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1. INTRODUCTION

The optimal control design problem remains to be one of the most relevant problems in control
theory. To design the optimal controller, one needs to determine a plant to control, a family of
control laws with parameters to be adjusted, and a certain function that quantitatively specifies
the quality of the closed-loop system performance. Such a criterion is chosen based on the control
objectives and the operating conditions of the system. The dynamic output feedback (DOF) control,
in both of its versions – strictly proper (causal) and non-strictly proper, is frequently used to solve
the linear quadratic control problems. In practice, the measurements used to define a control actions
contain random noise, in most cases with somewhat uncertain statistical parameters. When the
disturbances driven the linear system are Gaussian white noise, and the quadratic loss function
is defined as the performance gain, the corresponding control problem is referred to as the linear-
quadratic Gaussian (LQG) problem. A significant amount of publications exists on this topic [1–4].
Nevertheless, usually, external disturbance is rarely happen to be white noise, for which case the
LQG controller loses its efficiency.

In the period from the late 60-s to the early 80-s, the cornerstone of the H∞-theory has been
developed [5–8]. This theory addresses the optimal control design under assumption that the
disturbances are the square-integrable signals, and the L2 operator norm is used as performance
gain of the system. However, the optimal H∞-controller is too conservative in the sense that it only
performs in the best manner when the inputs are of the worst case corresponding to the maximum
value of the closed-loop system performance gain.

In the 1990-s, the so-called anisotropy-based control theory has been developed by
I.G. Vladimirov as an attempt to generalize H2- and H∞-control approaches to optimal control
design [9]. The fundamental concepts of the anisotropy of a random vector, the mean anisotropy of
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a sequence of random vectors, and the anisotropic norm of a system were introduced [10, 11]. The
anisotropy of random vector is defined as a measure of the divergence (in informational sense) of the
distribution of this vector with respect to a uniform distribution on the unit sphere. Later, it was
re-defined as the divergence of the vector’s distribution from isotropic Gaussian distributions [12].
Subsequently, the anisotropy-based theory apparatus has been also developed to solve the analysis
problems, optimal control and filtering problems [13–16].

In [17], the problem of the asymptotic representation of the anisotropic norm of a linear discrete
time invariant (LDTI) system has been solved when mean anisotropy upper bound was infinitesimal
(the so-called left asymptotic) or infinitely large (the right asymptotic). Based on the aforemen-
tioned results, the asymptotic formula of the optimal anisotropy-based filter in terms of its deviation
from the H2-optimal filter for infinitesimal values of mean anisotropy was presented in [18]. The
formula of the mean anisotropy maximum upper bound threshold at which the H2-optimal filter
approximates the anisotropy-based filter with a given accuracy is also obtained. In the subsequent
study [19], a solution for the special case of the similar anisotropy-based control problem is pre-
sented. All the results obtained for the left asymptotic of anisotropic filters and controllers form
the basis for the present study.

This paper presents a solution for the general case of the left asymptotic representation for the
optimal anisotropic controller for an LDTI system. The first section provides a brief overview of the
object of study, anisotropy-based control theory, and addresses the methods for the optimal H2 and
anisotropic controllers design. In the second section, a solution of the general optimal anisotropic
control problem is given. The third section of the article addresses the asymptotic representation
of the DOF anisotropic controller in a general form.

2. BACKGROUND

2.1. Fundamental Notations

The following notations are used in the paper: Rn – a set of n-dimensional real vectors; Rn×m –
a set of (n×m)-dimensional real matrices; C – a set of complex numbers; Ln2 – a set of n-dimensional
real valued square integrated random vectors; Hp×m∞ – the Hardy space of (n × m)-dimensional
complex-valued matrix functions, which are analytical in a unit circle C
 = {z ∈ C : |z| < 1}
and have limited H∞–norm ‖F‖∞ = sup|z|<1 σ(F (z)); σ(X) = max

√
λ(X∗X) – maximum singular

number of the matrix X; λ(X) – eigenvalue of matrix X; X∗ = X
T
– Hermitian conjugate matrix

to X; Hp×m
2 – the Hardy space of analytical in a unit circle C
 complex-valued matrix functions

F (z) =
∑+∞
k=0 fkz

k with limited H2-norm ‖F‖2 =
(∑+∞

k=0 tr(fkf
T
k )

)1/2
, where fk ∈ R

p×m.

2.2. Research Object

The research object of the paper is linear discrete time invariant system F with state space
realization

xk+1 = Axk +Bwwk +Buuk, k = 0, 1, . . . , (1)

where xk ∈ L
nx
2 – state vector, x0 = 0; wk ∈ L

nw
2 is the input disturbance vector; uk ∈ L

nu
2 is the

input control vector. Controlled output of system (1) denoted as a vector zk ∈ L
nz
2 is determined by

zk = Czxk +Dzuk. (2)

Sensor measurements are used to determine the control input uk of the system F . This data is
represented as a sequence of vectors yk ∈ L

ny

2 described as follows:

yk = Cyxk +Dywk. (3)
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Matrices A, Bw, Bu, Cz, Dz, Cy, Dy are known real matrices of corresponding dimensions. The
system of equations (1)–(3) is associated with transfer function Tyw(z) = Dy +Cy(zInx

−A)−1Bw,
which is described by four matrices

Tyw ∼ (A,Bw, Cy,Dy), (4)

and transfer function Tzu(z) = Dz + Cz(zInx
−A)−1Bu with quadruple of matrices

Tzu ∼ (A,Bu, Cz,Dz). (5)

The general formulation of the DOF control problem is to find a controller K of the form

K ∼
{
hk+1= Âhk + B̂yk,

uk = Ĉhk + D̂yk
(6)

with state vector hk ∈ L
nx
2 , input vector yk ∈ L

ny

2 and output vector uk ∈ L
nu
2 , which provides the

fulfillment of some quality criterion. In (6), the matrices Â, B̂, Ĉ and D̂ are to be derived. The fol-
lowing section presents basic information regarding two controller types based on its quality criteria:
the H2 controller which minimizes the trace of the state or controlled output covariance matrix of
the closed-loop system and the anisotropy-based controller, which minimizes the anisotropic norm
of the linear operator mapping external disturbances to the controlled output of the closed-loop
system.

2.3. H2-Optimal Control

To facilitate further expositions, we introduce the following matrices :

UL = (DT
z Dz +BT

u P̂
Bu)
−1, UR = −(DT

z Cz +BT
u P̂
A), U
 = ULUR, (7)

VL = −(AQ̂
C
T
y +BwD

T
y ), VR = (DyD

T
y + CyQ̂
C

T
y )

−1, V
 = VLVR. (8)

The optimal H2-control problem is to find a controller that minimizes the H2 norm of the closed-
loop system. Consider the linear discrete time invariant system (1), controlled output (2) and
measured output (3) with external random disturbance wk distributed normally with zero mean
E[wk] = 0 and an identity covariance matrix E[wkw

T
k ] = Inw . Consider the problem of designing

H2-optimal controller of the form (6). Thus, we have the following solution to the stated optimal
H2-optimal control problem [2]:

Â
 = A+BuU
 + V
Cy −BuD̂
Cy,

B̂
 = BuD̂
 − V
,

Ĉ
 = U
 − D̂
Cy,

D̂
 = −UL(DT
z CzQ̂
C

T
y +BT

u P̂
AQ̂
C
T
y +BT

u P̂
BwD
T
y )VR,

where P̂
 and Q̂
 are the stabilizing solutions of algebraic Riccati equations (for control and filtering,
respectively):

P̂
 = ATP̂
A+ CT
z Cz − UT

RU
,

Q̂
 = AQ̂
A
T +BwB

T
w − V
V

T
L .

The matrix V∗ is related to the coefficient matrix of the Kalman filter (as part of the H2-
controller) with respect to the update sequence, while U∗ is responsible for forming the control
action based on the filter’s estimate of the current state of the plant (due to the separation principle
inherent in Linear-Quadratic-Gaussian (LQG) control).

Next, we consider the fundamental concepts and principles of anisotropy-based theory upon
which the solution to the problem presented in the article is based.
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2.4. Anisotropic Norm

The synthesis of an H2-optimal controller typically assumes that the input of the system under
research is a Gaussian white noise. In practice, external disturbances affecting systems are fre-
quently correlated (and not necessarily Gaussian) noise, and its statistical characteristics are often
imprecisely known.

Let us assume that the input of the system (1) is a random disturbance in the form of a stationary
sequence of mutually independent random vectors W = (wk)0�k<+∞, wk ∈ L

nw
2 , whose properties

deviate from the standard normal distribution. To characterize the deviation of the random vector’s
distribution from the normal distribution, the concepts of anisotropy of the random vector and the
mean anisotropy of a sequence of random vectors is used within the framework of anisotropy-based
theory.

Definition 1 [12]. Anisotropy A(W ) of nw-dimensional random vector W is a nonnegative func-
tion defined by the following expression:

A(w) = min
λ>0

D(f‖pnw,λ),

where D(f‖pnw,λ
) is the relative entropy (Kulback-Leibler information divergence) of probability

density function (pdf) f regarding to the Gaussian pdf pnw,λ
with zero mean and scalar covariance

matrix λInw
, λ > 0, and h(W ) = − ∫

Rnw f(w) ln f(w)dw is the differential entropy of W .

Characterizing a sequence of random vectors using the concept of anisotropy of random vector
defined above is not feasible, as it tends towards infinity with an increasing number of sequence
elements. Therefore, the concept of mean anisotropy for a sequence of random vectors was intro-
duced.

Definition 2 [12]. The mean anisotropy of a (stationary ergodic) sequence W = (wk)0�k<+∞ is
defined as limit

A(W ) = lim
N→∞

A(W0:N−1)

N
,

where Ws:t = (wT
s , w

T
s+1, . . . , w

T
t )

T is the vector formed by the vectors of the sequence frag-
ment (wk)s�k�t.

As is known [20], the vectors of a stationary Gaussian sequence of random disturbances W =
(wk)0�k<+∞ can be represented as

wj =
+∞∑
k=0

gkvj−k,

where V = (vk)0�k<+∞ is a sequence of independent nw-dimensional random vectors with a stan-

dard normal distribution; gk is the impulse response of the generating filter, and G(z) ∈ Hnw×nw
2

is the transfer function of the generating filter with the sequence of vectors V as input and the
sequence W as output. Since the sequence of vectors W is generated by the filter G, the nota-
tion A(G) can be used to denote the mean anisotropy A(W ) of the sequence. It has been shown
(see [11, formula (4) and Lemma 1]) that the mean anisotropy A(G) of a sequence of random
vectors W generated by the shaping filter can be computed using the following formula:

A(G) = − 1

4π

π∫
−π

ln det

(
nw
‖G‖22

Ĝ(w)(Ĝ(w))

)
dw,

where Ĝ(w) = lim
r→1−0

G(reiw), w ∈ [−π, π), i2 = −1.
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One of the system response measures for system F of the form (4) in case of input disturbance
represented as a sequence of vectors W with mean anisotropy A(G) � a is the anisotropic norm of
the system [11], defined as follows:

F |||F |||a = sup
G∈Ga

‖FG‖2
‖G‖2

, (9)

where Ga = {G ∈ Hnw×nw
2 : A(G) � a} is a set of generating filters with a bounded mean

anisotropy of the sequence W .

To compute the anisotropic norm, it is necessary to determine the parameters of the generating
filter G that provides the supremum in the expression (9). This filter is called the worst-case
shaping filter and has the representation [11, formulas (32), (33)]

G ∼
[
A+BL BΣ1/2

L Σ1/2

]
(10)

with state vector xk, input vector vk and output vector wk. Next, the formulation of the lemma
concerning the computation of the anisotropic norm for a linear discrete-time invariant system is
presented.

Lemma 1 [11, Lemma 3]. Given a stable linear discrete time-invariant system F of the form (4),
defined by the matrix quadruple A, B, C, D. For any a > 0, there exists a unique pair (q,R), where
q ∈ (0, ‖F‖−2∞ ) is a scalar parameter that satisfies the equation

−1

2
ln det

nwΣ

tr(LPLT +Σ)
= a, (11)

and R ∈ R
nx×nx is a matrix that is a stabilizing solution of the Riccati equation

R = ATRA+ qCTC + LTΣ−1L,

Σ = (Inw
− qDTD −BTRB)−1,

L = Σ(BTRA+ qDTC).

Furthermore, the anisotropic norm of the system F is computed as

F |||F |||a =
(
1

q

(
1− nw

tr(LPLT +Σ)

))1/2

, (12)

where matrix P ∈ R
nx×nx satisfies Lyapunov equation

P = (A+BL)P (A+BL)T +BΣBT. (13)

The aforementioned concepts and principles of anisotropy-based control theory will be subse-
quently used in addressing the problem of determining the asymptotic representation of a general
anisotropy-based controller and the maximum anisotropy threshold below which the anisotropy-
based controller can be approximated by an H2-controller with a specified accuracy.

3. OPTIMAL ANISOTROPIC CONTROLLER

The optimal anisotropy-based control problem (6) for a linear discrete-time invariant system (5)
with a measured output (3) is considered in this section. In [19], a solution is presented for
the asymptotic representation problem with small values of the mean anisotropy a for a static
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state controller uk = Kxk. In a similar way, asymptotic representation problem for a dynamic
anisotropy-based output controller is solved.

Initially, the representation of the original system with a dynamic controller is expressed as the
result of substituting the controller’s expression (6) into the system (1)–(3):

L(F,K) ∼
[
A B

C D

]
, (14)

where matrices A, B, C and D have the form

A =

(
A+BuD̂Cy BuĈ

B̂Cy Â

)
, B =

(
Bw +BuD̂Dy

B̂Dy

)
,

C =
(
Cz +DzD̂Cy DzĈ

)
, D = DzD̂Dy.

It is assumed that the input disturbance vectors, denoted as wk, of the system under consid-
eration are the output of a worst-case generating filter of the form (10) and can be represented
as

wk = Lxxk + Lhhk +Σ1/2vk.

The Riccati equation from the lemma no.1 of calculating the anisotropic norm (11)–(13) for the
system (14) has the form

R = A
T
RA+ qC

T
C + LTΣ−1L, (15)

Σ = (Inw
− qD

T
D −B

T
RB)−1, (16)

L = (Lx Lh) = Σ(B
T
RA+ qD

T
C). (17)

Thus, the control problem is decomposed into two subproblems: determining the worst-case
generating filter for the closed-loop system (14), and synthesizing an optimal dynamic anisotropy-
based controller in the form of an LQG controller that minimizes the trace of the covariance matrix
of the regulated output of the closed-loop system (14) when affected by the worst-case noise. In [16],
a solution to a similar control problem is presented for the case D̂ = 0. After performing a similar
analysis for the controller case (6), one has that the matrices Â and B̂ satisfy the following formulas:

Â = A+BwM +BuĈ + (BuD̂ − Λ)(Cy +DyM), B̂ = Λ, (18)

where

M = Lx + Lh, (19)

S = (A+BwLx +BuD̂DyLx)S(A+BwLx +BuD̂DyLx)
T (20)

+ (Bw +BuD̂Dy)Σ(Bw +BuD̂Dy)
T − ΛΘΛT,

Θ = (Cy +DyLx)S(Cy +DyLx)
T +DyΣD

T
y , (21)

Λ =
(
(A+BwLx +BuD̂Cy +BuD̂DyLx)S(Cy +DyLx) (22)

+ (Bw +BuD̂Dy)ΣD
T
y

)
Θ−1.

To determine the unknown matrices Ĉ and D̂ of the controller, the methodology for solving
synthesis problems of dynamic H2-optimal output controllers presented in [2] should be employed.
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Therefore, one expresses the system (1)–(3) with the dynamic controller (6) and the worst-case
generating filter (10) in the form⎧⎪⎨⎪⎩

x̃k+1 = Ãx̃k + B̃wvk + B̃uuk,

z̃k = C̃zx̃k + D̃zuk,

ỹk = C̃yx̃k + D̃yvk,

(23)

where state vector x̃ includes the state vector xk of the initial system (1) and state vector hk of
controller (6), i.e. x̃ = (xTk hTk )

T, z̃k = zk, ỹ = (yTk hTk )
T, and system matrices have the form

Ã =

(
A+BwLx BwLh

B̂Cy + B̂DyLx Â+ B̂DyLh

)
, B̃w =

(
BwΣ

1/2

B̂DyΣ
1/2

)
, B̃u =

(
Bu
0

)
, (24)

C̃z = (Cz 0), D̃z = Dz, (25)

C̃y =

(
Cy +DyLx DyLh

0 Inx

)
, D̃y =

(
DyΣ

1/2

0

)
. (26)

Consequently, the desired control uk is determined by the following formula:

uk = Ñ ỹk,

where Ñ = (D̂ Ĉ).

Applying the H2-optimal control method for the system (23) yields

Ñ = −ŨL(D̃T
z C̃zQ
C̃

T
y + B̃T

u P
ÃQ
C̃
T
y + B̃T

u P
B̃wD̃
T
y )ṼR, (27)

where matrices ŨL and ṼR are introduced analogously to (7) and (8) by replacing the corresponding
matrices with similar matrices marked with a tilde P̂
, Q̂
 to P
, Q
, and the matrices P
 and Q

satisfy equations

P
 = ÃTP
Ã+ C̃T
z C̃z − ŨT

R Ũ
, (28)

Q
 = ÃQ
Ã
T + B̃wB̃

T
w − Ṽ
Ṽ

T
L . (29)

From (27), it follows that desired controller matrices Ĉ and D̂ are expressed as follows:

Ĉ = Ñ

(
0
Inx

)
, D̂ = Ñ

(
Iny

0

)
.

Thus, the matrices Â, B̂, Ĉ, and D̂ of the desired dynamical anisotropy-based output controller
are uniquely determined by the system of equations (18), (27)–(29).

The subsequent section details a solution to the problem of determining an asymptotic repre-
sentation for the derived optimal anisotropy-based controller as a→ 0+.

4. ASYMPTOTIC REPRESENTATION OF CONTROLLER

The next step in solving the stated problem is to derive the formulas for the asymptotic represen-
tation of the obtained anisotropy-based dynamical controller. To achieve this goal, it is necessary
to determine the components of the matrix decomposition for the controller, the system (23), and
all related matrices. Let us express the matrices of the system (23) as the following series:

X(a) =
n∑
k=0

Xka
k/2 + o(an/2), a→ 0 + 0, (30)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



THE ASYMPTOTIC BEHAVIOR OF ANISOTROPIC DOF CONTROLLER 949

where X denotes any variable, except for the matrices A, Bw, Bu, Cz, Cy, Dz, Dy of the initial
system, which, by the problem statement, are independent of a (for example, the matrix Σ depends
on a, so the representation (30) applies to it; i.e. Σ(a) = Σ0+Σ1

√
a+Σ2a+ o(a), if we set n = 2).

Note that X̃(
√
a)

.
= X(a) has to be a sufficiently smooth function of its argument

√
a. All matrices

obtained from sums and products of individual matrices that can be represented in the form of (30)
also have a similar form.

In similar way as in case of the static control problem, to determine the zero components of the
expansions of matrix functions, it is necessary to determine the function values when a = 0. This
case corresponds to the matrices of theH2-controller. For convenience, let us introduce the auxiliary
matrix Υ = −Ũ−1

L Ñ Ṽ −1
R . All variables X0 corresponding to the case a = 0 are not presented here,

as they are trivially obtained by substituting the values q = 0, L = 0, and Σ = Inw into all the
necessary formulas.

Based on the results presented in [18, 19], the second-order terms in the expansions of the matrix
functions R(a), Σ(a), L(a), and q(a) are expressed as follows:

q21 = 4nw/
(
2nwtr(B

T
0 QA0P 0A

T
0 QB0 + nw(B

T
0 QB0)

2)− tr2(B
T
0 QB0)

)
, (31)

R1 = q1Q, Σ1 = B
T
0R1B

0
, L1 = B

T
0R1A0,

where matrices Q P 0 satisfy equations

Q = A
T
0 QA0 + C

T
0 C0, P 0 = A0P 0A

T
0 +B0B

T
0 .

With that, one obtains the following expressions for the first components of the non-zero matrices
in the closed system (note the dependence of these matrices on various X0 and X1):

Ã1 =

(
BwLx,1 BwLh,1

B̂1Cy + B̂0DyLx,1 B̂0DyLh,1

)
, B̃w,1 =

(
BwΣ

1/2
1

B̂1Dy + B̂0DyΣ
1/2
1

)
,

C̃y,1 =

(
DyLx,1 DyLh,1

0 0

)
, D̃y,1 =

(
DyΣ

1/2
1

0

)
.

Having derived derivations of the anisotropy-based controller matrices, one obtains equations
for the first components of the anisotropy-based controller matrices:

Â1 = BwM1 +BuĈ1 +BuD̂1Cy − Λ1Cy + (BuD̂0 − Λ0)DyM1, B̂1 = Λ1,

Ĉ1 = Ñ1

(
0
Inx

)
, D̂1 = Ñ1

(
Iny

0

)
.

Although the expressions for the second terms in the expansion (30) of different matrix variables
are quite complex, they are all obtained in a similar manner and share a similar structure. Therefore,
to conserve space, we will present only the general principle of their derivation, using the matrix Υ
as an illustrative example. According to the established notation,

Υ = D̃T
z C̃zQ
C̃

T
y + B̃T

u P
ÃQ
C̃
T
y + B̃T

u P
B̃wD̃
T
y , (32)

where all forming matrices depend on a. Therefore, for the first term in its decomposition according
to formula (30), we have the following representation:

Υ0 = D̃T
z,0C̃z,0Q
,0C̃

T
y,0 + B̃T

u,0P
,0Ã0Q
,0C̃
T
y,0 + B̃T

u,0P
,0B̃w,0D̃
T
y,0, (33)
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and for the second term – as follows:

Υ1 =
∑

i,j,k,l�0
i+j+k+l=1

D̃T
z,iC̃z,jQ
,kC̃

T
y,l (34)

+
∑

i,j,k,l,m�0
i+j+k+l+m=1

B̃T
u,iP
,jÃkQ
,lC̃

T
y,m +

∑
i,j,k,l�0

i+j+k+l=1

B̃T
u,iP
,jB̃w,kD̃

T
y,l.

It is easy to notice the general principle behind the formation of the matrix Υ1: among all possible
index combinations forming its matrices, only one index in each matrix product takes the value
of 1. Similarly, to write out the third term Υ2, it is necessary to consider all possible combinations
of indices whose sum equals 2 (the total number of terms in this case will be 35). Therefore,
one can assume that all the necessary matrices in the representation (30) have been written out;
i.e. the asymptotic representation of the dynamic anisotropy-based controller has been determined
with the specified accuracy as a → 0 + 0. The obtained results are summarized in the following
statement:

Theorem 1. Consider a linear time-invariant system of the form (1)–(3) and a dynamical con-
troller of the form (6) in an output feedback configuration. For small values of the mean anisotropy
a → 0 + 0 of the input disturbances, the following asymptotic expansions, given by equation (30),
are valid for the matrices Â, B̂, Ĉ, and D̂ of the controller. The terms of the series are deter-
mined analogously to equations (32)–(34) for the matrix Υ, and its dependence on a is given by
equation (11).

The following section presents a solution to the problem of the asymptotic representation of the
anisotropic norm for a closed-loop system with an obtained controller.

5. ASYMPTOTIC REPRESENTATION OF ANISOTROPIC NORM

The next step in problem solving is to obtain an asymptotic representation of the anisotropic
norm of the closed-loop system with the obtained controller and to determine the maximum mean
anisotropy level amax at which the corresponding optimal anisotropy-based controller can be ap-
proximated by an H2-optimal controller with a specified accuracy level ε. Therefore, it is necessary
to determine the first components of the matrices A, B, C, and D. By determining the partial
derivatives of these matrix functions with respect to

√
a and substituting a = 0, we readily obtain

the required first components of the expansions of the matrices A, B, C, and D.

To obtain the asymptotic representation of the anisotropic norm, it is necessary to determine
the second components of the matrix functions R(a) and Σ(a). Having determined the second
partial derivatives of the matrices (15)–(17) with respect to

√
a, and substituting the zero value of

the mean anisotropy a into them, one have

R2 = A
T
0R2A0 + YR2 + Y T

R2
,

Σ2 = B
T
0 R2B0 + YΣ2 + Y T

Σ2
, (35)

where YR2 = q1
(
A

T
1 QA0 + C

T
1 C0

)
, YΣ2 = q1

(
B

T
1 QB0 +D

T
1D0

)
. Substituting the derived expan-

sions into the series of matrix functions R, Σ, L, and P in formula (12) for the anisotropic norm,
the asymptotic representation of the anisotropic norm for the system (14) as a→ 0+ is expressed
as follows:

L(F,K
)|||L(F,K
)|||a =
‖L(F,K
,0)‖2√

nw

(
1 +

(√
Ξ

nw
+

tr(Σ2)

2q1‖L(F,K
,0)‖22

)√
a

)
+ o(

√
a), (36)
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where L(F,K
,0) represents a system of the form (14), closed by the optimal controller at the mean
anisotropy level a = 0, and Ξ is of the form

Ξ =
nw‖L(F,K
,0)‖44 − ‖L(F,K
,0)‖42

‖L(F,K
,0)‖42
. (37)

The formulas for ‖ · ‖44 and ‖ · ‖42 are known and can be found in [17].

The final step is to determine the maximum level of mean anisotropy for a specified accuracy
level ε = o(‖L(F,K
,0)‖2), with which theH2-optimal controller approximates the anisotropy-based
controller. This condition takes the form a � amax, where amax satisfies the inequality:∣∣∣∣∣L(F,K
)|||L(F,K
)|||amax

− ‖L(F,K
,0)‖2√
nw

∣∣∣∣∣ < ε
‖L(F,K
,0)‖2√

nw
. (38)

Substituting the asymptotic representation formula (36) for the anisotropic norm into inequal-
ity (38), one obtain

a � amax = ε2
(√

Ξ

nw
+

tr(Σ2)

2q1‖L(F,K
,0)‖22

)−2

. (39)

The described above results of solving the problem of the asymptotic representation of the
anisotropic norm are presented as the following theorem.

Theorem 2. Consider a linear time-invariant system of the form (1)–(3) and a dynamical con-
troller of the form (6) in an output feedback configuration. For small values of the mean anisotropy
a → 0 + 0 of input disturbances, the anisotropic norm of the system closed by the controller (6)
admits the asymptotic representation (36), and the maximum level of mean anisotropy at which
the relative deviation of the anisotropic norm L(F,K
)|||L(F,K
)|||a from the scaled H2-norm of the
closed-loop system does not exceed a specified threshold ε, is determined by formula (39), where q1,
Σ2, and Ξ are defined according to formulas (31), (35), and (37).

Obviously, the maximum mean anisotropy level is determined by the matrices of the original
system. Earlier papers devoted to asymptotic representation of the anisotropy-based filter [18]
and the static anisotropy-based controller [19] have clearly shown that its H2-optimal analogues
sufficiently effectively approximate the anisotropy-based filter and controller, respectively, when
the mean anisotropy of the input disturbance is small.

6. CONCLUSION

The paper addresses the problems of synthesis of a dynamic optimal anisotropy-based controller
for linear discrete stationary systems and the determination of the maximum mean anisotropy
threshold below which the anisotropy-based controller can be approximated by an H2-optimal
controller with a specified level of accuracy. As a result of solving these problems, asymptotic
representations were derived for all matrices of the anisotropy-based controller, the matrices of
the closed-loop system, and its anisotropic norm for small values of mean anisotropy. Future
research may address a similar anisotropy-based control problem for the right asymptotics, deriving
asymptotic representations for the anisotropy-based controller and the closed-loop system norm as
the mean anisotropy tends to infinity.
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