
(23), and (25)–(29) constitute the mathematical foundation of the proposed method for designing
hybrid nonlinear control systems; inequalities (3), (4), (8), (13), (18) and (24) express the solvability
conditions of the design problem by this method. The effectiveness of the developed method is
illustrated by a numerical example below.

6. A NUMERICAL EXAMPLE

It is required to design a hybrid pitch control system (HPCS) for an autonomous underwater
vehicle (AUV). Pitch control is carried out using bow and stern tanks of variable volume [27] and
is described by the system of equations

ψ̈ = α1Uψ cosψ − α2Ua sinψ − β
∣∣∣ψ̇∣∣∣ ψ̇, U̇ψ = −kvUψ + kuu, y = ψ, (35)

with the following notation: ψ and ψ̇ are the pitch angle and its rate of change, respectively;
Uψ stands for the difference in the volumes of the bow and stern tanks; Ua is the AUV displacement;
α1 and α2 mean hydrodynamic coefficients; β is the pitch change resistance coefficient; kv and ku
are parameters of the device changing Uψ; u is the control signal of this device; y is the controlled
output of the HPCS; finally, ψ, ψ̇, and Uψ are measured variables. The HPCS must have zero static
error in pitch and transients of a duration not exceeding 5 s under zero initial conditions and the
desired pitch g(t) = ψ∗(t) = −0.5236 × 1(t) rad.

Solution. Setting ∼x1 = ψ, ∼x2 = ψ̇ and ∼x3 = Uψ, we write equations (35) in the Cauchy form:

∼̇x1 = ∼x2,

∼̇x2 = α1∼x3 cos ∼x1 − α2Ua sin ∼x1 − β
∣∣
∼x2
∣∣
∼x2,

∼̇x3 = −kv∼x3 + kuu, y = ∼x1.

(36)

Since sin ∼x1 = ω(∼x1)∼x1, where ω(∼x1) = (sin ∼x1)/∼x1 is the QLM of the function sin ∼x1 [16], the QLM
of the nonlinear system of equations (36) has the form (2) with

A(x) =

⎡⎢⎣ 0 1 0
−a21(x) −a22(x) a23(x)

0 0 −a33(x)

⎤⎥⎦ ,
b(x) =

⎡⎢⎣ 0
0
ku

⎤⎥⎦ , c(x) =

⎡⎢⎣ 1
0
0

⎤⎥⎦ , h(x) = 0, d(x) = 0.

(37)

Here, x = [∼x1 ∼x2 ∼x3]
T, a21(x) = α2Uaω(∼x1), a22(x) = β

∣∣
∼x2

∣∣, a23(x) = α1 cos ∼x1, and a33(x) = kv.

Consider the solution of the HPCS design problem for g(t) = ψ∗(t) and the following model
values of the coefficients in (37): a21(x) = 7.044ω(∼x1), a22(x) = 1.192

∣∣
∼x2

∣∣, a23(x) = 6.48 cos ∼x1,
a33(x) = 1.326, and kv = ku = 0.12. In this case, in view of (5) and (37), conditions (3) and (4)
become detUs(x) = 0.0933(cos ∼x1)

2 �= 0 and γpl(x) = 0.7776 cos ∼x1 �= 0. In other words, the do-
main ΩUu is given by

∣∣
∼x1

∣∣ < π/2,
∣∣
∼x2
∣∣ ≤ ∼x2,max, and

∣∣
∼x3
∣∣ ≤ ∼x3,max, where ∼x2,max and ∼x3,max are

some design bounds. Let ∼x2,max = 3.5 rad/s and L(η, x) = [E − 0.5ηA(x)]; then, taking (37) into
account, we arrive at the equation

detL(η, x) = (1 + 0.663η)
[
1 + 0.596

∣∣
∼x2

∣∣ η + 3.522ω(∼x1)η
2
]
= 0. (38)

Equation (38) has no positive real roots ηi in the domain ΩUu. That is, condition (8) on the matrix
[E − 0.5TA(xk)] does not yield any constraints on the period T. Therefore, we take T1 = 0.6 s and
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Fig. 1. The plots of the variables for T = 0.6 s: (a) pitch angles and (b) control input.

Fig. 2. The plots of the variables for T = 0.8 s: (a) pitch angles and (b) control input.

T2 = 0.8 s based on constructive constraints. Let us determine the controller. The matrix Ad(xk)
and the vector bd(xk) are found from (11), (12), and (37); the fulfillment of condition (13) in the
domain ΩUd = ΩUu is verified numerically; the polynomials Ad(z, xk) and Vd,i(z, xk), i = 1, 2, 3, are
constructed by (15) and (16).

The polynomial D∗(z), found from (17) and (18), allows calculating the coefficients ρj(xk),
j = 0, 1, 2, from (19) and compiling the SLAE (20). Its solution determines the three-dimensional
vector l(xk). Next, the matrix Dd(xk) is obtained from (22) and the matrix D̃(x) from (23).
It is verified numerically that condition (24) holds both for T = 0.6 s and for T = 0.8 s in the
domain Ωsys = ΩUu. Finally, Dhyb(x), lg(x), and uhyb(xk, gk) are determined by formulas (27),
(26), and (25), respectively.

We emphasize that during the operation of the HPCS, almost all computations (first, the
matrix A(x) and the vector b(x) (37), then Ad(xk) and bd(xk), and, finally, the control input
uhyb(xk, gk)) are performed by a digital control device for all k = 0, 1, 2, . . . with period T. (The only
exception is the formation of the polynomial D∗(z).) This is due to the nonlinear nature of the
plant (35).

Analysis of the designed HPCS. For this purpose, we used MATLAB to compute the values of
the discrete control signal uhyb(xk, gk) for each t = kT (see the description above) and integrate (via
the ode45 function) the system of equations (36) with u = uhyb(xk, gk) and the initial conditions
x0,k = x(kT ) and ψ∗(t) =ψ01(t), k = 0, 1, 2, . . . , on each time interval kT ≤ t < (k + 1)T . Figures 1
and 2 show the transients of the designed HPCS for D∗(z) = z3 − 0.8z2 + 0.2032z − 0.01613,
x0,0 = [0.1 0.01 0]T, and ψ0 = −0.5236 rad.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



916 GAIDUK

Clearly, the variables of the controlled plant are continuous functions, although the control
signal changes with a significant period, which is characteristic of hybrid systems. The transients
are similar under other conditions as well. A small increase in the discretization period just slightly
extends the transients.

Table contains the eigenvalues λi(x), i = 1, 2, 3, of the matrix Dhyb(xk) of the HPCS for two
values of the period T and several values of k.

Table

T = 0.6 T = 0.8

k λ1 λ2,3 λ1 λ2,3

0 −1.3463 −0.7002± 1.5983i −1.3250 −0.2280± 1.3446i

1 −1.3484 −0.8130± 1.6057i −1.3249 −0.3112± 1.3637i

5 −1.3468 −0.7261± 1.5810i −1.3249 −0.2556± 1.3322i

10 −1.3466 −0.7138± 1.5753i −1.3249 −0.2487± 1.3249i

According to this table, the eigenvalues of the matrix Dhyb(x) have negative real parts, and
increasing the period T reduces these parts by absolute value; for a large T , system stability is lost.
Note that the real parts of the eigenvalues of the above matrix change insignificantly during the
transient process of the hybrid system.

7. CONCLUSIONS

This paper has proposed a method for designing hybrid nonlinear control systems for continuous
plants with differentiable nonlinearities and a measurable state vector. The problem has been
solved using continuous and discrete quasilinear models, the algebraic polynomial-matrix method
for designing nonlinear systems, and the Aizerman–Pyatnitsky solution approach to differential
equations with a discontinuous right-hand side. The method proposed is applicable if the continuous
and discrete quasilinear models of the nonlinear plant satisfy state and output controllability criteria
and some additional conditions. The effectiveness of this method has been illustrated by a numerical
example of designing a hybrid nonlinear pitch control system for an autonomous underwater vehicle.
The method can be used to create hybrid control systems for nonlinear plants of industrial, social,
and special purpose using moderate-performance computing means.
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APPENDIX

Proof of Lemma 1. Due to the expressions (6.3) and (6.55) [28, p. 145 and p. 169], the control-
lability conditions for the systems in the continuous and discrete cases coincide in form. Therefore,
we use a theorem on the properties of controllable continuous systems to prove Lemma 1, formu-
lated for the discrete system. In view of this remark, Theorems 1.1 and 1.2 [29, pp. 29, 31, 32] lead
to the following assertion: under inequality (13), there is a unique gain vector lT(xk) for the con-
trol law uk = −lT(xk)xk (14) under which the eigenvalues of the matrix of the closed-loop discrete
system (21) have a specified location on the complex plane z.
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The matrix of the indicated closed-loop discrete system (21) is Dd(xk) = Ad(xk)− bd(xk)l
T(xk)

(22) with the characteristic polynomial

Dd(z, xk) = det[zE −Ad(xk) + bd(xk)l
T(xk)], xk ∈ ΩUd. (A.1)

Thus, for a given polynomial Dd(z, xk) = D∗(z), the expression (A.1) is an equation with respect
to the vector lT(xk); according to Theorems 1.1 and 1.2 from [29], this equation has a unique solution
under condition (13). By applying to (A.1) equality (Π.25) from [30, p. 233] for μ = 1, we obtain

Dd(z, xk) = det[zE −Ad(xk)] + lT(xk)adj [zE −Ad(xk)] bd(xk).

(In particular, (Π.25) is immediate from formulas (I) and (II) [19].) Hence, considering the nota-
tion (15), (16) and the vector lT(xk) = [l1(xk) l2(xk) . . . ln(xk)], following [14, 15], we derive an
equivalent representation of the same polynomial (A.1):

Dd(z, xk) = Ad(z, xk) +
n∑
i=1

li(xk)Vd,i(z, xk). (A.2)

Moreover, by construction, system (20) is equivalent to the polynomial equation

n∑
i=1

li(xk)Vd,i(z, xk) = ρn−1(xk)z
n−1 + . . .+ ρ1(xk)z + ρ0(xk).

In view of (19), it can be written as

n∑
i=1

li(xk)Vd,i(z, xk) = D∗(z)−Ad(z, xk), xk ∈ ΩUd. (A.3)

Based on (17), the roots of the polynomial D∗(z) are the numbers σ∗i , i.e., D
∗(σ∗i ) = 0. Then ac-

cording to (A.3), Ad(σ
∗
i , xk) +

∑n
i=1 li(xk)Vd,i(σ

∗
i , xk) = 0. By (A.2), it follows that Dd(σ

∗
i , xk) = 0,

i = 1, 2, . . . , n, and the proof of Lemma 1 is complete.

Proof of Lemma 2. For this purpose, let us utilize a well-known property of determinants: if one
column of the determinant’s matrix, multiplied by a number, is added or subtracted from another
column, the determinant value will not change [31, p. 143]. For brevity, we omit the arguments
of the matrices A(x), Dhyb(x), and Qhyb(x) and vectors b(x) and l(x) from (3), (27), (34) and
emphasize that Dhyb = A− blT and detQhyb = det[b Dhybb . . . Dn−1

hyb b] for all n. Lemma 2 will
be proved by induction. First, we show its validity for n = 1 and n = 2.

For n = 1, we have A = a1, b = b1, l = l1, and detUs = b1 by (3). Here, Dhyb = a1 − b1l1, and
detQhyb = b1; obviously, detQhyb = detUs. Let n = 2; in this case, by (3), detUs =det[b Ab], and

by (34), detQhyb =det[b Dhybb] = det[b Ab− β̆b], where β̆ = lTb is a scalar number, since for each
particular value of x the vectors l(x) and b(x) are numerical. Hence, due to the above property of

determinants, detQhyb = det
[
b Ab

]
, i.e., detQhyb = detUs. Thus, Lemma 2 is valid for n = 1

and n = 2.

Now, under the inductive hypotheses detUs = det[b Ab . . . Aμ−1b] and detQhyb =

det[b Dhybb . . . Dμ−1
hyb b] = detUs (Lemma 2 for n = μ), the validity of this lemma has to be shown

for n = μ+ 1. To this end, we expand the left-hand side of the expression (34) with n = μ+ 1 as
follows:

detQhyb = det[b Dhybb D2
hybb . . . Dμ−3

hyb b D
μ−2
hyb b D

μ−1
hyb b D

μ
hybb]. (A.4)
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Further, we transform the columns of the matrix of the determinant (A.4) step by step, starting
from Dμ

hybb, considering the above property of determinants and Dhyb = A− blT.

Step 1.1. Dμ
hybb = Dμ−1

hyb (A− blT)b = Dμ−1
hyb Ab+ β0D

μ−1
hyb b 	 Dμ−1

hyb Ab since β0 = −lTb is a scalar

number and the column β0D
μ−1
hyb b equals the column Dμ−1

hyb b of the matrix of the determinant (A.4)
multiplied by β0. From this point onwards, 	 is the correspondence sign, indicating that the value
of the determinant (A.4) will not change when replacing the column Dμ

hybb in (A.4) with the column

Dμ−1
hyb Ab.

Step 1.2. Dμ
hybb 	 Dμ−1

hyb Ab = Dμ−2
hyb (A− blT)Ab = Dμ−2

hyb A
2b+ β1D

μ−2
hyb b 	 Dμ−2

hyb A
2b due to the

above property of determinants since β1 = −lTAb is a scalar number and the column β1D
μ−2
hyb b

equals to the column Dμ−2
hyb b of the matrix of the determinant (A.4) multiplied by β1. (In other

words, the column β1D
μ−2
hyb b is proportional to the column Dμ−2

hyb b.)

Step 1.3. Dμ
hybb 	 Dμ−2

hyb A
2b = Dμ−3

hyb (A− blT)A2b = Dμ−3
hyb A

3b+ β2D
μ−3
hyb b 	 Dμ−3

hyb A
3b due to the

above property of determinants since β2 =−lTA2b is a scalar number and the column β2D
μ−3
hyb b is

proportional to the column Dμ−3
hyb b of the matrix of the determinant (A.4). Continuing this process

at Step 1.μ, we arrive at Dμ
hybb 	 Dμ−μ

hyb A
μb = Aμb.

Let us proceed to transforming the column Dμ−1
hyb b of the matrix of the determinant (A.4).

Step 2.1. Dμ−1
hyb b = Dμ−2

hyb (A− blT)b = Dμ−2
hyb Ab+ β0D

μ−2
hyb b 	 Dμ−2

hyb Ab.

Step 2.2. Dμ−1
hyb b 	 Dμ−2

hyb Ab = Dμ−3
hyb (A− blT)Ab = Dμ−3

hyb A
2b+ β1D

μ−3
hyb b 	 Dμ−3

hyb A
2b.

Continuing the transformation, at Step 2.(μ − 1), we obtain Dμ−1
hyb b 	 Aμ−1b. Obviously, apply-

ing this transformation to each column Dj
hybb of the matrix of the determinant (A.4) yields the

column Ajb, j = 1, . . . , μ. Based on the above property of determinants, this transformation does
not change the value of (A.4); therefore, detQhyb = detUs for n = μ+ 1 as well.

So, Lemma 2 is valid for n = 1, 2, and its validity for n = μ implies the same for n = μ+ 1. By
induction, Lemma 2 is valid for any positive integer n, and the proof is complete.

Proof of Theorem. As shown above, the continuous solution of equation (28) is defined for
all t ≥ 0 and x ∈ Ωsys. Moreover, its right-hand side depends on the time t, in addition to the
vector x(t), which is reflected in the additional expressions: kT ≤ t < kT + T and k = 0, 1, 2, . . . .
To make the dependence on t more explicit and eliminate k, we replace xk = x(kT ) with x(T

∣∣t/T ),
where

∣∣t/T is the floor function of the ratio t/T. As a result, the state equation (28) of the hybrid
system (1), (25) or, which is the same, (2) and (25), takes the form

ẋ(t) = Dhyb(x)x+Υ1(t, x) + b(x)lg(x(T
∣∣ t/T ))g(T ∣∣ t/T ) + h(x)f(t), (A.5)

Υ1(t, x) = b(x)[lT (x)x− lT (x(T
∣∣ t/T ))x(T ∣∣ t/T )], (A.6)

where Dhyb(x) is the matrix given by (27), and still x = x(t).

To prove the theorem, we first demonstrate that the eigenvalues of the matrix Dhyb(x) have
negative real parts. For this purpose, in view of (11) and (12), with xk = x for brevity, equality (22)
can be written as follows:

−1[E + 0.5TA(x)]

− [E − 0.5TA(x)]−1Tb(x)lT(x) = Dd(x).
(A.7)

Multiplying both sides of equality (A.7) by the matrix [E − 0.5TA(x)] on the left, we expand the
square brackets and factor the terms with the matrix A(x) to the left-hand side. As a result,

0.5TA(x)[Dd(x) +E] = Dd(x)− E + Tb(x)lT(x). (A.8)
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By Lemma 1, all eigenvalues σ∗i of the matrix Dd(x) are such that σ∗i �= σ∗κ, i �= κ, and |σ∗i | < 1.
Therefore, the matrix [Dd(x) + E]−1 exists, and (A.8) implies the equality

A(x) = 2T−1[Dd(x)− E + Tb(x)lT(x)][Dd(x) + E]−1. (A.9)

Adding the term −b(x)lT(x) to both sides of (A.9) and again factoring the matrix [Dd(x) + E]−1

to the right, we obtain the expression

Dhyb(x) =
{
2T−1

[
Dd(x)− E + Tb(x)lT(x)

]
− b(x)lT(x)[Dd(x) + E]

}
[Dd(x) + E]−1.

(Here, formula (27) is taken into account.) Expanding both bracketed expressions in the curly
braces and collecting terms, we factor the matrix [Dd(x)− E] out of the curly braces to the right
and the term 2T−1 to the left. These manipulations yield

Dhyb(x) = 2T−1
[
E − 0.5Tb(x)lT(x)

]
Hg(x), x ∈ Ωsys, (A.10)

where Hg(x) = [Dd(x)− E][Dd(x) + E]−1. Under the conditions of this theorem, the matrix Hg(x)
is Hurwitz and has distinct eigenvalues. This is easy to verify since the matrix Dd(x) has distinct
eigenvalues, i.e., it is similar to a diagonal matrix [20].

Comparing (A.10) with (23), we conclude that Dhyb(x) = 2T−1D̃(x). Therefore, by for-
mula (2.15.8) from [20] and condition (24), under the conditions of this theorem, the eigenvalues
of the matrix Dhyb(x) (A.5) have negative real parts for x ∈ Ωsys.

Consider first the free motion of the hybrid system (28), (29) by letting g(t) = f(t) ≡ 0. More-
over, bearing in mind Lyapunov’s theorem [32, p. 257] and (A.6), we represent equation (A.5) for
t ≥ 0 as follows:

ẋ = Dhyb,0x+Υ(t, x), (A.11)

where Dhyb,0 = Dhyb(0), Υ(t, x) = Υ1(t, x) + Υ2(x), Υ2(x) = [Dhyb(x)−Dhyb,0]x, and the vector
Υ1(t, x) is given by (A.6).

As established above, the matrix Dhyb(x) ∀x ∈ Ωsys is Hurwitz; consequently, the constant
matrix Dhyb,0 in (A.11) is also Hurwitz. Let us show that under the conditions of this theorem, the
vector function Υ(t, x) = o(‖x‖) uniformly in t [32, p. 257]. For this purpose, we find the limits of
the ratios Υ1(x)

/‖x‖2 and Υ2(x)
/‖x‖2 as x(t) → 0. Obviously, for all t ≥ 0,

lim
x→0

(
Υ2(x)

/‖x‖2) = lim
x→0

(
xTP [Dhyb(x)−Dhyb,0]x

/‖x‖2) = 0. (A.12)

Considering the limit of the ratio Υ1(t, x)/‖x‖2, we observe that for all t, according to (31)
and (32), x→ 0 implies x(T

∣∣ t/T ) → 0. Therefore, taking (A.6) into account,

lim
x→0

(
Υ1(t, x)

/‖x‖2) = lim
x→0

(
b(x)

[
lT (x)x− lT (x(T

∣∣ t/T ))x(T ∣∣ t/T )] / ‖x(t)‖2) = 0 (A.13)

since for all t, both vectors lT (x) and lT (x(T
∣∣ t/T )) in the above expression are multiplied by those

tending to zero. Thus, from (A.12) and (A.13) it follows that the vector function Υ(t, x) = o(‖x‖)
uniformly in t, i.e.,

Υ(t, x)

‖x‖ ⇒
t
0 as x→ 0. (A.14)
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The matrix Dhyb,0 is Hurwitz; hence, due to (A.14), the differential system (A.11) satisfies
the conditions of Lyapunov’s theorem [32, p. 257], stating that the solution x = 0 of this system is
asymptotically stable. In other words, condition (32) holds in the domain Ωsys.Moreover, according
to [32, pp. 258–260], there exists a Lyapunov function V (x) = xTSLx > 0 with V̇ (x) < 0 along the
trajectories of this system. Here, SL is a real symmetric matrix.

On the other hand, equation (A.11) corresponds to equation (70.1) whereas equation (A.5) to
equation (70.3) from the monograph [33]. Moreover, according to I.G. Malkin, equation (A.11)
describes the perturbed motion of the Hurwitz system (1), (25) and (28), (29), and the term
b(x)lg(x(T

∣∣ t/T ))g(T ∣∣ t/T ) + h(x)f(t) in (A.5) characterizes the constantly acting perturbations of

this system. In addition, there exists a positive definite function V (x) = xTSLx for the differential
system (A.11) whose total time derivative along the trajectories of this system is negative definite.
In the domain t ≥ 0, x ∈ Ωsys, the partial derivatives (∂V (x)/∂xi) = 2SLix, where SLi is the ith
row of the matrix SL, i = 1, . . . , n, are obviously bounded. Therefore, by Malkin’s theorem [33],
the unperturbed motion of the hybrid system described by equations (A.5) and (28) is stable under
the constantly acting perturbations. In other words, under sufficiently small initial conditions and
external perturbations (the reference signal g(t) and the disturbance f(t)) such that x(t) ∈ Ωsys, a
steady-state regime arises in system (A.5) or, which is the same, in system (1), (25), whose QLM
has the form (28), (29).

Consider this regime for f(t) ≡ 0, g(t) = g01(t), and sufficiently small ‖x0‖ and |g0|. In this
regime, as t→ ∞, we have ẋ(t) → 0, x(t) → x◦, x(T

∣∣ t/T ) → x◦, and yg(t) → y◦g , where x◦ and y◦g
are the steady-state values of the variables x(t), x(T

∣∣ t/T ) and yg(t), respectively, due to g01(t)
(see Lemma 2). Then equations (28) and (29) take the form

0 = Dhyb(x
◦)x◦ + b(x◦)lg(x◦)g0,

y◦g = [cT(x◦)− d(x◦)lT(x◦)]x◦ + d(x◦)lg(x◦)g0,
(A.15)

where the matrix Dhyb(x
◦) is given by (27) for x = x◦.

Since the matrix Dhyb(x) is Hurwitz for x ∈ Ωsys, the matrix D−1
hyb(x

◦) exists, so (A.15) implies

the equalities x◦ = −D−1
hyb(x

◦)b(x◦)lg(x◦)g0 and

y◦g =
{
[d(x◦)lT(x◦)− cT(x◦)]D−1

hyb(x
◦)b(x◦) + d(x◦)

}
lg(x

◦)g0. (A.16)

Equality (33) will obviously be satisfied if y◦g = g0. Therefore, from (A.16) we obtain the following

necessary and sufficient condition for this: {[d(x◦)lT(x◦)−cT(x◦)]D−1
hyb(x

◦)b(x◦)+d(x◦)}lg(x◦) = 1.
However, the value of x◦ is unknown in advance, so this condition is replaced, in view of the formula
D−1

hyb(x) = adjDhyb(x)/detDhyb(x), by the equality{
[d(x)lT(x)− cT(x)]adjDhyb(x)b(x) + d(x) detDhyb(x)

}
lg(x) = detDhyb(x). (A.17)

The equality y◦g = g0 is immediate from (A.17) and (A.16) by Malkin’s theorem (see above).
Based on the definition (27) and formulas (Π.25) and (Π.26) from [30, p. 233], we have the equalities

adjDhyb(x)b(x) = adj
[
A(x)− b(x)lT(x)

]
b(x) = adjA(x)b(x) and

detDhyb(x) = det
[
A(x)− b(x)lT(x)

]
= detA(x)− lT(x)adjA(x)b(x).

Substituting them into (A.17) yields, after trivial simplifications, the relation{
d(x) detA(x)− cT(x)adjA(x)b(x)

}
lg(x) = detDhyb(x).

Taking (5) into account, this result finally leads to equality (33) under condition (4) and the gain
lg(x) (26). The proof of the theorem is complete.
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Abstract—In this paper, the problem of transforming a fuzzy signal by a linear dynamic system
is reduced to studying the problem of bounded solutions for a high-order linear differential
equation with constant coefficients and a fuzzy-valued inhomogeneity on the right-hand side. To
solve the latter, a modification of the Green’s function method for fuzzy problems is developed.
A class of equations with positive coefficients and a nonnegative Green’s function is identified,
and some results on the existence and smoothness of a fuzzy-valued bounded solution on the
entire axis are established for this class of equations. As shown, in the case of a triangular
right-hand side, the solution will also be triangular. Applications to radio circuits with fuzzy
input signals are considered. A relationship between the modal values of fuzzy input and output
signals for a linear dynamic system is derived.

Keywords : fuzzy numbers, dynamic systems with constant coefficients and fuzzy input signals,
Green’s function method
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1. INTRODUCTION

Dynamic models of many applied processes are characterized by uncertainty in input data.
When the probabilistic characteristics of an input signal can be estimated during modeling, the
theory of stochastic processes is used [1].

On the other hand, in recent decades, the interval approach has been widely applied: expert
assessments serve to indicate the bounds of intervals for input variables [2].

Along with the interval approach, researchers actively employ methods of fuzzy mathemat-
ics [3, 4]. If a formal probability distribution is a priori unknown, but it is still possible to specify
some possibilistic estimates, then fuzzy methods are often used. They are characterized by a rather
simple apparatus producing an intuitively understandable result. Furthermore, approaches based
on fuzzy methods allow transforming the possibilistic estimate of the initial data into that of the
results.

Within the fuzzy approach, the membership function of a fuzzy number is used, which charac-
terizes the possibility that the fuzzy number will take a given real value. Thus, the fuzzy approach
contains more information about the existing uncertainty than the interval counterpart. Accord-
ingly, fuzzy modeling yields more meaningful results compared to interval modeling. In practice,
membership functions are constructed using expert assessments.
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This paper considers fuzzy dynamic systems described by linear differential equations of order n
with constant coefficients and fuzzy-valued right-hand sides. Such systems are encountered in
automatic control theory, signal processing (radio engineering), and other applications.

The foundations of the theory of fuzzy differential equations were laid in [5–7] and further
developed in [8–11]. Various applications were reflected in [12, 13]. Among recent works, we
mention [14–17].

The literature considers various definitions of differentiability for fuzzy-valued functions. In this
paper, we use the classical definition of a Hukuhara derivative [5] and the related one of a Seikkala
derivative [7].

As a rule [18], when dealing with linear fuzzy differential equations, the system of equations
for the corresponding α-levels is written and solved. Then it is necessary to check whether the
derivatives of the resulting α-levels define the derivative of the fuzzy-valued function. According to
illustrative examples [18, 19], this is not always the case. Note that the so-called operator method
was developed in [19]: differential equations for α-levels are reduced to integral equations, which
are then solved.

In recent years, the method of the fuzzy Laplace transform has become widespread for solving
linear fuzzy differential equations of high order [20–22]. However, this method does not determine
in advance whether the resulting functions will be smooth (and, accordingly, the desired solutions).

In contrast to conventional approaches, the one proposed below rests on a development of the
Green’s function method, widely used in the theory of ordinary differential equations [23, Chs. 1
and 2; 24], to the case of fuzzy differential equations.

The Green’s function method is fruitful as it gives formulas for the α-levels of fuzzy solutions.
Hence, conditions can be provided under which the Seikkala derivatives of the α-levels will define
the Seikkala derivative of the fuzzy-valued solution. In this paper, such conditions are the positivity
of the coefficients of the dynamic system, the nonnegativity of the corresponding Green’s function,
and the Seikkala differentiability of the fuzzy input signal. These conditions are natural for several
applications. In particular, the positivity of the coefficients is a necessary condition for the sta-
bility of the characteristic polynomial corresponding to the linear dynamic system. Nonnegativity
conditions for Green’s functions are well-known; for example, see [23]. They have been studied in
connection with various applications.

Let us clarify a significant aspect: this paper involves the concept of an ultra-weak fuzzy solution
as a fuzzy-valued function whose α-levels satisfy the equations for the α-levels derived from a given
fuzzy differential equation. Note the following fact established below: the j-times differentiability
of a fuzzy-valued inhomogeneity implies the j-times differentiability of the ultra-weak fuzzy-valued
solution (in the Seikkala sense).

Furthermore, an important issue concerns the form of the output fuzzy signal of a linear dy-
namic system receiving a fuzzy input signal of a given type (e.g., triangular). As shown below,
under definite conditions (the positivity of the system coefficients and the nonnegativity of the
corresponding Green’s function), the output is also a triangular fuzzy signal.

Let us add that fuzzy differential equations with the generalized (Bede–Gal) derivatives have
been recently investigated by several authors [10, 18–22]. The approach developed in this paper is
applicable to this case as well.

As applications, this paper considers models of radio circuits with fuzzy input signals. The
relationship between the modal values of the triangular fuzzy input and output signals of a linear
dynamic system is obtained. The concept of a possibilistic confidence interval is introduced and
used.
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2. FUZZY NUMBERS AND FUZZY-VALUED FUNCTIONS

Let R be the set of all real numbers. A fuzzy number ũ is a subset of R defined by its membership
(possibility) function μũ : R → [0, 1] (e.g., see [3, Ch. 5; 4, Chs. 2 and 3]), which assigns to each
number x ∈ R a number μũ(x) from the interval [0, 1] characterizing the grade of membership of
the element x in the set ũ. Here, 0 and 1 represent the lowest and highest grades of membership
of an element in a given set, respectively. Thus, a fuzzy number ũ can be treated as a pair
{x, μũ(x) : x ∈ R}.

Note that the concept of a membership function is introduced due to the insufficiency of the
probabilistic approach for describing problems with uncertainty. In particular, in many applica-
tions, it is difficult to determine an a priori probability distribution. Here, the membership function
is a certain analog of the probability distribution of a random variable in probability theory. Let
us clarify that the number μũ(x) is interpreted as the possibility of taking the value x for ũ. We
emphasize that, as a rule, expert assessments are used to construct membership functions.

Also note that the membership function of a fuzzy number conceptually generalizes the charac-
teristic function of a set, which can take only two values: 0 and 1 (0 when the element does not
belong to the set and 1 otherwise).

The number xM for which μ(xM ) = maxx∈R μ(x) is called the modal value (or mode) of the
fuzzy number. It is interpreted as the most possible value.

By a common assumption, the support of a fuzzy number ũ (i.e., the set {x : μũ(x) > 0})
is bounded, and its membership function is convex, upper semicontinuous, and normal (i.e.,
supx μũ(x) = 1). Let J denote the set of such fuzzy numbers.

Below, the interval representation of fuzzy numbers will be considered.

As is well known [3, Ch. 5], the α-level intervals (α-levels) of a fuzzy number ũ ∈ J with a
membership function μũ(x) are defined by the relations

uα = {x|μũ(x) � α}, (α ∈ (0, 1]), z0 = cl{x|μũ(x) > 0},

where cl indicates the closure of an appropriate set. According to the accepted assumptions, all
α-levels of a fuzzy number are closed and bounded intervals of the real axis.

We denote by u−α and u+α the left and right bounds of an α-interval, respectively: uα = [u−α , u+α ].
The expressions u−α and u+α are called the left and right α-indices (or, simply, indices) of the fuzzy
number, respectively.

The α-indices of a fuzzy number ũ ∈ J have the following properties:

1. u−α � u+α ∀α ∈ [0, 1].

2. The function u−α is bounded, nondecreasing, left continuous on the interval (0, 1], and right
continuous at the point 0.

3. The function u+α is bounded, nonincreasing, left continuous on the interval (0, 1], and right
continuous at the point 0.

Conversely, a pair of functions on the interval [0, 1] satisfying conditions 1–3 defines a fuzzy
number whose α-interval has the form [u−α , u+α ].

The sum of fuzzy numbers with indices u−α , u+α and v−α , v+α is understood as a fuzzy number with
the α-level intervals [u−α + v−α , u+α + v+α ]. Multiplication by a positive real number c is characterized
by the α-level intervals [cu−α , cu+α ] whereas multiplication by a negative real number c by the α-level
intervals [cu+α , cu

−
α ]. Equality for fuzzy numbers is understood as equality for all the corresponding

α-indices ∀α ∈ [0, 1].

Triangular numbers, for which membership functions have a triangular shape, are widely used
in applications.
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Fig. 1. A triangular fuzzy number.

Example 1. A triangular fuzzy number ũ characterized by a triple of real numbers (a, b, c) with
a < b < c is defined by the membership function

μũ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x− a

b− a
if x ∈ [a, b]

x− c

b− c
if x ∈ [b, c]

0 otherwise.

Its graph generates the triangle shown in Fig. 1.

Note that the number b is the modal value (or mode) of the considered fuzzy number. For this
number, we have μũ(b) = 1. The triangular fuzzy number in Fig. 1 is interpreted as the one near b.

As is well known, in the case of a triangular number, the lower and upper bounds of the α-interval
have the form

u−α = (b− a)α+ a, u+α = −(c− b)α+ c.

Distances between fuzzy numbers can be defined in different ways. Within the interval approach,
the Hausdorff distance between the α-level sets of fuzzy numbers is often used: for fuzzy numbers ũ
and ṽ with α-levels uα and vα, this metric [25] is given by

ρ(ũ, ṽ) = sup
0�α�1

max{|u−α − v−α |, |u+α − v+α |}. (1)

Here, [u−α , u+α ] and [v−α , v+α ] are the α-level intervals of the fuzzy numbers ũ and ṽ, respectively.

Note that by (1), the condition ρ(ũ, ṽ) = 0 is equivalent to the equality of fuzzy numbers ũ and ṽ
(see the definition above).

We fix an interval T of the real axis. A mapping z̃ : T → J will be called a fuzzy-valued function.

Let a fuzzy-valued function z̃(t) ∀ t ∈ T be characterized by a membership function μz̃(t)(x).
For a fixed number α ∈ (0, 1], we consider the α-interval zα(t) = {x ∈ R : μz̃(t)(x) � α} and
z0(α) = cl{x ∈ R : μz̃(t)(x) > 0}. The left and right bounds of the α-interval will be denoted by
z−α (t) and z+α (t), respectively: zα(t) = [z−α (t), z+α (t)].

The continuity of a function z̃(t) in t will be understood in terms of the metric (1) whereas its
boundedness in the following sense: there exists a constant C > 0 such that, for all t ∈ T ,

ρ(z̃(t), 0̃) = sup
0�α�1

max{|z−α (t)|, |z+α (t)|} � C.

Here, 0̃ is the fuzzy number with the α-indices 0±α = 0 ∀α ∈ [0, 1].
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Remark 1. The indices z−α (t) and z+α (t) of a continuous fuzzy-valued function z̃(t) are continuous
in t for any α ∈ [0, 1]. And if z̃(t) is bounded for t ∈ T , then z±α (t) is bounded in t ∈ T for any
α ∈ [0, 1].

The integral of a continuous fuzzy-valued function z̃(t) over an interval T is defined as the fuzzy
number g̃ with the α-level intervals gα =

∫
T zα(t)dt for any α ∈ [0, 1] [6]. The integral is denoted

by
∫
T z̃(t)dt.

Essentially, this is the Aumann integral [26] of a multivalued mapping zα(t). In fact, we have
the interval representation [27]

∫
T

z̃(t)dt =

⎡⎣ ∫
T

z−α (t)dt,
∫
T

z+α (t)dt

⎤⎦ .
Let us proceed to the derivatives of fuzzy-valued functions. Various definitions are used in the

literature. One of the most common rests on the definition of the Hukuhara difference [28]: a set C
is called the Hukuhara difference of sets A and B if A = B + C, and is denoted by A�B.

A function z̃ : T → J is said to be Hukuhara differentiable (H-differentiable) at a point t ∈ T [5]
if, for all sufficiently small h > 0, there exist Hukuhara differences z̃(t+ h)� z̃(t) and z̃(t)� z̃(t− h)
and an element z̃′(t) ∈ J such that

lim
h→0+

ρ

(
z̃(t+ h)� z̃(t)

h
, z̃′(t)

)
= lim

h→0+
ρ

(
z̃(t)� z̃(t− h)

h
, z̃′(t)

)
= 0,

where the distance ρ is given by (1). In this case, the element z̃′(t) is called the H-derivative at
the point t.

A fuzzy-valued function z̃ : T → J is said to be Seikkala differentiable (S-differentiable) at a
point t∈T [7] if its α-indices z−α (t) and z+α (t) are differentiable and their derivatives (z−α )′(t) and
(z+α )

′(t) ∀α∈ [0, 1] form a fuzzy number with the α-interval [z̃′(t)]α = [(z−α )′(t), (z+α )′(t)].

Proposition 1 [8]. Let a fuzzy-valued function z̃(t) be H-differentiable at a point t∈T. Then it
is S-differentiable at the point t∈T.

For example, a fuzzy-valued function z̃(t) of the form z̃(t) = g(t)r̃, where g(t) is a real-valued
differentiable function and r̃∈J is a given fuzzy number, isH-differentiable (hence, S-differentiable)
at a point t provided that g(t) · g′(t) � 0 [9].

Remark 2. By definition, the fuzzy S-derivative is additive and positively homogeneous, i.e.,
for S-differentiable fuzzy-valued functions z̃(t) and w̃(t), we have (z̃(t) + w̃(t))′ = z̃′(t) + w̃′(t) and
(cz̃(t))′ = cz̃′(t) for any real constant c � 0.

The second Seikkala derivative z̃′′(t) at a point t∈T is defined as the S-derivative of the
first derivative, i.e., as the fuzzy number z̃′′(t) with the left (z−α )′′(t) and right (z+α )

′′(t) α-index
∀α∈ [0, 1].

Higher-order S-derivatives are defined by analogy.

3. TRANSFORMATION OF A CONTINUOUS FUZZY SIGNAL
BY A LINEAR DYNAMIC SYSTEM

A device is called a linear dynamic system if the relationship between its input and output
is described by a differential equation of order n with constant coefficients. If fuzzy signals f̃(t)
and z̃(t) (t∈T ) are observed at the input and output, respectively, then the linear dynamic system
is described by a fuzzy differential equation of the form

anz̃
(n)(t) + an−1z̃

(n−1)(t) + · · ·+ a1z̃
′(t) + a0z̃(t) = f̃(t). (2)
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Here, the coefficients ai (i = 0, . . . , n) are real numbers, f̃(t) is an input fuzzy-valued function, and
the derivatives of a fuzzy-valued function z̃(t) are understood as S-derivatives.

Below, the interval T is taken as T = (−∞,∞).

Consider the problem of bounded solutions for a real differential equation with constant coeffi-
cients of the form

anx
(n)(t) + an−1x

(n−1)(t) + · · ·+ a1x
′(t) + a0x(t) = f(t), t∈ (−∞,∞). (3)

A function G(t) is called a Green’s function in the problem of bounded solutions of equation (3)
if it has the following properties (for details, e.g., see [23, Ch. 1, § 4; 24]):

1) G(t) is continuously differentiable (n − 2) times for all t, the nth and (n− 1)th derivatives
are continuously differentiable for all t except t = 0, and

G(n−1)(+0)−G(n−1)(−0) =
1

an
.

2) At all points except t = 0, the function G(t) satisfies the homogeneous differential equation
corresponding to (3) (with f(t) ≡ 0).

3) The Green’s function and its derivatives are estimated as

|G(i)(t)| �Me−γ|t| (i = 0, 1, . . . , n, −∞ < t < +∞),

where M and γ are some positive constants.

Proposition 2 [23, Ch. 1; 24]. Let the roots of the characteristic equation anλ
n + an−1λ

n−1 +
· · ·+ a1λ+ a0 = 0 contain no points on the imaginary axis. Then for any continuous function f(t)
bounded on the entire real axis, equation (3) has a unique bounded solution on the entire real axis
given by

x(t) =

∞∫
−∞

G(t− s)f(s) ds, (4)

where G(t) is the Green’s function in the problem of bounded solutions of equation (3).

Moreover,

x(j)(t) =

∞∫
−∞

G
(j)
t (t− s)f(s) ds, j = (0, 1, . . . , n− 1),

x(n)(t) = f(t) +

∞∫
−∞

G
(n)
t (t− s)f(s) ds.

We emphasize that the convergence of the improper integral (4) and the corresponding integrals
for the derivatives is ensured by the exponential estimates of the Green’s function and its derivatives,
as well as by the continuity and boundedness of the function f(t) on the entire real axis.

Note that in the problem of bounded solutions of equation (3), the Green’s function has a known
general form; for example, see [23, Ch. 2, § 8].

Proposition 3 [23, Ch. 2]. Under the hypotheses of Proposition 2, let all roots of the characteristic
equation lie in the left half-plane (Reλi < 0, i = 1, . . . , n). Then the bounded solution of equation (3)
is asymptotically Lyapunov stable. Moreover, the solution (4) takes the form

x(t) =

t∫
−∞

G(t− s)f(s) ds. (5)
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Here, the Green’s function is G(σ) =

{
K(σ) for σ � 0
0 for σ < 0,

with K(σ) being the Cauchy function that

represents the solution of the homogeneous differential equation corresponding to equation (3) (with
f(t) ≡ 0) and satisfies the initial conditions

K(j)(0) = 0, j = 0, 1, . . . , n− 2, K(n−1)(0) = 1.

Now we address the case of fuzzy input and output signals. In some cases, the representation (4)
can be used to write explicitly the α-indices of the fuzzy signal at the output of the dynamic
system (2).

A strong solution of the fuzzy differential equation (2) is an n times continuously S-differentiable
fuzzy-valued function satisfying (2) on the corresponding interval.

Lemma 1. Let the coefficients of the fuzzy differential equation (2) be positive: ai > 0,
i = 0, . . . , n. If a fuzzy-valued function z̃(t) is a strong solution of equation (2) on the interval T,
then the corresponding α-indices z±α (t) for all α∈ [0, 1] and t∈T satisfy the ordinary differential
equations

an(z
−
α )

(n)(t) + an−1(z
−
α )

(n−1)(t) + · · ·+ a1(z
−
α )

′(t) + a0z
−
α (t) = f−α (t), (6)

an(z
+
α )

(n)(t) + an−1(z
+
α )

(n−1)(t) + · · ·+ a1(z
+
α )

′(t) + a0z
+
α (t) = f+α (t). (7)

Indeed, we substitute the strong solution z̃(t) of the fuzzy differential equation into (2). Recall
that the equality of fuzzy numbers means the equality of all the corresponding α-indices. Hence, by
the rules of interval arithmetic, the positivity of the coefficients ai, the definition of a fuzzy Seikkala
derivative, and Remark 2, for all α∈ [0, 1] and t∈ (−∞,∞) equation (2) implies equalities (6)
and (7).

Lemma 2. Let the coefficients of the fuzzy differential equation (2) be positive, (ai > 0,
i = 0, . . . , n), and let the roots of the characteristic equation anλ

n + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

contain no points on the imaginary axis. In addition, let the fuzzy-valued function f̃(t) on the
right-hand side of equation (2) be continuous and bounded in the metric (1) for t∈ (−∞,∞). Then
for all α∈ [0, 1] there exists a unique bounded solution for each of the two equations (6), (7) on the
entire real axis, and they can be represented as

z−α (t) =
∞∫

−∞
G(t− s)f−α (s)ds, z+α (t) =

∞∫
−∞

G(t− s)f+α (s)ds. (8)

Indeed, due to the hypotheses and Remark 1, for all α∈ [0, 1] the functions f±α (t) are continuous
and bounded on the entire real axis. Then, by Proposition 2, for all α∈ [0, 1] the solutions of
equations (6), (7) exist, are unique, and equalities (8) hold.

Lemma 3. Under the hypotheses of Lemma 2, let the Green’s function G in problem (3) be
nonnegative. Then for all t∈ (−∞,∞) the expressions (8) satisfy conditions 1–3 for the indices of
fuzzy numbers (see Section 2).

Proof. We fix t∈ (−∞,∞). By the hypothesis, f−α (s) � f+α (s) ∀ s∈ (−∞,∞). Then, due to the
nonnegativity of the Green’s function,

G(t− s)f−α (s) � G(t− s)f+α (s).

Therefore, based on (8) and the monotonicity of the integral, we have z−α (t) � z+α (t). That is, for
all t∈ (−∞,∞) the expressions (8) satisfy condition 1 for the α-indices of fuzzy numbers (see
Section 2).
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Now we fix an arbitrary t∈ (−∞,∞) and show that the function z−α (t) is nondecreasing
in α. Let α1, α2 ∈ [0, 1] and α1 < α2. By the hypothesis, the condition f−α1

(s) � f−α2
(s) holds

for all s∈ (−∞,∞). Then, due to the nonnegativity of the Green’s function, G(t− s)f−α1
(s) �

G(t− s)f−α2
(s). Consequently, in view of the monotonic property of the integral, we obtain

z−α1
(t) � z−α2

(t), i.e., the function z−α (t) is monotonically nondecreasing in α. The monotonic non-
increase of the function z+α (t) in α can be established by analogy.

By the hypothesis, the function f̃(t) is bounded in t for t∈ (−∞,∞) in the metric (1). This
means the existence of a constant C > 0 such that ρ(f̃(t), 0̃) � C for any t∈ (−∞,∞); consequently,
sup0�α�1 |f±α (t)| � C. Then according to (8), for fixed t and all α∈ [0, 1], we have

|z±α (t)| �
∞∫

−∞
|G(t− s)||f±α (s)|ds � C

∞∫
−∞

|G(t− s)|ds,

which ensures the boundedness of the expressions (8) in α∈ [0, 1] for each t∈ (−∞,∞).

For fixed t, the left continuity of the functions z±α (t) in α∈ (0, 1] is immediate from the following
consideration. Let us fix α0 ∈ [0, 1) and consider the equality

lim
α→α0−0

z±α (t) =
∞∫

−∞
G(t− s) lim

α→α0−0
f±α (s)ds =

∞∫
−∞

G(t− s)f±α0
(s)ds = z±α0

(t).

Here, we take advantage of the representation (8), the possibility of passing to the limit under
the sign of an absolutely convergent improper integral, and the left continuity of the α-indices
f±α (s) of the fuzzy-valued function f̃(s) in α∈ (0, 1] for arbitrary s∈ (−∞,∞). The right continuity
of the functions z±α (t) in α at α = 0 is verified similarly. In other words, z±α (t) satisfy conditions 2
and 3 of Section 2 as well.

Thus, the expressions z±α (t) (8) satisfy all the conditions for the α-levels of fuzzy numbers (see
Section 2).

Let us emphasize the significance of Lemma 3. According to illustrative examples [18, 19],
the solutions of systems for the α-indices of linear fuzzy differential equations are not always the
α-indices of some fuzzy-valued function.

Theorem 1. Under the hypotheses of Lemma 3, the fuzzy-valued function generated by the α-in-
dices (8) ∀ t∈ (−∞,∞) is characterized by the representation

z̃(t) =

∞∫
−∞

G(t− s)f̃(s)ds. (9)

Indeed, by Lemmas 1–3 and the definition of the integral of a fuzzy-valued function, for all
α∈ [0, 1] the α-indices satisfy the relations⎛⎝ ∞∫

−∞
G(t− s)f̃(s)ds

⎞⎠−

α

=

∞∫
−∞

G(t− s)f−α (s)ds,

⎛⎝ ∞∫
−∞

G(t− s)f̃(s)ds

⎞⎠+

α

=

∞∫
−∞

G(t− s)f+α (s)ds.

In view of (8), these relations imply the representation (9).
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Theorem 2. Under the hypotheses of Theorem 1, the fuzzy-valued function z̃(t) (9) is continuous
and bounded in t on the entire real axis.

Proof. Let us fix real numbers t1 and t2. Due to (8),

z±α (t1)− z±α (t2) =
∞∫

−∞
(G(t1 − s)−G(t2 − s))f±α (s)ds

and, consequently,

|z±α (t1)− z±α (t2)| �
∞∫

−∞
|G(t1 − s)−G(t2 − s)||f±α (s)|ds.

Note that G(t1−s)−G(t2−s)=G′
t(τ−s)(t1−t2), where τ ∈ ((1−θ)t1+θt2) and θ∈ (0, 1).

Therefore, by the previous considerations,

|z±α (t1)− z±α (t2)| �
⎛⎝ ∞∫

−∞
|G′

t(τ − s)||f±α (s)|ds
⎞⎠ |t1 − t2| � C|t1 − t2|

∞∫
−∞

|G′
t(τ − s)|ds,

where the constant C > 0 characterizes the boundedness condition: ρ(f̃(t), 0̃) � C ∀ t∈ (−∞,∞).

Next, we utilize the exponential estimate of the derivative of the Green’s function
|G′

t(t)| �Me−γ|t| (see property 3 of Green’s functions in Section 3). As a result,

|z±α (t1)− z±α (t2)| �MC|t1 − t2|
∞∫

−∞
e−γ|τ−s|ds = 2

MC

γ
|t1 − t2|.

Therefore, by the definition of the metric (1), we obtain ρ (z±α (t1), z±α (t2)) � 2MC
γ |t1 − t2|, which

implies the continuity of the fuzzy-valued function z̃(t) (9).

Let us show the boundedness of the fuzzy-valued function z̃(t) (9) for t∈ (−∞,∞). By definition,

ρ(z̃(t), 0̃) = sup
0�α�1

|z±α (t)|.

Moreover, according to (8),

|z±α (t)| �
∞∫

−∞
|G(t− s)||f±α (s)|ds �

⎛⎝ ∞∫
−∞

|G(t− s)|ds
⎞⎠ ρ(f̃(t), 0̃) � 2

Mρ(f̃(t), 0̃)

γ
.

Here, the exponential estimate of the Green’s function is used again. Thus, ρ(z̃(t), 0̃) �
2Mρ(f̃ (t),0̃)

γ � 2MC
γ ∀ t∈ (−∞,∞).

We call a continuous fuzzy-valued function z̃(t) an ultra-weak solution of the fuzzy differential
equation (2) if its α-indices z±α (t) ∀α∈ [0, 1] are n times continuously differentiable with respect
to t and satisfy equations (6) and (7) on the corresponding time interval. A weak solution of the
fuzzy differential equation (2) is a fuzzy-valued function satisfying the integro-differential or integral
fuzzy equation corresponding to (2) (for example, see [19]). Such solutions will not be considered
in this paper. The following result is true.

Theorem 3. Under the hypotheses of Theorem 1, there exists a unique ultra-weak solution of the
fuzzy differential equation (2) that is bounded on the entire real axis.
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Fig. 2. The graphical representation of an ultra-weak fuzzy-valued solution in interval form.

Existence is ensured by Theorems 1 and 2. Let us establish uniqueness. Assume on the contrary
that z̃(t) and w̃(t) are two different ultra-weak solutions of equation (2) that have boundedness on
the entire real axis. Then the indices z−α (t) and w−

α (t) are bounded solutions of equation (6). There-
fore, by Proposition 2, z−α (t) = w−

α (t) for all α∈ [0, 1] and t∈ (−∞,∞). Similarly, z+α (t) = w+
α (t)

for all α∈ [0, 1] and t∈ (−∞,∞). But in this case, according to the equality criterion of fuzzy
numbers, we have z̃(t) = w̃(t) for all t∈ (−∞,∞). This obvious contradiction concludes the proof
of the theorem.

Theorem 4. Under the hypotheses of Theorem 1, let all roots of the characteristic equation lie
in the left half-plane. Then there exists a unique ultra-weak solution of the fuzzy differential equa-
tion (2) that is bounded on the entire real axis, and this solution is given by

z̃(t) =

t∫
−∞

G(t− s)f̃(s)ds. (10)

This fact is immediate from Theorem 1 and Proposition 3.

Figure 2 provides the geometric illustration of a fuzzy-valued solution.

We say that a fuzzy-valued function f̃ : R → J is triangular, or has the triangular type
(a(t), b(t), c(t)), if there exist continuous real-valued functions a(t), b(t), and c(t) on the entire
real axis such that a(t) < b(t) < c(t) ∀ t∈R and the membership functions μf̃(t)(x) ∀ t∈R have the
triangular form

μf̃(t)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x− a(t)

b(t)− a(t)
if x∈ [a(t), b(t)]

x− c(t)

b(t)− c(t)
if x∈ [b(t), c(t)]

0 otherwise.

(Also, see Example 1.)

In particular, a fuzzy-valued function of the form f̃(t) = g(t)r̃, where g(t) is a continuous and
nonnegative real-valued function and r̃∈ J is a given triangular fuzzy number, has triangular type
as well.

Consider a special case when a triangular fuzzy signal is supplied to the input of a dynamic
system described by equation (2). The following result is valid.
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Theorem 5. Under the hypotheses of Theorem 1, let the right-hand side of equation (2), i.e.,
the fuzzy-valued function f̃(t) ∀ t∈ (−∞,∞), have the triangular type (a(t), b(t), c(t)). Then the
bounded ultra-weak solution (9) of equation (2) on the entire real axis has the triangular type
(
∫∞
−∞G(t− s)a(s)ds,

∫∞
−∞G(t− s)b(s)ds,

∫∞
−∞G(t− s)c(s)ds) ∀ t∈ (−∞,∞).

Indeed, by the hypothesis, f̃(t) is generated by a triple of continuous and bounded functions a(t),
b(t), c(t) on the entire axis, with a(t) < b(t) < c(t) ∀ t∈ (−∞,∞). Then, according to Example 1,
for all α∈ [0, 1] and t∈ (−∞,∞) we have

f−α (t) = (b(t)− a(t))α+ a(t), f+α (t) = (b(t)− c(t))α + c(t).

Therefore, due to (8), it follows that

z−α (t) = (B(t)−A(t))α +A(t), z+α (t) = (B(t)− C(t))α+ C(t),

where

A(t) =

∞∫
−∞

G(t− s)a(s)ds, B(t) =

∞∫
−∞

G(t− s)b(s)ds, C(t) =

∞∫
−∞

G(t− s)c(s)ds.

Thus, z̃(t) ∀ t∈ (−∞,∞) is a fuzzy number of the triangular type (A(t), B(t), C(t)).

A similar result holds for trapezoidal fuzzy-valued functions f̃(t) [3, Ch. 5]: the solution z̃(t)
will also have the trapezoidal type.

Let us find conditions under which the bounded ultra-weak solution (10) of the fuzzy differential
equation (2) will be S-differentiable with respect to t.

Under the hypotheses of Proposition 3, the following representation will be used below for the
bounded solution of the scalar differential equation (3):

x(t) =

∞∫
0

G(σ)f(t− σ)dσ. (11)

It is obtained from (5) by substituting t− s = σ.

Theorem 6. Under the hypotheses of Theorem 4, let the fuzzy-valued function f̃(t) be Seikkala
differentiable for all t∈ (−∞,∞), and let its S-derivative f̃ ′(t) be continuous and bounded for
t∈ (−∞,∞). Then the bounded ultra-weak solution (10) of the fuzzy differential equation (2) is
S-differentiable for t∈ (−∞,∞) and

z̃′(t) =
∞∫
0

G(σ)f̃ ′t(t− σ)dσ. (12)

Indeed, due to (6), (7), and (11), for the α-indices of the ultra-weak solution z̃(t) of the fuzzy
differential equation (2) we write

z±α (t) =
∞∫
0

G(σ)f±α (t− σ)dσ. (13)

Similar to Lemma 3, they generate the fuzzy-valued function

z̃(t) =

∞∫
0

G(σ)f̃(t− σ)dσ. (14)
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By the hypothesis, for all α∈ [0, 1] the α-indices f±α (t) are differentiable with respect to
t∈ (−∞,∞), and the derivatives (f±α )′t(t) are continuous and bounded scalar functions on the
entire real axis. Then, in view of (13), for the derivatives of the α-indices z±α (t) with respect to t
we have

(z±α )
′(t) =

∞∫
0

G(σ)(f±α )′t(t− σ)dσ. (15)

(Here, differentiation is performed with respect to the parameter under the sign of an absolutely
convergent integral.)

By the nonnegativity of the Green’s function (similar to the proof of Lemma 3), for each t the
expressions (15) are the α-indices of the S-derivative z̃′(t). Therefore, used jointly with Theorem 1,
formulas (14) and (15) imply (12).

Then, by Theorem 3 on the uniqueness of the bounded ultra-weak solution of equation (2) on
the entire real axis, based on (10) and (14) we obtain⎛⎝ t∫

−∞
G(t− s)f̃(s)ds

⎞⎠′

t

=

⎛⎝ ∞∫
0

G(σ)f̃ (t− σ)dσ

⎞⎠′

t

=

∞∫
0

G(σ)f̃ ′t(t− σ)dσ.

And the desired conclusion follows.

Corollary 1. Under the hypotheses of Theorem 6, the fuzzy derivative (12) is continuous and
bounded for t∈ (−∞,∞).

This fact is established by analogy with Theorem 2.

Proposition 4. Under the hypotheses of Theorem 4, let the fuzzy-valued function f̃(t) be twice
S-differentiable, and let the first f̃ ′t(t) and second f̃ ′′t (t) S-derivatives be continuous and bounded
for t∈ (−∞,∞). Then the bounded ultra-weak solution z̃(t) (14) on the entire real axis is twice
S-differentiable for t∈ (−∞,∞).

Indeed, due to equality (15), for all α∈ [0, 1] we write the following relation for the α-indices
z±α (t) :

(z±α )
′′(t) =

⎛⎝ ∞∫
0

G(σ)(f±α )′t(t− σ)dσ

⎞⎠′

=

∞∫
0

G(σ)(f±α )′′t (t− σ)dσ.

Therefore, based on the nonnegativity of the Green’s function, for all t∈ (−∞,∞) the integrals
on the right-hand side generate a fuzzy number z̃′′(t), i.e., the second S-derivative of z̃(t).

Corollary 2. Under the hypotheses of Proposition 4, the derivatives z̃′(t) and z̃′′(t) are continuous
and bounded for t∈ (−∞,∞).

Corollary 3. Under the hypotheses of Theorem 4, let the fuzzy-valued function f̃(t) be continu-
ously S-differentiable j > 2 times, and let all its derivatives up to order j be bounded on the entire
real axis. Then the bounded ultra-weak solution (14) of the fuzzy differential equation (2) is a
continuously j times S-differentiable fuzzy-valued function.

Remark 3. According to Proposition 2, the derivatives of the α-indices z±α (t) (8) are represented
as

(z±α )
(j)
t (t) =

∞∫
−∞

G
(j)
t (t− s)f±α (s)ds (j = 1, . . . , n− 1).
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However, the derivatives G
(j)
t (t− s) of the Green’s function generally do not preserve sign (see

Examples 2 and 3 below). So, it is more convenient to prove the S-differentiability of the fuzzy-
valued solution using the representation (13).

In many applications, the fuzzy-valued solution z̃(t) must be nonnegative, which means z−α (t) � 0
∀α∈ [0, 1], ∀ t � 0. The following result is true.

Corollary 4. Under the hypotheses of Theorem 1, let the fuzzy-valued inhomogeneity f̃(t) of
equation (2) be nonnegative, i.e., f−α (t) � 0 ∀α∈ [0, 1], ∀ t∈ (−∞,∞). Then the bounded ultra-
weak solution of equation (2) is nonnegative on the entire real axis.

This fact is immediate from the representation (9) due to the assumed nonnegativity of the
Green’s function G(t− s) and f−α (s).

In particular, for a triangular fuzzy number (a, b, c), nonnegativity means that a � 0.

4. EXAMPLES OF RADIO CIRCUITS WITH FUZZY INPUT SIGNALS

Here, we consider some applications of the results of Section 3 to elementary radio circuits (e.g.,
see [29]) with fuzzy input signals.

Example 2. Consider an RC filter, i.e., a radio circuit shown in Fig. 3, where R and C are
resistance and capacitance, respectively.

This filter is a dynamic system described by the first-order differential equation with constant
coefficients

z̃′(t) + βz̃(t) = ỹ(t), β =
1

RC
> 0. (16)

Let a continuous fuzzy signal ỹ(t) bounded on the entire real axis be supplied to the system input.

We determine the characteristics of the bounded fuzzy output signal z̃(t) of the RC filter. Note
that in the problem of bounded solutions of the scalar equation x′ + βx = y(t) with β > 0, the
Green’s function can be represented as

G1(t) =

{
e−βt for t � 0
0 for t < 0.

Thus, G1(t) � 0 for all t∈ (−∞,∞).

Proposition 5. Let the coefficient β of the fuzzy differential equation (16) be positive, and let
the right-hand side ỹ(t) be a continuous fuzzy-valued function bounded for t∈ (−∞,∞). Then the
continuous fuzzy ultra-weak signal at the output of the dynamic system (16) is bounded on the entire

Ry(t)~ z(t)~

C

Fig. 3. An RC filter.
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Fig. 4. A series oscillatory circuit.

real axis and has the form

z̃(t) =

t∫
−∞

e−β(t−s)ỹ(s)ds. (17)

This fact follows from Theorem 4.

Proposition 6. Under the hypotheses of Proposition 5, let the fuzzy-valued function ỹ(t) on the
right-hand side of equation (16) have triangular type for t � 0. Then the solution (17) is also
triangular for all t � 0.

This fact is immediate from the representation (17) and Theorem 5.

The following case was considered in [9]: the right-hand side of equation (16) has the form
ỹ(t) = r̃f(t), where r̃∈ J is a fuzzy number, and the function f : R → R is almost periodic and
f(t) � 0 ∀ t∈R. As established in this case, the condition f(t) >

∫ t
−∞ e−β(t−s)f(s)ds ensures the

H-differentiability of the solution (17) of the fuzzy differential equation (16).

This condition imposes an additional constraint on either the range of t or the relationship
between the parameters β and f(t) of equation (16).

The next proposition, following from Theorem 6, ensures the S-differentiability of the fuzzy-
valued solution of equation (16).

Proposition 7. Under the hypotheses of Proposition 5, let the fuzzy-valued right-hand side ỹ(t)
of equation (16) be continuously S-differentiable for all t∈ (−∞,∞), and let the S-derivative
ỹ′(t) be bounded on the entire real axis. Then the bounded ultra-weak solution (17) is continu-
ously S-differentiable for all t∈ (−∞,∞) and satisfies the fuzzy differential equation (16) for all
t∈ (−∞,∞).

Thus, under the hypotheses of Proposition 7, formula (17) gives a bounded strong solution of
the fuzzy equation (16).

Example 3. Consider a series oscillatory circuit, i.e., a radio circuit in Fig. 4, where R, C, and L
are resistance, capacitance, and inductance, respectively.

This oscillatory circuit is a dynamic system described by the second-order differential equation
with constant coefficients

a2z̃
′′(t) + a1z̃

′(t) + a0z̃(t) = ỹ(t), a2 = L � 0, a1 = R > 0, a0 =
1

RC
> 0. (18)

Let a continuous fuzzy signal ỹ(t) bounded on the entire real axis be supplied to the system input
(see Fig. 4).

We determine the characteristics of the bounded fuzzy output signal z̃(t) of this circuit.
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Theorem 7. Let the coefficients of the fuzzy differential equation (18) satisfy the conditions
ai > 0 (i = 0, 1, 2) and a21 − 4a0a2 > 0. In addition, let the input signal ỹ(t) be a continuous fuzzy-
valued function bounded for t∈ (−∞,∞). Then the fuzzy ultra-weak signal z̃(t) at the output of the
dynamic system (18) is represented as

z̃(t) =

t∫
−∞

G2(t− s)ỹ(s)ds, (19)

where G2(t) is the Green’s function in the problem of bounded solutions of the real differential
equation a2x

′′ + a1x
′ + a0x = f(t) with the continuous real-valued function f(t) bounded on the

entire real axis, which has the form

G2(t) =

{
(eλ2t − eλ1t)(λ2 − λ1)

−1 for t � 0
0 for t < 0.

In this formula, λ1 and λ2 are distinct negative real-valued roots of the characteristic equation
a2λ

2 + a1λ+ a0 = 0 (λ1 < λ2 < 0).

Indeed, note that G2(t) � 0 ∀ t∈ (−∞,∞). Then, by Theorem 4, equality (19) holds for the
fuzzy-valued signal z̃(t) at the system output.

Moreover, the expression (19) is an ultra-weak solution of the fuzzy differential equation (18).

Proposition 8. Under the hypotheses of Theorem 7, let the right-hand side ỹ(t) of (18) be a
triangular fuzzy number for all t∈ (−∞,∞). Then the bounded ultra-weak solution (19) of the fuzzy
differential equation (18) on the entire real axis is also a triangular fuzzy number for t∈ (−∞,∞).

This fact follows from the representation (19) and Theorem 5.

Let us find conditions under which the bounded ultra-weak solution (19) of the fuzzy differential
equation (18) will be an S-differentiable fuzzy-valued function.

Theorem 8. Under the hypotheses of Theorem 7, let the fuzzy-valued function ỹ(t) be continu-
ously S-differentiable for all t∈ (−∞,∞), and let the S-derivative ỹ′(t) be bounded for t∈ (−∞,∞).
Then the bounded ultra-weak solution z̃(t) (19) of the fuzzy differential equation (18) is S-differen-
tiable for all t∈ (−∞,∞).

This fact is immediate from Theorem 6.

Moreover, another result is valid.

Theorem 9. Under the hypotheses of Theorem 7, let the right-hand side ỹ(s) of equation (18)
be twice continuously S-differentiable, and let the S-derivatives ỹ′(t) and ỹ′′(t) be bounded for
t∈ (−∞,∞). Then the bounded ultra-weak solution z̃(t) (19) is also twice continuously S-differen-
tiable and satisfies the fuzzy differential equation (18).

This fact follows from Proposition 4.

Thus, under the hypotheses of Theorem 9, formula (19) provides a bounded strong solution of
the fuzzy equation (18).

5. ON THE RELATIONSHIP BETWEEN MODAL VALUES
OF FUZZY INPUT AND OUTPUT SIGNALS

The peculiarity of considering fuzzy input signals in radio engineering (when the a priori prob-
ability distribution of the input signal is unknown) consists in identifying the most possible input
signal. After that, the system parameters are used to characterize the most possible fuzzy output
signal.
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Fig. 5. A possibilistic confidence interval for the modal value of a fuzzy input signal.

In probability theory, for the corresponding problem, the term “possible” would have to be
replaced by the term “probable.” This is especially clear for triangular fuzzy input and output
signals (see Example 1). For instance, let a triangular fuzzy input signal (a(t), b(t), c(t)) be supplied
to the input of a radio circuit described by the fuzzy differential equation (2). According to
Example 1, for each t, b(t) is its modal value. Based on Theorem 5, we arrive at the following
result.

Proposition 9. Under the hypotheses of Theorem 5, the modal value of the triangular fuzzy signal
at the output of the linear dynamic system (2) is determined from the modal value b(t) of its
triangular fuzzy input signal (a(t), b(t), c(t)) by the formula B(t) =

∫∞
−∞G(t− s)b(s)ds, with the

designations of Theorem 5.

An important branch of mathematical statistics is the theory of confidence intervals; for example,
see [30, Ch. 2]. By analogy, let us discuss the problem of possibilistic confidence intervals for the
values of fuzzy input and output signals.

Suppose that for an arbitrary t � 0, experts have modeled a fuzzy input signal with a possi-
bilistic confidence level α∗ ∈ [0.7, 1) as triangular with a membership function μt(x) having support
(a(t), c(t)). Moreover, for a given t � 0, let the modal value lie in a possibilistic confidence interval
[d1(t), d2(t)] with the possibilistic confidence level α∗, where [d1(t), d2(t)] ⊂ (a(t), c(t)) (Fig. 5).

Remark 4. Under the above assumptions, the modal value of the triangular fuzzy signal with
the possibilistic confidence level α∗ has the form

b(t) =
1

α∗
(d1(t)− (1− α∗)a(t)).

Indeed, according to Fig. 5, the point m with coordinates (b, 1) lies on the straight line passing
through the points with coordinates (a, 0) and (d1, α∗); hence, this line is described by the equation
μ
α∗ = x−a

d1−a .
Consider the issue regarding the possibilistic confidence interval of the modal value of the fuzzy

output signal with the same possibilistic confidence level α∗.
Proposition 10. Under the hypotheses of Theorem 5, let a triangular fuzzy signal with support

(a(t), c(t)) be supplied, with a possibilistic confidence level α∗ ∈ [0.7, 1), to the input of the dynamic
system described by differential equation (2), and let its modal value for an arbitrary t � 0 and this
possibilistic confidence level lie in a possibilistic confidence interval [d1(t), d2(t)]. Then the possibilis-
tic confidence interval for the modal value of the fuzzy output signal has the form [D1(t),D2(t)],
where D1(t) = (1− α∗)A(t) + α∗B(t), D2(t) = α∗B(t) + (1− α∗)C(t), and A(t), B(t), and C(t)
are given by Theorem 5. Moreover, the modal value B(t) is determined using the value b(t) from
Remark 4.
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Fig. 6. A possibilistic confidence interval for the modal value of a fuzzy output signal.

Indeed, by Theorem 5 and Remark 4, the fuzzy output signal has the triangular type
(A(t), B(t), C(t)). Then, according to Fig. 6, we obtain the possibilistic confidence interval
[D1(t),D2(t)] for the modal value of the fuzzy output signal for fixed t > 0 with a possibilistic
confidence level α∗.

According to Fig. 6, D1 = (1− α∗)A+ α∗B is the abscissa of the intersection point of the line
[A,M ], described by the equation μ = (x−A)(B −A)−1 (see Example 1), and the line μ = α∗. In
turn, the point D2 = α∗B + (1− α∗)C is the abscissa of the intersection point of the line [M,C],
described by the equation μ = (x− C)(B − C)−1, and the line μ = α∗.

Note that for practical use of the results of Sections 4 and 5, it is convenient to model the fuzzy
input signal in the form ỹ(t) = r̃g(t), where r̃∈ J and g(t) are a triangular fuzzy number and a
real-valued function, respectively. Alternatively, one should choose a fuzzy signal model with ỹ(t)
for t � 0 and ỹ(t) = ỹ(0) for t � 0.

6. CONCLUSIONS

The main results of this paper concern fuzzy dynamic systems described by linear differential
equations of order n with constant coefficients under the assumption of the continuity and bound-
edness of a fuzzy input signal (Section 3). They are based on a development of the Green’s function
method for the case of fuzzy differential equations. An important part of the research has been
devoted to the smoothness of solutions. Also note the above result on the triangular type of the
fuzzy output signal of a dynamic system receiving a fuzzy signal at its input.

The applications in Section 4 have illustrated the use of the general theoretical constructs in
radio circuits with fuzzy input signals. They further refine some results of Section 3 for the case
of dynamic systems described by first- and second-order differential equations. Section 5 plays a
significant role as well: by analogy with confidence intervals of mathematical statistics, the concept
of a possibilistic confidence interval has been introduced and used therein.

The approach presented in this paper is an alternative to the conventional analysis of linear
dynamic systems with constant coefficients, which involves the frequency response, the direct and
inverse Fourier transform, and the Laplace transform.

Note that the developed approach can be extended to the case of periodic and almost periodic
signals and can be fruitful in the study of boundary value problems for fuzzy differential equations.

Many results can be modified to the case of generalized fuzzy derivatives.
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Abstract—An asymptotic formula is obtained for the optimal anisotropic controller for linear
discrete time-invariant system driven by random disturbance with infinitesimal mean anisotropy.
The result is accompanied with the asymptotic formula for the anisotropic norm of the closed-
loop system. An upper bound is computed for the mean anisotropy at which the optimal
anisotropic controller can be approximated by the H2-optimal controller with loss in perfor-
mance gain less than a given threshold.
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1. INTRODUCTION

The optimal control design problem remains to be one of the most relevant problems in control
theory. To design the optimal controller, one needs to determine a plant to control, a family of
control laws with parameters to be adjusted, and a certain function that quantitatively specifies
the quality of the closed-loop system performance. Such a criterion is chosen based on the control
objectives and the operating conditions of the system. The dynamic output feedback (DOF) control,
in both of its versions – strictly proper (causal) and non-strictly proper, is frequently used to solve
the linear quadratic control problems. In practice, the measurements used to define a control actions
contain random noise, in most cases with somewhat uncertain statistical parameters. When the
disturbances driven the linear system are Gaussian white noise, and the quadratic loss function
is defined as the performance gain, the corresponding control problem is referred to as the linear-
quadratic Gaussian (LQG) problem. A significant amount of publications exists on this topic [1–4].
Nevertheless, usually, external disturbance is rarely happen to be white noise, for which case the
LQG controller loses its efficiency.

In the period from the late 60-s to the early 80-s, the cornerstone of the H∞-theory has been
developed [5–8]. This theory addresses the optimal control design under assumption that the
disturbances are the square-integrable signals, and the L2 operator norm is used as performance
gain of the system. However, the optimal H∞-controller is too conservative in the sense that it only
performs in the best manner when the inputs are of the worst case corresponding to the maximum
value of the closed-loop system performance gain.

In the 1990-s, the so-called anisotropy-based control theory has been developed by
I.G. Vladimirov as an attempt to generalize H2- and H∞-control approaches to optimal control
design [9]. The fundamental concepts of the anisotropy of a random vector, the mean anisotropy of
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a sequence of random vectors, and the anisotropic norm of a system were introduced [10, 11]. The
anisotropy of random vector is defined as a measure of the divergence (in informational sense) of the
distribution of this vector with respect to a uniform distribution on the unit sphere. Later, it was
re-defined as the divergence of the vector’s distribution from isotropic Gaussian distributions [12].
Subsequently, the anisotropy-based theory apparatus has been also developed to solve the analysis
problems, optimal control and filtering problems [13–16].

In [17], the problem of the asymptotic representation of the anisotropic norm of a linear discrete
time invariant (LDTI) system has been solved when mean anisotropy upper bound was infinitesimal
(the so-called left asymptotic) or infinitely large (the right asymptotic). Based on the aforemen-
tioned results, the asymptotic formula of the optimal anisotropy-based filter in terms of its deviation
from the H2-optimal filter for infinitesimal values of mean anisotropy was presented in [18]. The
formula of the mean anisotropy maximum upper bound threshold at which the H2-optimal filter
approximates the anisotropy-based filter with a given accuracy is also obtained. In the subsequent
study [19], a solution for the special case of the similar anisotropy-based control problem is pre-
sented. All the results obtained for the left asymptotic of anisotropic filters and controllers form
the basis for the present study.

This paper presents a solution for the general case of the left asymptotic representation for the
optimal anisotropic controller for an LDTI system. The first section provides a brief overview of the
object of study, anisotropy-based control theory, and addresses the methods for the optimal H2 and
anisotropic controllers design. In the second section, a solution of the general optimal anisotropic
control problem is given. The third section of the article addresses the asymptotic representation
of the DOF anisotropic controller in a general form.

2. BACKGROUND

2.1. Fundamental Notations

The following notations are used in the paper: Rn – a set of n-dimensional real vectors; Rn×m –
a set of (n×m)-dimensional real matrices; C – a set of complex numbers; Ln2 – a set of n-dimensional
real valued square integrated random vectors; Hp×m∞ – the Hardy space of (n × m)-dimensional
complex-valued matrix functions, which are analytical in a unit circle C
 = {z ∈ C : |z| < 1}
and have limited H∞–norm ‖F‖∞ = sup|z|<1 σ(F (z)); σ(X) = max

√
λ(X∗X) – maximum singular

number of the matrix X; λ(X) – eigenvalue of matrix X; X∗ = X
T
– Hermitian conjugate matrix

to X; Hp×m
2 – the Hardy space of analytical in a unit circle C
 complex-valued matrix functions

F (z) =
∑+∞
k=0 fkz

k with limited H2-norm ‖F‖2 =
(∑+∞

k=0 tr(fkf
T
k )

)1/2
, where fk ∈ R

p×m.

2.2. Research Object

The research object of the paper is linear discrete time invariant system F with state space
realization

xk+1 = Axk +Bwwk +Buuk, k = 0, 1, . . . , (1)

where xk ∈ L
nx
2 – state vector, x0 = 0; wk ∈ L

nw
2 is the input disturbance vector; uk ∈ L

nu
2 is the

input control vector. Controlled output of system (1) denoted as a vector zk ∈ L
nz
2 is determined by

zk = Czxk +Dzuk. (2)

Sensor measurements are used to determine the control input uk of the system F . This data is
represented as a sequence of vectors yk ∈ L

ny

2 described as follows:

yk = Cyxk +Dywk. (3)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



944 BELOV, KUSTOV

Matrices A, Bw, Bu, Cz, Dz, Cy, Dy are known real matrices of corresponding dimensions. The
system of equations (1)–(3) is associated with transfer function Tyw(z) = Dy +Cy(zInx

−A)−1Bw,
which is described by four matrices

Tyw ∼ (A,Bw, Cy,Dy), (4)

and transfer function Tzu(z) = Dz + Cz(zInx
−A)−1Bu with quadruple of matrices

Tzu ∼ (A,Bu, Cz,Dz). (5)

The general formulation of the DOF control problem is to find a controller K of the form

K ∼
{
hk+1= Âhk + B̂yk,

uk = Ĉhk + D̂yk
(6)

with state vector hk ∈ L
nx
2 , input vector yk ∈ L

ny

2 and output vector uk ∈ L
nu
2 , which provides the

fulfillment of some quality criterion. In (6), the matrices Â, B̂, Ĉ and D̂ are to be derived. The fol-
lowing section presents basic information regarding two controller types based on its quality criteria:
the H2 controller which minimizes the trace of the state or controlled output covariance matrix of
the closed-loop system and the anisotropy-based controller, which minimizes the anisotropic norm
of the linear operator mapping external disturbances to the controlled output of the closed-loop
system.

2.3. H2-Optimal Control

To facilitate further expositions, we introduce the following matrices :

UL = (DT
z Dz +BT

u P̂
Bu)
−1, UR = −(DT

z Cz +BT
u P̂
A), U
 = ULUR, (7)

VL = −(AQ̂
C
T
y +BwD

T
y ), VR = (DyD

T
y + CyQ̂
C

T
y )

−1, V
 = VLVR. (8)

The optimal H2-control problem is to find a controller that minimizes the H2 norm of the closed-
loop system. Consider the linear discrete time invariant system (1), controlled output (2) and
measured output (3) with external random disturbance wk distributed normally with zero mean
E[wk] = 0 and an identity covariance matrix E[wkw

T
k ] = Inw . Consider the problem of designing

H2-optimal controller of the form (6). Thus, we have the following solution to the stated optimal
H2-optimal control problem [2]:

Â
 = A+BuU
 + V
Cy −BuD̂
Cy,

B̂
 = BuD̂
 − V
,

Ĉ
 = U
 − D̂
Cy,

D̂
 = −UL(DT
z CzQ̂
C

T
y +BT

u P̂
AQ̂
C
T
y +BT

u P̂
BwD
T
y )VR,

where P̂
 and Q̂
 are the stabilizing solutions of algebraic Riccati equations (for control and filtering,
respectively):

P̂
 = ATP̂
A+ CT
z Cz − UT

RU
,

Q̂
 = AQ̂
A
T +BwB

T
w − V
V

T
L .

The matrix V∗ is related to the coefficient matrix of the Kalman filter (as part of the H2-
controller) with respect to the update sequence, while U∗ is responsible for forming the control
action based on the filter’s estimate of the current state of the plant (due to the separation principle
inherent in Linear-Quadratic-Gaussian (LQG) control).

Next, we consider the fundamental concepts and principles of anisotropy-based theory upon
which the solution to the problem presented in the article is based.
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2.4. Anisotropic Norm

The synthesis of an H2-optimal controller typically assumes that the input of the system under
research is a Gaussian white noise. In practice, external disturbances affecting systems are fre-
quently correlated (and not necessarily Gaussian) noise, and its statistical characteristics are often
imprecisely known.

Let us assume that the input of the system (1) is a random disturbance in the form of a stationary
sequence of mutually independent random vectors W = (wk)0�k<+∞, wk ∈ L

nw
2 , whose properties

deviate from the standard normal distribution. To characterize the deviation of the random vector’s
distribution from the normal distribution, the concepts of anisotropy of the random vector and the
mean anisotropy of a sequence of random vectors is used within the framework of anisotropy-based
theory.

Definition 1 [12]. Anisotropy A(W ) of nw-dimensional random vector W is a nonnegative func-
tion defined by the following expression:

A(w) = min
λ>0

D(f‖pnw,λ),

where D(f‖pnw,λ
) is the relative entropy (Kulback-Leibler information divergence) of probability

density function (pdf) f regarding to the Gaussian pdf pnw,λ
with zero mean and scalar covariance

matrix λInw
, λ > 0, and h(W ) = − ∫

Rnw f(w) ln f(w)dw is the differential entropy of W .

Characterizing a sequence of random vectors using the concept of anisotropy of random vector
defined above is not feasible, as it tends towards infinity with an increasing number of sequence
elements. Therefore, the concept of mean anisotropy for a sequence of random vectors was intro-
duced.

Definition 2 [12]. The mean anisotropy of a (stationary ergodic) sequence W = (wk)0�k<+∞ is
defined as limit

A(W ) = lim
N→∞

A(W0:N−1)

N
,

where Ws:t = (wT
s , w

T
s+1, . . . , w

T
t )

T is the vector formed by the vectors of the sequence frag-
ment (wk)s�k�t.

As is known [20], the vectors of a stationary Gaussian sequence of random disturbances W =
(wk)0�k<+∞ can be represented as

wj =
+∞∑
k=0

gkvj−k,

where V = (vk)0�k<+∞ is a sequence of independent nw-dimensional random vectors with a stan-

dard normal distribution; gk is the impulse response of the generating filter, and G(z) ∈ Hnw×nw
2

is the transfer function of the generating filter with the sequence of vectors V as input and the
sequence W as output. Since the sequence of vectors W is generated by the filter G, the nota-
tion A(G) can be used to denote the mean anisotropy A(W ) of the sequence. It has been shown
(see [11, formula (4) and Lemma 1]) that the mean anisotropy A(G) of a sequence of random
vectors W generated by the shaping filter can be computed using the following formula:

A(G) = − 1

4π

π∫
−π

ln det

(
nw
‖G‖22

Ĝ(w)(Ĝ(w))

)
dw,

where Ĝ(w) = lim
r→1−0

G(reiw), w ∈ [−π, π), i2 = −1.
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One of the system response measures for system F of the form (4) in case of input disturbance
represented as a sequence of vectors W with mean anisotropy A(G) � a is the anisotropic norm of
the system [11], defined as follows:

F |||F |||a = sup
G∈Ga

‖FG‖2
‖G‖2

, (9)

where Ga = {G ∈ Hnw×nw
2 : A(G) � a} is a set of generating filters with a bounded mean

anisotropy of the sequence W .

To compute the anisotropic norm, it is necessary to determine the parameters of the generating
filter G that provides the supremum in the expression (9). This filter is called the worst-case
shaping filter and has the representation [11, formulas (32), (33)]

G ∼
[
A+BL BΣ1/2

L Σ1/2

]
(10)

with state vector xk, input vector vk and output vector wk. Next, the formulation of the lemma
concerning the computation of the anisotropic norm for a linear discrete-time invariant system is
presented.

Lemma 1 [11, Lemma 3]. Given a stable linear discrete time-invariant system F of the form (4),
defined by the matrix quadruple A, B, C, D. For any a > 0, there exists a unique pair (q,R), where
q ∈ (0, ‖F‖−2∞ ) is a scalar parameter that satisfies the equation

−1

2
ln det

nwΣ

tr(LPLT +Σ)
= a, (11)

and R ∈ R
nx×nx is a matrix that is a stabilizing solution of the Riccati equation

R = ATRA+ qCTC + LTΣ−1L,

Σ = (Inw
− qDTD −BTRB)−1,

L = Σ(BTRA+ qDTC).

Furthermore, the anisotropic norm of the system F is computed as

F |||F |||a =
(
1

q

(
1− nw

tr(LPLT +Σ)

))1/2

, (12)

where matrix P ∈ R
nx×nx satisfies Lyapunov equation

P = (A+BL)P (A+BL)T +BΣBT. (13)

The aforementioned concepts and principles of anisotropy-based control theory will be subse-
quently used in addressing the problem of determining the asymptotic representation of a general
anisotropy-based controller and the maximum anisotropy threshold below which the anisotropy-
based controller can be approximated by an H2-controller with a specified accuracy.

3. OPTIMAL ANISOTROPIC CONTROLLER

The optimal anisotropy-based control problem (6) for a linear discrete-time invariant system (5)
with a measured output (3) is considered in this section. In [19], a solution is presented for
the asymptotic representation problem with small values of the mean anisotropy a for a static
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state controller uk = Kxk. In a similar way, asymptotic representation problem for a dynamic
anisotropy-based output controller is solved.

Initially, the representation of the original system with a dynamic controller is expressed as the
result of substituting the controller’s expression (6) into the system (1)–(3):

L(F,K) ∼
[
A B

C D

]
, (14)

where matrices A, B, C and D have the form

A =

(
A+BuD̂Cy BuĈ

B̂Cy Â

)
, B =

(
Bw +BuD̂Dy

B̂Dy

)
,

C =
(
Cz +DzD̂Cy DzĈ

)
, D = DzD̂Dy.

It is assumed that the input disturbance vectors, denoted as wk, of the system under consid-
eration are the output of a worst-case generating filter of the form (10) and can be represented
as

wk = Lxxk + Lhhk +Σ1/2vk.

The Riccati equation from the lemma no.1 of calculating the anisotropic norm (11)–(13) for the
system (14) has the form

R = A
T
RA+ qC

T
C + LTΣ−1L, (15)

Σ = (Inw
− qD

T
D −B

T
RB)−1, (16)

L = (Lx Lh) = Σ(B
T
RA+ qD

T
C). (17)

Thus, the control problem is decomposed into two subproblems: determining the worst-case
generating filter for the closed-loop system (14), and synthesizing an optimal dynamic anisotropy-
based controller in the form of an LQG controller that minimizes the trace of the covariance matrix
of the regulated output of the closed-loop system (14) when affected by the worst-case noise. In [16],
a solution to a similar control problem is presented for the case D̂ = 0. After performing a similar
analysis for the controller case (6), one has that the matrices Â and B̂ satisfy the following formulas:

Â = A+BwM +BuĈ + (BuD̂ − Λ)(Cy +DyM), B̂ = Λ, (18)

where

M = Lx + Lh, (19)

S = (A+BwLx +BuD̂DyLx)S(A+BwLx +BuD̂DyLx)
T (20)

+ (Bw +BuD̂Dy)Σ(Bw +BuD̂Dy)
T − ΛΘΛT,

Θ = (Cy +DyLx)S(Cy +DyLx)
T +DyΣD

T
y , (21)

Λ =
(
(A+BwLx +BuD̂Cy +BuD̂DyLx)S(Cy +DyLx) (22)

+ (Bw +BuD̂Dy)ΣD
T
y

)
Θ−1.

To determine the unknown matrices Ĉ and D̂ of the controller, the methodology for solving
synthesis problems of dynamic H2-optimal output controllers presented in [2] should be employed.
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Therefore, one expresses the system (1)–(3) with the dynamic controller (6) and the worst-case
generating filter (10) in the form⎧⎪⎨⎪⎩

x̃k+1 = Ãx̃k + B̃wvk + B̃uuk,

z̃k = C̃zx̃k + D̃zuk,

ỹk = C̃yx̃k + D̃yvk,

(23)

where state vector x̃ includes the state vector xk of the initial system (1) and state vector hk of
controller (6), i.e. x̃ = (xTk hTk )

T, z̃k = zk, ỹ = (yTk hTk )
T, and system matrices have the form

Ã =

(
A+BwLx BwLh

B̂Cy + B̂DyLx Â+ B̂DyLh

)
, B̃w =

(
BwΣ

1/2

B̂DyΣ
1/2

)
, B̃u =

(
Bu
0

)
, (24)

C̃z = (Cz 0), D̃z = Dz, (25)

C̃y =

(
Cy +DyLx DyLh

0 Inx

)
, D̃y =

(
DyΣ

1/2

0

)
. (26)

Consequently, the desired control uk is determined by the following formula:

uk = Ñ ỹk,

where Ñ = (D̂ Ĉ).

Applying the H2-optimal control method for the system (23) yields

Ñ = −ŨL(D̃T
z C̃zQ
C̃

T
y + B̃T

u P
ÃQ
C̃
T
y + B̃T

u P
B̃wD̃
T
y )ṼR, (27)

where matrices ŨL and ṼR are introduced analogously to (7) and (8) by replacing the corresponding
matrices with similar matrices marked with a tilde P̂
, Q̂
 to P
, Q
, and the matrices P
 and Q

satisfy equations

P
 = ÃTP
Ã+ C̃T
z C̃z − ŨT

R Ũ
, (28)

Q
 = ÃQ
Ã
T + B̃wB̃

T
w − Ṽ
Ṽ

T
L . (29)

From (27), it follows that desired controller matrices Ĉ and D̂ are expressed as follows:

Ĉ = Ñ

(
0
Inx

)
, D̂ = Ñ

(
Iny

0

)
.

Thus, the matrices Â, B̂, Ĉ, and D̂ of the desired dynamical anisotropy-based output controller
are uniquely determined by the system of equations (18), (27)–(29).

The subsequent section details a solution to the problem of determining an asymptotic repre-
sentation for the derived optimal anisotropy-based controller as a→ 0+.

4. ASYMPTOTIC REPRESENTATION OF CONTROLLER

The next step in solving the stated problem is to derive the formulas for the asymptotic represen-
tation of the obtained anisotropy-based dynamical controller. To achieve this goal, it is necessary
to determine the components of the matrix decomposition for the controller, the system (23), and
all related matrices. Let us express the matrices of the system (23) as the following series:

X(a) =
n∑
k=0

Xka
k/2 + o(an/2), a→ 0 + 0, (30)
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where X denotes any variable, except for the matrices A, Bw, Bu, Cz, Cy, Dz, Dy of the initial
system, which, by the problem statement, are independent of a (for example, the matrix Σ depends
on a, so the representation (30) applies to it; i.e. Σ(a) = Σ0+Σ1

√
a+Σ2a+ o(a), if we set n = 2).

Note that X̃(
√
a)

.
= X(a) has to be a sufficiently smooth function of its argument

√
a. All matrices

obtained from sums and products of individual matrices that can be represented in the form of (30)
also have a similar form.

In similar way as in case of the static control problem, to determine the zero components of the
expansions of matrix functions, it is necessary to determine the function values when a = 0. This
case corresponds to the matrices of theH2-controller. For convenience, let us introduce the auxiliary
matrix Υ = −Ũ−1

L Ñ Ṽ −1
R . All variables X0 corresponding to the case a = 0 are not presented here,

as they are trivially obtained by substituting the values q = 0, L = 0, and Σ = Inw into all the
necessary formulas.

Based on the results presented in [18, 19], the second-order terms in the expansions of the matrix
functions R(a), Σ(a), L(a), and q(a) are expressed as follows:

q21 = 4nw/
(
2nwtr(B

T
0 QA0P 0A

T
0 QB0 + nw(B

T
0 QB0)

2)− tr2(B
T
0 QB0)

)
, (31)

R1 = q1Q, Σ1 = B
T
0R1B

0
, L1 = B

T
0R1A0,

where matrices Q P 0 satisfy equations

Q = A
T
0 QA0 + C

T
0 C0, P 0 = A0P 0A

T
0 +B0B

T
0 .

With that, one obtains the following expressions for the first components of the non-zero matrices
in the closed system (note the dependence of these matrices on various X0 and X1):

Ã1 =

(
BwLx,1 BwLh,1

B̂1Cy + B̂0DyLx,1 B̂0DyLh,1

)
, B̃w,1 =

(
BwΣ

1/2
1

B̂1Dy + B̂0DyΣ
1/2
1

)
,

C̃y,1 =

(
DyLx,1 DyLh,1

0 0

)
, D̃y,1 =

(
DyΣ

1/2
1

0

)
.

Having derived derivations of the anisotropy-based controller matrices, one obtains equations
for the first components of the anisotropy-based controller matrices:

Â1 = BwM1 +BuĈ1 +BuD̂1Cy − Λ1Cy + (BuD̂0 − Λ0)DyM1, B̂1 = Λ1,

Ĉ1 = Ñ1

(
0
Inx

)
, D̂1 = Ñ1

(
Iny

0

)
.

Although the expressions for the second terms in the expansion (30) of different matrix variables
are quite complex, they are all obtained in a similar manner and share a similar structure. Therefore,
to conserve space, we will present only the general principle of their derivation, using the matrix Υ
as an illustrative example. According to the established notation,

Υ = D̃T
z C̃zQ
C̃

T
y + B̃T

u P
ÃQ
C̃
T
y + B̃T

u P
B̃wD̃
T
y , (32)

where all forming matrices depend on a. Therefore, for the first term in its decomposition according
to formula (30), we have the following representation:

Υ0 = D̃T
z,0C̃z,0Q
,0C̃

T
y,0 + B̃T

u,0P
,0Ã0Q
,0C̃
T
y,0 + B̃T

u,0P
,0B̃w,0D̃
T
y,0, (33)
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and for the second term – as follows:

Υ1 =
∑

i,j,k,l�0
i+j+k+l=1

D̃T
z,iC̃z,jQ
,kC̃

T
y,l (34)

+
∑

i,j,k,l,m�0
i+j+k+l+m=1

B̃T
u,iP
,jÃkQ
,lC̃

T
y,m +

∑
i,j,k,l�0

i+j+k+l=1

B̃T
u,iP
,jB̃w,kD̃

T
y,l.

It is easy to notice the general principle behind the formation of the matrix Υ1: among all possible
index combinations forming its matrices, only one index in each matrix product takes the value
of 1. Similarly, to write out the third term Υ2, it is necessary to consider all possible combinations
of indices whose sum equals 2 (the total number of terms in this case will be 35). Therefore,
one can assume that all the necessary matrices in the representation (30) have been written out;
i.e. the asymptotic representation of the dynamic anisotropy-based controller has been determined
with the specified accuracy as a → 0 + 0. The obtained results are summarized in the following
statement:

Theorem 1. Consider a linear time-invariant system of the form (1)–(3) and a dynamical con-
troller of the form (6) in an output feedback configuration. For small values of the mean anisotropy
a → 0 + 0 of the input disturbances, the following asymptotic expansions, given by equation (30),
are valid for the matrices Â, B̂, Ĉ, and D̂ of the controller. The terms of the series are deter-
mined analogously to equations (32)–(34) for the matrix Υ, and its dependence on a is given by
equation (11).

The following section presents a solution to the problem of the asymptotic representation of the
anisotropic norm for a closed-loop system with an obtained controller.

5. ASYMPTOTIC REPRESENTATION OF ANISOTROPIC NORM

The next step in problem solving is to obtain an asymptotic representation of the anisotropic
norm of the closed-loop system with the obtained controller and to determine the maximum mean
anisotropy level amax at which the corresponding optimal anisotropy-based controller can be ap-
proximated by an H2-optimal controller with a specified accuracy level ε. Therefore, it is necessary
to determine the first components of the matrices A, B, C, and D. By determining the partial
derivatives of these matrix functions with respect to

√
a and substituting a = 0, we readily obtain

the required first components of the expansions of the matrices A, B, C, and D.

To obtain the asymptotic representation of the anisotropic norm, it is necessary to determine
the second components of the matrix functions R(a) and Σ(a). Having determined the second
partial derivatives of the matrices (15)–(17) with respect to

√
a, and substituting the zero value of

the mean anisotropy a into them, one have

R2 = A
T
0R2A0 + YR2 + Y T

R2
,

Σ2 = B
T
0 R2B0 + YΣ2 + Y T

Σ2
, (35)

where YR2 = q1
(
A

T
1 QA0 + C

T
1 C0

)
, YΣ2 = q1

(
B

T
1 QB0 +D

T
1D0

)
. Substituting the derived expan-

sions into the series of matrix functions R, Σ, L, and P in formula (12) for the anisotropic norm,
the asymptotic representation of the anisotropic norm for the system (14) as a→ 0+ is expressed
as follows:

L(F,K
)|||L(F,K
)|||a =
‖L(F,K
,0)‖2√

nw

(
1 +

(√
Ξ

nw
+

tr(Σ2)

2q1‖L(F,K
,0)‖22

)√
a

)
+ o(

√
a), (36)
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where L(F,K
,0) represents a system of the form (14), closed by the optimal controller at the mean
anisotropy level a = 0, and Ξ is of the form

Ξ =
nw‖L(F,K
,0)‖44 − ‖L(F,K
,0)‖42

‖L(F,K
,0)‖42
. (37)

The formulas for ‖ · ‖44 and ‖ · ‖42 are known and can be found in [17].

The final step is to determine the maximum level of mean anisotropy for a specified accuracy
level ε = o(‖L(F,K
,0)‖2), with which theH2-optimal controller approximates the anisotropy-based
controller. This condition takes the form a � amax, where amax satisfies the inequality:∣∣∣∣∣L(F,K
)|||L(F,K
)|||amax

− ‖L(F,K
,0)‖2√
nw

∣∣∣∣∣ < ε
‖L(F,K
,0)‖2√

nw
. (38)

Substituting the asymptotic representation formula (36) for the anisotropic norm into inequal-
ity (38), one obtain

a � amax = ε2
(√

Ξ

nw
+

tr(Σ2)

2q1‖L(F,K
,0)‖22

)−2

. (39)

The described above results of solving the problem of the asymptotic representation of the
anisotropic norm are presented as the following theorem.

Theorem 2. Consider a linear time-invariant system of the form (1)–(3) and a dynamical con-
troller of the form (6) in an output feedback configuration. For small values of the mean anisotropy
a → 0 + 0 of input disturbances, the anisotropic norm of the system closed by the controller (6)
admits the asymptotic representation (36), and the maximum level of mean anisotropy at which
the relative deviation of the anisotropic norm L(F,K
)|||L(F,K
)|||a from the scaled H2-norm of the
closed-loop system does not exceed a specified threshold ε, is determined by formula (39), where q1,
Σ2, and Ξ are defined according to formulas (31), (35), and (37).

Obviously, the maximum mean anisotropy level is determined by the matrices of the original
system. Earlier papers devoted to asymptotic representation of the anisotropy-based filter [18]
and the static anisotropy-based controller [19] have clearly shown that its H2-optimal analogues
sufficiently effectively approximate the anisotropy-based filter and controller, respectively, when
the mean anisotropy of the input disturbance is small.

6. CONCLUSION

The paper addresses the problems of synthesis of a dynamic optimal anisotropy-based controller
for linear discrete stationary systems and the determination of the maximum mean anisotropy
threshold below which the anisotropy-based controller can be approximated by an H2-optimal
controller with a specified level of accuracy. As a result of solving these problems, asymptotic
representations were derived for all matrices of the anisotropy-based controller, the matrices of
the closed-loop system, and its anisotropic norm for small values of mean anisotropy. Future
research may address a similar anisotropy-based control problem for the right asymptotics, deriving
asymptotic representations for the anisotropy-based controller and the closed-loop system norm as
the mean anisotropy tends to infinity.
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Abstract—The possibility of adaptation and effectiveness of a linear pseudomeasurement filter
in a stochastic observation system model with random time delays between arriving observations
and the factual state of a moving object are investigated. The method of pseudomeasurements is
modified to combine the results of observations performed by several measuring devices located
at different distances from the object and having different time delays. The filter is realized in a
model that considers measurements of direction angles and range. Experimental computations
are carried out for a model example describing the motion of an autonomous underwater vehicle
that uses two stationary acoustic beacons for positioning.
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DOI: 10.31857/S0005117925100055

1. INTRODUCTION

State filtering methods in stochastic dynamic systems find application in various fields, including
the control of autonomous underwater vehicles (AUVs) [1]. Along with unmanned aerial vehicles [2]
and autonomous cars [3], this field is currently a topical source of research problems. The aquatic
environment itself has some features unnecessary to be considered in surface motion problems. For
instance, these are such factors as variable water temperature, salinity, and pressure [4]; flows [5]
are quite interesting as well. In addition to affecting the moving object, water creates significant
challenges for measuring devices. Let us consider only external observers, without discussing the
onboard accelerometers and gyroscopes of AUVs. Then all available measuring devices are based
on general physical laws and use acoustic signals, i.e., belong to acoustic sensors or sonars [6].
A fundamental feature of such devices is the significant effect of random delays in arriving data
about the observed AUV state on the measurement accuracy. This effect also occurs in measuring
devices using electromagnetic radiation. For instance, a radar observing an object at a distance
of 1 km will receive its coordinates with a delay of about 10−7 s. Such values can be neglected.
For a sonar with the sound velocity in water being 1500 m/s, the delay in determining the object’s
coordinates at a distance of 1 km will reach about 0.7 s; at a distance of 10 km, 7 (!) s. Even if the
object is not moving fast, such values cannot be neglected. This effect must be taken into account
in models oriented to high-velocity AUVs.

A stochastic dynamic observation system model incorporating the delay factor of the acoustic
signal was proposed in [7, 8] and extended to the identification of unknown motion model parameters
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in [9, 10]. The relations for optimal Bayesian filtering [11] were derived for state and parameter
estimation.

As in most applications, it is impractical to use universal filtering methods, such as the extended
Kalman filter (EKF) [12], particle filters [13], and various types of sigma-point filters [14], or con-
ditionally optimal and minimax Pugachev–Pankov filters [15, 16] of standard structure, or (even
more so) optimal Bayesian filters: either the realization turns out to be very costly in computa-
tional sense or suboptimal algorithms exhibit a tendency to diverge. An exception could be the
method of linear pseudomeasurements, which occupies an intermediate position between universal
methods applicable to any model and special ones (i.e., those intended exclusively for a particular
model). Although the idea of this method is quite universal, it should be applied to particular
measurements, linearizing them. In underwater navigation problems, various sensors with indirect
information about the object’s position are used. Among them, note direction angle and range
sensors [17].

The idea of pseudomeasurements itself has been known for a long time and seems to be a logical
supplement or development of the EKF as the most popular suboptimal filtering method [12]. The
EKF reproduces the structure of the linear Kalman filter [18], which is optimal for state filtering
in a linear Gaussian observation system and also possesses a series of outstanding properties in
various problems of robust and adaptive estimation and control. Formal adherence to the linear
filter structure implies linearization. In the case of the EKF, this is linearization around the
state prediction to obtain heuristic estimates of the state prediction covariance and the filtering
estimate. The linearization of observations improved through some functional transformations,
making combinations of observations more linear, was apparently first demonstrated for direction
angle measurements in [19]. A modern practical setting was presented in [20]. By updating the
model, a new quality was attributed to the pseudomeasurement filter in a series of research works
initiated in [21].

This paper aims to adapt the EKF based on linear pseudomeasurements for a model with time
delays. To this end, Section 2 proposes a more universal pseudomeasurement model, developing
the classical method [19, 20]. In Section 3, this model is used to derive the filtering equations based
on the EKF for the stochastic observation system model with time delays. Section 4 is devoted
to a computational experiment of tracking the motion of an AUV, observed by two stationary
acoustic beacons, towards a given target. In the Conclusions, we summarize the results, including
possible shortcomings of the EKF-based method of linear pseudomeasurements and some ways to
eliminate them.

2. FILTERING BY THE METHOD OF LINEAR PSEUDOMEASUREMENTS

2.1. System Model and Definition of Pseudomeasurements

In this paper, the following notation is adopted: E{X} means the mathematical expectation of
a random vector X; cov(X,Y ) is the covariance of X and Y ; X ′ stands for the transpose of X.

By assumption, the motion of an autonomous AUV (denoted by A) is described in a refer-
ence frame Oxyz where the plane Oxy coincides with the sea surface and the axis Oz is directed
downward and corresponds to depth (Fig. 1).

Let the coordinates of A at some fixed (e.g., initial) time instant form the vector (XA, YA, ZA)′

and, when considered as time-varying functions, the vector (X(t), Y (t), Z(t))′.
First, suppose that the motion is observed by one measuring complex (M) with coordinates

(XM, YM, ZM). This could be a passive acoustic device for estimating the direction of move-
ment [22], allowing measurement aboard the AUV, or an active hydroacoustic beacon [23], forming
measurements for an external observer.
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Fig. 1. Possible relative positions of AUVs and the observer.

The type of measuring device depends on the navigation task being solved. If the AUV interacts
with the measuring device (the cooperative scenario), then positioning is performed aboard the
AUV. In the case of opposing interests, an external device tracks a target.

Regardless of the task, it is necessary to measure the direction angle ϕ (azimuth or bearing) in
the plane Oxy, the elevation angle λ (the inclination of the acoustic ray relative to the straight
line Oz), and the range r (the distance between A and M). Figure 1 illustrates possible relative
positions of AUVs and the observer and the angle measurement rules.

The proposed approach to form linear pseudomeasurements from the measurements of ϕ, λ, and
r combines the idea of a classical filter [19] and the model with tangent observations [20].

First, consider the measurement yϕ = ϕ+ vϕ of the bearing ϕ, where the error vϕ has a dis-
tribution with zero mean (E{vϕ} = 0) and a standard deviation σϕ (cov(vϕ, vϕ) = σ2ϕ). Assuming
that sonar errors in angle measurements are about 1–2◦, we represent measurements in radians;
then the value σϕ can be set to σϕ = π

180 ≈ 0.0175 and, consequently, vϕ � 1.

For the measurement yϕ, we write the sine and cosine and approximate them with the corre-
sponding linear parts of the Taylor expansion for small vϕ :

ysinϕ = sin(yϕ) = sin(ϕ+ vϕ) ≈ sin(ϕ) + cos(ϕ)vϕ,

ycosϕ = cos(yϕ) = cos(ϕ+ vϕ) ≈ cos(ϕ) − sin(ϕ)vϕ.

Assume further that for the distribution of vϕ, only the moments E{vϕ} = 0 and E{v2ϕ} = σ2ϕ
are given, and the variables ϕ and vϕ are independent. In this case, we have E{(cos(ϕ)vϕ)2}�σ2ϕ
and E{(sin(ϕ)vϕ)2}�σ2ϕ. Moreover, E{cos(ϕ)vϕ sin(ϕ)vϕ} = 1

2σ
2
ϕE{sin(2ϕ)} = 0 if ϕ is distributed

symmetrically about zero. In view of the physical meaning of ϕ, the latter assumption seems quite
realistic. Recall the well-known minimax property of the Gaussian distribution, which maximizes
the variance of a random variable in the class of distributions with known mean and bounded
variance [24]. Therefore, we arrive at an approximation of the form

ysinϕ ≈ sin(ϕ) + v1, ycosϕ ≈ cos(ϕ) + v2,

where v1 and v2 are independent Gaussian random variables with E{v1} = E{v2} = 0 and E{v21} =
E{v22} = σ2ϕ. Here, the measurement error (v1, v2)

′ is interpreted as the worst-case one.
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Such an interpretation is expected to be excessively rough, which is characteristic of mini-
max estimates. Thus, it makes sense to focus on another approximation of E{(cos(ϕ)vϕ)2} and
E{(sin(ϕ)vϕ)2}. These moments cannot be computed without knowing the distribution of ϕ. But
it can be supposed that ϕ takes any value with equal probability, i.e., has a “nearly” uniform
distribution. This reflects the assumption that the target can appear anywhere; then

E{(cos(ϕ)vϕ)2} = E{(sin(ϕ)vϕ)2} ≈ 1

4
σ2ϕ.

Which approximation is better, E{v21,2} = σ2ϕ or E{v21,2} = 1
4σ

2
ϕ? It is possible to test them experi-

mentally.

Continuing the considerations, we obtain

sin(ϕ) ≈ ysinϕ − v1, cos(ϕ) ≈ ycosϕ − v2,

tan(ϕ) =
YA − YM
XA −XM

≈ ysinϕ − v1

ycosϕ − v2
,

(YA − YM)ycosϕ − (XA −XM)ysinϕ ≈ (YA − YM)v2 − (XA −XM)v1.

By replacing the exact coordinates (XA, YA) in the last expression with their estimates, one de-
rives the pseudomeasurement residual figuring in the filtering equations. The pseudomeasurements
themselves can be written as

−YMycosϕ +XMysinϕ ≈ (ysinϕ ,−ycosϕ )

(
XA
YA

)
+ (YA − YM)v2 − (XA −XM)v1,

which explains the meaning of the above transformations: the pseudomeasurements
−YMycosϕ +XMysinϕ approximate the measurements of a linear combination of the estimated co-
ordinates (XA, YA) under an additive noise with known covariance.

Thus, for the measurement yϕ = ϕ+ vϕ of the bearing ϕ, the pseudomeasurement Yϕ is formed
as follows:

Yϕ = −YMycosϕ +XMysinϕ , ysinϕ = sin(yϕ), ycosϕ = cos(yϕ); (1)

the filtering algorithm uses the observation model

Yϕ = (ysinϕ ,−ycosϕ )

(
XA
YA

)
+ (XM −XA, YA − YM)

(
v1
v2

)
. (2)

Next, consider the measurement yλ = λ+ vλ of the elevation angle λ. Similarly to the bearing,
we approximate the sine and cosine based on the same assumptions about the measurement error vλ:

ysinλ = sin(yλ) ≈ sin(λ) + cos(λ)vλ ≈ sin(λ) + v3,

ycosλ = cos(yλ) ≈ cos(λ)− sin(λ)vλ ≈ cos(λ) + v4,

where v3 and v4 are independent Gaussian random variables with E{v3} = E{v4} = 0 and E{v23} =
E{v24} = σ2λ (in the alternative approximation, E{v23,4} = 1

4σ
2
λ). Hence,

sin(λ) ≈ ysinλ − v3, cos(λ) ≈ ycosλ − v4,

tan(λ) =
ZA − ZM
|XA −XM| cos(ϕ) ≈

ysinλ − v3
ycosλ − v4

.
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To simplify manipulations with the measurement of λ, let the reference frame be chosen so that,
for the relative position of A and M, XA > XM and X(t) > XM during the further motion. Using
the available bearing approximation, we replace cos(ϕ) with ycosϕ − v2 to get

ycosϕ ycosλ (ZA − ZM)− ysinλ (XA −XM)

≈ (ZA − ZM)ycosλ v2 − (XA −XM)v3 + (ZA − ZM)ycosϕ v4 − (ZA − ZM)v2v4.

By the above assumption, all vi are independent and centered, so the variance of the right-hand
side of this expression (the pseudomeasurement error) has the form

E
{(

(ZA − ZM)ycosλ v2 − (XA −XM)v3 + (ZA − ZM)ycosϕ v4 − (ZA − ZM)v2v4
)2}

= E
{
(ZA − ZM)2(ycosλ )2

}
σ2ϕ + E

{
(XA −XM)2

}
σ2λ

+ E
{
(ZA − ZM)2(ycosϕ )2

}
σ2λ + E

{
(ZA − ZM)2

}
σ2ϕσ

2
λ.

Appealing to the same arguments about the small values of vi, σϕ, and σλ, we neglect the last
term and represent the pseudomeasurement residual as

ycosϕ ycosλ (ZA − ZM)− ysinλ (XA −XM)

≈ (ZA − ZM)ycosλ v2 − (XA −XM)v3 + (ZA − ZM )ycosϕ v4.

(Here, the estimates are substituted for the exact coordinates (XA, YA, ZA).) The pseudomeasure-
ments themselves become

−ycosϕ ycosλ ZM + ysinλ XM

≈−ycosϕ ycosλ ZA+ysinλ XA+(ZA−ZM)ycosλ v2− (XA−XM)v3+(ZA−ZM)ycosϕ v4.

Thus, for the measurement yλ = λ+ vλ of the elevation angle λ, the pseudomeasurement Yλ is
formed as follows:

Yλ = −ycosϕ ycosλ ZM + ysinλ XM,

ysinλ = sin(yλ), ycosλ = cos(yλ), ycosϕ = cos(yϕ);
(3)

the filtering algorithm uses the observation model

Yλ =
(
ysinλ , −ycosϕ ycosλ

)(XA
ZA

)
+
(
(ZA − ZM)ycosλ , XM −XA, (ZA − ZM)ycosϕ

)⎛⎜⎝v2v3
v4

⎞⎟⎠ . (4)

Finally, consider the measurement yr = r + v5 of the range r with an error v5 independent of
the previous ones vi: E{v5} = 0 and E{v25} = σ2r . Using the measurement of the elevation angle λ
and the approximation sin(λ) ≈ ysinλ − v3, we write

r =
ZA − ZM
sin(λ)

⇒ yr − v5 ≈ ZA − ZM
ysinλ − v3

.

Similarly to the angle transformations, it follows that

ZA − ZM − yry
sin
λ ≈ −yrv3 − ysinλ v5 + v3v5.
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The centered error on the right has the variance

E{(−yrv3 − ysinλ v5 + v3v5)
2} = E

{
y2r

}
σ2λ + E

{
(ysinλ )2

}
σ2r + σ2λσ

2
r .

Here, the third term can be neglected compared to the first two, and the pseudomeasurement
residual becomes

ZA − ZM − yry
sin
λ ≈ −yrv3 − ysinλ v5.

(Here, the estimate is substituted for the exact coordinate ZA.)
We write the pseudomeasurements themselves as

ZM + yry
sin
λ ≈ ZA + yrv3 + ysinλ v5.

Thus, for the measurement yr = d + v5 of the range, the pseudomeasurement Yr is formed as
follows:

Yr = ZM + yry
sin
λ , ysinλ = sin(yλ); (5)

the filtering algorithm uses the observation model

Yr = ZA +
(
yr, ysinλ

)(v3
v5

)
. (6)

Now we combine all the three models (2), (4), and (6) into the single observation vector Y =
(Yϕ, Yλ, Yr)

′ :

Y =

⎛⎜⎜⎝
ysinϕ −ycosϕ 0

ysinλ 0 −ycosϕ ycosλ

0 0 1

⎞⎟⎟⎠X

(7)

+

⎛⎜⎝XM −XA YA − YM 0

0 (ZA − ZM)ycosλ XM −XA
0 0 yr

⎞⎟⎠
⎛⎜⎝ 0

(ZA − ZM)ycosϕ

0

⎞⎟⎠+

⎛⎜⎝ 0
0
ysinλ

⎞⎟⎠V,

where

X = (XA, YA, ZA)′ and V = (v1, v2, v3, v4, v5)
′.

2.2. Application of the Extended Kalman Filter

Let the observation vector yt ∈ R
qy of the AUV be formed from the measurements yϕ, yλ,

and yr at a time instant t. (For one observer, the dimension is qy = 3.) The AUV has the state
vector Xt ∈ R

pX ; without loss of generality, assume that the state Xt is determined by the AUV
coordinates in the Oxyz system, denoted by Xt = (X(t), Y (t), Z(t))′, pX = 3. Below, the motion
model will be supplemented with other variables, but the objective is still to estimate the AUV
position.

The estimation of Xt begins at the time instant t = 0 and is performed at discrete
time instants 1, 2, . . . , t, . . . , corresponding to the partition of the observation interval with a
step δ s: δ, 2δ, . . . , tδ, . . . The AUV initial position is given by the vector X0 = η = (ηX , ηY , ηZ)

′ =
(X(0), Y (0), Z(0))′.
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The vectors Xt and yt are described by a discrete stochastic dynamic system of general form:

Xt = Φ
(1)
t (Xt−1) + Φ

(2)
t (Xt−1)Wt, t = 1, 2, . . . , X0 = η,

yt = ψ
(1)
t (Xt) + ψ

(2)
t (Xt)vt.

(8)

By assumption, the random sequences of Xt and yt have finite covariances, and the disturbances
Wt ∈ R

pW and the measurement errors vt ∈ R
qv are independent discrete white noises of the second

order; the initial condition vector η ∈ R
pX is independent of Wt and vt and has finite covariance.

The corresponding central moments are denoted, e.g., for Wt, by mW (t) and DW (t).

We supplement system (8) with an equation for the pseudomeasurements Yt ∈ R
qY :

Yt = Ψ
(1)
t (Xt, yt) + Ψ

(2)
t (Xt, yt)Vt. (9)

(In all the available examples, exactly one pseudomeasurement is formed for one measurement and,
accordingly, qY = qy = 3; in the general case, the dimensions may differ.) Here, the matrix functions

Ψ
(1)
t (X, y) and Ψ

(2)
t (X, y) are given by (7), and due to its linearity, we have Ψ

(1)
t (X, y) = Ψ

(1)
t (y)X.

Filtering by the method of linear pseudomeasurements [19] consists in applying the EKF [12]
to system (8), with the observations yt replaced by the pseudomeasurements (9). In the current
notation, such a filter has the form

X̃t = Φ
(1)
t (X̂t−1) + Φ

(2)
t (X̂t−1)mW (t),

K̃t = Φ̃
(1)
t K̂t−1

(
Φ̃
(1)
t

)′
+ Φ̃

(2)
t DW (t)

(
Φ̃
(2)
t

)′
,

Φ̃
(1)
t =

∂Φ
(1)
t (X)

∂X

∣∣∣∣∣
X=X̃t

, Φ̃
(2)
t = Φ

(2)
t (X̃t),

X̂t = X̃t +Kt

(
Yt −Ψ

(1)
t (X̃t, yt)−Ψ

(2)
t (X̃t, yt)mV (t)

)
,

Kt = K̃t

(
Ψ̃

(1)
t

)′ (
Ψ̃

(1)
t K̃t

(
Ψ̃

(1)
t

)′
+ Ψ̃

(2)
t DV (t)

(
Ψ̃

(2)
t

)′)−1

,

Ψ̃
(1)
t =

∂Ψ
(1)
t (X, yt)

∂X

∣∣∣∣∣
X=X̃t

= Ψ
(1)
t (yt), Ψ̃

(2)
t = Ψ

(2)
t (X̃t, yt),

K̂t = K̃t −KtΨ̃
(1)
t K̃t.

(10)

The difference from the classical EKF here is the mandatory linearity of the function Ψ
(1)
t in

the estimated state, so that
∂Ψ

(1)
t (X,yt)
∂X = Ψ

(1)
t (yt), which is determined by the pseudomeasurement

equation (7) itself. The other elements are the same as in the standard EKF: the prediction X̃t

is constructed along the system trajectories; the heuristic prediction error covariance K̃t is the
result of linearizing the state equation in the neighborhood of the prediction; the correction is the
observation residual with the Kalman gain Kt; the heuristic estimation error covariance K̂t is the
result of linearizing the observation equation. Also, a feature of the EKF by the method of linear

pseudomeasurements is the dependence of Ψ̃
(1)
t and Ψ̃

(2)
t on the “real” observations yt. Indeed,

according to (7), the values of yt are used to compute not only the pseudomeasurements (1), (3),

and (5) but also the approximate model matrices Ψ
(1)
t and Ψ

(2)
t .
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2.3. Pseudomeasurements with Time Delay

The dependence of observations yt and pseudomeasurements Yt (in (8) and (9), respectively) on
the state Xt varies fundamentally if the information exchange time between the observed object
and the observer cannot be neglected. This is the situation with sonars, see the discussion above.
Accordingly, the current measurements turn out to match the position of A for some previous time
instant s < t. This instant is determined as follows.

Let vs = const be the sound velocity in water. Regardless of the sonar type and the source of
measurements (aboard the AUV or an external measuring complex), there is a difference between
the time when the observer M receives the measurement and the time when A had the “measured”
position. This difference is the time taken by the acoustic signal to travel the distance between A
and M, i.e., τ = t− s = r/(δvs). Following the idea of pseudomeasurements, this random value can
be approximated by τ̃ = yr/(δvs). Considering that the typical value is vs = 5400 km/h (1500 m/s),
the introduced error can be neglected, and the pseudomeasurement model (7) can be supplemented
with the relation

X = (X(t− τ̃), Y (t− τ̃), Z(t− τ̃))
′
, τ̃ = yr/δvs. (11)

The general form of the observation–pseudomeasurement system is

Xt =Φ
(1)
t (Xt−1)+Φ

(2)
t (Xt−1)Wt, t=−T,−T +1, . . . , 1, 2, . . . , X−T−1 = η,

yt = ψ
(1)
t (Xt−τt) + ψ

(2)
t (Xt−τt)vt, τt = τt(Xt), (12)

Yt = Ψ
(1)
t (yt)Xt−τ̃t +Ψ

(2)
t (Xt−τ̃t , yt)Vt, τ̃t = τ̃t(yt).

This model rests on the following assumptions. First, the maximum possible time delay of
observations, i.e., the value Tδ > 0, is known. (Essentially, this is the maximum detection range
of the moving object.) Second, the motion of A starts at the time instant −Tδ, i.e., t = −T ,
so that the observer M will surely perform a measurement at the time instant t = 0. The initial
position of A is given by the vector η = (ηX , ηY , ηZ)

′ = (X(−T − 1), Y (−T − 1), Z(−T − 1))′. The
time delay τt is a function of the state Xt, i.e., the time required for the sound wave to travel the
distance between A and M. (Precisely from this consideration, the estimate τ̃ is included in the
pseudomeasurements (11).)

The functions τt(X) and τ̃t(y) in (12) must take integer values from the set {0, 1, . . . , T}. For
“real” states and observations, they have the form

τt = min

{
T,

[√
(X(t)−XM)2 + (Y (t)− YM)2 + (Z(t)− ZM)2

δvs

]}
,

τ̃t = min

{
T,

[
yr
δvs

]}
,

(13)

where [·] denotes the floor function.

2.4. Filtering in the Model with Several Observers

Now, let the observation vector yt in (12) combine measurements of angles and range

coming from q observers, i.e., yt = (y
(1)
ϕt , y

(1)
λt
, y

(1)
rt , . . . , y

(q)
ϕt , y

(q)
λt
, y

(q)
rt )′. Since yt ∈R

qy , qy = 3q.

For each ith observer, we define a time delay τ
(i)
t , i = 1, . . . , q, with values in the set {0, 1, . . . , T}.
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The delays τ
(i)
t are combined into the vector τt = (τ

(1)
t , . . . , τ

(q)
t )′ ∈ R

q, which is a function of Xt

just like τt in (12). Thus, the measurements y
(i)
ϕt , y

(i)
λt
, and y

(i)
rt in each group can be represented as

functions of the position X
t−τ (i)t

. The observation system takes the form

Xt = Φ
(1)
t (Xt−1) + Φ

(2)
t (Xt−1)Wt,

t = −T,−T + 1, . . . , 0, 1, . . . , X−T−1 = η,

y
(i)
t = ψ

(i,1)
t

(
X
t−τ (i)t

)
+ ψ

(i,2)
t

(
X
t−τ (i)t

)
v
(i)
t , i = 1, . . . , q,

Y
(i)
t = Ψ

(i,1)
t

(
y
(i)
t

)
X
t−τ̃ (i)t

+Ψ
(i,2)
t

(
X
t−τ̃ (i)t

, y
(i)
t

)
V

(i)
t .

(14)

For (14) to correctly reflect the above assumptions and turn into (8), (9) under T = 0 (no time
delays), we introduce the following designations:

yt =
(
(y

(1)
t )′, . . . , (y(q)t )′

)′
is the observation vector composed of q groups of measurements y

(i)
t =(

y
(i)
ϕt , y

(i)
λt
, y

(i)
rt

)′
;

v
(i)
t is the vector of measurement errors in this group;

Yt =
(
(Y

(1)
t )′, . . . , (Y (q)

t )′
)′

is the vector of q groups of pseudomeasurements;

Y
(i)
t =

(
Y

(i)
t , Y

(i)
t , Y

(i)
t

)′
, which is associated with the corresponding group y

(i)
t , and V

(i)
t is the

vector of measurement errors in this group.

The vector functions ψ
(i,1)
t , as well as the matrices ψ

(i,2)
t , Ψ

(i,1)
t , and Ψ

(i,2)
t , i = 1, . . . , q, are

defined for each group of observations and pseudomeasurements. Their presence implies the inde-
pendence of each observer forming the measurements of the group, i.e.,

ψ
(1)
t =

(
(ψ

(1,1)
t )′, . . . , (ψ(q,1)

t )′
)′
, ψ

(2)
t = diag

(
ψ
(1,2)
t , . . . , ψ

(q,2)
t

)
,

Ψ
(1)
t =

⎛⎜⎜⎝
Ψ

(1,1)
t
...

Ψ
(q,1)
t

⎞⎟⎟⎠ , Ψ
(2)
t = diag

(
Ψ

(1,2)
t , . . . ,Ψ

(q,2)
t

)
.

Then the basic EKF equations (10) can be refined for the model with time delays (14) as follows:

X̃t = Φ
(1)
t (X̂t−1) + Φ

(2)
t (X̂t−1)mW (t),

K̃t = Φ̃
(1)
t K̂t−1(Φ̃

(1)
t )′ + Φ̃

(2)
t DW (t)(Φ̃

(2)
t )′,

Φ̃
(1)
t =

∂Φ
(1)
t (X)

∂X

∣∣∣∣∣
X=X̃t

, Φ̃
(2)
t = Φ

(2)
t (X̃t),

X̂t = X̃t +KtΔỸt,

ΔỸt =

(
Y

(1)
t −Ψ

(1,1)
t (y

(1)
t )X̃

t−τ̃ (1)t
, . . . , Y

(q)
t −Ψ

(q,1)
t (y

(q)
t )X̃

t−τ̃ (q)t

)
,

Kt = K̃t(Ψ
(1)
t )′

(
Ψ

(1)
t K̃t(Ψ

(1)
t )′ + Ψ̃

(2)
t DV (t)(Ψ̃

(2)
t )′

)−1
,

Ψ
(1)
t = Ψ

(1)
t (yt), Ψ̃

(2)
t = diag

{
Ψ

(1,2)
t (X̃

t−τ̃ (1)t

, yt), . . . ,Ψ
(q,2)
t (X̃

t−τ̃ (q)t

, yt)

}
,

K̂t = K̃t −KtΨ
(1)
t K̃t.

(15)
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Essentially, compared to the filter (10), the filter (15) simply incorporates the estimates τ̃
(i)
t ,

i = 1, . . . , q, of the time delays. The observation residual ΔỸt and the matrix of measurement error

deviations Ψ
(2)
t are composed of the values of the position predictions X̃

t−τ̃ (i)t
corresponding to the

time instants for which the current observations yt were performed and the pseudomeasurements Yt
were composed. For this purpose, we use the position predictions shifted relative to the current time

instant by the value of the estimate τ̃
(i)
t of the time delay τ

(i)
t for the corresponding ith observer.

3. TRACKING OF AUV’S APPROACH USING ACOUSTIC BEACON MEASUREMENTS

3.1. Observation System Model

To apply the filtering algorithm (15), we adopt the same model as in [9, 10], with slight mean-
ingful modifications for the tracking problem of an approaching unknown object. (In the papers
cited, this model was studied for parameter identification.) Following Fig. 1, let the origin O of the
reference frame Oxyz define a stationary object (O) located on the sea surface, to which an AUV
is approaching. A is detected in the initial position η = (ηX , ηY , ηZ)

′, whose random elements are
independent and have a uniform distribution: ηX ∼ R[10, 20], ηY ∼ R[10, 20], and ηZ ∼ R[0.5, 1.5].
Thus, the initial position of A is characterized by the mean E{η} = (15, 15, 1)′ and covariance
cov(η, η) ≈ diag{2.92; 2.92; 0.292}. All distances are given in kilometers (km). By assumption, the
detected AUV moves towards O with chaotic maneuvering but an average constant velocity of
about 21 km/h.

There are two complexes (F , first) and (S, second) for observing the AUV. In the reference
frame Oxyz, the z axis is directed vertically downward to the water surface (as in Fig. 1, corre-
sponding to the AUV depth) whereas the y and x axes are directed from the object to the first and
second observers, respectively (O → F and O → S). The observers are considered to be stationary
on the water surface, i.e., at zero depth. Thus, their coordinates are F(XF , YF , ZF ) = (0, YF , 0)
and S(XS , YS , ZS) = (XS , 0, 0), where XS = −2 km and YF = −1 km. Furthermore, assume that
throughout the observation time, the coordinates A(X(t), Y (t), Z(t)) are such that the AUV re-
mains at depth without surfacing (i.e., Z(t) > 0), and the conditions X(t) > XM used for the
pseudomeasurement (3) are valid for both observers, i.e., X(t) > 0. The intersection of the motion
trajectory with the Ox axis does not affect the pseudomeasurements, and a possible intersection

Fig. 2. The relative position of observers in the experiment.
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with the Oy axis can be easily considered by using the cotangent instead of the tangent for the
pseudomeasurements (3). The experiment is schematically illustrated in Fig. 2.

The vector (X(t), Y (t), Z(t))′ describes the position ofA at discrete time instants t = 0, . . . , 1000,
which correspond to the partition of the observation time interval with a discretization step of
δ = 0.0001 h. Taking the maximum time delay T into account, the navigation task is thus solved in
0.1 h = 6 min. Measurements are performed at the same time instants, i.e., about three measure-
ments per second by each complex. With an absolute constant average velocity of 21 km/h, during
this time the AUV travels on average a distance of about 2.1 km, approaching O. The maximum
distance from A to O and to F or S is about 28 and 30 km, respectively; the minimum distances
are 14 and 16 km, respectively. Hence, the maximum possible time delay at the AUV detection
instant is T = 56 (i.e., 0.0056 h or about 20 s).

By assumption, the AUV moves with a constant average velocity (sx, sy, sz)
′, and the deviations

from this velocity are described by the vector of additive disturbances (wx(t), wy(t), wz(t))
′ :

X(t) = X(t− 1) + δSx(t), Sx(t) = sx + σsxwx(t),

Y (t) = Y (t− 1) + δSy(t), Sy(t) = sy + σsywy(t),

Z(t) = Z(t− 1) + δSz(t), Sz(t) = sz + σszwz(t).

(16)

On each trajectory, the average velocity (sx, sy, sz)
′ is specified by a random vector of inde-

pendent uniformly distributed variables: sx ∼ R[−20,−10], sy ∼ R[−20,−10], and sz ∼ R[−2, 0].
Thus, the average velocity of A is characterized by the mean E{S(t)} = (−15,−15,−1)′ (hence,
the average velocity has an absolute value of about 21 km/h and the direction of motion is towards
O(0, 0, 0)) and the covariance diag{Dsx ;Dsy ;Dsz} ≈ diag{2.92; 2.92; 0.42}. The standard deviations
of the additive velocity disturbance vector Wt = (wx(t), wy(t), wz(t))

′ are σsx = 15, σsy = 15, and
σsz = 1. As a result, the velocity covariance is cov(S(t), S(t)) ≈ diag{15.32; 15.32; 1.12}.

In addition to (16), we model abrupt changes (jumps) in the average velocity. Consider a
standard Poisson process P (u) independent of the position of A and a known intensity λu of changes
in the constant average velocity of the AUV (i.e., the average time between velocity jumps). The
discrete time t is related to the continuous time u via the discretization step: u = tδ. The state
vector Xt ∈ R

pX can be augmented by the (pX + 1)th element, so that X(pX+1)t = P (λtδtδ).

The constant, or rather piecewise constant, average velocity is described by a sequence
(spx(t), s

p
y(t), s

p
z(t))

′, whose cross-section at t = 0 has the same distribution as (sx, sy, sz)
′. Thus,

the motion model takes the form

X(t) = X(t− 1) + δSx(t), Sx(t) = spx(t) + σsxwx(t),

Y (t) = Y (t− 1) + δSy(t), Sy(t) = spy(t) + σsywy(t),

Z(t) = Z(t− 1) + δSz(t), Sz(t) = spz(t) + σszwz(t).

(17)

To determine the sequence sp(t) = (spx(t), s
p
y(t), s

p
z(t))

′ for t > 0, we define p(t) =
X(pX+1)t −X(pX+1)t−1

as the indicator of jumps of the process P (λtδtδ) on the current discretiza-
tion interval. Assume that sp(t) = sp(t− 1) if p(t) = 0, i.e., the constant average velocity remains
invariable without jumps. For p(t) = 1, sp(t) becomes a new random variable. To find its distribu-
tion, we use the same idea as for the distribution of the initial velocity (sx, sy, sz)

′, which means
motion on average towards the object O (i.e., the origin) while preserving the variance. To this end,
the new value of the average velocity sp(t) is modeled by the uniform distribution with mean −Xt

and the same covariance as in the previous model. Specifically, if we denote sx ∼ R[ax, bx], then
spx(t) ∼ R[ax, bx]− (ax + bx)/2−X(t− 1), i.e., the conditional distribution of spx(t) given X(t− 1)
has the mean −X(t− 1) (preserves on average the direction of A’s motion towards the object O)
and the variance D[spx(t) |X(t− 1)] = Dsx . Similar expressions describe spy(t) and s

p
z(t).
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The process P (u) used in the experiment has an intensity λu = 3
6 min , i.e., during the observa-

tion time, three changes in the constant average velocity (sx, sy, sz)
′ occur on average. (In other

words, the average time between jumps is 2 min.) In other respects, model (17) retains the same
parameters.

It remains to specify the parameters of the observers. According to the aforesaid, there are
two observers with chosen coordinates. Hence, we have to set the parameters of the measurement
accuracy of yt. The used values can be represented as

cov(vFt , v
F
t ) = cov(vSt , v

S
t ) = diag{σϕ, σλ, σr},

σϕ = σλ =
π

180
rad (1◦), σr = 0.1 km (100 m).

(18)

The distributions of the errors vFt and vSt are Gaussian.

3.2. Numerical Experiments

Using computer simulations of N =10, 000 motion trajectories of the form (16) and (17) and ob-

servations y
(F)
t = (y

(F)
ϕt , y

(F)
λt
, y

(F)
rt )′ and y(S)t = (y

(S)
ϕt , y

(S)
λt
, y

(S)
rt )′, we computed the position estimates

X̂t = (X̂(t), Ŷ (t), Ẑ(t))′ by formulas (15) for the observation modes with time delays (T = 56) and
without them (T = 0) and the approximations of angular pseudomeasurements with the parameters
E{v2i } = σ2ϕ,λ and E{v2i } = 1/4σ2ϕ,λ. The estimation accuracy was determined by the root-mean-
square deviations σ

X̂
(t), σ

Ŷ
(t), and σ

Ẑ
(t) (indicated in meters in the figures below), computed by

averaging the estimation errors over the simulated pencil.

Figure 3 illustrates the experiment with a typical example of the AUV trajectory: the coordi-
nates X(t) and Y (t) with their estimates X̂(t) and Ŷ (t) (Fig. 3a) and the velocities Sx(t) and Sy(t)
(Fig. 3b). This example corresponds to model (17) and the approximation of angular pseudomea-
surements with E{v2i } = 1/4σ2ϕ,λ. The motion trajectories (16) differ by a more rectilinear form,
as there are no changes in direction and velocity magnitude; the dynamics in depth Z(t) are an
order of magnitude smoother. Note that despite the quite chaotic velocity values, the general di-
rection of A towards O is maintained both along the trajectory and when the velocity direction
changes. For the presented trajectory, the time delays varied from 35 to 32; among all the simulated
trajectories, from 55 to 25.

Note that in Fig. 3a, the beginning of the motion is accompanied by a group of inaccurate
estimates. It corresponds to the first 56 steps (the initial period) without EKF estimation by
the algorithm (15). At these steps, direct measurements were estimated: assuming the error-free

nature of the two available measurements y
(F)
t and y

(S)
t , the coordinates were computed from each

set of angles and range, and the final position was estimated as their average value. Further,
the root-mean-square deviations of this estimate are denoted by Σ

X̂
(t),Σ

Ŷ
(t), and Σ

Ẑ
(t). The

estimation accuracy is illustrated in Fig. 4. We pay the reader’s attention to the initial period where
σ
X̂
(t) = Σ

X̂
(t), σ

Ŷ
(t) = Σ

Ŷ
(t), and σ

Ẑ
(t) = Σ

Ẑ
(t). The EKF estimate was computed starting from

t = 57.

Other variants of the computations (the motion model (16), no time delays (T = 0), and the
approximation of angular pseudomeasurements with E{v2i } = σ2ϕ,λ) have some differences. For in-
stance, model (16) gives a more rectilinear trajectory, observations with T = 0 lead to no transition
period with the direct measurement filter, and the parameters of the pseudomeasurement noises
change the accuracy of the resulting estimates. These figures illustrate a qualitative picture of the
effectiveness of the linear pseudomeasurement filter in the most complex model. A formal compar-
ison in all models is given in the table below. To characterize the accuracy, the root-mean-square
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Fig. 3. A typical example of the AUV trajectory: (a) (1) the coordinates X(t) and Y (t) and (2) their

estimates X̂(t) and Ŷ (t); (b) the velocities (1) Sx(t) and (2) Sy(t).
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Fig. 4. Root-mean-square deviations: (1) σ
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̂Y (t), (3) σ̂Z(t), (4) Σ ̂X(t), (5) Σ
̂Y (t), and (6) Σ

̂Z(t).
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deviations of the estimation errors were averaged over the trajectories: for X̂(t) as an example, the
values σ̂

X̂
= 1

1000

∑1000
t=1 σX̂(t) and Σ̂

X̂
= 1

1000

∑1000
t=1 Σ

X̂
(t) were computed, etc. All deviations are

presented in meters.

Comparison of estimation quality

Model σ̂
̂X σ̂

̂Y σ̂
̂Z Σ̂

̂X Σ̂
̂Y Σ̂

̂Z

(16), T = 0, E{v2i } = σ2
ϕ,λ 24.01 22.33 27.04

192.54 198.35 266.86
(16), T = 0, E{v2i } = 1

4σ
2
ϕ,λ 21.96 22.07 22.69

(16), T = 56, E{v2i } = σ2
ϕ,λ 37.82 37.09 44.76

193.42 199.23 267.89
(16), T = 56, E{v2i } = 1

4σ
2
ϕ,λ 36.47 37.32 41.31

(17), T = 0, E{v2i } = σ2
ϕ,λ 24.78 23.34 26.55

193.04 198.56 267.44
(17), T = 0, E{v2i } = 1

4σ
2
ϕ,λ 22.73 22.72 24.55

(17), T = 56, E{v2i } = σ2
ϕ,λ 50.46 47.37 49.23

193.95 199.48 268.49
(17), T = 56, E{v2i } = 1

4σ
2
ϕ,λ 44.46 43.37 45.63

4. CONCLUSIONS

The experiment has confirmed the ability of the linear pseudomeasurements filter to estimate
the system state in the model with time delays. Compared to direct estimation, the results have
demonstrated the effectiveness of this filter and a twofold deterioration in estimation quality in
the case of time delays. Regarding the absolute error values of tens of meters, we emphasize
extreme estimation conditions: a large distance to the object and external disturbances of the
same magnitude as the object’s velocity. Moreover, from the standpoint of tracking, tens of meters
is a quite satisfactory order of errors for an object located farther than 10 km. More accurate
results are needed when solving the positioning task aboard the AUV. But in this case, onboard
measurements (e.g., velocity) can be utilized besides external observers. This significantly increases
the accuracy [25].

Furthermore, note the superiority of the filter with E{v2i } = 1
4σ

2
ϕ,λ (i.e., the model with softer

assumptions regarding the error in pseudomeasurements). This parameter gives the greatest ad-
vantage in the last (most complex) model; in the others, the difference is small. Here, we should
mention the results not included in the table, namely, the experiments with other values of E{v2i }.
According to the results in the table, the filter seems to be insensitive to this value, since the
filtering quality estimates change little for different E{v2i }. However, this is true only for the values
of E{v2i } in the range [14 , 1]σ

2
ϕ,λ. Additional calculations (not included in the table) have shown that

the filtering estimate deteriorates significantly for E{v2i } beyond this range (on the left or right).

Also, we underline that the results are in good agreement with computations performed for other
similar models. For example, in [7–10], the same motion model was used together with observations
of direction angle tangent, and the conditionally minimax nonlinear filtering method [15, 16] was
applied for estimation.

Finally, it is crucial that in the experiments presented here, only the constant average velocity
has been assumed to be known among the motion model parameters (including the model with
abrupt velocity changes). Due to this feature, in particular, the accuracy of the direct measurement
estimate does not deteriorate too much when passing from the model with T = 0 to the one with
T = 56. According to the previous results, this parameter can be identified, which is the foundation
of the approach.
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While listing the positive aspects, some negative ones cannot be ignored. Despite the demon-
strated effectiveness of the method of linear pseudomeasurements, the EKF has retained its worst
features, primarily the tendency to diverge. Such an effect has manifested itself for the nonlinear
motion model (due to the unknown parameter), when direct measurements are not used to set the
initial condition for the EKF estimate, when the velocity increases and trajectories could approach
coordinate planes. Therefore, although the method of linear pseudomeasurements is very good, it
should be tried not only in the EKF but also in other, more reliable and stable, filtering schemes.
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Abstract—A new type of input flow for queuing systems, a relative of a batch Poisson process,
is proposed. As shown below, this flow is a more adequate model of modern traffic than a batch
Poisson process when determining the dependence of the mean queue length in a receiving
buffer on the load of an outgoing data transmission channel (using H.264 video traffic as an
illustrative example). An analytical formula for the mean queue length in a G/D/1 queuing
system with such an input flow is derived; therefore, the model’s parameters can be estimated
to approximate the mean queue length of real traffic using the least squares method. The
feasibility of determining the model parameters using a neural network is also demonstrated.

Keywords : non-ordinary input flow, queuing system, telecommunication traffic, simulation mod-
eling, neural network
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1. INTRODUCTION

In the analysis and modeling of telecommunication network traffic, a common problem is to
determine the characteristics of the queue created by this traffic in the receiving buffer of a net-
work node. In this case, the coincidence of the statistical characteristics of the model traffic with
its real prototype is not as important as the coincidence of the statistical characteristics of the
corresponding queues.

For packet-switched data transmission networks, classical Poisson flow models are not adequate.
At the same time, the description of complex correlated flows using self-similar processes, which has
attracted much attention from the scientific community in the last two decades, allows reflecting
the complex correlation properties of the traffic itself, but is inconvenient for analyzing queue
characteristics.

A well-proven alternative to this approach is the class of flows governed by a Markov chain and
similar models. The development stages of these models were presented in the review [1]. From
versatile flows, through Neuts flows (N-flows) [2], they have evolved to Markov Arrival Processes
(MAPs) and their generalization known as Batch Markov Arrival Processes (BMAPs); for example,
see [3–5].

In this paper, the batch Poisson flow model, which can be considered a relative of BMAP, is
generalized to a batch quasi-Poisson flow in which the dependence of the mean queue length in the
receiving buffer on the server load, obtained in a simulation experiment, well approximates this
dependence for H.264 video traffic.
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To determine the parameters of the proposed model, we apply an extension of the Pollaczek–
Khinchin formula for a G/D/1 queuing system, obtained by the interval method [6]. For the quasi-
Poisson flow proposed, this formula is used to derive a semi-empirical formula for the dependence
of the mean queue length in the G/D/1 queuing system on the server load that agrees well with
the simulation results.

The feasibility of determining the model parameters using a neural network is also demonstrated.

2. PROBLEM STATEMENT AND BRIEF DESCRIPTION OF PREVIOUS RESULTS

Let us present the previous results that will be utilized below.

Consider a Poisson flow of events with a parameter λ in which each event represents the simulta-
neous arrival of several requests for service (request packets). The numbers of requests in different
packets are independent identically distributed discrete random variables. Such a flow is called a
batch (non-ordinary) Poisson flow [7]. It obviously possesses the properties of stationarity and no
aftereffect, but does not possess the property of ordinariness.

We denote by Bk the size of the kth request packet. Assume that its distribution is given:

Pr{Bk = n} = bn ∀k.
Consider a random interval of length τ on the time axis. It is required to determine the moments

of the random variable m(τ) that represents the number of requests of the batch Poisson flow arriv-
ing in such an interval. To solve this problem, we find the generating function of the random vari-
able m(τ). If the generating function of the number of requests in a packet is GB(z) =

∑∞
n=0 bnz

n,
then for the generating function Gm(τ)(z) we have

Gm(τ)(z) =
∞∑
k=0

e−λτ
(λτ)k

k!
(GB(z))

k = eλτ(GB(z)−1).

(For details, see [8].) Therefore, the mean and variance of m(τ) are given by

M(m(τ)) = λτB, D(m(τ)) = λτB2.

In the case of a constant size B of all packets (it will be needed below), we obtain

M(m(τ)) = λτB, D(m(τ)) = λτB2.

Let this batch Poisson flow be the input of a G/D/1 queuing system with a service time τS of
one request. In such a system, the moments of the queue length (in principle, of any order) can
be found by the interval method. (The formulas for the first and second moments were derived
in [8]; a generalization to the case where the service time of one request in the queuing system is a
discrete random variable with a finite number of values was presented in [9].) Here, we need only
the expression for the mean under a deterministic service time of one request, which is provided by
the generalized Pollaczek–Khinchin formula

Q(ρ) =
D(m(τS)) + 2R (Qi,mi+1(τS))

2(1− ρ)
− ρ

2
(1)

with the following notation: ρ is the server load; D(m(τS)) is the variance of the number of requests
arriving during the service time of one request; finally, R (Qi,mi+1(τS)) is the correlation moment
between the queue length at the time of completing the service of a certain request and the number
of requests arriving during the next service interval (all values are taken for a given ρ).

In the general case, this formula is difficult to use due to the need to compute R (Qi,mi+1(τS)),
but for some important special cases it is possible. In particular, for the batch Poisson flow
R (Qi,mi+1(τS)) = 0, due to no aftereffect and the relations

M(m(τS)) = λτSB = ρ, D(m(τS)) = λτSB
2 = ρB
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for packets of constant size, we obtain

Q(ρ) =
ρB

2(1 − ρ)
− ρ

2
=
ρB − ρ(1− ρ)

2(1− ρ)
. (2)

It is easy to see that for B = 1, the classical Pollaczek–Khinchin formula for an M/D/1 queuing
system arises here.

In [10], the batch Poisson flow was used to approximate the first two statistical moments of the
queue length of H.264 video traffic by the least squares method and showed better results than the
ordinary Poisson flow. However, this approximation (obtained by the least squares method relative
to the packet size as a model parameter) still cannot be considered sufficiently good. Therefore, in
this paper, we present a new flow model that will be used for the same purpose.

Consider the following request flow: requests arrive in packets, and the numbers of requests in
different packets are independent identically distributed discrete random variables Bk. The intervals
between the arrivals of sequential packets are equal to the sum of a certain constant value T and
an independent exponentially distributed random variable with a parameter λ. We will call such a
flow a quasi-Poisson flow with identical pauses of duration T (for brevity, simply a quasi-Poisson
flow).

The problem is to use this flow as the input of a G/D/1 queuing system to approximate the
mean queue length created by real traffic (as mentioned above, H.264 video traffic).

Since we are interested in the dependence of the mean queue length on the server load, and the
time scale is not important, the quasi-Poisson flow will be characterized by two parameters: B (the
constant packet size) and α = Tλ (the ratio of the pause between arrivals, i.e., the constant part of
the inter-arrival interval, to the mean length of the exponentially distributed part of this interval).
These parameters are chosen by minimizing, under the same server load, the difference between
the mean queue lengths of the real traffic and the quasi-Poisson flow.

An exact solution of this problem has not been obtained; but in the next section, we present an
approximate formula for the mean queue length of such a flow.

3. APPROXIMATION FOR THE MEAN QUEUE LENGTH
OF THE QUASI-POISSON FLOW

First of all, note the following empirically established property of a quasi-Poisson flow: for any
finite α and constant packet size B, the sample variance of the number of requests arriving in a
random interval τ is close to the sample variance of a batch Poisson flow with the same B provided
that they create the same server load ρ in a G/D/1 queuing system.

This property was established using a software simulation model of the flows, which was also
engaged in other simulation experiments of the work. The model generated a sequence of arrival
times for request packets according to the definition of the corresponding flow. In other experiments
(see below), that flow of request packets was the input for the simulation model of a G/D/1 queuing
system. In the former experiment, for an available flow, it was necessary to determine a constant
service time of one request such that the server load would have a given value. (Values from the
range [0.1, 0.9], most interesting in practice, were selected.)

In the experiments where the above closeness of sample variances for batch Poisson and quasi-
Poisson flows was observed, τ = τS was taken. In other words, the interval to determine the number
of arriving requests was set equal to the service time of one request in the G/D/1 queuing system
for a given ρ. These intervals densely covered the entire time axis, and the sample variance D̂(ρ)
was computed from the obtained sample of the number of requests arriving in them using the
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formula

D̂(ρ) =
1

N

N∑
n=1

m̂2
n(τS)−

(
1

N

N∑
n=1

m̂n(τS)

)2

,

where the sample element m̂n(τS), n = 1, . . . , N, is the number of requests arriving in the nth in-
terval τS during the simulation run.

As an example, Table provides the sample variances of the number of requests arriving during
the service time of one request for batch Poisson and batch quasi-Poisson flows with different α,
obtained through simulation modeling.

The sample variances of arrivals for various batch flows. In all cases, B = 20

Load 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Poisson 2.00 4.00 6.00 8.00 10.03 12.05 14.05 16.06 17.96

Quasi-Poisson, α = 0.5 1.99 3.97 5.91 7.84 9.75 11.64 13.51 15.36 17.19

Quasi-Poisson, α = 1 1.99 3.96 5.91 7.84 9.74 11.63 13.50 15.35 17.18

Quasi-Poisson, α = 2 1.99 3.96 5.91 7.84 9.749 11.64 13.51 15.36 17.19

The observed closeness can be explained by the following (non-rigorous) reasoning: by the
definition of the quasi-Poisson flow, the interval between sequential packet arrivals always exceeds
the pause T , and if T is subtracted from each of these intervals, the remainders will be independent
exponentially distributed variables. That is, the flow with these remainders as the inter-arrival
intervals will be a batch Poisson flow. Let us call it the embedded flow. Thus, the original quasi-
Poisson flow is obtained from the embedded one by inserting a pause (an interval of constant
length T during which no requests arrive) after the arrival of each packet.

On any sufficiently large time interval, the embedded Poisson flow will occupy only the
(1/(1 + α))th part of this interval on average, and the rest will be occupied by pauses. There-
fore, for the embedded flow to create the same server load over the entire interval as the batch
Poisson flow with the same packet size, the rate of packet arrivals in the embedded flow must be
proportionally higher.

For a Poisson flow, increasing the rate also means increasing the variance of the number of
arriving packets over a certain time interval by the same factor. As the experiment showed, alter-
nating the realization segments of the embedded flow with pause intervals introduces no significant
changes in the sample variance.

Based on the closeness of the values of these sample variances, we will consider the theoretical
variances of the number of requests arriving during the service interval of one request in the G/D/1
queuing system to be equal for Poisson and quasi-Poisson flows creating the same server load.

Next, let us estimate the mean queue length from the quasi-Poisson flow in the G/D/1 queuing
system under low server loads. What is meant by low load? Each packet in the quasi-Poisson flow
arrives before the start of a pause interval of length T, and the server (if free) begins to serve it
in this interval. A load ρ is low if, under it, the service of the packet completely ends within this
interval:

B τS � T, (3)

where τS denotes the service time of one request from the packet. The boundary of the interval
for low ρ, denoted by ρ0, can be calculated as follows: by the definition of a quasi-Poisson flow,
B requests arrive on average during the time T + 1/λ (i.e., one request per (T + 1/λ)/B units of
time). Under a server load ρ, the service time of one request should accordingly be

τS = ρ
T + 1/λ

B
. (4)
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Fig. 1. Change in the number of arrived packet requests during a pause in the system with high load.

In view of (3), we obtain

ρ0 =
T

T + 1/λ
=

α

α+ 1
. (5)

Clearly, under low loads, the situation is very similar to the case of a batch deterministic flow
(where packets always arrive at equal intervals). Therefore, the generalized Pollaczek–Khinchin
formula can be applied to this situation, as to the deterministic flow. (This is another special case
where it can be easily done.) Here, we utilize the following consideration:

R (Qi,mi+1(τS)) =M (Qi mi+1(τS))−M (Qi) M(mi+1(τS)),

but Qi is nonzero only during the pause interval, in which mi+1(τ) = 0, i.e.,

R (Qi,mi+1(τS)) = −M (Qi) M(mi+1(τS)) = − Q(ρ) ρ.

Substituting this relation into (1) yields

Q(ρ) =
D(m(τ))− 2Q(ρ)ρ

2(1− ρ)
− ρ

2

and, after straightforward transformations,

Q(ρ) =
ρB − ρ(1− ρ)

2
. (6)

Note that for large B, the dependence of Q on ρ is close to linear.

Now consider an approximate estimate of the queue length under high loads (ρ > ρ0).

In this case, BτS > T , and at the start of the exponentially distributed part of the inter-arrival
interval, the number of packet requests still remaining in the system can be estimated as

B∗(ρ) =
⌈
BτS − T

τ

⌉
=

⌈
B − T

τS

⌉
=

⌈
B

(
1− ρ0

ρ

)⌉
, (7)

where formulas (4) and (5) have been used and the brackets �. . .� stand for the ceiling of an
appropriate number (the smallest integer greater than or equal to this number). For illustration,
Fig. 1 shows the dependence of the number of packet requests remaining in the system during the
corresponding pause at the start of which this packet has arrived. For a request being served, its
currently uncompleted part is taken into account.

In other words, at the end of the pause, the size of the unserved packet will be less than the
initial one and will depend on ρ. By removing all pauses from the quasi-Poisson flow (“gluing”
the exponentially distributed intervals), we get a batch Poisson flow with the packet size B∗. For
estimation, assume that the queue formed by such a Poisson flow will be added to the queue
from (6). This additional queue can be found using formula (2), but with ρ replaced by

ρ∗ =
ρ− ρ0
1− ρ0

. (8)

Indeed, this special batch Poisson flow appears only if ρ > ρ0; for ρ = 1, the equality ρ∗ = 1 must
hold for the queue to go to infinity.
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Fig. 2. Comparison of the dependence of the mean queue length on the server load: the simulation
experiment vs. formula (9). For all flows, B = 20.
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Fig. 3. Comparison of the dependence of the mean queue length on the server load: the simulation
experiment vs. formula (9). For all flows, α = 1.

In the queue expression, it is also necessary to correct the term related to the segment of the
pause T, i.e., the one similar to the expression (6). Now the “tail” of the packet of size B is served
beyond the interval T and is accounted for in the expression for the Poisson part of the queue.
Therefore, it must be excluded from (6). Since the mean queue length is proportional to the area
of the figure in Fig. 1, the correction factor can be found as the ratio of the areas of the trapezoid
with bases B and B∗ and the triangle with leg B :

S∗

S
=
τ(B2 − (B∗)2)

τB2
= 1− (B∗)2

B2
≈ 1−

(
1− ρ0

ρ

)2

=

(
2− ρ0

ρ

)
ρ0
ρ
.

Thus, we arrive at the following formula for the queue length:

Q(ρ) =

⎧⎪⎪⎨⎪⎪⎩
ρB − ρ(1− ρ)

2
, ρ � ρ0,

ρ0
ρ

(
2− ρ0

ρ

)(
ρB − ρ(1− ρ)

2

)
+
ρ∗B∗ − ρ∗(1− ρ∗)

2(1− ρ∗)
, ρ > ρ0,

(9)

where B∗ and ρ∗ are given by (7) and (8), respectively.

Finally, we compare the mean queue length calculated by formula (9) with the results of a
simulation experiment on the passage of a quasi-Poisson flow through the G/D/1 queuing system,
see Figs. 2 and 3. Here, examples are given for different values of the quasi-Poisson flow parameters:
the lines correspond to the simulation results and various markers to the estimates (9). The
approximation turns out to be good.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



BATCH QUASI-POISSON MODELS 975

4. APPROXIMATION OF A REAL VIDEO TRAFFIC QUEUE

For experiments, we take traces of H.264 video traffic under different values of the video buffer
size used for compressing video frames. In this case, a trace is a sequence of times when information
packets exit the video codec, and each such time is considered to be the arrival of a service request
in a G/D/1 queuing system. The service time of one request is taken so that the server load ρ
under this input flow equals a given value. During the passage of this flow through the queuing
system, the empirical time-averaged queue length for a given ρ is calculated.

For each trace of the real traffic, the mean queue lengths were calculated thereby for several
values of the server load ρ, denoted by Q̂(ρi), i = 1, . . . , N. They were used to estimate, by the
least squares method, the parameters of the quasi-Poisson flow for which the dependence of the
mean queue length in the G/D/1 queuing system on ρ approximates the dependence of the mean
queue length of the real traffic on ρ found in the above simulation experiment.

The estimates α̂ and B̂ of the parameters α and B of the approximating quasi-Poisson flow were
found as

α̂, B̂ = argmin
α,B

N∑
i=1

(
Q̂(ρi)−Q(ρi)

)2
,

where Q(ρi) was calculated by formula (9).
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Fig. 4. Approximation of the dependence of the mean queue length on the server load for H.264 video
traffic. Video buffer size is 1000 bytes.
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Fig. 5. Approximation of the dependence of the mean queue length on the server load for H.264 video
traffic. Video buffer size is 5000 bytes.
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Fig. 6. Approximation of the dependence of the queue variance on the server load for H.264 video
traffic. Video buffer size is 1000 bytes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Server load

16000

14000

12000

10000

8000

6000

4000

2000

0

Q
u
eu

e 
v
ar

ia
n
ce

Batch Poisson, B=32
Quasi-Poisson, �=1.39 and B=125
H.264, video buffer of 5000 bytes

Fig. 7. Approximation of the dependence of the queue variance on the server load for H.264 video
traffic. Video buffer size is 5000 bytes.

Figures 4 and 5 show the results, including a similar approximation by a batch Poisson flow
for comparison; its packet size was also found by the least squares method. (The real traffic is
indicated by the solid line, its quasi-Poisson flow approximation by the dashed line with markers,
and its Poisson flow approximation by the dotted line.) Obviously, the quasi-Poisson flow provides
a significantly more accurate approximation of the mean queue length of this real traffic.

For a complete picture, it is interesting to see the quality of approximation for the variances
of the queue lengths of the real traffic. They are demonstrated in Figs. 6 and 7. Although the
difference between the real traffic and the approximating model traffic is greater than for the mean
queue length, the quasi-Poisson flow approximation is still good and much better than the batch
Poisson flow counterpart.

Note that from a practical viewpoint, the closeness of the first two moments of the distributions
of two random variables allows speaking of a considerable closeness of their distributions as well.
Therefore, the estimates presented above have practical value.

5. ESTIMATION OF THE PARAMETERS OF THE APPROXIMATING MODEL
USING A NEURAL NETWORK

Above, we have derived a good approximating formula for the mean queue length. Here, let
us present another way to estimate the traffic model parameters, suitable for the case of no ap-
proximating formula. It consists in training a neural network to determine the parameters of the
quasi-Poisson flow.
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Fig. 8. The neural network architecture (the standard graphical representation in the Keras package
of the Python language).
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Fig. 9. Approximation of the dependence of the mean queue length on the server load for H.264 video
traffic when determining the parameters using a neural network. Video buffer size is 1000 bytes.
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Fig. 10. Approximation of the dependence of the mean queue length on the server load for H.264 video
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The input data for the neural network are a set of mean queue lengths for given server loads. In
this work, nine values corresponding to loads from 0.1 to 0.9 with a step of 0.1 were used. There
are two output values, namely, the values of the parameters α and B. After supervised training
of the neural network, the set of mean queue lengths obtained during the passage of the real
traffic through the queuing system under the same loads is supplied as the input parameters for
recognition. The output of the neural network is an estimate of the parameters of the quasi-Poisson
flow for approximating the real traffic.

Figure 8 shows the architecture of the neural network used. Two neurons, each representing an
output layer to estimate one parameter of the quasi-Poisson flow, have no nonlinear element; the
others have ReLU. All layers are fully connected.

The training set consisted of 2000 examples, but with a particular sample for each real trace;
training examples were generated with parameters from a small range containing the desired es-
timate. (The graph of the mean queue length of the real traffic lay between the graphs for the
boundary values of the parameters of the examples from the training set.)

Figures 9 and 10 demonstrate the results of the experiment: the parameters predicted by the
neural network were used for simulation, and the graphs show the mean queue length for both the
real and simulated traffic (the solid line and the dashed line with markers, respectively). Clearly,
the estimate is also quite good.

6. CONCLUSIONS

This paper has presented a quasi-Poisson flow with identical pauses as a model for approximating
the mean queue length of real traffic using the H.264 video traffic as an example.

The analytical formula for estimating the mean queue length, derived in the paper, provides a
good approximation to the results of simulation modeling.

The parameters of the flow for approximating the mean queue length of real traffic, obtained
using this formula, provide an approximation that is significantly more accurate than the batch
Poisson flow approximation.

The feasibility of determining the flow parameters for solving the approximation problem using
a neural network has been demonstrated, also giving good results.
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NOTES, CHRONICLES, INFORMATION

Dykhta Vladimir Aleksandrovich
(1949–2025)

On April 2, 2025, most regrettably, Vladimir Alexandrovich Dykhta, a remarkable Russian and
Soviet mathematician, an Honored Scientist of the Russian Federation (1997), a remarkable per-
son, Doctor of Physical and Mathematical Sciences, Professor, passed away. He worked until the
end of his life in the positions of Chief Researcher at the Matrosov Institute for System Dynam-
ics and Control Theory, Siberian Branch of Russian Academy of Sciences (ISDCT SB RAS)1 and
Professor of the Department of Computational Mathematics and Optimization at the Institute of
Mathematics and Information Technology, Irkutsk State University (IMIT ISU)2. On the websites
of ISDCT SB RAS, ISU, and IMIT ISU, the corresponding obituaries are posted3,4,5. Vladimir
Alexandrovich has made an outstanding contribution to the theory of optimal control and its appli-
cations. The given below list of the publications [1–92] does not pretend to be complete. In these
publications, V.A. Dykhta is the single author or a co-author. The articles were published in the
journals “Automation and Remote Control” (“Avtomatika i Telemekhanika”), “Doklady Mathe-
matics” (“Doklady Akademii Nauk”), “Engineering Cybernetics” (“Izvestija Akademii Nauk SSSR.
Tehnicheskaja Kibernetika”), “Journal of Computer and System Sciences International” (“Izvestija
RAN. Teorija i Sistemy Upravlenija”), “Mathematical Notes of the Academy of Sciences of the
USSR” (“Matematicheskie Zametki”), “Differentsial’nye Uravneniya”, “Proceedings of the Steklov
Institute of Mathematics” (“Trudy Matematicheskogo Instituta imeni V.A. Steklova”), “Compu-

1 http://idstu.irk.ru/en
2 https://math.isu.ru/
3 http://idstu.irk.ru/en/inews/ushel-iz-zhizni-zasluzhennyy-deyatel-nauki-rf-vladimir-dyhta (the photo is from this
web page).

4 https://isu.ru/ru/news/2025/details/news-id2025necrologDYCHTA
5 https://math.isu.ru/export/sites/math/ru/media/announces/2025/.galleries/docs/nekrolog.pdf
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tational Mathematics and Mathematical Physics” (“Zhurnal Vychislitel’noj Matematiki i Matem-
aticheskoj Fiziki”), “Soviet Mathematics (Izvestiya VUZ. Matematika)” and “Russian Mathemat-
ics” (“Izvestija Vysshih Uchebnyh Zavedenij. Matematika”), “Journal of Mathematical Sciences”
(“Itogi Nauki i Tehniki. Sovremennaja Matematika i ee Prilozhenija. Tematicheskie Obzory”),
“Proceedings of Krasovskii Institute of Mathematics and Mechanics UB RAS” (“Trudy Instituta
Matematiki i Mekhaniki UrO RAN”), “Siberian Mathematical Journal” (“Sibirskij Matematich-
eskij Zhurnal”), “Bulletin of Irkutsk State University. Series Mathematics” (“Izvestija Irkutskogo
Gosudarstvennogo Universiteta. Serija Matematika”), “Buryat State University Bulletin. Math-
ematics, Informatics” (“Vestnik Burjatskogo Gosudarstvennogo Universiteta. Matematika, Infor-
matika”), “Journal of Optimization Theory and Applications”, “European Journal of Control”, etc.
V.A. Dykhta is a co-author of the monographs’ series [5–15]. In particular, [14] is the second edition
of the monograph “Optimal Impulse Control with Applications” by V.A. Dykhta, O.N. Samsonyuk.

V.A. Dykhta was born on October 1, 1949 in Irkutsk. He graduated from the Faculty of Math-
ematics, Irkutsk University in 1972 and worked at his Alma Mater for decades in various po-
sitions: assistant, senior lecturer, associate professor, professor, and the head of a department.
Under the supervision of Vladimir Iosifovich Gurman6, a well-known Russian and Soviet scientist
and specialist in the theory of optimal control and its applications, V.A. Dykhta prepared the
candidate’s dissertation “Dostatochnye uslovija optimal’nosti osobyh rezhimov” (“Sufficient Con-
ditions for Optimality of Singular Regimes”) in Irkutsk and defended this dissertation in 1979 in
Sverdlovsk [1, 2]. In 1992, the doctoral dissertation “Rasshirenie zadach optimal’nogo upravlenija
i variacionnyj princip maksimuma” (“Extension of Optimal Control Problems and the Variational
Maximum Principle”)7 prepared by Vladimir Aleksandrovich during his doctoral studies at the
Irkutsk Computing Center, Siberian Branch of the USSR Academy of Sciences was defended by
Vladimir Aleksandrovich at the Institute of Mathematics, Siberian Branch of the Russian Academy
of Sciences (Novosibirsk) [3, 4]. In 1992–2007, Vladimir Alexandrovich was the head of the De-
partment of Higher Mathematics at the Irkutsk State Academy of Economics (now Baikal State
University). Since 2008, the main place of the work for Vladimir Alexandrovich was ISDCT SB
RAS, where he headed the Laboratory of Optimal Control, a department and was a Chief Re-
searcher. V.A. Dykhta was a member of some dissertation councils, the organizing committees’
head of several international school-seminars “Nonlinear Analysis and Extremal Problems” (NLA),
including, for example, the first school-seminar (2008)8. We also note the work of V.A. Dykhta as
a supervisor and a lecturer, who has prepared 11 candidates of sciences (for example, N.V. Derenko
(1994), O.N. Samsonyuk (1999), N.V. Antipina (2003), and S.P. Sorokin (2012)) and 2 doctors
of sciences, has published a number of textbooks, including [16–21], has given a large number of
university courses, mainly in Irkutsk, and also as a visiting professor in Ulan-Ude (in the Buryat
State University and East Siberian State Technological University).

An important component of the scientific heritage of V.A. Dykhta is a development of the
fundamental results of V.I. Gurman and V.F. Krotov9. One of the key characteristics of the scientific
work of Vladimir Aleksandrovich is his holistic vision of the subject of the various necessary and
sufficient conditions for optimality, taking into account subtle theoretical aspects. V.A. Dykhta’s

6 About V.I. Gurman (1934–2016), there are the articles [80, 81], [90th Anniversary of the Birth Vladimir Iosifovich
Gurman // Autom. Remote Control, 2024, pp. 1128–1130.]

7 The scientific advisor was Doctor of Physical and Mathematical Sciences, Professor Aleksandr Aleksandrovich
Tolstonogov. He is an Honored Scientist of the Russian Federation since 2002 and a Corresponding Member of the
Russian Academy of Sciences since 2006 (http://idstu.irk.ru/en/aatol). At ISDCT SB RAS, he is an Advisor to
the Director, head of a department, and a Chief Researcher.

8 http://idstu.irk.ru/en/node/93/95
9 About V.F. Krotov (1932–2015), a well-known Russian and Soviet scientist, specialist in the theory of optimal
control theory and its applications, there are the articles [Khrustalev M.M., AiT, 2022, No. 5, pp. 164–168 (in
Russian)], [“Krotov Vadim Fedorovich”, https://www.ipu.ru/en/node/71453 ].
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scientific heritage is impressive. The works of V.A. Dykhta, including the works with the co-authors,
cover:

• various classes of optimal control problems (with concentrated parameters, just continuous, —
including degenerate (in many publications, beginning with [22, 23]), non-smooth [41, 43, 86],
— discrete [85, 90], discrete-continuous [66], as well as with distributed parameters [12, 28,
30, 54]);

• problems’ transformations (including the nonlinear Goh transformation developed by Vladimir
Aleksandrovich [14, 25]);

• various necessary and sufficient conditions for optimality (including the developed by Vladimir
Aleksandrovich variational maximum principle [3, 33, 35, 49], positional minimum princi-
ple [82, 83, 88–90, 92] which are important, in particular, from the point of view of the Pontrya-
gin maximum principle’s strengthening in regular problems, studies of degenerate problems);

• methods for solving optimal control problems (for example, [39, 44] are for a constructing
the methods for solving optimal impulse control problems based on the variational maximum
principle);

• numerous analytical examples, including the investigation examples (in [14, 42, 46], etc.)
for the optimal control problems on modeling a robotic manipulator, quantum systems,
(ecological-)economic processes, etc., with the application and discussion of the conditions
for optimality, problems’ transformations, taking into account the issues of the constructions’
mathematical correctness;

• researches in numerical experiments (in this regard, for example, [10, § 4.1, 4.2]);
• modeling of ecological-economic systems — this certain point notes the co-authorship of
V.A. Dykhta in the collective monographs [5–9].

V.A. Dykhta did an active scientific creativity until his recent passing. We note the work [91],
which was presented in December 2024 at the 40th conference ‘Lyapunov Readings’ and addresses
positional strengthenings of the V.F. Krotov’s method, and the article [92] developing the positional
minimum principle. The collective computer program for solving optimal control problems of
a certain type using a gradient method has been registered [93].

For the numerical solution of various optimal control problems — including degenerate problems
and those with terminal constraints — the creation of new algorithms and computer programs
based on the fundamental results of V.A. Dykhta and from the co-authored works, including, for
example, the positional minimum principle, seems promising. For example, it is of interest to
take into account the results on impulse control which were obtained for some quantum model
optimization problems and presented in [14, § 3.7, 6.8], [42, 46] (V.A. Dykhta, et al.).

One of the goals of this article is to draw its readers’ attention to both the scientific heritage
of V.A. Dykhta and the scientific heritage of V.I. Gurman, V.F. Krotov, etc., and more broadly,
to the development of the theory of optimal control. Young readers unfamiliar with the works
of V.A. Dykhta are recommended to start with the video recordings of the talks of Vladimir
Alexandrovich [94, 95].

This article was written taking into account the discussions with colleagues about its preliminary
versions.
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