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Abstract—A method for designing hybrid nonlinear control systems for plants with differen-
tiable nonlinearities and a measurable state vector is developed based on continuous quasilinear
models and quasilinear discretization. The hybrid system is designed with an increased control
discretization period and zero static error for a reference signal. A solution of the control de-
sign problem exists if the nonlinear plant satisfies state and output controllability criteria and
some additional conditions. The stability of the hybrid system is proven using the Aizerman–
Pyatnitsky “technical” approach and the Lyapunov function method. The effectiveness of the
design method proposed for hybrid control systems is illustrated by a numerical example. This
method can be applied to create hybrid control systems for different-purpose nonlinear plants.
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1. INTRODUCTION

Recently, significant attention has been paid to the development of methods for designing hybrid
nonlinear control systems, which are characterized by continuous and discrete nonlinear dynamics,
requiring the use of differential and difference equations [1–3]. In reality, such systems represent
a combination of continuous (hardware) and digital (programmable) elements [4]. In known pub-
lications, a wide variety of systems are referred to as hybrid.

Hybrid systems of the first class include either one nonlinear plant operating in switched modes
or several plants that must be switched on in a certain sequence. In this case, difference equations
describe the digital part, which ensures the switching of the continuous part elements [1, 5–8].
To create hybrid nonlinear optimal control systems, the Hybrid Necessary Principle was used in [1].
This principle allows considering the constraints due to the switching strategy. In [5], the same
goal was achieved by applying the Hamilton–Jacobi–Bellman equation and the spectral Galerkin
method.

The hybrid nature of the control system considered in [6] is due to the switching of several
continuous subsystems, while that of the one created in [7] is due to the switching of its operating
modes. A quadcopter with in-flight switchable morphology was considered in [8]. Its hybrid control
system includes a nonlinear PID controller and a discrete controller that stabilize the control system
for all possible quadcopter configurations.

The second class of hybrid systems seems to be more defined [2, 3]. Here, a controlled continu-
ous plant is equipped with a discrete (digital) controller. The main problem is ensuring the stable
operation of the hybrid system with a relatively large period of the digital controller’s operation.
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This necessity arises when creating control systems for inertial plants, such as baking ovens, in-
cubators, greenhouses, etc., as well as plants operating under harsh temperature conditions where
controller cooling is difficult. Due to the large period, the conditions of the Kotelnikov theorem
fail, violating the stability of the system, which holds in classical cases with a sufficiently small
discretization period. Therefore, various methods are employed to create hybrid control systems of
this class [2, 3, 9–12]. For example, predictive control based on quadratic and integer programming
was used in [2]. The effectiveness of the approach was illustrated by an example of designing a
hybrid control system for a plant with three spherical tanks.

A hybrid terminal control method with an identified model of the controlled plant was developed
in [3]. A two-layer artificial neural network was proposed for identifying nonlinear plants. For
nonlinear plants with delay and parametric uncertainty, hybrid control systems were designed
in [9–11] using the hyperstability criterion, the L-dissipativity condition, and a filter-corrector.
The discrete control was obtained by discretizing a continuous one. The problem of tracking a
given trajectory by a quadcopter under uncertainty was considered in [12]. A hybrid autopilot
implementing predictive and fuzzy control was applied in the tracking system.

This paper develops a new method for designing hybrid nonlinear control systems for single-
input single-output (SISO) plants with differentiable nonlinearities and a measurable state vector.
Quasilinear models of nonlinear plants and the quasilinear discretization method [13–17] are used.
By assumption, the plant satisfies state and output controllability criteria and some additional con-
ditions. Hybrid systems of the second class with an increased discretization period are designed,
which significantly reduces the performance requirements for computing resources. The main lim-
itation of the developed method is the differentiability of the plant’s nonlinearities. If the state
vector is unmeasurable, a state observer can be used.

2. PROBLEM STATEMENT

Consider control-affine nonlinear SISO plants described by the following equations in deviations:

ẋ = ϕ(x, u, f), y = ξ(x, u), (1)

where x = [∼x1, . . . , ∼xn]
T ∈ Rn denotes the vector of state variables; u, f, y ∈ R are scalar control sig-

nal, disturbance, and controlled output, respectively; ϕ(x, u, f) is a nonlinear n-dimensional vector
function, and ξ(x, u) is a scalar nonlinear function. These functions are bounded and differentiable
in all arguments; moreover, ϕ(0, 0, 0) = 0 and ξ(0, 0) = 0. The state vector x and the output y or
the deviation ε = g − y are measured. Here, 0 ∈ Rn stands for the zero vector, g = g(t) ∈ R and
f = f(t) ∈ R are a reference signal and disturbance, representing arbitrary time-varying functions
bounded by absolute value, and f(t) is not measured.

Since the nonlinearities ϕ(x, u, f) and ξ(x, u) in (1) are differentiable, the method described
in [15, 16] yields a quasilinear model (QLM) of the form

ẋ = A(x)x+ b(x)u+ h(x)f, y = cT(x)x+ d(x)u, (2)

where A(x) ∈ Rn×n and b(x), h(x), c(x) ∈ Rn are functional matrix and vectors, respectively, whose
all elements, as well as d(x) ∈ R, are known bounded differentiable nonlinear functions or numbers.
Let us emphasize that QLMs describe the corresponding plants with differentiable nonlinearities
with the same accuracy as equations (1). In other words, the properties of equations (2) fully
match those of (1). Various methods for building QLMs have long been known. For example,
the equation ẋ = D(x)x was used by N.N. Krasovskii et al. to construct Lyapunov functions for
nonlinear systems as early as the middle of the previous century [18].
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By assumption, the QLM (2) satisfies the state controllability criterion

detUs(x) = det[b(x) A(x)b(x) . . . An−1(x)b(x)] �= 0, ∀x ∈ ΩUs, (3)

as well as the output controllability criterion

γpl(x) �= 0, ∀x ∈ ΩUo, (4)

where γpl(x) is the output controllability index of the plant (1), defined by the expression

γpl(x) = d(x) detA(x)− cT(x)adjA(x) b(x). (5)

In (3)–(5), ΩUs = {x ∈ Rn : detUs(x) �= 0}; ΩUo = {x ∈ Rn : γpl(x) �= 0}; adjA(x) is the adjoint
matrix for A(x) [19]; ΩUu = ΩUo ∩ ΩUs is the set of vectors x ∈ Rn for which conditions (3) and (4)
hold; moreover, both ΩUs and ΩUo include the vector x = 0.

The objective of this work is to develop a method for designing second-class hybrid control
systems for nonlinear plants of the form (1). The discretization periods of these systems must be
significantly larger than those of discrete control systems created by conventional methods. To
solve this problem, we apply a piecewise-constant control obtained by the quasilinear discretization
method of nonlinear plants [17].

3. THE QUASILINEAR DISCRETIZATION METHOD

In this method, not the equations of nonlinear plants but their quasilinear models are discretized
using the trapezoidal method. It is possible due to the boundedness of the right-hand sides of the
QLM equations (2) for bounded x, u, g, and f.

Let T be a certain discretization period for the solutions x = x(t) ∈ ΩUu of the differential
equation (2). With each time instant t = kT , k = 0, 1, 2, . . . , a discrete value xk = x(kT ) of this
solution is associated. The exact value xk+1 = x(kT + T ) is given by the expression

xk+1 = xk +

kT+T∫
kT

F (t)dt, (6)

where F (t) = A(x)x+ b(x)u+ h(x)f(t )|x=x(t) is the right-hand side of the first equation in (2).
Assume that the input u = uk is a bounded and piecewise constant function. Nowadays, exact
methods for computing the integrals (6) are unknown, so based on the modified trapezoidal method,
the integrand in (6) is replaced by

F̄ = 0.5[Akxk +Akxk+1 + 2bkuk + 2hkfk] + Δk,

where Δk =0.5[(Ak+1−Ak)xk+1+ bk+1uk+1− bkuk+hk+1fk+1−hkfk]. (For brevity, Ak = A(xk),
bk = b(xk), and hk = h(xk).) Replacing F (t) in (6) with F̄ for Δk = 0 and integrating, we obtain
the difference equation

[E − 0.5TA(xk)]xk+1 = [E + 0.5TA(xk)]xk + Tb(xk)uk + Th(xk)fk, xk ∈ ΩUu. (7)

Note that the modification of the trapezoidal method consists in adding and subtracting the sum
Akxk+1 + bkuk + hkfk when deriving the expression for F̄ (kT ) from F (t).

Equation (7) can be solved for xk+1 if the matrix [E − 0.5TA(xk)] has an inverse, i.e., under the
following condition imposed on the choice of the period T :

det[E − 0.5TA(x)] �= 0, x ∈ ΩUu. (8)
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To find T, we determine the roots ηi of the auxiliary equation det[E − 0.5ηA(x)] = 0. Let this
equation for x ∈ ΩUu have 0 < m(x) ≤ n [20] positive real roots, of which m1(x) are independent
of x and m2(x) = m(x)−m1(x) depend on x. Then

0 < T < min{ηmin,1, ηmin,2}, (9)

where ηmin,1 =min{ηi, i= 1,m1(x), x∈ΩUu}, ηmin,2 = inf{η > 0 : ηi = ηi(x), i= 1,m2(x), x∈ΩUu}.
Ifm(x) ≡ 0 (i.e., the equation det[E − 0.5ηA(x)] = 0 has no positive real roots ηi), the condition

on the matrix [E − 0.5TA(xk)] will not imply any constraints on T.

In this case, the value of T in (8) is taken arbitrarily, based on constructive constraints; and the
value of T can be refined later.

If the period T is chosen according to (8), then from (7) and the second equation in (2) it follows
that

xk+1 = Ad(xk)xk + bd(xk)uk + hd(xk)fk,

yk = cT(xk)xk + d(xk)uk, xk ∈ ΩUu,
(10)

where

Ad(xk) = [E − 0.5TA(xk)]
−1[E + 0.5TA(xk)], (11)

bd(xk) = [E − 0.5TA(xk)]
−1Tb(xk),

hd(xk) = [E − 0.5TA(xk)]
−1Th(xk).

(12)

The relations (6)–(12) represent the quasilinear discretization method, and the expressions (10)–
(12) are the discrete quasilinear model (DQLM) of the plant (1) [17]. In contrast to the exact
QLM (2), this model is approximate. However, as shown below under certain conditions, some
control signal uk stabilizing the equilibrium of the DQLM (10) also ensures the stability of the
equilibrium of the control system for the plant (1). In this sense, quasilinear discretization is
analogous to classical linearization in the continuous case, where the control law based on first-
approximation equations stabilizes the equilibrium of the nonlinear system in the small.

The application of the DQLM (10)–(12) allows hybrid systems to have a significantly larger
discretization period compared to conventional approaches, thereby substantially reducing the per-
formance requirements for system controllers.

4. STABILIZING CONTROL

This control is constructed by the algebraic polynomial-matrix (APM) method [21, 22]. Let the
period T be chosen so that condition (8) holds, and let the corresponding DQLM (10)–(12) satisfy
the state controllability criterion1 for nonlinear discrete plants:

detUd(xk) = det[bd(xk) Ad(xk)bd(xk) . . . A
n−1
d (xk)b(xk)] �=0, xk ∈ΩUd, (13)

where ΩUd = {xk ∈ ΩUu : detUd(xk) �= 0}. In other words, ΩUd ⊂ ΩUu is the domain where condi-
tions (3), (4), (8), and (13) hold, and it contains the point x = 0.

The discrete control law stabilizing system (10)–(12) has the form

uk(xk) = −lT(xk)xk = −[l1(xk) l2(xk) . . . ln(xk)]xk. (14)

The gains li(xk) are determined by the algorithm with the following steps [21].

1 The question of whether condition (13) holds under conditions (3) and (8) is open.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 10 2025



DESIGN OF HYBRID NONLINEAR CONTROL SYSTEMS 911

1) Using (11) and (12), it is necessary to find the functional polynomials

Ad(z, xk) = det[zE −Ad(xk)] = zn + αn−1(xk)z
n−1 + . . . + α1(xk)z + α0(xk), (15)

Vd,i(z, xk) = eTi adj [zE −Ad(xk)]bd(xk) = vi,n−1(xk)z
n−1 + vi,n−2(xk)z

n−2 + . . .+ vi,0(xk), (16)

where ei is the ith column of the identity matrix E of dimensions n× n; αj(xk) and vi,j(xk) are
functional or numerical coefficients, i = 1, . . . , n, and j = 0, 1, . . . , n− 1.

2) This step is to form the polynomial

D∗(z) =
n∏
i=1

(z − σ∗i ) = zn + δ∗n−1z
n−1 + . . .+ δ∗1z + δ∗0 , (17)

where σ∗i are real numbers for which there exist 0 < ς1 < 1 and 0 < ς2, independent of i and κ, such
that

|σ∗i | ≤ 1− ς1, ς2 < |σ∗i − σ∗κ| , i �= κ, i, κ = 1, . . . , n. (18)

3) One determines the coefficients of the difference

D∗(z)−Ad(z, xk) = ρn−1(xk)z
n−1 + . . .+ ρ1(xk)z + ρ0(xk), (19)

where ρj(xk) = δ∗j − αj(xk), j = 0, 1, . . . , n− 1. Next, it is necessary to equate the coefficients of the
sum of the products of the polynomials Vd,i(z, xk) (16) by the coefficients li(xk) (14), i = 1, . . . , n,
to those of the polynomial (19) at the same powers of z. The resulting equations, written in the
vector-matrix form, constitute the system of linear algebraic equations (SLAE)

⎡⎢⎢⎢⎢⎣
v10(xk) v20(xk) · · · vn0(xk)

v11(xk) v21(xk) · · · vn1(xk)
...

...
. . .

...
v1,n−1(xk) v2,n−1(xk) · · · vn,n−1(xk)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
l1(xk)

l2(xk)
...

ln(xk)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ρ0(xk)

ρ1(xk)
...

ρn−1(xk)

⎤⎥⎥⎥⎥⎦ . (20)

The SLAE (20) has a unique solution due to condition (13). Its solution—the vector l(xk)—
is substituted into (14), and the resulting control law uk is then substituted into the DQLM
equation (10). Thus, one arrives at the following equation of the virtual discrete system:

xk+1 = Dd(xk)xk + hd(xk)fk, xk ∈ ΩUd, = 0, 1, 2, . . . , (21)

where

Dd(xk) = Ad(xk)− bd(xk)l
T(xk). (22)

The lemma below establishes the effectiveness of the APM method.

Lemma 1. Under condition (13), the SLAE (20) has a unique solution l(xk). Moreover, for
any xk ∈ ΩUd, the eigenvalues of the matrix Dd(xk) (22) coincide with the roots of the polynomial
D∗(z) (17), i.e., they do not depend on xk, are real, distinct, and less than one by absolute value.

The proof of Lemma 1 is postponed to the Appendix. We emphasize that the relations (8)–(22)
can be used for designing discrete nonlinear control systems [17, 22].
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5. HYBRID SYSTEM DESIGN

Proceeding to the solution of this problem, we introduce the matrix

D̃(x) = [E − 0.5Tb(x)lT(x)]Hg(x), (23)

with Hg(x) = [Dd(x)− E][Dd(x) + E]−1, the matrix Dd(x) (22), and the vector l(x) = l(xk) for
xk = x.

Let λ
D̃(x)
i be the eigenvalues of the matrix D̃(x) ∈ Rn×n. Assume that the period T in (10)–(20)

and (23) satisfies conditions (8) and (13) and the inequalities

Reλ
D̃(x)
i < 0, i = 1, . . . , n, x ∈ Ωsys, (24)

where Ωsys = {x ∈ ΩUd : Reλ
D̃(x)
i < 0, i = 1, . . . , n}. In other words, the eigenvalues of the matrix

D̃(x) can be either real or complex conjugate but with negative real parts (i.e., the matrix D̃(x) is
Hurwitz in the domain Ωsys). Note that the choice of T can be iterative: if condition (24) fails for
some value of the period T, then this value in (8)–(20) and (23) is decreased.

Under conditions (3), (4), (8), (13), and (24), the control law of the hybrid system is a discrete,
piecewise-constant function of the form

u = uhyb(xk, gk) = lg(xk)gk − lT(xk)xk, k = 0, 1, 2, . . . , (25)

where xk ∈ Ωsys; gk = g(t )|t=kT are the values of the reference signal g(t); the gain lg(x) and the
matrix Dhyb(x) ∈ Rn×n are given by

lg(x) = detDhyb(x)/γpl(x) (26)

and

Dhyb(x) = A(x)− b(x)lT(x), (27)

respectively. From now on, the vector x = x(t) ∈ Rn is the solution of system (1), (25) or (2), (25).

From the expressions (2) and (25) we derive the following QLM equations of the hybrid system:

ẋ = A(x)x− b(x)lT(xk)xk + b(x)lg(xk)gk + h(x)f, kT ≤ t < (k + 1)T, (28)

y = cT(x)x− d(x)lT(xk)xk + d(x)lg(xk)gk, kT ≤ t < (k + 1)T, k = 0, 1, 2, . . . . (29)

According to the definition (25), on the surfaces ϕ(t, x) = t− kT = 0, k = 1, 2, 3, . . . , the con-
trol signal u = u(t) undergoes discontinuities of the first kind, i.e., instantaneously changes its
value [23]. Such instantaneously changing controls were used as admissible in [24–26]. In the
case under consideration, for each k ≥ 1, the above discontinuity surfaces form two continuity
sectors for both the control signal u (25) and the right-hand side of equation (28) [23]. By for-
mula (25), in the left continuity sectors kT − T < t < kT , the control law is given by the expression
u−(t) = lg(xk−1)gk−1 − lT (xk−1)xk−1; in the right continuity sectors kT < t < kT + T , by the ex-
pression u+(t) = lg(xk)gk − lT (xk)xk. Here, xk are the values of the solution of the differential
system (28) on the discontinuity surfaces, i.e., at t = kT , k = 1, 2, 3, . . . . Following [24] or [25], we
assume the existence of finite right and left limits in each continuity sector.

However, the values xk are not determined by the differential system (28) in the classical sense
due to the discontinuities of its right-hand side. There are several approaches to overcome this
problem [26]. The so-called “technical” [23] (or “physical” [26]) one was proposed by M.A. Aizer-
man and E.S. Pyatnitsky: the idea is to consider the physical meaning of the problem, using
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“additional information about the ‘original system’ to narrow the domain of possible solutions”
on the discontinuity surfaces [23, p. 39]. Recall that x0 is given, and the subsequent values of xk,
k = 1, 2, 3, . . . , are measured in the hybrid system of the above type. Having this in mind, we
assume that the solution of equation (28) in the left continuity sectors is given by

x−(t) = xk−1 +

t∫
kT−T

[A(x(τ))x(τ) − b(x(τ))lT (xk−1)xk−1 + υ−(τ)]dτ,

kT − T ≤ t < kT, k = 1, 2, 3, . . . ,

(30)

where x0 = x(0), υ−(τ) = b(x(τ))lg(xk−1)gk−1 + h(x(τ))f(τ), and the integral is a Lebesgue inte-
gral [23]. Following [24], it seems convenient to define the measured values as xk = limt→kT x

−(t).
Replacing the subscript k with k + 1 in equality (30), we derive an explicit expression for x(t) in
the right continuity sectors:

x+(t) = xk +

t∫
kT

[A(x(τ))x(τ) − b(x(τ))lT (xk)xk + υ+(τ)]dτ,

kT ≤ t < kT + T, k = 1, 2, 3, . . . ,

(31)

where υ+(τ) = b(x(τ))lg(xk)gk + h(x(τ))f(τ).

Due to the assumed existence of right and left limits in each continuity sector, both formu-
las (30) and (31) yield the same value: xk = limt→kT x

−(t) = limt→kT x
+(t). Thus, the Aizerman–

Pyatnitsky approach allows obtaining the values of the continuous solution x(t) of the differential
system (28) for all t under the piecewise-constant control law (25) by utilizing the additional infor-
mation about the properties of the hybrid system.

Let us formulate a theorem on the properties of system (1), (25).

Theorem. Assume that conditions (3), (4), (8), (13), (18), and (24) hold, and the vector l(xk)
in (25) is given by the solution of the SLAE (20). Then for g(t) = f(t) ≡ 0 and all t ≥ 0, there
exists a set of solutions x(t, x0) of equation (28) such that

lim
t→∞x(t, x0) = 0, x ∈ Ωsys. (32)

If the gain lg(xk) in (25) is given by (26), then the static error of system (1), (25) with respect to
the reference signal g(t) is zero:

lim
t→∞ εg(t) = lim

t→∞[g(t)− yg(t)] = 0 (33)

for g(t) = g01(t) and f(t) ≡ 0.

Here, 1(t) indicates the unit step function (the Heaviside function); yg(t) is the response of sys-
tem (28), (29), i.e., (1), (25) with f(t) ≡ 0, to the reference signal g(t) = g01(t) for some x0 = x(0)
and g0 such that x(t, x0, g0) ∈ Ωsys, t ≥ 0.

The proof of this theorem is provided in the Appendix. The following lemma establishes that the
controllability of the plant implies the “controllability” of the closed-loop system, i.e., the possibility
of ensuring the necessary change in the system output by an appropriate reference signal.

Lemma 2. If the matrices Us(x) and Dhyb(x) are given by (3) and (27), then

detQhyb(x) = det[b(x) Dhyb(x)b(x) . . . Dn−1
hyb (x)b(x)] = detUs(x), x ∈ Ωsys. (34)
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The proof of Lemma 2 can be found in the Appendix. The relations (2), (5), (9)–(20), (22),
(23), and (25)–(29) constitute the mathematical foundation of the proposed method for designing
hybrid nonlinear control systems; inequalities (3), (4), (8), (13), (18) and (24) express the solvability
conditions of the design problem by this method. The effectiveness of the developed method is
illustrated by a numerical example below.

6. A NUMERICAL EXAMPLE

It is required to design a hybrid pitch control system (HPCS) for an autonomous underwater
vehicle (AUV). Pitch control is carried out using bow and stern tanks of variable volume [27] and
is described by the system of equations

ψ̈ = α1Uψ cosψ − α2Ua sinψ − β
∣∣∣ψ̇∣∣∣ ψ̇, U̇ψ = −kvUψ + kuu, y = ψ, (35)

with the following notation: ψ and ψ̇ are the pitch angle and its rate of change, respectively;
Uψ stands for the difference in the volumes of the bow and stern tanks; Ua is the AUV displacement;
α1 and α2 mean hydrodynamic coefficients; β is the pitch change resistance coefficient; kv and ku
are parameters of the device changing Uψ; u is the control signal of this device; y is the controlled
output of the HPCS; finally, ψ, ψ̇, and Uψ are measured variables. The HPCS must have zero static
error in pitch and transients of a duration not exceeding 5 s under zero initial conditions and the
desired pitch g(t) = ψ∗(t) = −0.5236 × 1(t) rad.

Solution. Setting ∼x1 = ψ, ∼x2 = ψ̇ and ∼x3 = Uψ, we write equations (35) in the Cauchy form:

∼̇x1 = ∼x2,

∼̇x2 = α1∼x3 cos ∼x1 − α2Ua sin ∼x1 − β
∣∣
∼x2
∣∣
∼x2,

∼̇x3 = −kv∼x3 + kuu, y = ∼x1.

(36)

Since sin ∼x1 = ω(∼x1)∼x1, where ω(∼x1) = (sin ∼x1)/∼x1 is the QLM of the function sin ∼x1 [16], the QLM
of the nonlinear system of equations (36) has the form (2) with

A(x) =

⎡⎢⎣ 0 1 0
−a21(x) −a22(x) a23(x)

0 0 −a33(x)

⎤⎥⎦ ,
b(x) =

⎡⎢⎣ 0
0
ku

⎤⎥⎦ , c(x) =

⎡⎢⎣ 1
0
0

⎤⎥⎦ , h(x) = 0, d(x) = 0.

(37)

Here, x = [∼x1 ∼x2 ∼x3]
T, a21(x) = α2Uaω(∼x1), a22(x) = β

∣∣
∼x2

∣∣, a23(x) = α1 cos ∼x1, and a33(x) = kv.

Consider the solution of the HPCS design problem for g(t) = ψ∗(t) and the following model
values of the coefficients in (37): a21(x) = 7.044ω(∼x1), a22(x) = 1.192

∣∣
∼x2

∣∣, a23(x) = 6.48 cos ∼x1,
a33(x) = 1.326, and kv = ku = 0.12. In this case, in view of (5) and (37), conditions (3) and (4)
become detUs(x) = 0.0933(cos ∼x1)

2 �= 0 and γpl(x) = 0.7776 cos ∼x1 �= 0. In other words, the do-
main ΩUu is given by

∣∣
∼x1

∣∣ < π/2,
∣∣
∼x2
∣∣ ≤ ∼x2,max, and

∣∣
∼x3
∣∣ ≤ ∼x3,max, where ∼x2,max and ∼x3,max are

some design bounds. Let ∼x2,max = 3.5 rad/s and L(η, x) = [E − 0.5ηA(x)]; then, taking (37) into
account, we arrive at the equation

detL(η, x) = (1 + 0.663η)
[
1 + 0.596

∣∣
∼x2

∣∣ η + 3.522ω(∼x1)η
2
]
= 0. (38)

Equation (38) has no positive real roots ηi in the domain ΩUu. That is, condition (8) on the matrix
[E − 0.5TA(xk)] does not yield any constraints on the period T. Therefore, we take T1 = 0.6 s and
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Fig. 1. The plots of the variables for T = 0.6 s: (a) pitch angles and (b) control input.

Fig. 2. The plots of the variables for T = 0.8 s: (a) pitch angles and (b) control input.

T2 = 0.8 s based on constructive constraints. Let us determine the controller. The matrix Ad(xk)
and the vector bd(xk) are found from (11), (12), and (37); the fulfillment of condition (13) in the
domain ΩUd = ΩUu is verified numerically; the polynomials Ad(z, xk) and Vd,i(z, xk), i = 1, 2, 3, are
constructed by (15) and (16).

The polynomial D∗(z), found from (17) and (18), allows calculating the coefficients ρj(xk),
j = 0, 1, 2, from (19) and compiling the SLAE (20). Its solution determines the three-dimensional
vector l(xk). Next, the matrix Dd(xk) is obtained from (22) and the matrix D̃(x) from (23).
It is verified numerically that condition (24) holds both for T = 0.6 s and for T = 0.8 s in the
domain Ωsys = ΩUu. Finally, Dhyb(x), lg(x), and uhyb(xk, gk) are determined by formulas (27),
(26), and (25), respectively.

We emphasize that during the operation of the HPCS, almost all computations (first, the
matrix A(x) and the vector b(x) (37), then Ad(xk) and bd(xk), and, finally, the control input
uhyb(xk, gk)) are performed by a digital control device for all k = 0, 1, 2, . . . with period T. (The only
exception is the formation of the polynomial D∗(z).) This is due to the nonlinear nature of the
plant (35).

Analysis of the designed HPCS. For this purpose, we used MATLAB to compute the values of
the discrete control signal uhyb(xk, gk) for each t = kT (see the description above) and integrate (via
the ode45 function) the system of equations (36) with u = uhyb(xk, gk) and the initial conditions
x0,k = x(kT ) and ψ∗(t) =ψ01(t), k = 0, 1, 2, . . . , on each time interval kT ≤ t < (k + 1)T . Figures 1
and 2 show the transients of the designed HPCS for D∗(z) = z3 − 0.8z2 + 0.2032z − 0.01613,
x0,0 = [0.1 0.01 0]T, and ψ0 = −0.5236 rad.
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Clearly, the variables of the controlled plant are continuous functions, although the control
signal changes with a significant period, which is characteristic of hybrid systems. The transients
are similar under other conditions as well. A small increase in the discretization period just slightly
extends the transients.

Table contains the eigenvalues λi(x), i = 1, 2, 3, of the matrix Dhyb(xk) of the HPCS for two
values of the period T and several values of k.

Table

T = 0.6 T = 0.8

k λ1 λ2,3 λ1 λ2,3

0 −1.3463 −0.7002± 1.5983i −1.3250 −0.2280± 1.3446i

1 −1.3484 −0.8130± 1.6057i −1.3249 −0.3112± 1.3637i

5 −1.3468 −0.7261± 1.5810i −1.3249 −0.2556± 1.3322i

10 −1.3466 −0.7138± 1.5753i −1.3249 −0.2487± 1.3249i

According to this table, the eigenvalues of the matrix Dhyb(x) have negative real parts, and
increasing the period T reduces these parts by absolute value; for a large T , system stability is lost.
Note that the real parts of the eigenvalues of the above matrix change insignificantly during the
transient process of the hybrid system.

7. CONCLUSIONS

This paper has proposed a method for designing hybrid nonlinear control systems for continuous
plants with differentiable nonlinearities and a measurable state vector. The problem has been
solved using continuous and discrete quasilinear models, the algebraic polynomial-matrix method
for designing nonlinear systems, and the Aizerman–Pyatnitsky solution approach to differential
equations with a discontinuous right-hand side. The method proposed is applicable if the continuous
and discrete quasilinear models of the nonlinear plant satisfy state and output controllability criteria
and some additional conditions. The effectiveness of this method has been illustrated by a numerical
example of designing a hybrid nonlinear pitch control system for an autonomous underwater vehicle.
The method can be used to create hybrid control systems for nonlinear plants of industrial, social,
and special purpose using moderate-performance computing means.
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APPENDIX

Proof of Lemma 1. Due to the expressions (6.3) and (6.55) [28, p. 145 and p. 169], the control-
lability conditions for the systems in the continuous and discrete cases coincide in form. Therefore,
we use a theorem on the properties of controllable continuous systems to prove Lemma 1, formu-
lated for the discrete system. In view of this remark, Theorems 1.1 and 1.2 [29, pp. 29, 31, 32] lead
to the following assertion: under inequality (13), there is a unique gain vector lT(xk) for the con-
trol law uk = −lT(xk)xk (14) under which the eigenvalues of the matrix of the closed-loop discrete
system (21) have a specified location on the complex plane z.
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The matrix of the indicated closed-loop discrete system (21) is Dd(xk) = Ad(xk)− bd(xk)l
T(xk)

(22) with the characteristic polynomial

Dd(z, xk) = det[zE −Ad(xk) + bd(xk)l
T(xk)], xk ∈ ΩUd. (A.1)

Thus, for a given polynomial Dd(z, xk) = D∗(z), the expression (A.1) is an equation with respect
to the vector lT(xk); according to Theorems 1.1 and 1.2 from [29], this equation has a unique solution
under condition (13). By applying to (A.1) equality (Π.25) from [30, p. 233] for μ = 1, we obtain

Dd(z, xk) = det[zE −Ad(xk)] + lT(xk)adj [zE −Ad(xk)] bd(xk).

(In particular, (Π.25) is immediate from formulas (I) and (II) [19].) Hence, considering the nota-
tion (15), (16) and the vector lT(xk) = [l1(xk) l2(xk) . . . ln(xk)], following [14, 15], we derive an
equivalent representation of the same polynomial (A.1):

Dd(z, xk) = Ad(z, xk) +
n∑
i=1

li(xk)Vd,i(z, xk). (A.2)

Moreover, by construction, system (20) is equivalent to the polynomial equation

n∑
i=1

li(xk)Vd,i(z, xk) = ρn−1(xk)z
n−1 + . . .+ ρ1(xk)z + ρ0(xk).

In view of (19), it can be written as

n∑
i=1

li(xk)Vd,i(z, xk) = D∗(z)−Ad(z, xk), xk ∈ ΩUd. (A.3)

Based on (17), the roots of the polynomial D∗(z) are the numbers σ∗i , i.e., D
∗(σ∗i ) = 0. Then ac-

cording to (A.3), Ad(σ
∗
i , xk) +

∑n
i=1 li(xk)Vd,i(σ

∗
i , xk) = 0. By (A.2), it follows that Dd(σ

∗
i , xk) = 0,

i = 1, 2, . . . , n, and the proof of Lemma 1 is complete.

Proof of Lemma 2. For this purpose, let us utilize a well-known property of determinants: if one
column of the determinant’s matrix, multiplied by a number, is added or subtracted from another
column, the determinant value will not change [31, p. 143]. For brevity, we omit the arguments
of the matrices A(x), Dhyb(x), and Qhyb(x) and vectors b(x) and l(x) from (3), (27), (34) and
emphasize that Dhyb = A− blT and detQhyb = det[b Dhybb . . . Dn−1

hyb b] for all n. Lemma 2 will
be proved by induction. First, we show its validity for n = 1 and n = 2.

For n = 1, we have A = a1, b = b1, l = l1, and detUs = b1 by (3). Here, Dhyb = a1 − b1l1, and
detQhyb = b1; obviously, detQhyb = detUs. Let n = 2; in this case, by (3), detUs =det[b Ab], and

by (34), detQhyb =det[b Dhybb] = det[b Ab− β̆b], where β̆ = lTb is a scalar number, since for each
particular value of x the vectors l(x) and b(x) are numerical. Hence, due to the above property of

determinants, detQhyb = det
[
b Ab

]
, i.e., detQhyb = detUs. Thus, Lemma 2 is valid for n = 1

and n = 2.

Now, under the inductive hypotheses detUs = det[b Ab . . . Aμ−1b] and detQhyb =

det[b Dhybb . . . Dμ−1
hyb b] = detUs (Lemma 2 for n = μ), the validity of this lemma has to be shown

for n = μ+ 1. To this end, we expand the left-hand side of the expression (34) with n = μ+ 1 as
follows:

detQhyb = det[b Dhybb D2
hybb . . . Dμ−3

hyb b D
μ−2
hyb b D

μ−1
hyb b D

μ
hybb]. (A.4)
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Further, we transform the columns of the matrix of the determinant (A.4) step by step, starting
from Dμ

hybb, considering the above property of determinants and Dhyb = A− blT.

Step 1.1. Dμ
hybb = Dμ−1

hyb (A− blT)b = Dμ−1
hyb Ab+ β0D

μ−1
hyb b 	 Dμ−1

hyb Ab since β0 = −lTb is a scalar

number and the column β0D
μ−1
hyb b equals the column Dμ−1

hyb b of the matrix of the determinant (A.4)
multiplied by β0. From this point onwards, 	 is the correspondence sign, indicating that the value
of the determinant (A.4) will not change when replacing the column Dμ

hybb in (A.4) with the column

Dμ−1
hyb Ab.

Step 1.2. Dμ
hybb 	 Dμ−1

hyb Ab = Dμ−2
hyb (A− blT)Ab = Dμ−2

hyb A
2b+ β1D

μ−2
hyb b 	 Dμ−2

hyb A
2b due to the

above property of determinants since β1 = −lTAb is a scalar number and the column β1D
μ−2
hyb b

equals to the column Dμ−2
hyb b of the matrix of the determinant (A.4) multiplied by β1. (In other

words, the column β1D
μ−2
hyb b is proportional to the column Dμ−2

hyb b.)

Step 1.3. Dμ
hybb 	 Dμ−2

hyb A
2b = Dμ−3

hyb (A− blT)A2b = Dμ−3
hyb A

3b+ β2D
μ−3
hyb b 	 Dμ−3

hyb A
3b due to the

above property of determinants since β2 =−lTA2b is a scalar number and the column β2D
μ−3
hyb b is

proportional to the column Dμ−3
hyb b of the matrix of the determinant (A.4). Continuing this process

at Step 1.μ, we arrive at Dμ
hybb 	 Dμ−μ

hyb A
μb = Aμb.

Let us proceed to transforming the column Dμ−1
hyb b of the matrix of the determinant (A.4).

Step 2.1. Dμ−1
hyb b = Dμ−2

hyb (A− blT)b = Dμ−2
hyb Ab+ β0D

μ−2
hyb b 	 Dμ−2

hyb Ab.

Step 2.2. Dμ−1
hyb b 	 Dμ−2

hyb Ab = Dμ−3
hyb (A− blT)Ab = Dμ−3

hyb A
2b+ β1D

μ−3
hyb b 	 Dμ−3

hyb A
2b.

Continuing the transformation, at Step 2.(μ − 1), we obtain Dμ−1
hyb b 	 Aμ−1b. Obviously, apply-

ing this transformation to each column Dj
hybb of the matrix of the determinant (A.4) yields the

column Ajb, j = 1, . . . , μ. Based on the above property of determinants, this transformation does
not change the value of (A.4); therefore, detQhyb = detUs for n = μ+ 1 as well.

So, Lemma 2 is valid for n = 1, 2, and its validity for n = μ implies the same for n = μ+ 1. By
induction, Lemma 2 is valid for any positive integer n, and the proof is complete.

Proof of Theorem. As shown above, the continuous solution of equation (28) is defined for
all t ≥ 0 and x ∈ Ωsys. Moreover, its right-hand side depends on the time t, in addition to the
vector x(t), which is reflected in the additional expressions: kT ≤ t < kT + T and k = 0, 1, 2, . . . .
To make the dependence on t more explicit and eliminate k, we replace xk = x(kT ) with x(T

∣∣t/T ),
where

∣∣t/T is the floor function of the ratio t/T. As a result, the state equation (28) of the hybrid
system (1), (25) or, which is the same, (2) and (25), takes the form

ẋ(t) = Dhyb(x)x+Υ1(t, x) + b(x)lg(x(T
∣∣ t/T ))g(T ∣∣ t/T ) + h(x)f(t), (A.5)

Υ1(t, x) = b(x)[lT (x)x− lT (x(T
∣∣ t/T ))x(T ∣∣ t/T )], (A.6)

where Dhyb(x) is the matrix given by (27), and still x = x(t).

To prove the theorem, we first demonstrate that the eigenvalues of the matrix Dhyb(x) have
negative real parts. For this purpose, in view of (11) and (12), with xk = x for brevity, equality (22)
can be written as follows:

−1[E + 0.5TA(x)]

− [E − 0.5TA(x)]−1Tb(x)lT(x) = Dd(x).
(A.7)

Multiplying both sides of equality (A.7) by the matrix [E − 0.5TA(x)] on the left, we expand the
square brackets and factor the terms with the matrix A(x) to the left-hand side. As a result,

0.5TA(x)[Dd(x) +E] = Dd(x)− E + Tb(x)lT(x). (A.8)
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By Lemma 1, all eigenvalues σ∗i of the matrix Dd(x) are such that σ∗i �= σ∗κ, i �= κ, and |σ∗i | < 1.
Therefore, the matrix [Dd(x) + E]−1 exists, and (A.8) implies the equality

A(x) = 2T−1[Dd(x)− E + Tb(x)lT(x)][Dd(x) + E]−1. (A.9)

Adding the term −b(x)lT(x) to both sides of (A.9) and again factoring the matrix [Dd(x) + E]−1

to the right, we obtain the expression

Dhyb(x) =
{
2T−1

[
Dd(x)− E + Tb(x)lT(x)

]
− b(x)lT(x)[Dd(x) + E]

}
[Dd(x) + E]−1.

(Here, formula (27) is taken into account.) Expanding both bracketed expressions in the curly
braces and collecting terms, we factor the matrix [Dd(x)− E] out of the curly braces to the right
and the term 2T−1 to the left. These manipulations yield

Dhyb(x) = 2T−1
[
E − 0.5Tb(x)lT(x)

]
Hg(x), x ∈ Ωsys, (A.10)

where Hg(x) = [Dd(x)− E][Dd(x) + E]−1. Under the conditions of this theorem, the matrix Hg(x)
is Hurwitz and has distinct eigenvalues. This is easy to verify since the matrix Dd(x) has distinct
eigenvalues, i.e., it is similar to a diagonal matrix [20].

Comparing (A.10) with (23), we conclude that Dhyb(x) = 2T−1D̃(x). Therefore, by for-
mula (2.15.8) from [20] and condition (24), under the conditions of this theorem, the eigenvalues
of the matrix Dhyb(x) (A.5) have negative real parts for x ∈ Ωsys.

Consider first the free motion of the hybrid system (28), (29) by letting g(t) = f(t) ≡ 0. More-
over, bearing in mind Lyapunov’s theorem [32, p. 257] and (A.6), we represent equation (A.5) for
t ≥ 0 as follows:

ẋ = Dhyb,0x+Υ(t, x), (A.11)

where Dhyb,0 = Dhyb(0), Υ(t, x) = Υ1(t, x) + Υ2(x), Υ2(x) = [Dhyb(x)−Dhyb,0]x, and the vector
Υ1(t, x) is given by (A.6).

As established above, the matrix Dhyb(x) ∀x ∈ Ωsys is Hurwitz; consequently, the constant
matrix Dhyb,0 in (A.11) is also Hurwitz. Let us show that under the conditions of this theorem, the
vector function Υ(t, x) = o(‖x‖) uniformly in t [32, p. 257]. For this purpose, we find the limits of
the ratios Υ1(x)

/‖x‖2 and Υ2(x)
/‖x‖2 as x(t) → 0. Obviously, for all t ≥ 0,

lim
x→0

(
Υ2(x)

/‖x‖2) = lim
x→0

(
xTP [Dhyb(x)−Dhyb,0]x

/‖x‖2) = 0. (A.12)

Considering the limit of the ratio Υ1(t, x)/‖x‖2, we observe that for all t, according to (31)
and (32), x→ 0 implies x(T

∣∣ t/T ) → 0. Therefore, taking (A.6) into account,

lim
x→0

(
Υ1(t, x)

/‖x‖2) = lim
x→0

(
b(x)

[
lT (x)x− lT (x(T

∣∣ t/T ))x(T ∣∣ t/T )] / ‖x(t)‖2) = 0 (A.13)

since for all t, both vectors lT (x) and lT (x(T
∣∣ t/T )) in the above expression are multiplied by those

tending to zero. Thus, from (A.12) and (A.13) it follows that the vector function Υ(t, x) = o(‖x‖)
uniformly in t, i.e.,

Υ(t, x)

‖x‖ ⇒
t
0 as x→ 0. (A.14)
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The matrix Dhyb,0 is Hurwitz; hence, due to (A.14), the differential system (A.11) satisfies
the conditions of Lyapunov’s theorem [32, p. 257], stating that the solution x = 0 of this system is
asymptotically stable. In other words, condition (32) holds in the domain Ωsys.Moreover, according
to [32, pp. 258–260], there exists a Lyapunov function V (x) = xTSLx > 0 with V̇ (x) < 0 along the
trajectories of this system. Here, SL is a real symmetric matrix.

On the other hand, equation (A.11) corresponds to equation (70.1) whereas equation (A.5) to
equation (70.3) from the monograph [33]. Moreover, according to I.G. Malkin, equation (A.11)
describes the perturbed motion of the Hurwitz system (1), (25) and (28), (29), and the term
b(x)lg(x(T

∣∣ t/T ))g(T ∣∣ t/T ) + h(x)f(t) in (A.5) characterizes the constantly acting perturbations of

this system. In addition, there exists a positive definite function V (x) = xTSLx for the differential
system (A.11) whose total time derivative along the trajectories of this system is negative definite.
In the domain t ≥ 0, x ∈ Ωsys, the partial derivatives (∂V (x)/∂xi) = 2SLix, where SLi is the ith
row of the matrix SL, i = 1, . . . , n, are obviously bounded. Therefore, by Malkin’s theorem [33],
the unperturbed motion of the hybrid system described by equations (A.5) and (28) is stable under
the constantly acting perturbations. In other words, under sufficiently small initial conditions and
external perturbations (the reference signal g(t) and the disturbance f(t)) such that x(t) ∈ Ωsys, a
steady-state regime arises in system (A.5) or, which is the same, in system (1), (25), whose QLM
has the form (28), (29).

Consider this regime for f(t) ≡ 0, g(t) = g01(t), and sufficiently small ‖x0‖ and |g0|. In this
regime, as t→ ∞, we have ẋ(t) → 0, x(t) → x◦, x(T

∣∣ t/T ) → x◦, and yg(t) → y◦g , where x◦ and y◦g
are the steady-state values of the variables x(t), x(T

∣∣ t/T ) and yg(t), respectively, due to g01(t)
(see Lemma 2). Then equations (28) and (29) take the form

0 = Dhyb(x
◦)x◦ + b(x◦)lg(x◦)g0,

y◦g = [cT(x◦)− d(x◦)lT(x◦)]x◦ + d(x◦)lg(x◦)g0,
(A.15)

where the matrix Dhyb(x
◦) is given by (27) for x = x◦.

Since the matrix Dhyb(x) is Hurwitz for x ∈ Ωsys, the matrix D−1
hyb(x

◦) exists, so (A.15) implies

the equalities x◦ = −D−1
hyb(x

◦)b(x◦)lg(x◦)g0 and

y◦g =
{
[d(x◦)lT(x◦)− cT(x◦)]D−1

hyb(x
◦)b(x◦) + d(x◦)

}
lg(x

◦)g0. (A.16)

Equality (33) will obviously be satisfied if y◦g = g0. Therefore, from (A.16) we obtain the following

necessary and sufficient condition for this: {[d(x◦)lT(x◦)−cT(x◦)]D−1
hyb(x

◦)b(x◦)+d(x◦)}lg(x◦) = 1.
However, the value of x◦ is unknown in advance, so this condition is replaced, in view of the formula
D−1

hyb(x) = adjDhyb(x)/detDhyb(x), by the equality{
[d(x)lT(x)− cT(x)]adjDhyb(x)b(x) + d(x) detDhyb(x)

}
lg(x) = detDhyb(x). (A.17)

The equality y◦g = g0 is immediate from (A.17) and (A.16) by Malkin’s theorem (see above).
Based on the definition (27) and formulas (Π.25) and (Π.26) from [30, p. 233], we have the equalities

adjDhyb(x)b(x) = adj
[
A(x)− b(x)lT(x)

]
b(x) = adjA(x)b(x) and

detDhyb(x) = det
[
A(x)− b(x)lT(x)

]
= detA(x)− lT(x)adjA(x)b(x).

Substituting them into (A.17) yields, after trivial simplifications, the relation{
d(x) detA(x)− cT(x)adjA(x)b(x)

}
lg(x) = detDhyb(x).

Taking (5) into account, this result finally leads to equality (33) under condition (4) and the gain
lg(x) (26). The proof of the theorem is complete.
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