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Abstract—In this paper, the problem of transforming a fuzzy signal by a linear dynamic system
is reduced to studying the problem of bounded solutions for a high-order linear differential
equation with constant coefficients and a fuzzy-valued inhomogeneity on the right-hand side. To
solve the latter, a modification of the Green’s function method for fuzzy problems is developed.
A class of equations with positive coefficients and a nonnegative Green’s function is identified,
and some results on the existence and smoothness of a fuzzy-valued bounded solution on the
entire axis are established for this class of equations. As shown, in the case of a triangular
right-hand side, the solution will also be triangular. Applications to radio circuits with fuzzy
input signals are considered. A relationship between the modal values of fuzzy input and output
signals for a linear dynamic system is derived.
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1. INTRODUCTION

Dynamic models of many applied processes are characterized by uncertainty in input data.
When the probabilistic characteristics of an input signal can be estimated during modeling, the
theory of stochastic processes is used [1].

On the other hand, in recent decades, the interval approach has been widely applied: expert
assessments serve to indicate the bounds of intervals for input variables [2].

Along with the interval approach, researchers actively employ methods of fuzzy mathemat-
ics [3, 4]. If a formal probability distribution is a priori unknown, but it is still possible to specify
some possibilistic estimates, then fuzzy methods are often used. They are characterized by a rather
simple apparatus producing an intuitively understandable result. Furthermore, approaches based
on fuzzy methods allow transforming the possibilistic estimate of the initial data into that of the
results.

Within the fuzzy approach, the membership function of a fuzzy number is used, which charac-
terizes the possibility that the fuzzy number will take a given real value. Thus, the fuzzy approach
contains more information about the existing uncertainty than the interval counterpart. Accord-
ingly, fuzzy modeling yields more meaningful results compared to interval modeling. In practice,
membership functions are constructed using expert assessments.
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This paper considers fuzzy dynamic systems described by linear differential equations of order n
with constant coefficients and fuzzy-valued right-hand sides. Such systems are encountered in
automatic control theory, signal processing (radio engineering), and other applications.

The foundations of the theory of fuzzy differential equations were laid in [5–7] and further
developed in [8–11]. Various applications were reflected in [12, 13]. Among recent works, we
mention [14–17].

The literature considers various definitions of differentiability for fuzzy-valued functions. In this
paper, we use the classical definition of a Hukuhara derivative [5] and the related one of a Seikkala
derivative [7].

As a rule [18], when dealing with linear fuzzy differential equations, the system of equations
for the corresponding α-levels is written and solved. Then it is necessary to check whether the
derivatives of the resulting α-levels define the derivative of the fuzzy-valued function. According to
illustrative examples [18, 19], this is not always the case. Note that the so-called operator method
was developed in [19]: differential equations for α-levels are reduced to integral equations, which
are then solved.

In recent years, the method of the fuzzy Laplace transform has become widespread for solving
linear fuzzy differential equations of high order [20–22]. However, this method does not determine
in advance whether the resulting functions will be smooth (and, accordingly, the desired solutions).

In contrast to conventional approaches, the one proposed below rests on a development of the
Green’s function method, widely used in the theory of ordinary differential equations [23, Chs. 1
and 2; 24], to the case of fuzzy differential equations.

The Green’s function method is fruitful as it gives formulas for the α-levels of fuzzy solutions.
Hence, conditions can be provided under which the Seikkala derivatives of the α-levels will define
the Seikkala derivative of the fuzzy-valued solution. In this paper, such conditions are the positivity
of the coefficients of the dynamic system, the nonnegativity of the corresponding Green’s function,
and the Seikkala differentiability of the fuzzy input signal. These conditions are natural for several
applications. In particular, the positivity of the coefficients is a necessary condition for the sta-
bility of the characteristic polynomial corresponding to the linear dynamic system. Nonnegativity
conditions for Green’s functions are well-known; for example, see [23]. They have been studied in
connection with various applications.

Let us clarify a significant aspect: this paper involves the concept of an ultra-weak fuzzy solution
as a fuzzy-valued function whose α-levels satisfy the equations for the α-levels derived from a given
fuzzy differential equation. Note the following fact established below: the j-times differentiability
of a fuzzy-valued inhomogeneity implies the j-times differentiability of the ultra-weak fuzzy-valued
solution (in the Seikkala sense).

Furthermore, an important issue concerns the form of the output fuzzy signal of a linear dy-
namic system receiving a fuzzy input signal of a given type (e.g., triangular). As shown below,
under definite conditions (the positivity of the system coefficients and the nonnegativity of the
corresponding Green’s function), the output is also a triangular fuzzy signal.

Let us add that fuzzy differential equations with the generalized (Bede–Gal) derivatives have
been recently investigated by several authors [10, 18–22]. The approach developed in this paper is
applicable to this case as well.

As applications, this paper considers models of radio circuits with fuzzy input signals. The
relationship between the modal values of the triangular fuzzy input and output signals of a linear
dynamic system is obtained. The concept of a possibilistic confidence interval is introduced and
used.
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2. FUZZY NUMBERS AND FUZZY-VALUED FUNCTIONS

Let R be the set of all real numbers. A fuzzy number ũ is a subset of R defined by its membership
(possibility) function μũ : R → [0, 1] (e.g., see [3, Ch. 5; 4, Chs. 2 and 3]), which assigns to each
number x ∈ R a number μũ(x) from the interval [0, 1] characterizing the grade of membership of
the element x in the set ũ. Here, 0 and 1 represent the lowest and highest grades of membership
of an element in a given set, respectively. Thus, a fuzzy number ũ can be treated as a pair
{x, μũ(x) : x ∈ R}.

Note that the concept of a membership function is introduced due to the insufficiency of the
probabilistic approach for describing problems with uncertainty. In particular, in many applica-
tions, it is difficult to determine an a priori probability distribution. Here, the membership function
is a certain analog of the probability distribution of a random variable in probability theory. Let
us clarify that the number μũ(x) is interpreted as the possibility of taking the value x for ũ. We
emphasize that, as a rule, expert assessments are used to construct membership functions.

Also note that the membership function of a fuzzy number conceptually generalizes the charac-
teristic function of a set, which can take only two values: 0 and 1 (0 when the element does not
belong to the set and 1 otherwise).

The number xM for which μ(xM ) = maxx∈R μ(x) is called the modal value (or mode) of the
fuzzy number. It is interpreted as the most possible value.

By a common assumption, the support of a fuzzy number ũ (i.e., the set {x : μũ(x) > 0})
is bounded, and its membership function is convex, upper semicontinuous, and normal (i.e.,
supx μũ(x) = 1). Let J denote the set of such fuzzy numbers.

Below, the interval representation of fuzzy numbers will be considered.

As is well known [3, Ch. 5], the α-level intervals (α-levels) of a fuzzy number ũ ∈ J with a
membership function μũ(x) are defined by the relations

uα = {x|μũ(x) � α}, (α ∈ (0, 1]), z0 = cl{x|μũ(x) > 0},

where cl indicates the closure of an appropriate set. According to the accepted assumptions, all
α-levels of a fuzzy number are closed and bounded intervals of the real axis.

We denote by u−α and u+α the left and right bounds of an α-interval, respectively: uα = [u−α , u+α ].
The expressions u−α and u+α are called the left and right α-indices (or, simply, indices) of the fuzzy
number, respectively.

The α-indices of a fuzzy number ũ ∈ J have the following properties:

1. u−α � u+α ∀α ∈ [0, 1].

2. The function u−α is bounded, nondecreasing, left continuous on the interval (0, 1], and right
continuous at the point 0.

3. The function u+α is bounded, nonincreasing, left continuous on the interval (0, 1], and right
continuous at the point 0.

Conversely, a pair of functions on the interval [0, 1] satisfying conditions 1–3 defines a fuzzy
number whose α-interval has the form [u−α , u+α ].

The sum of fuzzy numbers with indices u−α , u+α and v−α , v+α is understood as a fuzzy number with
the α-level intervals [u−α + v−α , u+α + v+α ]. Multiplication by a positive real number c is characterized
by the α-level intervals [cu−α , cu+α ] whereas multiplication by a negative real number c by the α-level
intervals [cu+α , cu

−
α ]. Equality for fuzzy numbers is understood as equality for all the corresponding

α-indices ∀α ∈ [0, 1].

Triangular numbers, for which membership functions have a triangular shape, are widely used
in applications.
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Fig. 1. A triangular fuzzy number.

Example 1. A triangular fuzzy number ũ characterized by a triple of real numbers (a, b, c) with
a < b < c is defined by the membership function

μũ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x− a

b− a
if x ∈ [a, b]

x− c

b− c
if x ∈ [b, c]

0 otherwise.

Its graph generates the triangle shown in Fig. 1.

Note that the number b is the modal value (or mode) of the considered fuzzy number. For this
number, we have μũ(b) = 1. The triangular fuzzy number in Fig. 1 is interpreted as the one near b.

As is well known, in the case of a triangular number, the lower and upper bounds of the α-interval
have the form

u−α = (b− a)α+ a, u+α = −(c− b)α+ c.

Distances between fuzzy numbers can be defined in different ways. Within the interval approach,
the Hausdorff distance between the α-level sets of fuzzy numbers is often used: for fuzzy numbers ũ
and ṽ with α-levels uα and vα, this metric [25] is given by

ρ(ũ, ṽ) = sup
0�α�1

max{|u−α − v−α |, |u+α − v+α |}. (1)

Here, [u−α , u+α ] and [v−α , v+α ] are the α-level intervals of the fuzzy numbers ũ and ṽ, respectively.

Note that by (1), the condition ρ(ũ, ṽ) = 0 is equivalent to the equality of fuzzy numbers ũ and ṽ
(see the definition above).

We fix an interval T of the real axis. A mapping z̃ : T → J will be called a fuzzy-valued function.

Let a fuzzy-valued function z̃(t) ∀ t ∈ T be characterized by a membership function μz̃(t)(x).
For a fixed number α ∈ (0, 1], we consider the α-interval zα(t) = {x ∈ R : μz̃(t)(x) � α} and
z0(α) = cl{x ∈ R : μz̃(t)(x) > 0}. The left and right bounds of the α-interval will be denoted by
z−α (t) and z+α (t), respectively: zα(t) = [z−α (t), z+α (t)].

The continuity of a function z̃(t) in t will be understood in terms of the metric (1) whereas its
boundedness in the following sense: there exists a constant C > 0 such that, for all t ∈ T ,

ρ(z̃(t), 0̃) = sup
0�α�1

max{|z−α (t)|, |z+α (t)|} � C.

Here, 0̃ is the fuzzy number with the α-indices 0±α = 0 ∀α ∈ [0, 1].
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Remark 1. The indices z−α (t) and z+α (t) of a continuous fuzzy-valued function z̃(t) are continuous
in t for any α ∈ [0, 1]. And if z̃(t) is bounded for t ∈ T , then z±α (t) is bounded in t ∈ T for any
α ∈ [0, 1].

The integral of a continuous fuzzy-valued function z̃(t) over an interval T is defined as the fuzzy
number g̃ with the α-level intervals gα =

∫
T zα(t)dt for any α ∈ [0, 1] [6]. The integral is denoted

by
∫
T z̃(t)dt.

Essentially, this is the Aumann integral [26] of a multivalued mapping zα(t). In fact, we have
the interval representation [27]

∫
T

z̃(t)dt =

⎡⎣ ∫
T

z−α (t)dt,
∫
T

z+α (t)dt

⎤⎦ .
Let us proceed to the derivatives of fuzzy-valued functions. Various definitions are used in the

literature. One of the most common rests on the definition of the Hukuhara difference [28]: a set C
is called the Hukuhara difference of sets A and B if A = B + C, and is denoted by A�B.

A function z̃ : T → J is said to be Hukuhara differentiable (H-differentiable) at a point t ∈ T [5]
if, for all sufficiently small h > 0, there exist Hukuhara differences z̃(t+ h)� z̃(t) and z̃(t)� z̃(t− h)
and an element z̃′(t) ∈ J such that

lim
h→0+

ρ

(
z̃(t+ h)� z̃(t)

h
, z̃′(t)

)
= lim

h→0+
ρ

(
z̃(t)� z̃(t− h)

h
, z̃′(t)

)
= 0,

where the distance ρ is given by (1). In this case, the element z̃′(t) is called the H-derivative at
the point t.

A fuzzy-valued function z̃ : T → J is said to be Seikkala differentiable (S-differentiable) at a
point t∈T [7] if its α-indices z−α (t) and z+α (t) are differentiable and their derivatives (z−α )′(t) and
(z+α )

′(t) ∀α∈ [0, 1] form a fuzzy number with the α-interval [z̃′(t)]α = [(z−α )′(t), (z+α )′(t)].

Proposition 1 [8]. Let a fuzzy-valued function z̃(t) be H-differentiable at a point t∈T. Then it
is S-differentiable at the point t∈T.

For example, a fuzzy-valued function z̃(t) of the form z̃(t) = g(t)r̃, where g(t) is a real-valued
differentiable function and r̃∈J is a given fuzzy number, isH-differentiable (hence, S-differentiable)
at a point t provided that g(t) · g′(t) � 0 [9].

Remark 2. By definition, the fuzzy S-derivative is additive and positively homogeneous, i.e.,
for S-differentiable fuzzy-valued functions z̃(t) and w̃(t), we have (z̃(t) + w̃(t))′ = z̃′(t) + w̃′(t) and
(cz̃(t))′ = cz̃′(t) for any real constant c � 0.

The second Seikkala derivative z̃′′(t) at a point t∈T is defined as the S-derivative of the
first derivative, i.e., as the fuzzy number z̃′′(t) with the left (z−α )′′(t) and right (z+α )

′′(t) α-index
∀α∈ [0, 1].

Higher-order S-derivatives are defined by analogy.

3. TRANSFORMATION OF A CONTINUOUS FUZZY SIGNAL
BY A LINEAR DYNAMIC SYSTEM

A device is called a linear dynamic system if the relationship between its input and output
is described by a differential equation of order n with constant coefficients. If fuzzy signals f̃(t)
and z̃(t) (t∈T ) are observed at the input and output, respectively, then the linear dynamic system
is described by a fuzzy differential equation of the form

anz̃
(n)(t) + an−1z̃

(n−1)(t) + · · ·+ a1z̃
′(t) + a0z̃(t) = f̃(t). (2)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



928 KHATSKEVICH

Here, the coefficients ai (i = 0, . . . , n) are real numbers, f̃(t) is an input fuzzy-valued function, and
the derivatives of a fuzzy-valued function z̃(t) are understood as S-derivatives.

Below, the interval T is taken as T = (−∞,∞).

Consider the problem of bounded solutions for a real differential equation with constant coeffi-
cients of the form

anx
(n)(t) + an−1x

(n−1)(t) + · · ·+ a1x
′(t) + a0x(t) = f(t), t∈ (−∞,∞). (3)

A function G(t) is called a Green’s function in the problem of bounded solutions of equation (3)
if it has the following properties (for details, e.g., see [23, Ch. 1, § 4; 24]):

1) G(t) is continuously differentiable (n − 2) times for all t, the nth and (n− 1)th derivatives
are continuously differentiable for all t except t = 0, and

G(n−1)(+0)−G(n−1)(−0) =
1

an
.

2) At all points except t = 0, the function G(t) satisfies the homogeneous differential equation
corresponding to (3) (with f(t) ≡ 0).

3) The Green’s function and its derivatives are estimated as

|G(i)(t)| �Me−γ|t| (i = 0, 1, . . . , n, −∞ < t < +∞),

where M and γ are some positive constants.

Proposition 2 [23, Ch. 1; 24]. Let the roots of the characteristic equation anλ
n + an−1λ

n−1 +
· · ·+ a1λ+ a0 = 0 contain no points on the imaginary axis. Then for any continuous function f(t)
bounded on the entire real axis, equation (3) has a unique bounded solution on the entire real axis
given by

x(t) =

∞∫
−∞

G(t− s)f(s) ds, (4)

where G(t) is the Green’s function in the problem of bounded solutions of equation (3).

Moreover,

x(j)(t) =

∞∫
−∞

G
(j)
t (t− s)f(s) ds, j = (0, 1, . . . , n− 1),

x(n)(t) = f(t) +

∞∫
−∞

G
(n)
t (t− s)f(s) ds.

We emphasize that the convergence of the improper integral (4) and the corresponding integrals
for the derivatives is ensured by the exponential estimates of the Green’s function and its derivatives,
as well as by the continuity and boundedness of the function f(t) on the entire real axis.

Note that in the problem of bounded solutions of equation (3), the Green’s function has a known
general form; for example, see [23, Ch. 2, § 8].

Proposition 3 [23, Ch. 2]. Under the hypotheses of Proposition 2, let all roots of the characteristic
equation lie in the left half-plane (Reλi < 0, i = 1, . . . , n). Then the bounded solution of equation (3)
is asymptotically Lyapunov stable. Moreover, the solution (4) takes the form

x(t) =

t∫
−∞

G(t− s)f(s) ds. (5)
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Here, the Green’s function is G(σ) =

{
K(σ) for σ � 0
0 for σ < 0,

with K(σ) being the Cauchy function that

represents the solution of the homogeneous differential equation corresponding to equation (3) (with
f(t) ≡ 0) and satisfies the initial conditions

K(j)(0) = 0, j = 0, 1, . . . , n− 2, K(n−1)(0) = 1.

Now we address the case of fuzzy input and output signals. In some cases, the representation (4)
can be used to write explicitly the α-indices of the fuzzy signal at the output of the dynamic
system (2).

A strong solution of the fuzzy differential equation (2) is an n times continuously S-differentiable
fuzzy-valued function satisfying (2) on the corresponding interval.

Lemma 1. Let the coefficients of the fuzzy differential equation (2) be positive: ai > 0,
i = 0, . . . , n. If a fuzzy-valued function z̃(t) is a strong solution of equation (2) on the interval T,
then the corresponding α-indices z±α (t) for all α∈ [0, 1] and t∈T satisfy the ordinary differential
equations

an(z
−
α )

(n)(t) + an−1(z
−
α )

(n−1)(t) + · · ·+ a1(z
−
α )

′(t) + a0z
−
α (t) = f−α (t), (6)

an(z
+
α )

(n)(t) + an−1(z
+
α )

(n−1)(t) + · · ·+ a1(z
+
α )

′(t) + a0z
+
α (t) = f+α (t). (7)

Indeed, we substitute the strong solution z̃(t) of the fuzzy differential equation into (2). Recall
that the equality of fuzzy numbers means the equality of all the corresponding α-indices. Hence, by
the rules of interval arithmetic, the positivity of the coefficients ai, the definition of a fuzzy Seikkala
derivative, and Remark 2, for all α∈ [0, 1] and t∈ (−∞,∞) equation (2) implies equalities (6)
and (7).

Lemma 2. Let the coefficients of the fuzzy differential equation (2) be positive, (ai > 0,
i = 0, . . . , n), and let the roots of the characteristic equation anλ

n + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

contain no points on the imaginary axis. In addition, let the fuzzy-valued function f̃(t) on the
right-hand side of equation (2) be continuous and bounded in the metric (1) for t∈ (−∞,∞). Then
for all α∈ [0, 1] there exists a unique bounded solution for each of the two equations (6), (7) on the
entire real axis, and they can be represented as

z−α (t) =
∞∫

−∞
G(t− s)f−α (s)ds, z+α (t) =

∞∫
−∞

G(t− s)f+α (s)ds. (8)

Indeed, due to the hypotheses and Remark 1, for all α∈ [0, 1] the functions f±α (t) are continuous
and bounded on the entire real axis. Then, by Proposition 2, for all α∈ [0, 1] the solutions of
equations (6), (7) exist, are unique, and equalities (8) hold.

Lemma 3. Under the hypotheses of Lemma 2, let the Green’s function G in problem (3) be
nonnegative. Then for all t∈ (−∞,∞) the expressions (8) satisfy conditions 1–3 for the indices of
fuzzy numbers (see Section 2).

Proof. We fix t∈ (−∞,∞). By the hypothesis, f−α (s) � f+α (s) ∀ s∈ (−∞,∞). Then, due to the
nonnegativity of the Green’s function,

G(t− s)f−α (s) � G(t− s)f+α (s).

Therefore, based on (8) and the monotonicity of the integral, we have z−α (t) � z+α (t). That is, for
all t∈ (−∞,∞) the expressions (8) satisfy condition 1 for the α-indices of fuzzy numbers (see
Section 2).
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Now we fix an arbitrary t∈ (−∞,∞) and show that the function z−α (t) is nondecreasing
in α. Let α1, α2 ∈ [0, 1] and α1 < α2. By the hypothesis, the condition f−α1

(s) � f−α2
(s) holds

for all s∈ (−∞,∞). Then, due to the nonnegativity of the Green’s function, G(t− s)f−α1
(s) �

G(t− s)f−α2
(s). Consequently, in view of the monotonic property of the integral, we obtain

z−α1
(t) � z−α2

(t), i.e., the function z−α (t) is monotonically nondecreasing in α. The monotonic non-
increase of the function z+α (t) in α can be established by analogy.

By the hypothesis, the function f̃(t) is bounded in t for t∈ (−∞,∞) in the metric (1). This
means the existence of a constant C > 0 such that ρ(f̃(t), 0̃) � C for any t∈ (−∞,∞); consequently,
sup0�α�1 |f±α (t)| � C. Then according to (8), for fixed t and all α∈ [0, 1], we have

|z±α (t)| �
∞∫

−∞
|G(t− s)||f±α (s)|ds � C

∞∫
−∞

|G(t− s)|ds,

which ensures the boundedness of the expressions (8) in α∈ [0, 1] for each t∈ (−∞,∞).

For fixed t, the left continuity of the functions z±α (t) in α∈ (0, 1] is immediate from the following
consideration. Let us fix α0 ∈ [0, 1) and consider the equality

lim
α→α0−0

z±α (t) =
∞∫

−∞
G(t− s) lim

α→α0−0
f±α (s)ds =

∞∫
−∞

G(t− s)f±α0
(s)ds = z±α0

(t).

Here, we take advantage of the representation (8), the possibility of passing to the limit under
the sign of an absolutely convergent improper integral, and the left continuity of the α-indices
f±α (s) of the fuzzy-valued function f̃(s) in α∈ (0, 1] for arbitrary s∈ (−∞,∞). The right continuity
of the functions z±α (t) in α at α = 0 is verified similarly. In other words, z±α (t) satisfy conditions 2
and 3 of Section 2 as well.

Thus, the expressions z±α (t) (8) satisfy all the conditions for the α-levels of fuzzy numbers (see
Section 2).

Let us emphasize the significance of Lemma 3. According to illustrative examples [18, 19],
the solutions of systems for the α-indices of linear fuzzy differential equations are not always the
α-indices of some fuzzy-valued function.

Theorem 1. Under the hypotheses of Lemma 3, the fuzzy-valued function generated by the α-in-
dices (8) ∀ t∈ (−∞,∞) is characterized by the representation

z̃(t) =

∞∫
−∞

G(t− s)f̃(s)ds. (9)

Indeed, by Lemmas 1–3 and the definition of the integral of a fuzzy-valued function, for all
α∈ [0, 1] the α-indices satisfy the relations⎛⎝ ∞∫

−∞
G(t− s)f̃(s)ds

⎞⎠−

α

=

∞∫
−∞

G(t− s)f−α (s)ds,

⎛⎝ ∞∫
−∞

G(t− s)f̃(s)ds

⎞⎠+

α

=

∞∫
−∞

G(t− s)f+α (s)ds.

In view of (8), these relations imply the representation (9).
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Theorem 2. Under the hypotheses of Theorem 1, the fuzzy-valued function z̃(t) (9) is continuous
and bounded in t on the entire real axis.

Proof. Let us fix real numbers t1 and t2. Due to (8),

z±α (t1)− z±α (t2) =
∞∫

−∞
(G(t1 − s)−G(t2 − s))f±α (s)ds

and, consequently,

|z±α (t1)− z±α (t2)| �
∞∫

−∞
|G(t1 − s)−G(t2 − s)||f±α (s)|ds.

Note that G(t1−s)−G(t2−s)=G′
t(τ−s)(t1−t2), where τ ∈ ((1−θ)t1+θt2) and θ∈ (0, 1).

Therefore, by the previous considerations,

|z±α (t1)− z±α (t2)| �
⎛⎝ ∞∫

−∞
|G′

t(τ − s)||f±α (s)|ds
⎞⎠ |t1 − t2| � C|t1 − t2|

∞∫
−∞

|G′
t(τ − s)|ds,

where the constant C > 0 characterizes the boundedness condition: ρ(f̃(t), 0̃) � C ∀ t∈ (−∞,∞).

Next, we utilize the exponential estimate of the derivative of the Green’s function
|G′

t(t)| �Me−γ|t| (see property 3 of Green’s functions in Section 3). As a result,

|z±α (t1)− z±α (t2)| �MC|t1 − t2|
∞∫

−∞
e−γ|τ−s|ds = 2

MC

γ
|t1 − t2|.

Therefore, by the definition of the metric (1), we obtain ρ (z±α (t1), z±α (t2)) � 2MC
γ |t1 − t2|, which

implies the continuity of the fuzzy-valued function z̃(t) (9).

Let us show the boundedness of the fuzzy-valued function z̃(t) (9) for t∈ (−∞,∞). By definition,

ρ(z̃(t), 0̃) = sup
0�α�1

|z±α (t)|.

Moreover, according to (8),

|z±α (t)| �
∞∫

−∞
|G(t− s)||f±α (s)|ds �

⎛⎝ ∞∫
−∞

|G(t− s)|ds
⎞⎠ ρ(f̃(t), 0̃) � 2

Mρ(f̃(t), 0̃)

γ
.

Here, the exponential estimate of the Green’s function is used again. Thus, ρ(z̃(t), 0̃) �
2Mρ(f̃ (t),0̃)

γ � 2MC
γ ∀ t∈ (−∞,∞).

We call a continuous fuzzy-valued function z̃(t) an ultra-weak solution of the fuzzy differential
equation (2) if its α-indices z±α (t) ∀α∈ [0, 1] are n times continuously differentiable with respect
to t and satisfy equations (6) and (7) on the corresponding time interval. A weak solution of the
fuzzy differential equation (2) is a fuzzy-valued function satisfying the integro-differential or integral
fuzzy equation corresponding to (2) (for example, see [19]). Such solutions will not be considered
in this paper. The following result is true.

Theorem 3. Under the hypotheses of Theorem 1, there exists a unique ultra-weak solution of the
fuzzy differential equation (2) that is bounded on the entire real axis.
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Fig. 2. The graphical representation of an ultra-weak fuzzy-valued solution in interval form.

Existence is ensured by Theorems 1 and 2. Let us establish uniqueness. Assume on the contrary
that z̃(t) and w̃(t) are two different ultra-weak solutions of equation (2) that have boundedness on
the entire real axis. Then the indices z−α (t) and w−

α (t) are bounded solutions of equation (6). There-
fore, by Proposition 2, z−α (t) = w−

α (t) for all α∈ [0, 1] and t∈ (−∞,∞). Similarly, z+α (t) = w+
α (t)

for all α∈ [0, 1] and t∈ (−∞,∞). But in this case, according to the equality criterion of fuzzy
numbers, we have z̃(t) = w̃(t) for all t∈ (−∞,∞). This obvious contradiction concludes the proof
of the theorem.

Theorem 4. Under the hypotheses of Theorem 1, let all roots of the characteristic equation lie
in the left half-plane. Then there exists a unique ultra-weak solution of the fuzzy differential equa-
tion (2) that is bounded on the entire real axis, and this solution is given by

z̃(t) =

t∫
−∞

G(t− s)f̃(s)ds. (10)

This fact is immediate from Theorem 1 and Proposition 3.

Figure 2 provides the geometric illustration of a fuzzy-valued solution.

We say that a fuzzy-valued function f̃ : R → J is triangular, or has the triangular type
(a(t), b(t), c(t)), if there exist continuous real-valued functions a(t), b(t), and c(t) on the entire
real axis such that a(t) < b(t) < c(t) ∀ t∈R and the membership functions μf̃(t)(x) ∀ t∈R have the
triangular form

μf̃(t)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x− a(t)

b(t)− a(t)
if x∈ [a(t), b(t)]

x− c(t)

b(t)− c(t)
if x∈ [b(t), c(t)]

0 otherwise.

(Also, see Example 1.)

In particular, a fuzzy-valued function of the form f̃(t) = g(t)r̃, where g(t) is a continuous and
nonnegative real-valued function and r̃∈ J is a given triangular fuzzy number, has triangular type
as well.

Consider a special case when a triangular fuzzy signal is supplied to the input of a dynamic
system described by equation (2). The following result is valid.
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Theorem 5. Under the hypotheses of Theorem 1, let the right-hand side of equation (2), i.e.,
the fuzzy-valued function f̃(t) ∀ t∈ (−∞,∞), have the triangular type (a(t), b(t), c(t)). Then the
bounded ultra-weak solution (9) of equation (2) on the entire real axis has the triangular type
(
∫∞
−∞G(t− s)a(s)ds,

∫∞
−∞G(t− s)b(s)ds,

∫∞
−∞G(t− s)c(s)ds) ∀ t∈ (−∞,∞).

Indeed, by the hypothesis, f̃(t) is generated by a triple of continuous and bounded functions a(t),
b(t), c(t) on the entire axis, with a(t) < b(t) < c(t) ∀ t∈ (−∞,∞). Then, according to Example 1,
for all α∈ [0, 1] and t∈ (−∞,∞) we have

f−α (t) = (b(t)− a(t))α+ a(t), f+α (t) = (b(t)− c(t))α + c(t).

Therefore, due to (8), it follows that

z−α (t) = (B(t)−A(t))α +A(t), z+α (t) = (B(t)− C(t))α+ C(t),

where

A(t) =

∞∫
−∞

G(t− s)a(s)ds, B(t) =

∞∫
−∞

G(t− s)b(s)ds, C(t) =

∞∫
−∞

G(t− s)c(s)ds.

Thus, z̃(t) ∀ t∈ (−∞,∞) is a fuzzy number of the triangular type (A(t), B(t), C(t)).

A similar result holds for trapezoidal fuzzy-valued functions f̃(t) [3, Ch. 5]: the solution z̃(t)
will also have the trapezoidal type.

Let us find conditions under which the bounded ultra-weak solution (10) of the fuzzy differential
equation (2) will be S-differentiable with respect to t.

Under the hypotheses of Proposition 3, the following representation will be used below for the
bounded solution of the scalar differential equation (3):

x(t) =

∞∫
0

G(σ)f(t− σ)dσ. (11)

It is obtained from (5) by substituting t− s = σ.

Theorem 6. Under the hypotheses of Theorem 4, let the fuzzy-valued function f̃(t) be Seikkala
differentiable for all t∈ (−∞,∞), and let its S-derivative f̃ ′(t) be continuous and bounded for
t∈ (−∞,∞). Then the bounded ultra-weak solution (10) of the fuzzy differential equation (2) is
S-differentiable for t∈ (−∞,∞) and

z̃′(t) =
∞∫
0

G(σ)f̃ ′t(t− σ)dσ. (12)

Indeed, due to (6), (7), and (11), for the α-indices of the ultra-weak solution z̃(t) of the fuzzy
differential equation (2) we write

z±α (t) =
∞∫
0

G(σ)f±α (t− σ)dσ. (13)

Similar to Lemma 3, they generate the fuzzy-valued function

z̃(t) =

∞∫
0

G(σ)f̃(t− σ)dσ. (14)
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By the hypothesis, for all α∈ [0, 1] the α-indices f±α (t) are differentiable with respect to
t∈ (−∞,∞), and the derivatives (f±α )′t(t) are continuous and bounded scalar functions on the
entire real axis. Then, in view of (13), for the derivatives of the α-indices z±α (t) with respect to t
we have

(z±α )
′(t) =

∞∫
0

G(σ)(f±α )′t(t− σ)dσ. (15)

(Here, differentiation is performed with respect to the parameter under the sign of an absolutely
convergent integral.)

By the nonnegativity of the Green’s function (similar to the proof of Lemma 3), for each t the
expressions (15) are the α-indices of the S-derivative z̃′(t). Therefore, used jointly with Theorem 1,
formulas (14) and (15) imply (12).

Then, by Theorem 3 on the uniqueness of the bounded ultra-weak solution of equation (2) on
the entire real axis, based on (10) and (14) we obtain⎛⎝ t∫

−∞
G(t− s)f̃(s)ds

⎞⎠′

t

=

⎛⎝ ∞∫
0

G(σ)f̃ (t− σ)dσ

⎞⎠′

t

=

∞∫
0

G(σ)f̃ ′t(t− σ)dσ.

And the desired conclusion follows.

Corollary 1. Under the hypotheses of Theorem 6, the fuzzy derivative (12) is continuous and
bounded for t∈ (−∞,∞).

This fact is established by analogy with Theorem 2.

Proposition 4. Under the hypotheses of Theorem 4, let the fuzzy-valued function f̃(t) be twice
S-differentiable, and let the first f̃ ′t(t) and second f̃ ′′t (t) S-derivatives be continuous and bounded
for t∈ (−∞,∞). Then the bounded ultra-weak solution z̃(t) (14) on the entire real axis is twice
S-differentiable for t∈ (−∞,∞).

Indeed, due to equality (15), for all α∈ [0, 1] we write the following relation for the α-indices
z±α (t) :

(z±α )
′′(t) =

⎛⎝ ∞∫
0

G(σ)(f±α )′t(t− σ)dσ

⎞⎠′

=

∞∫
0

G(σ)(f±α )′′t (t− σ)dσ.

Therefore, based on the nonnegativity of the Green’s function, for all t∈ (−∞,∞) the integrals
on the right-hand side generate a fuzzy number z̃′′(t), i.e., the second S-derivative of z̃(t).

Corollary 2. Under the hypotheses of Proposition 4, the derivatives z̃′(t) and z̃′′(t) are continuous
and bounded for t∈ (−∞,∞).

Corollary 3. Under the hypotheses of Theorem 4, let the fuzzy-valued function f̃(t) be continu-
ously S-differentiable j > 2 times, and let all its derivatives up to order j be bounded on the entire
real axis. Then the bounded ultra-weak solution (14) of the fuzzy differential equation (2) is a
continuously j times S-differentiable fuzzy-valued function.

Remark 3. According to Proposition 2, the derivatives of the α-indices z±α (t) (8) are represented
as

(z±α )
(j)
t (t) =

∞∫
−∞

G
(j)
t (t− s)f±α (s)ds (j = 1, . . . , n− 1).
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However, the derivatives G
(j)
t (t− s) of the Green’s function generally do not preserve sign (see

Examples 2 and 3 below). So, it is more convenient to prove the S-differentiability of the fuzzy-
valued solution using the representation (13).

In many applications, the fuzzy-valued solution z̃(t) must be nonnegative, which means z−α (t) � 0
∀α∈ [0, 1], ∀ t � 0. The following result is true.

Corollary 4. Under the hypotheses of Theorem 1, let the fuzzy-valued inhomogeneity f̃(t) of
equation (2) be nonnegative, i.e., f−α (t) � 0 ∀α∈ [0, 1], ∀ t∈ (−∞,∞). Then the bounded ultra-
weak solution of equation (2) is nonnegative on the entire real axis.

This fact is immediate from the representation (9) due to the assumed nonnegativity of the
Green’s function G(t− s) and f−α (s).

In particular, for a triangular fuzzy number (a, b, c), nonnegativity means that a � 0.

4. EXAMPLES OF RADIO CIRCUITS WITH FUZZY INPUT SIGNALS

Here, we consider some applications of the results of Section 3 to elementary radio circuits (e.g.,
see [29]) with fuzzy input signals.

Example 2. Consider an RC filter, i.e., a radio circuit shown in Fig. 3, where R and C are
resistance and capacitance, respectively.

This filter is a dynamic system described by the first-order differential equation with constant
coefficients

z̃′(t) + βz̃(t) = ỹ(t), β =
1

RC
> 0. (16)

Let a continuous fuzzy signal ỹ(t) bounded on the entire real axis be supplied to the system input.

We determine the characteristics of the bounded fuzzy output signal z̃(t) of the RC filter. Note
that in the problem of bounded solutions of the scalar equation x′ + βx = y(t) with β > 0, the
Green’s function can be represented as

G1(t) =

{
e−βt for t � 0
0 for t < 0.

Thus, G1(t) � 0 for all t∈ (−∞,∞).

Proposition 5. Let the coefficient β of the fuzzy differential equation (16) be positive, and let
the right-hand side ỹ(t) be a continuous fuzzy-valued function bounded for t∈ (−∞,∞). Then the
continuous fuzzy ultra-weak signal at the output of the dynamic system (16) is bounded on the entire

Ry(t)~ z(t)~

C

Fig. 3. An RC filter.
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Fig. 4. A series oscillatory circuit.

real axis and has the form

z̃(t) =

t∫
−∞

e−β(t−s)ỹ(s)ds. (17)

This fact follows from Theorem 4.

Proposition 6. Under the hypotheses of Proposition 5, let the fuzzy-valued function ỹ(t) on the
right-hand side of equation (16) have triangular type for t � 0. Then the solution (17) is also
triangular for all t � 0.

This fact is immediate from the representation (17) and Theorem 5.

The following case was considered in [9]: the right-hand side of equation (16) has the form
ỹ(t) = r̃f(t), where r̃∈ J is a fuzzy number, and the function f : R → R is almost periodic and
f(t) � 0 ∀ t∈R. As established in this case, the condition f(t) >

∫ t
−∞ e−β(t−s)f(s)ds ensures the

H-differentiability of the solution (17) of the fuzzy differential equation (16).

This condition imposes an additional constraint on either the range of t or the relationship
between the parameters β and f(t) of equation (16).

The next proposition, following from Theorem 6, ensures the S-differentiability of the fuzzy-
valued solution of equation (16).

Proposition 7. Under the hypotheses of Proposition 5, let the fuzzy-valued right-hand side ỹ(t)
of equation (16) be continuously S-differentiable for all t∈ (−∞,∞), and let the S-derivative
ỹ′(t) be bounded on the entire real axis. Then the bounded ultra-weak solution (17) is continu-
ously S-differentiable for all t∈ (−∞,∞) and satisfies the fuzzy differential equation (16) for all
t∈ (−∞,∞).

Thus, under the hypotheses of Proposition 7, formula (17) gives a bounded strong solution of
the fuzzy equation (16).

Example 3. Consider a series oscillatory circuit, i.e., a radio circuit in Fig. 4, where R, C, and L
are resistance, capacitance, and inductance, respectively.

This oscillatory circuit is a dynamic system described by the second-order differential equation
with constant coefficients

a2z̃
′′(t) + a1z̃

′(t) + a0z̃(t) = ỹ(t), a2 = L � 0, a1 = R > 0, a0 =
1

RC
> 0. (18)

Let a continuous fuzzy signal ỹ(t) bounded on the entire real axis be supplied to the system input
(see Fig. 4).

We determine the characteristics of the bounded fuzzy output signal z̃(t) of this circuit.
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Theorem 7. Let the coefficients of the fuzzy differential equation (18) satisfy the conditions
ai > 0 (i = 0, 1, 2) and a21 − 4a0a2 > 0. In addition, let the input signal ỹ(t) be a continuous fuzzy-
valued function bounded for t∈ (−∞,∞). Then the fuzzy ultra-weak signal z̃(t) at the output of the
dynamic system (18) is represented as

z̃(t) =

t∫
−∞

G2(t− s)ỹ(s)ds, (19)

where G2(t) is the Green’s function in the problem of bounded solutions of the real differential
equation a2x

′′ + a1x
′ + a0x = f(t) with the continuous real-valued function f(t) bounded on the

entire real axis, which has the form

G2(t) =

{
(eλ2t − eλ1t)(λ2 − λ1)

−1 for t � 0
0 for t < 0.

In this formula, λ1 and λ2 are distinct negative real-valued roots of the characteristic equation
a2λ

2 + a1λ+ a0 = 0 (λ1 < λ2 < 0).

Indeed, note that G2(t) � 0 ∀ t∈ (−∞,∞). Then, by Theorem 4, equality (19) holds for the
fuzzy-valued signal z̃(t) at the system output.

Moreover, the expression (19) is an ultra-weak solution of the fuzzy differential equation (18).

Proposition 8. Under the hypotheses of Theorem 7, let the right-hand side ỹ(t) of (18) be a
triangular fuzzy number for all t∈ (−∞,∞). Then the bounded ultra-weak solution (19) of the fuzzy
differential equation (18) on the entire real axis is also a triangular fuzzy number for t∈ (−∞,∞).

This fact follows from the representation (19) and Theorem 5.

Let us find conditions under which the bounded ultra-weak solution (19) of the fuzzy differential
equation (18) will be an S-differentiable fuzzy-valued function.

Theorem 8. Under the hypotheses of Theorem 7, let the fuzzy-valued function ỹ(t) be continu-
ously S-differentiable for all t∈ (−∞,∞), and let the S-derivative ỹ′(t) be bounded for t∈ (−∞,∞).
Then the bounded ultra-weak solution z̃(t) (19) of the fuzzy differential equation (18) is S-differen-
tiable for all t∈ (−∞,∞).

This fact is immediate from Theorem 6.

Moreover, another result is valid.

Theorem 9. Under the hypotheses of Theorem 7, let the right-hand side ỹ(s) of equation (18)
be twice continuously S-differentiable, and let the S-derivatives ỹ′(t) and ỹ′′(t) be bounded for
t∈ (−∞,∞). Then the bounded ultra-weak solution z̃(t) (19) is also twice continuously S-differen-
tiable and satisfies the fuzzy differential equation (18).

This fact follows from Proposition 4.

Thus, under the hypotheses of Theorem 9, formula (19) provides a bounded strong solution of
the fuzzy equation (18).

5. ON THE RELATIONSHIP BETWEEN MODAL VALUES
OF FUZZY INPUT AND OUTPUT SIGNALS

The peculiarity of considering fuzzy input signals in radio engineering (when the a priori prob-
ability distribution of the input signal is unknown) consists in identifying the most possible input
signal. After that, the system parameters are used to characterize the most possible fuzzy output
signal.
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Fig. 5. A possibilistic confidence interval for the modal value of a fuzzy input signal.

In probability theory, for the corresponding problem, the term “possible” would have to be
replaced by the term “probable.” This is especially clear for triangular fuzzy input and output
signals (see Example 1). For instance, let a triangular fuzzy input signal (a(t), b(t), c(t)) be supplied
to the input of a radio circuit described by the fuzzy differential equation (2). According to
Example 1, for each t, b(t) is its modal value. Based on Theorem 5, we arrive at the following
result.

Proposition 9. Under the hypotheses of Theorem 5, the modal value of the triangular fuzzy signal
at the output of the linear dynamic system (2) is determined from the modal value b(t) of its
triangular fuzzy input signal (a(t), b(t), c(t)) by the formula B(t) =

∫∞
−∞G(t− s)b(s)ds, with the

designations of Theorem 5.

An important branch of mathematical statistics is the theory of confidence intervals; for example,
see [30, Ch. 2]. By analogy, let us discuss the problem of possibilistic confidence intervals for the
values of fuzzy input and output signals.

Suppose that for an arbitrary t � 0, experts have modeled a fuzzy input signal with a possi-
bilistic confidence level α∗ ∈ [0.7, 1) as triangular with a membership function μt(x) having support
(a(t), c(t)). Moreover, for a given t � 0, let the modal value lie in a possibilistic confidence interval
[d1(t), d2(t)] with the possibilistic confidence level α∗, where [d1(t), d2(t)] ⊂ (a(t), c(t)) (Fig. 5).

Remark 4. Under the above assumptions, the modal value of the triangular fuzzy signal with
the possibilistic confidence level α∗ has the form

b(t) =
1

α∗
(d1(t)− (1− α∗)a(t)).

Indeed, according to Fig. 5, the point m with coordinates (b, 1) lies on the straight line passing
through the points with coordinates (a, 0) and (d1, α∗); hence, this line is described by the equation
μ
α∗ = x−a

d1−a .
Consider the issue regarding the possibilistic confidence interval of the modal value of the fuzzy

output signal with the same possibilistic confidence level α∗.
Proposition 10. Under the hypotheses of Theorem 5, let a triangular fuzzy signal with support

(a(t), c(t)) be supplied, with a possibilistic confidence level α∗ ∈ [0.7, 1), to the input of the dynamic
system described by differential equation (2), and let its modal value for an arbitrary t � 0 and this
possibilistic confidence level lie in a possibilistic confidence interval [d1(t), d2(t)]. Then the possibilis-
tic confidence interval for the modal value of the fuzzy output signal has the form [D1(t),D2(t)],
where D1(t) = (1− α∗)A(t) + α∗B(t), D2(t) = α∗B(t) + (1− α∗)C(t), and A(t), B(t), and C(t)
are given by Theorem 5. Moreover, the modal value B(t) is determined using the value b(t) from
Remark 4.
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Fig. 6. A possibilistic confidence interval for the modal value of a fuzzy output signal.

Indeed, by Theorem 5 and Remark 4, the fuzzy output signal has the triangular type
(A(t), B(t), C(t)). Then, according to Fig. 6, we obtain the possibilistic confidence interval
[D1(t),D2(t)] for the modal value of the fuzzy output signal for fixed t > 0 with a possibilistic
confidence level α∗.

According to Fig. 6, D1 = (1− α∗)A+ α∗B is the abscissa of the intersection point of the line
[A,M ], described by the equation μ = (x−A)(B −A)−1 (see Example 1), and the line μ = α∗. In
turn, the point D2 = α∗B + (1− α∗)C is the abscissa of the intersection point of the line [M,C],
described by the equation μ = (x− C)(B − C)−1, and the line μ = α∗.

Note that for practical use of the results of Sections 4 and 5, it is convenient to model the fuzzy
input signal in the form ỹ(t) = r̃g(t), where r̃∈ J and g(t) are a triangular fuzzy number and a
real-valued function, respectively. Alternatively, one should choose a fuzzy signal model with ỹ(t)
for t � 0 and ỹ(t) = ỹ(0) for t � 0.

6. CONCLUSIONS

The main results of this paper concern fuzzy dynamic systems described by linear differential
equations of order n with constant coefficients under the assumption of the continuity and bound-
edness of a fuzzy input signal (Section 3). They are based on a development of the Green’s function
method for the case of fuzzy differential equations. An important part of the research has been
devoted to the smoothness of solutions. Also note the above result on the triangular type of the
fuzzy output signal of a dynamic system receiving a fuzzy signal at its input.

The applications in Section 4 have illustrated the use of the general theoretical constructs in
radio circuits with fuzzy input signals. They further refine some results of Section 3 for the case
of dynamic systems described by first- and second-order differential equations. Section 5 plays a
significant role as well: by analogy with confidence intervals of mathematical statistics, the concept
of a possibilistic confidence interval has been introduced and used therein.

The approach presented in this paper is an alternative to the conventional analysis of linear
dynamic systems with constant coefficients, which involves the frequency response, the direct and
inverse Fourier transform, and the Laplace transform.

Note that the developed approach can be extended to the case of periodic and almost periodic
signals and can be fruitful in the study of boundary value problems for fuzzy differential equations.

Many results can be modified to the case of generalized fuzzy derivatives.
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