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Abstract—The possibility of adaptation and effectiveness of a linear pseudomeasurement filter
in a stochastic observation system model with random time delays between arriving observations
and the factual state of a moving object are investigated. The method of pseudomeasurements is
modified to combine the results of observations performed by several measuring devices located
at different distances from the object and having different time delays. The filter is realized in a
model that considers measurements of direction angles and range. Experimental computations
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that uses two stationary acoustic beacons for positioning.
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1. INTRODUCTION

State filtering methods in stochastic dynamic systems find application in various fields, including
the control of autonomous underwater vehicles (AUVs) [1]. Along with unmanned aerial vehicles [2]
and autonomous cars [3], this field is currently a topical source of research problems. The aquatic
environment itself has some features unnecessary to be considered in surface motion problems. For
instance, these are such factors as variable water temperature, salinity, and pressure [4]; flows [5]
are quite interesting as well. In addition to affecting the moving object, water creates significant
challenges for measuring devices. Let us consider only external observers, without discussing the
onboard accelerometers and gyroscopes of AUVs. Then all available measuring devices are based
on general physical laws and use acoustic signals, i.e., belong to acoustic sensors or sonars [6].
A fundamental feature of such devices is the significant effect of random delays in arriving data
about the observed AUV state on the measurement accuracy. This effect also occurs in measuring
devices using electromagnetic radiation. For instance, a radar observing an object at a distance
of 1 km will receive its coordinates with a delay of about 10−7 s. Such values can be neglected.
For a sonar with the sound velocity in water being 1500 m/s, the delay in determining the object’s
coordinates at a distance of 1 km will reach about 0.7 s; at a distance of 10 km, 7 (!) s. Even if the
object is not moving fast, such values cannot be neglected. This effect must be taken into account
in models oriented to high-velocity AUVs.

A stochastic dynamic observation system model incorporating the delay factor of the acoustic
signal was proposed in [7, 8] and extended to the identification of unknown motion model parameters
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in [9, 10]. The relations for optimal Bayesian filtering [11] were derived for state and parameter
estimation.

As in most applications, it is impractical to use universal filtering methods, such as the extended
Kalman filter (EKF) [12], particle filters [13], and various types of sigma-point filters [14], or con-
ditionally optimal and minimax Pugachev–Pankov filters [15, 16] of standard structure, or (even
more so) optimal Bayesian filters: either the realization turns out to be very costly in computa-
tional sense or suboptimal algorithms exhibit a tendency to diverge. An exception could be the
method of linear pseudomeasurements, which occupies an intermediate position between universal
methods applicable to any model and special ones (i.e., those intended exclusively for a particular
model). Although the idea of this method is quite universal, it should be applied to particular
measurements, linearizing them. In underwater navigation problems, various sensors with indirect
information about the object’s position are used. Among them, note direction angle and range
sensors [17].

The idea of pseudomeasurements itself has been known for a long time and seems to be a logical
supplement or development of the EKF as the most popular suboptimal filtering method [12]. The
EKF reproduces the structure of the linear Kalman filter [18], which is optimal for state filtering
in a linear Gaussian observation system and also possesses a series of outstanding properties in
various problems of robust and adaptive estimation and control. Formal adherence to the linear
filter structure implies linearization. In the case of the EKF, this is linearization around the
state prediction to obtain heuristic estimates of the state prediction covariance and the filtering
estimate. The linearization of observations improved through some functional transformations,
making combinations of observations more linear, was apparently first demonstrated for direction
angle measurements in [19]. A modern practical setting was presented in [20]. By updating the
model, a new quality was attributed to the pseudomeasurement filter in a series of research works
initiated in [21].

This paper aims to adapt the EKF based on linear pseudomeasurements for a model with time
delays. To this end, Section 2 proposes a more universal pseudomeasurement model, developing
the classical method [19, 20]. In Section 3, this model is used to derive the filtering equations based
on the EKF for the stochastic observation system model with time delays. Section 4 is devoted
to a computational experiment of tracking the motion of an AUV, observed by two stationary
acoustic beacons, towards a given target. In the Conclusions, we summarize the results, including
possible shortcomings of the EKF-based method of linear pseudomeasurements and some ways to
eliminate them.

2. FILTERING BY THE METHOD OF LINEAR PSEUDOMEASUREMENTS

2.1. System Model and Definition of Pseudomeasurements

In this paper, the following notation is adopted: E{X} means the mathematical expectation of
a random vector X; cov(X,Y ) is the covariance of X and Y ; X ′ stands for the transpose of X.

By assumption, the motion of an autonomous AUV (denoted by A) is described in a refer-
ence frame Oxyz where the plane Oxy coincides with the sea surface and the axis Oz is directed
downward and corresponds to depth (Fig. 1).

Let the coordinates of A at some fixed (e.g., initial) time instant form the vector (XA, YA, ZA)′

and, when considered as time-varying functions, the vector (X(t), Y (t), Z(t))′.
First, suppose that the motion is observed by one measuring complex (M) with coordinates

(XM, YM, ZM). This could be a passive acoustic device for estimating the direction of move-
ment [22], allowing measurement aboard the AUV, or an active hydroacoustic beacon [23], forming
measurements for an external observer.
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Fig. 1. Possible relative positions of AUVs and the observer.

The type of measuring device depends on the navigation task being solved. If the AUV interacts
with the measuring device (the cooperative scenario), then positioning is performed aboard the
AUV. In the case of opposing interests, an external device tracks a target.

Regardless of the task, it is necessary to measure the direction angle ϕ (azimuth or bearing) in
the plane Oxy, the elevation angle λ (the inclination of the acoustic ray relative to the straight
line Oz), and the range r (the distance between A and M). Figure 1 illustrates possible relative
positions of AUVs and the observer and the angle measurement rules.

The proposed approach to form linear pseudomeasurements from the measurements of ϕ, λ, and
r combines the idea of a classical filter [19] and the model with tangent observations [20].

First, consider the measurement yϕ = ϕ+ vϕ of the bearing ϕ, where the error vϕ has a dis-
tribution with zero mean (E{vϕ} = 0) and a standard deviation σϕ (cov(vϕ, vϕ) = σ2ϕ). Assuming
that sonar errors in angle measurements are about 1–2◦, we represent measurements in radians;
then the value σϕ can be set to σϕ = π

180 ≈ 0.0175 and, consequently, vϕ � 1.

For the measurement yϕ, we write the sine and cosine and approximate them with the corre-
sponding linear parts of the Taylor expansion for small vϕ :

ysinϕ = sin(yϕ) = sin(ϕ+ vϕ) ≈ sin(ϕ) + cos(ϕ)vϕ,

ycosϕ = cos(yϕ) = cos(ϕ+ vϕ) ≈ cos(ϕ) − sin(ϕ)vϕ.

Assume further that for the distribution of vϕ, only the moments E{vϕ} = 0 and E{v2ϕ} = σ2ϕ
are given, and the variables ϕ and vϕ are independent. In this case, we have E{(cos(ϕ)vϕ)2}�σ2ϕ
and E{(sin(ϕ)vϕ)2}�σ2ϕ. Moreover, E{cos(ϕ)vϕ sin(ϕ)vϕ} = 1

2σ
2
ϕE{sin(2ϕ)} = 0 if ϕ is distributed

symmetrically about zero. In view of the physical meaning of ϕ, the latter assumption seems quite
realistic. Recall the well-known minimax property of the Gaussian distribution, which maximizes
the variance of a random variable in the class of distributions with known mean and bounded
variance [24]. Therefore, we arrive at an approximation of the form

ysinϕ ≈ sin(ϕ) + v1, ycosϕ ≈ cos(ϕ) + v2,

where v1 and v2 are independent Gaussian random variables with E{v1} = E{v2} = 0 and E{v21} =
E{v22} = σ2ϕ. Here, the measurement error (v1, v2)

′ is interpreted as the worst-case one.
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Such an interpretation is expected to be excessively rough, which is characteristic of mini-
max estimates. Thus, it makes sense to focus on another approximation of E{(cos(ϕ)vϕ)2} and
E{(sin(ϕ)vϕ)2}. These moments cannot be computed without knowing the distribution of ϕ. But
it can be supposed that ϕ takes any value with equal probability, i.e., has a “nearly” uniform
distribution. This reflects the assumption that the target can appear anywhere; then

E{(cos(ϕ)vϕ)2} = E{(sin(ϕ)vϕ)2} ≈ 1

4
σ2ϕ.

Which approximation is better, E{v21,2} = σ2ϕ or E{v21,2} = 1
4σ

2
ϕ? It is possible to test them experi-

mentally.

Continuing the considerations, we obtain

sin(ϕ) ≈ ysinϕ − v1, cos(ϕ) ≈ ycosϕ − v2,

tan(ϕ) =
YA − YM
XA −XM

≈ ysinϕ − v1

ycosϕ − v2
,

(YA − YM)ycosϕ − (XA −XM)ysinϕ ≈ (YA − YM)v2 − (XA −XM)v1.

By replacing the exact coordinates (XA, YA) in the last expression with their estimates, one de-
rives the pseudomeasurement residual figuring in the filtering equations. The pseudomeasurements
themselves can be written as

−YMycosϕ +XMysinϕ ≈ (ysinϕ ,−ycosϕ )

(
XA
YA

)
+ (YA − YM)v2 − (XA −XM)v1,

which explains the meaning of the above transformations: the pseudomeasurements
−YMycosϕ +XMysinϕ approximate the measurements of a linear combination of the estimated co-
ordinates (XA, YA) under an additive noise with known covariance.

Thus, for the measurement yϕ = ϕ+ vϕ of the bearing ϕ, the pseudomeasurement Yϕ is formed
as follows:

Yϕ = −YMycosϕ +XMysinϕ , ysinϕ = sin(yϕ), ycosϕ = cos(yϕ); (1)

the filtering algorithm uses the observation model

Yϕ = (ysinϕ ,−ycosϕ )

(
XA
YA

)
+ (XM −XA, YA − YM)

(
v1
v2

)
. (2)

Next, consider the measurement yλ = λ+ vλ of the elevation angle λ. Similarly to the bearing,
we approximate the sine and cosine based on the same assumptions about the measurement error vλ:

ysinλ = sin(yλ) ≈ sin(λ) + cos(λ)vλ ≈ sin(λ) + v3,

ycosλ = cos(yλ) ≈ cos(λ)− sin(λ)vλ ≈ cos(λ) + v4,

where v3 and v4 are independent Gaussian random variables with E{v3} = E{v4} = 0 and E{v23} =
E{v24} = σ2λ (in the alternative approximation, E{v23,4} = 1

4σ
2
λ). Hence,

sin(λ) ≈ ysinλ − v3, cos(λ) ≈ ycosλ − v4,

tan(λ) =
ZA − ZM
|XA −XM| cos(ϕ) ≈

ysinλ − v3
ycosλ − v4

.
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To simplify manipulations with the measurement of λ, let the reference frame be chosen so that,
for the relative position of A and M, XA > XM and X(t) > XM during the further motion. Using
the available bearing approximation, we replace cos(ϕ) with ycosϕ − v2 to get

ycosϕ ycosλ (ZA − ZM)− ysinλ (XA −XM)

≈ (ZA − ZM)ycosλ v2 − (XA −XM)v3 + (ZA − ZM)ycosϕ v4 − (ZA − ZM)v2v4.

By the above assumption, all vi are independent and centered, so the variance of the right-hand
side of this expression (the pseudomeasurement error) has the form

E
{(

(ZA − ZM)ycosλ v2 − (XA −XM)v3 + (ZA − ZM)ycosϕ v4 − (ZA − ZM)v2v4
)2}

= E
{
(ZA − ZM)2(ycosλ )2

}
σ2ϕ + E

{
(XA −XM)2

}
σ2λ

+ E
{
(ZA − ZM)2(ycosϕ )2

}
σ2λ + E

{
(ZA − ZM)2

}
σ2ϕσ

2
λ.

Appealing to the same arguments about the small values of vi, σϕ, and σλ, we neglect the last
term and represent the pseudomeasurement residual as

ycosϕ ycosλ (ZA − ZM)− ysinλ (XA −XM)

≈ (ZA − ZM)ycosλ v2 − (XA −XM)v3 + (ZA − ZM )ycosϕ v4.

(Here, the estimates are substituted for the exact coordinates (XA, YA, ZA).) The pseudomeasure-
ments themselves become

−ycosϕ ycosλ ZM + ysinλ XM

≈−ycosϕ ycosλ ZA+ysinλ XA+(ZA−ZM)ycosλ v2− (XA−XM)v3+(ZA−ZM)ycosϕ v4.

Thus, for the measurement yλ = λ+ vλ of the elevation angle λ, the pseudomeasurement Yλ is
formed as follows:

Yλ = −ycosϕ ycosλ ZM + ysinλ XM,

ysinλ = sin(yλ), ycosλ = cos(yλ), ycosϕ = cos(yϕ);
(3)

the filtering algorithm uses the observation model

Yλ =
(
ysinλ , −ycosϕ ycosλ

)(XA
ZA

)
+
(
(ZA − ZM)ycosλ , XM −XA, (ZA − ZM)ycosϕ

)⎛⎜⎝v2v3
v4

⎞⎟⎠ . (4)

Finally, consider the measurement yr = r + v5 of the range r with an error v5 independent of
the previous ones vi: E{v5} = 0 and E{v25} = σ2r . Using the measurement of the elevation angle λ
and the approximation sin(λ) ≈ ysinλ − v3, we write

r =
ZA − ZM
sin(λ)

⇒ yr − v5 ≈ ZA − ZM
ysinλ − v3

.

Similarly to the angle transformations, it follows that

ZA − ZM − yry
sin
λ ≈ −yrv3 − ysinλ v5 + v3v5.
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The centered error on the right has the variance

E{(−yrv3 − ysinλ v5 + v3v5)
2} = E

{
y2r

}
σ2λ + E

{
(ysinλ )2

}
σ2r + σ2λσ

2
r .

Here, the third term can be neglected compared to the first two, and the pseudomeasurement
residual becomes

ZA − ZM − yry
sin
λ ≈ −yrv3 − ysinλ v5.

(Here, the estimate is substituted for the exact coordinate ZA.)
We write the pseudomeasurements themselves as

ZM + yry
sin
λ ≈ ZA + yrv3 + ysinλ v5.

Thus, for the measurement yr = d + v5 of the range, the pseudomeasurement Yr is formed as
follows:

Yr = ZM + yry
sin
λ , ysinλ = sin(yλ); (5)

the filtering algorithm uses the observation model

Yr = ZA +
(
yr, ysinλ

)(v3
v5

)
. (6)

Now we combine all the three models (2), (4), and (6) into the single observation vector Y =
(Yϕ, Yλ, Yr)

′ :

Y =

⎛⎜⎜⎝
ysinϕ −ycosϕ 0

ysinλ 0 −ycosϕ ycosλ

0 0 1

⎞⎟⎟⎠X

(7)

+

⎛⎜⎝XM −XA YA − YM 0

0 (ZA − ZM)ycosλ XM −XA
0 0 yr

⎞⎟⎠
⎛⎜⎝ 0

(ZA − ZM)ycosϕ

0

⎞⎟⎠+

⎛⎜⎝ 0
0
ysinλ

⎞⎟⎠V,

where

X = (XA, YA, ZA)′ and V = (v1, v2, v3, v4, v5)
′.

2.2. Application of the Extended Kalman Filter

Let the observation vector yt ∈ R
qy of the AUV be formed from the measurements yϕ, yλ,

and yr at a time instant t. (For one observer, the dimension is qy = 3.) The AUV has the state
vector Xt ∈ R

pX ; without loss of generality, assume that the state Xt is determined by the AUV
coordinates in the Oxyz system, denoted by Xt = (X(t), Y (t), Z(t))′, pX = 3. Below, the motion
model will be supplemented with other variables, but the objective is still to estimate the AUV
position.

The estimation of Xt begins at the time instant t = 0 and is performed at discrete
time instants 1, 2, . . . , t, . . . , corresponding to the partition of the observation interval with a
step δ s: δ, 2δ, . . . , tδ, . . . The AUV initial position is given by the vector X0 = η = (ηX , ηY , ηZ)

′ =
(X(0), Y (0), Z(0))′.
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The vectors Xt and yt are described by a discrete stochastic dynamic system of general form:

Xt = Φ
(1)
t (Xt−1) + Φ

(2)
t (Xt−1)Wt, t = 1, 2, . . . , X0 = η,

yt = ψ
(1)
t (Xt) + ψ

(2)
t (Xt)vt.

(8)

By assumption, the random sequences of Xt and yt have finite covariances, and the disturbances
Wt ∈ R

pW and the measurement errors vt ∈ R
qv are independent discrete white noises of the second

order; the initial condition vector η ∈ R
pX is independent of Wt and vt and has finite covariance.

The corresponding central moments are denoted, e.g., for Wt, by mW (t) and DW (t).

We supplement system (8) with an equation for the pseudomeasurements Yt ∈ R
qY :

Yt = Ψ
(1)
t (Xt, yt) + Ψ

(2)
t (Xt, yt)Vt. (9)

(In all the available examples, exactly one pseudomeasurement is formed for one measurement and,
accordingly, qY = qy = 3; in the general case, the dimensions may differ.) Here, the matrix functions

Ψ
(1)
t (X, y) and Ψ

(2)
t (X, y) are given by (7), and due to its linearity, we have Ψ

(1)
t (X, y) = Ψ

(1)
t (y)X.

Filtering by the method of linear pseudomeasurements [19] consists in applying the EKF [12]
to system (8), with the observations yt replaced by the pseudomeasurements (9). In the current
notation, such a filter has the form

X̃t = Φ
(1)
t (X̂t−1) + Φ

(2)
t (X̂t−1)mW (t),

K̃t = Φ̃
(1)
t K̂t−1

(
Φ̃
(1)
t

)′
+ Φ̃

(2)
t DW (t)

(
Φ̃
(2)
t

)′
,

Φ̃
(1)
t =

∂Φ
(1)
t (X)

∂X

∣∣∣∣∣
X=X̃t

, Φ̃
(2)
t = Φ

(2)
t (X̃t),

X̂t = X̃t +Kt

(
Yt −Ψ

(1)
t (X̃t, yt)−Ψ

(2)
t (X̃t, yt)mV (t)

)
,

Kt = K̃t

(
Ψ̃

(1)
t

)′ (
Ψ̃

(1)
t K̃t

(
Ψ̃

(1)
t

)′
+ Ψ̃

(2)
t DV (t)

(
Ψ̃

(2)
t

)′)−1

,

Ψ̃
(1)
t =

∂Ψ
(1)
t (X, yt)

∂X

∣∣∣∣∣
X=X̃t

= Ψ
(1)
t (yt), Ψ̃

(2)
t = Ψ

(2)
t (X̃t, yt),

K̂t = K̃t −KtΨ̃
(1)
t K̃t.

(10)

The difference from the classical EKF here is the mandatory linearity of the function Ψ
(1)
t in

the estimated state, so that
∂Ψ

(1)
t (X,yt)
∂X = Ψ

(1)
t (yt), which is determined by the pseudomeasurement

equation (7) itself. The other elements are the same as in the standard EKF: the prediction X̃t

is constructed along the system trajectories; the heuristic prediction error covariance K̃t is the
result of linearizing the state equation in the neighborhood of the prediction; the correction is the
observation residual with the Kalman gain Kt; the heuristic estimation error covariance K̂t is the
result of linearizing the observation equation. Also, a feature of the EKF by the method of linear

pseudomeasurements is the dependence of Ψ̃
(1)
t and Ψ̃

(2)
t on the “real” observations yt. Indeed,

according to (7), the values of yt are used to compute not only the pseudomeasurements (1), (3),

and (5) but also the approximate model matrices Ψ
(1)
t and Ψ

(2)
t .
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2.3. Pseudomeasurements with Time Delay

The dependence of observations yt and pseudomeasurements Yt (in (8) and (9), respectively) on
the state Xt varies fundamentally if the information exchange time between the observed object
and the observer cannot be neglected. This is the situation with sonars, see the discussion above.
Accordingly, the current measurements turn out to match the position of A for some previous time
instant s < t. This instant is determined as follows.

Let vs = const be the sound velocity in water. Regardless of the sonar type and the source of
measurements (aboard the AUV or an external measuring complex), there is a difference between
the time when the observer M receives the measurement and the time when A had the “measured”
position. This difference is the time taken by the acoustic signal to travel the distance between A
and M, i.e., τ = t− s = r/(δvs). Following the idea of pseudomeasurements, this random value can
be approximated by τ̃ = yr/(δvs). Considering that the typical value is vs = 5400 km/h (1500 m/s),
the introduced error can be neglected, and the pseudomeasurement model (7) can be supplemented
with the relation

X = (X(t− τ̃), Y (t− τ̃), Z(t− τ̃))
′
, τ̃ = yr/δvs. (11)

The general form of the observation–pseudomeasurement system is

Xt =Φ
(1)
t (Xt−1)+Φ

(2)
t (Xt−1)Wt, t=−T,−T +1, . . . , 1, 2, . . . , X−T−1 = η,

yt = ψ
(1)
t (Xt−τt) + ψ

(2)
t (Xt−τt)vt, τt = τt(Xt), (12)

Yt = Ψ
(1)
t (yt)Xt−τ̃t +Ψ

(2)
t (Xt−τ̃t , yt)Vt, τ̃t = τ̃t(yt).

This model rests on the following assumptions. First, the maximum possible time delay of
observations, i.e., the value Tδ > 0, is known. (Essentially, this is the maximum detection range
of the moving object.) Second, the motion of A starts at the time instant −Tδ, i.e., t = −T ,
so that the observer M will surely perform a measurement at the time instant t = 0. The initial
position of A is given by the vector η = (ηX , ηY , ηZ)

′ = (X(−T − 1), Y (−T − 1), Z(−T − 1))′. The
time delay τt is a function of the state Xt, i.e., the time required for the sound wave to travel the
distance between A and M. (Precisely from this consideration, the estimate τ̃ is included in the
pseudomeasurements (11).)

The functions τt(X) and τ̃t(y) in (12) must take integer values from the set {0, 1, . . . , T}. For
“real” states and observations, they have the form

τt = min

{
T,

[√
(X(t)−XM)2 + (Y (t)− YM)2 + (Z(t)− ZM)2

δvs

]}
,

τ̃t = min

{
T,

[
yr
δvs

]}
,

(13)

where [·] denotes the floor function.

2.4. Filtering in the Model with Several Observers

Now, let the observation vector yt in (12) combine measurements of angles and range

coming from q observers, i.e., yt = (y
(1)
ϕt , y

(1)
λt
, y

(1)
rt , . . . , y

(q)
ϕt , y

(q)
λt
, y

(q)
rt )′. Since yt ∈R

qy , qy = 3q.

For each ith observer, we define a time delay τ
(i)
t , i = 1, . . . , q, with values in the set {0, 1, . . . , T}.
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The delays τ
(i)
t are combined into the vector τt = (τ

(1)
t , . . . , τ

(q)
t )′ ∈ R

q, which is a function of Xt

just like τt in (12). Thus, the measurements y
(i)
ϕt , y

(i)
λt
, and y

(i)
rt in each group can be represented as

functions of the position X
t−τ (i)t

. The observation system takes the form

Xt = Φ
(1)
t (Xt−1) + Φ

(2)
t (Xt−1)Wt,

t = −T,−T + 1, . . . , 0, 1, . . . , X−T−1 = η,

y
(i)
t = ψ

(i,1)
t

(
X
t−τ (i)t

)
+ ψ

(i,2)
t

(
X
t−τ (i)t

)
v
(i)
t , i = 1, . . . , q,

Y
(i)
t = Ψ

(i,1)
t

(
y
(i)
t

)
X
t−τ̃ (i)t

+Ψ
(i,2)
t

(
X
t−τ̃ (i)t

, y
(i)
t

)
V

(i)
t .

(14)

For (14) to correctly reflect the above assumptions and turn into (8), (9) under T = 0 (no time
delays), we introduce the following designations:

yt =
(
(y

(1)
t )′, . . . , (y(q)t )′

)′
is the observation vector composed of q groups of measurements y

(i)
t =(

y
(i)
ϕt , y

(i)
λt
, y

(i)
rt

)′
;

v
(i)
t is the vector of measurement errors in this group;

Yt =
(
(Y

(1)
t )′, . . . , (Y (q)

t )′
)′

is the vector of q groups of pseudomeasurements;

Y
(i)
t =

(
Y

(i)
t , Y

(i)
t , Y

(i)
t

)′
, which is associated with the corresponding group y

(i)
t , and V

(i)
t is the

vector of measurement errors in this group.

The vector functions ψ
(i,1)
t , as well as the matrices ψ

(i,2)
t , Ψ

(i,1)
t , and Ψ

(i,2)
t , i = 1, . . . , q, are

defined for each group of observations and pseudomeasurements. Their presence implies the inde-
pendence of each observer forming the measurements of the group, i.e.,

ψ
(1)
t =

(
(ψ

(1,1)
t )′, . . . , (ψ(q,1)

t )′
)′
, ψ

(2)
t = diag

(
ψ
(1,2)
t , . . . , ψ

(q,2)
t

)
,

Ψ
(1)
t =

⎛⎜⎜⎝
Ψ

(1,1)
t
...

Ψ
(q,1)
t

⎞⎟⎟⎠ , Ψ
(2)
t = diag

(
Ψ

(1,2)
t , . . . ,Ψ

(q,2)
t

)
.

Then the basic EKF equations (10) can be refined for the model with time delays (14) as follows:

X̃t = Φ
(1)
t (X̂t−1) + Φ

(2)
t (X̂t−1)mW (t),

K̃t = Φ̃
(1)
t K̂t−1(Φ̃

(1)
t )′ + Φ̃

(2)
t DW (t)(Φ̃

(2)
t )′,

Φ̃
(1)
t =

∂Φ
(1)
t (X)

∂X

∣∣∣∣∣
X=X̃t

, Φ̃
(2)
t = Φ

(2)
t (X̃t),

X̂t = X̃t +KtΔỸt,

ΔỸt =

(
Y

(1)
t −Ψ

(1,1)
t (y

(1)
t )X̃

t−τ̃ (1)t
, . . . , Y

(q)
t −Ψ

(q,1)
t (y

(q)
t )X̃

t−τ̃ (q)t

)
,

Kt = K̃t(Ψ
(1)
t )′

(
Ψ

(1)
t K̃t(Ψ

(1)
t )′ + Ψ̃

(2)
t DV (t)(Ψ̃

(2)
t )′

)−1
,

Ψ
(1)
t = Ψ

(1)
t (yt), Ψ̃

(2)
t = diag

{
Ψ

(1,2)
t (X̃

t−τ̃ (1)t

, yt), . . . ,Ψ
(q,2)
t (X̃

t−τ̃ (q)t

, yt)

}
,

K̂t = K̃t −KtΨ
(1)
t K̃t.

(15)
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Essentially, compared to the filter (10), the filter (15) simply incorporates the estimates τ̃
(i)
t ,

i = 1, . . . , q, of the time delays. The observation residual ΔỸt and the matrix of measurement error

deviations Ψ
(2)
t are composed of the values of the position predictions X̃

t−τ̃ (i)t
corresponding to the

time instants for which the current observations yt were performed and the pseudomeasurements Yt
were composed. For this purpose, we use the position predictions shifted relative to the current time

instant by the value of the estimate τ̃
(i)
t of the time delay τ

(i)
t for the corresponding ith observer.

3. TRACKING OF AUV’S APPROACH USING ACOUSTIC BEACON MEASUREMENTS

3.1. Observation System Model

To apply the filtering algorithm (15), we adopt the same model as in [9, 10], with slight mean-
ingful modifications for the tracking problem of an approaching unknown object. (In the papers
cited, this model was studied for parameter identification.) Following Fig. 1, let the origin O of the
reference frame Oxyz define a stationary object (O) located on the sea surface, to which an AUV
is approaching. A is detected in the initial position η = (ηX , ηY , ηZ)

′, whose random elements are
independent and have a uniform distribution: ηX ∼ R[10, 20], ηY ∼ R[10, 20], and ηZ ∼ R[0.5, 1.5].
Thus, the initial position of A is characterized by the mean E{η} = (15, 15, 1)′ and covariance
cov(η, η) ≈ diag{2.92; 2.92; 0.292}. All distances are given in kilometers (km). By assumption, the
detected AUV moves towards O with chaotic maneuvering but an average constant velocity of
about 21 km/h.

There are two complexes (F , first) and (S, second) for observing the AUV. In the reference
frame Oxyz, the z axis is directed vertically downward to the water surface (as in Fig. 1, corre-
sponding to the AUV depth) whereas the y and x axes are directed from the object to the first and
second observers, respectively (O → F and O → S). The observers are considered to be stationary
on the water surface, i.e., at zero depth. Thus, their coordinates are F(XF , YF , ZF ) = (0, YF , 0)
and S(XS , YS , ZS) = (XS , 0, 0), where XS = −2 km and YF = −1 km. Furthermore, assume that
throughout the observation time, the coordinates A(X(t), Y (t), Z(t)) are such that the AUV re-
mains at depth without surfacing (i.e., Z(t) > 0), and the conditions X(t) > XM used for the
pseudomeasurement (3) are valid for both observers, i.e., X(t) > 0. The intersection of the motion
trajectory with the Ox axis does not affect the pseudomeasurements, and a possible intersection

Fig. 2. The relative position of observers in the experiment.
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with the Oy axis can be easily considered by using the cotangent instead of the tangent for the
pseudomeasurements (3). The experiment is schematically illustrated in Fig. 2.

The vector (X(t), Y (t), Z(t))′ describes the position ofA at discrete time instants t = 0, . . . , 1000,
which correspond to the partition of the observation time interval with a discretization step of
δ = 0.0001 h. Taking the maximum time delay T into account, the navigation task is thus solved in
0.1 h = 6 min. Measurements are performed at the same time instants, i.e., about three measure-
ments per second by each complex. With an absolute constant average velocity of 21 km/h, during
this time the AUV travels on average a distance of about 2.1 km, approaching O. The maximum
distance from A to O and to F or S is about 28 and 30 km, respectively; the minimum distances
are 14 and 16 km, respectively. Hence, the maximum possible time delay at the AUV detection
instant is T = 56 (i.e., 0.0056 h or about 20 s).

By assumption, the AUV moves with a constant average velocity (sx, sy, sz)
′, and the deviations

from this velocity are described by the vector of additive disturbances (wx(t), wy(t), wz(t))
′ :

X(t) = X(t− 1) + δSx(t), Sx(t) = sx + σsxwx(t),

Y (t) = Y (t− 1) + δSy(t), Sy(t) = sy + σsywy(t),

Z(t) = Z(t− 1) + δSz(t), Sz(t) = sz + σszwz(t).

(16)

On each trajectory, the average velocity (sx, sy, sz)
′ is specified by a random vector of inde-

pendent uniformly distributed variables: sx ∼ R[−20,−10], sy ∼ R[−20,−10], and sz ∼ R[−2, 0].
Thus, the average velocity of A is characterized by the mean E{S(t)} = (−15,−15,−1)′ (hence,
the average velocity has an absolute value of about 21 km/h and the direction of motion is towards
O(0, 0, 0)) and the covariance diag{Dsx ;Dsy ;Dsz} ≈ diag{2.92; 2.92; 0.42}. The standard deviations
of the additive velocity disturbance vector Wt = (wx(t), wy(t), wz(t))

′ are σsx = 15, σsy = 15, and
σsz = 1. As a result, the velocity covariance is cov(S(t), S(t)) ≈ diag{15.32; 15.32; 1.12}.

In addition to (16), we model abrupt changes (jumps) in the average velocity. Consider a
standard Poisson process P (u) independent of the position of A and a known intensity λu of changes
in the constant average velocity of the AUV (i.e., the average time between velocity jumps). The
discrete time t is related to the continuous time u via the discretization step: u = tδ. The state
vector Xt ∈ R

pX can be augmented by the (pX + 1)th element, so that X(pX+1)t = P (λtδtδ).

The constant, or rather piecewise constant, average velocity is described by a sequence
(spx(t), s

p
y(t), s

p
z(t))

′, whose cross-section at t = 0 has the same distribution as (sx, sy, sz)
′. Thus,

the motion model takes the form

X(t) = X(t− 1) + δSx(t), Sx(t) = spx(t) + σsxwx(t),

Y (t) = Y (t− 1) + δSy(t), Sy(t) = spy(t) + σsywy(t),

Z(t) = Z(t− 1) + δSz(t), Sz(t) = spz(t) + σszwz(t).

(17)

To determine the sequence sp(t) = (spx(t), s
p
y(t), s

p
z(t))

′ for t > 0, we define p(t) =
X(pX+1)t −X(pX+1)t−1

as the indicator of jumps of the process P (λtδtδ) on the current discretiza-
tion interval. Assume that sp(t) = sp(t− 1) if p(t) = 0, i.e., the constant average velocity remains
invariable without jumps. For p(t) = 1, sp(t) becomes a new random variable. To find its distribu-
tion, we use the same idea as for the distribution of the initial velocity (sx, sy, sz)

′, which means
motion on average towards the object O (i.e., the origin) while preserving the variance. To this end,
the new value of the average velocity sp(t) is modeled by the uniform distribution with mean −Xt

and the same covariance as in the previous model. Specifically, if we denote sx ∼ R[ax, bx], then
spx(t) ∼ R[ax, bx]− (ax + bx)/2−X(t− 1), i.e., the conditional distribution of spx(t) given X(t− 1)
has the mean −X(t− 1) (preserves on average the direction of A’s motion towards the object O)
and the variance D[spx(t) |X(t− 1)] = Dsx . Similar expressions describe spy(t) and s

p
z(t).
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The process P (u) used in the experiment has an intensity λu = 3
6 min , i.e., during the observa-

tion time, three changes in the constant average velocity (sx, sy, sz)
′ occur on average. (In other

words, the average time between jumps is 2 min.) In other respects, model (17) retains the same
parameters.

It remains to specify the parameters of the observers. According to the aforesaid, there are
two observers with chosen coordinates. Hence, we have to set the parameters of the measurement
accuracy of yt. The used values can be represented as

cov(vFt , v
F
t ) = cov(vSt , v

S
t ) = diag{σϕ, σλ, σr},

σϕ = σλ =
π

180
rad (1◦), σr = 0.1 km (100 m).

(18)

The distributions of the errors vFt and vSt are Gaussian.

3.2. Numerical Experiments

Using computer simulations of N =10, 000 motion trajectories of the form (16) and (17) and ob-

servations y
(F)
t = (y

(F)
ϕt , y

(F)
λt
, y

(F)
rt )′ and y(S)t = (y

(S)
ϕt , y

(S)
λt
, y

(S)
rt )′, we computed the position estimates

X̂t = (X̂(t), Ŷ (t), Ẑ(t))′ by formulas (15) for the observation modes with time delays (T = 56) and
without them (T = 0) and the approximations of angular pseudomeasurements with the parameters
E{v2i } = σ2ϕ,λ and E{v2i } = 1/4σ2ϕ,λ. The estimation accuracy was determined by the root-mean-
square deviations σ

X̂
(t), σ

Ŷ
(t), and σ

Ẑ
(t) (indicated in meters in the figures below), computed by

averaging the estimation errors over the simulated pencil.

Figure 3 illustrates the experiment with a typical example of the AUV trajectory: the coordi-
nates X(t) and Y (t) with their estimates X̂(t) and Ŷ (t) (Fig. 3a) and the velocities Sx(t) and Sy(t)
(Fig. 3b). This example corresponds to model (17) and the approximation of angular pseudomea-
surements with E{v2i } = 1/4σ2ϕ,λ. The motion trajectories (16) differ by a more rectilinear form,
as there are no changes in direction and velocity magnitude; the dynamics in depth Z(t) are an
order of magnitude smoother. Note that despite the quite chaotic velocity values, the general di-
rection of A towards O is maintained both along the trajectory and when the velocity direction
changes. For the presented trajectory, the time delays varied from 35 to 32; among all the simulated
trajectories, from 55 to 25.

Note that in Fig. 3a, the beginning of the motion is accompanied by a group of inaccurate
estimates. It corresponds to the first 56 steps (the initial period) without EKF estimation by
the algorithm (15). At these steps, direct measurements were estimated: assuming the error-free

nature of the two available measurements y
(F)
t and y

(S)
t , the coordinates were computed from each

set of angles and range, and the final position was estimated as their average value. Further,
the root-mean-square deviations of this estimate are denoted by Σ

X̂
(t),Σ

Ŷ
(t), and Σ

Ẑ
(t). The

estimation accuracy is illustrated in Fig. 4. We pay the reader’s attention to the initial period where
σ
X̂
(t) = Σ

X̂
(t), σ

Ŷ
(t) = Σ

Ŷ
(t), and σ

Ẑ
(t) = Σ

Ẑ
(t). The EKF estimate was computed starting from

t = 57.

Other variants of the computations (the motion model (16), no time delays (T = 0), and the
approximation of angular pseudomeasurements with E{v2i } = σ2ϕ,λ) have some differences. For in-
stance, model (16) gives a more rectilinear trajectory, observations with T = 0 lead to no transition
period with the direct measurement filter, and the parameters of the pseudomeasurement noises
change the accuracy of the resulting estimates. These figures illustrate a qualitative picture of the
effectiveness of the linear pseudomeasurement filter in the most complex model. A formal compar-
ison in all models is given in the table below. To characterize the accuracy, the root-mean-square
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Fig. 3. A typical example of the AUV trajectory: (a) (1) the coordinates X(t) and Y (t) and (2) their

estimates X̂(t) and Ŷ (t); (b) the velocities (1) Sx(t) and (2) Sy(t).
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Fig. 4. Root-mean-square deviations: (1) σ
̂X(t), (2) σ

̂Y (t), (3) σ̂Z(t), (4) Σ ̂X(t), (5) Σ
̂Y (t), and (6) Σ

̂Z(t).
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deviations of the estimation errors were averaged over the trajectories: for X̂(t) as an example, the
values σ̂

X̂
= 1

1000

∑1000
t=1 σX̂(t) and Σ̂

X̂
= 1

1000

∑1000
t=1 Σ

X̂
(t) were computed, etc. All deviations are

presented in meters.

Comparison of estimation quality

Model σ̂
̂X σ̂

̂Y σ̂
̂Z Σ̂

̂X Σ̂
̂Y Σ̂

̂Z

(16), T = 0, E{v2i } = σ2
ϕ,λ 24.01 22.33 27.04

192.54 198.35 266.86
(16), T = 0, E{v2i } = 1

4σ
2
ϕ,λ 21.96 22.07 22.69

(16), T = 56, E{v2i } = σ2
ϕ,λ 37.82 37.09 44.76

193.42 199.23 267.89
(16), T = 56, E{v2i } = 1

4σ
2
ϕ,λ 36.47 37.32 41.31

(17), T = 0, E{v2i } = σ2
ϕ,λ 24.78 23.34 26.55

193.04 198.56 267.44
(17), T = 0, E{v2i } = 1

4σ
2
ϕ,λ 22.73 22.72 24.55

(17), T = 56, E{v2i } = σ2
ϕ,λ 50.46 47.37 49.23

193.95 199.48 268.49
(17), T = 56, E{v2i } = 1

4σ
2
ϕ,λ 44.46 43.37 45.63

4. CONCLUSIONS

The experiment has confirmed the ability of the linear pseudomeasurements filter to estimate
the system state in the model with time delays. Compared to direct estimation, the results have
demonstrated the effectiveness of this filter and a twofold deterioration in estimation quality in
the case of time delays. Regarding the absolute error values of tens of meters, we emphasize
extreme estimation conditions: a large distance to the object and external disturbances of the
same magnitude as the object’s velocity. Moreover, from the standpoint of tracking, tens of meters
is a quite satisfactory order of errors for an object located farther than 10 km. More accurate
results are needed when solving the positioning task aboard the AUV. But in this case, onboard
measurements (e.g., velocity) can be utilized besides external observers. This significantly increases
the accuracy [25].

Furthermore, note the superiority of the filter with E{v2i } = 1
4σ

2
ϕ,λ (i.e., the model with softer

assumptions regarding the error in pseudomeasurements). This parameter gives the greatest ad-
vantage in the last (most complex) model; in the others, the difference is small. Here, we should
mention the results not included in the table, namely, the experiments with other values of E{v2i }.
According to the results in the table, the filter seems to be insensitive to this value, since the
filtering quality estimates change little for different E{v2i }. However, this is true only for the values
of E{v2i } in the range [14 , 1]σ

2
ϕ,λ. Additional calculations (not included in the table) have shown that

the filtering estimate deteriorates significantly for E{v2i } beyond this range (on the left or right).

Also, we underline that the results are in good agreement with computations performed for other
similar models. For example, in [7–10], the same motion model was used together with observations
of direction angle tangent, and the conditionally minimax nonlinear filtering method [15, 16] was
applied for estimation.

Finally, it is crucial that in the experiments presented here, only the constant average velocity
has been assumed to be known among the motion model parameters (including the model with
abrupt velocity changes). Due to this feature, in particular, the accuracy of the direct measurement
estimate does not deteriorate too much when passing from the model with T = 0 to the one with
T = 56. According to the previous results, this parameter can be identified, which is the foundation
of the approach.
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While listing the positive aspects, some negative ones cannot be ignored. Despite the demon-
strated effectiveness of the method of linear pseudomeasurements, the EKF has retained its worst
features, primarily the tendency to diverge. Such an effect has manifested itself for the nonlinear
motion model (due to the unknown parameter), when direct measurements are not used to set the
initial condition for the EKF estimate, when the velocity increases and trajectories could approach
coordinate planes. Therefore, although the method of linear pseudomeasurements is very good, it
should be tried not only in the EKF but also in other, more reliable and stable, filtering schemes.
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