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1. INTRODUCTION

The problem of motion of a rigid body with a fixed point under the action of external forces
and moments is a generalization of the classical problem of motion of a heavy rigid body with
a fixed point. One of the cases of integrability of this problem was discovered by Lagrange [1].
Subsequently many papers devoted to study the dynamics of the Lagrange top were published.
Regular precessions of the Lagrange top were firstly considered in [2, 3], and their stability were
studied in [2, 4, 5].

The mathematical model of interaction of a free molecular flow of particles with a rigid body was
proposed by Karymov [6, 7] and Beletsky [8, 9]. In their papers the dynamics of satellites moving
in the upper layers of the atmosphere or moving under the action of solar radiation pressure is
considered. For the first time the corresponding model of interaction of a free molecular flow with
a rigid body was applied to the problem of motion of a rigid body with a fixed point by Burov
and Karapetyan [10]. In the paper by Burov and Karapetyan [10] the equations of motion of the
body were obtained, and the integrable case, similar to the Lagrange case in the classical problem
of motion of a heavy rigid body with a fixed point, was found. The problem of stability of steady
motions of a satellite under the action of solar radiation pressure was considered, for example, by
Sidorenko [11].

In this paper we study the stability of regular precessions of a dynamically symmetric body,
bounded by the ellipsoid of revolution, in a flow of particles. Using the Routh theory of analyzing
the stability of steady motions of mechanical systems with known first integrals, we obtain stability
conditions for regular precessions of a rigid body with a fixed point located in a flow of particles.

2. PROBLEM FORMULATION

Let us consider the problem of motion of a rigid body with a fixed point O in a free molecular
flow of particles of constant density ρ (see Fig. 1). The particles in the flow move with a constant
velocity

−v = v0γ,
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Fig. 1. Rigid body with a fixed point in a flow of particles.

where γ is a unit vector, fixed in inertial space and directed along the oncoming flow. Thus, particles
move in a fixed direction, their thermal motion is neglected. The following model of particle—body
interaction is chosen: a particle makes an inelastic collision with the body, transferring all its energy
to the body and not being reflected. We will also consider sufficiently slow rotations of the body,
i.e., we will assume that the flow velocity v0 considerably exceeds the product of characteristic
value of the angular velocity of the body and the characteristic length from any point of the body
to a fixed point. Using the method, proposed by Beletsky [8, 9], we can write equations of motion
of the body in the following form (see [10, 19–21]):

J0ω̇ + [ω × J0ω] = −ρv20S (γ) [γ × c (γ)] ,

γ̇ + [ω × γ] = 0,
(1)

where J0 = diag (A1, A2, A3) is the inertia matrix of the body relative to a fixed point O, written
in the coordinate system Oxyz, which is rigidly connected with the body. The origin of this
coordinate system is located at the fixed point O and its axes are directed along the principal axes
of inertia of the body at O. We denote the unit vectors of this coordinate system by ex, ey, ez.
Let ω = ω1ex + ω2ey + ω3ez be the absolute angular velocity of the body in the same coordinate
system. The expression S (γ) is the area of the figure S0—the orthogonal projection of the surface
of the body onto the plane Π, perpendicular to the direction of the oncoming particle flow γ. We
can say that S0 is the shadow of the body on the plane Π, i.e., the projection of the body on the Π
plane along the γ direction. Vector c (γ) is the vector drawn from the projection O′ of the fixed
point O to the centroid of the shadow—coinciding with the center of mass of a homogeneous plate
occupying the region S0 (see Fig. 1).

3. REGULAR PRECESSIONS OF THE BODY

Let us consider a dynamically symmetric rigid body (A1 = A2) with a fixed point lying on the
axis of dynamical symmetry. Assume that the body is bounded by the ellipsoid of revolution with
semiaxes a1 = a2 = a, a3 = b, the axis of symmetry of which coincides with the axis of dynamical
symmetry of the body. In this case, the equations of motion of the body (1) admit the quadratic
and two linear in generalized velocities first integrals [19–22]:

U0 =
A1

2

(
ω2
1 + ω2

2

)
+

A3

2
ω2
3 − f

γ3∫
0

S (γ3) c3 (γ3) dγ3 = k0 = const, (2)

U1 = A1 (ω1γ1 + ω2γ2) +A3ω3γ3 = k1 = const, (3)

U2 = ω3 = k2 = const, (4)
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where f = ρv20 . In this case, to study the steady motions of the system, one can use the Routh theory
for holonomic systems with explicitly known first integrals [12–15, 18]. The effective potential in
the case, when the body is bounded by the elongated ellipsoid of revolution is explicitly written as
follows:

W (θ) =
(k1 −A3k2 cos θ)

2

2A1 sin
2 θ

− fπa2bl

2
cos θ

√
sin2 θ

a2
+

cos2 θ

b2

− fπbl

2

√
1

a2
− 1

b2

arctan

⎛
⎜⎜⎜⎜⎝

√
1

a2
− 1

b2
cos θ√

sin2 θ

a2
+

cos2 θ

b2

⎞
⎟⎟⎟⎟⎠ .

(5)

Here l is the distance from the fixed point O to the center of the ellipsoid of revolution, bounding
the rigid body and θ is the angle between the axis of dynamical symmetry of the body and the
direction of the flow of particles γ, measured so that at θ = 0 the body is oriented along the flow
of particles. For any values of contants of the first integrals, the system of equations (1) admits a
two-parametric family of particular solutions of the following form:

ω1 = ωγ1, ω2 = ωγ2, ω3 = ω cos θ +Ω,

γ21 + γ22 = 1− γ23 = sin2 θ, γ3 = cos θ,
(6)

where ω and Ω are constants connected with the constants k1 and k2 of the first integrals (3) and (4)
by the equations

ω =
k1 −A3k2 cos θ

A1 sin
2 θ

, Ω =

(
A1 sin

2 θ +A3 cos
2 θ

)
k2 − k1 cos θ

A1 sin
2 θ

,

and the constant angle θ is determined from the condition of existence of regular precessions

dW (θ)

dθ
= 0,

which is explicitly written as follows:

(k1 −A3k2 cos θ) (A3k2 − k1 cos θ)

2A1 sin
3 θ

+ fπa2bl sin θ

√
sin2 θ

a2
+

cos2 θ

b2
= 0. (7)

Let us write the equation (7) in dimensionless form. For this purpose, we introduce dimensionless
constants of the first integrals

p1 =
k1√

A3fπa2l
, p2 = k2

√
A3

fπa2l
(8)

and dimensionless parameters

y =
A1

A3
∈

[
1

2
, +∞

)
, z =

b2

a2
.

Then the condition for the existence of regular precessions (7) is dimensionless form is rewritten
as follows:

(p1 − p2 cos θ) (p2 − p1 cos θ)

y sin3 θ
+ sin θ

√
z sin2 θ + cos2 θ = 0,
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or, multiplying by −y sin3 θ,

a11p
2
1 + 2a12p1p2 + a22p

2
2 + a1 = 0, (9)

a11 = cos θ, a12 = −1 + cos2 θ

2
, a22 = cos θ,

a1 = −y sin4 θ

√
z sin2 θ + cos2 θ.

It is easy to see that for each fixed value of θ the equation (9) defines the second order curve. Let
us transform it to its canonical form. To do this, we introduce new variables x1 and y1 according
to the formulae:

x1 = p1 − p2, y1 = p1 + p2. (10)

In order to understand the physical meaning of the variables x1 and y1, let us recall the definition
of the constants k1 and k2 (see (3), (4)). For a dynamically symmetric body we can write

k1 = A1 (ω1γ1 + ω2γ2) +A3ω3γ3 = (JOω, γ) , k2 = ω3 =
(JOω, ez)

A3
.

Substituting these expressions into (8), we obtain the following equations:

p1 =
1√

A3fπa2l
(J0ω, γ), p2 =

1√
A3fπa2l

(J0ω, ez).

According to the formula (10) we can conclude that x1 is, up to a constant factor, the projection
of the angular momentum of the body onto the vector γ − ez:

x1 = p1 − p2 =
1√

A3fπa2l
(J0ω, (γ − ez)).

Similarly, y1 is the projection of the angular momentum of the body onto the vector γ + ez

y1 = p1 + p2 =
1√

A3fπa2l
(J0ω, (γ + ez)).

Vectors γ − ez and γ + ez are orthogonal

((γ − ez) , (γ + ez)) = γ2 − e2z = 0.

The third orthogonal vector is perpendicular to γ and ez and therefore it is directed along the
nodal line.

[(γ − ez)× (γ + ez)] = 2 [γ × ez ] .

Thus, γ − ez and γ + ez are orthogonal vectors in the plane, perpendicular to the nodal line,
and x1 and y1, up to a constant factor, are projections of the angular momentum of the body onto
these vectors.

Let us write the equation (9) in the variables x1, y1

1

4
(1 + cos θ)2 x21 −

1

4
(1− cos θ)2 y21 + a1 = 0. (11)

The given equation, up to a constant factor, is the canonical equation of a second-order curve.
Let us determine the type of this curve. For θ = πn we have a1 < 0, and the coefficients in the
quadratic part are nonzero. This means (see, for example, [16, 17]), that in each section by planes
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θ = πn of the surface, defined by the equation (11), we have a hyperbola. For θ = πn we have
a1 = 0, as well as one of the coefficients in the quadratic part will be equal to zero. Thus, in the
section by planes θ = πn of the surface, defined by the equation (11) we have a straight line of the
form

p1 = (−1)n p2.

These straight lines correspond to a single parametric family of solutions of equations of motion
of the body in a flow of particles, which correspond to permanent rotations of the body about its
axis of dynamical symmetry, coinciding with the direction of the flow of particles. The stability of
these permanent rotations has been studied in [10, 22].

The condition of stability of steady motions (6) in the case when a rigid body with a fixed point,
located in the flow of particles, is bounded by the elongated ellipsoid of revolution, has the form

d2W (θ)

dθ2
� 0

of, if we write it explicitly,(
1 + 2 cos2 θ

)
y sin4 θ

p21 −
(
5 + cos2 θ

)
cos θ

y sin4 θ
p1p2 +

(
1 + 2 cos2 θ

)
y sin4 θ

p22 +

(
2z sin2 θ + 2cos2 θ − 1

)
cos θ√

z sin2 θ + cos2 θ
� 0.

After multiplying by the positive factor y sin4 θ, this inequality takes the form

b11p
2
1 + 2b12p1p2 + b22p

2
2 + b1 � 0, (12)

b11 = 1 + 2 cos2 θ, b12 = −
(
5 + cos2 θ

)
cos θ

2
, b22 = 1 + 2 cos2 θ,

b1 =
y
(
2z sin2 θ + 2cos2 θ − 1

)
sin4 θ cos θ√

z sin2 θ + cos2 θ
.

Let us write the inequality (12) using the variables x1 and y1:

1

4
(1 + cos θ)2 (2 + cos θ)x21 +

1

4
(1− cos θ)2 (2− cos θ) y21 + b1 � 0. (13)

For each fixed θ, the boundary of the stability region (i.e., the curve, corresponding to the equal
sign in the inequality (13)) will also be the second-order curve. The type of this curve depends on
the sign of b1. For b1 < 0 the boundary of the stability region is an ellipse with the center at x1 = 0,
y1 = 0. On the plane of dimensionless variables x1, y1 for each fixed θ, outside the corresponding
ellipse there will be a stability region of regular precessions (6), and inside it—an instability region.
For b1 > 0 the boundary of the stability region degenerates into an imaginary ellipse, and for b1 = 0
the boundary is a straight line. We can note here, that for b1 � 0 the inequality (13) is satisfied
for any values of x1, y1, and therefore the regular precessions of the body will be stable.

Considering simultaneously the condition of existence of regular precessions (11) and the con-
dition of stability of regular precessions (13) of a body with a fixed point in the flow of particles,
we can draw a conclusion about stability of such motions. Namely, if for some fixed θ the hyper-
bola (11) and the ellipse (13) do not intersect, then the steady motion (6), corresponding to this
value of θ, is stable (Figs. 2–4).

Let us study the problem of stability of regular precessions in more details. From the condition
of existence of regular precessions (11) we express y21:

y21 =
(1 + cos θ)2

(1− cos θ)2
x21 +

4a1

(1− cos θ)2
. (14)
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Fig. 2. Relative position of the hyperbola and the ellipse for y = 5
6 , z = 8, θ = 2π

3 .

Fig. 3. Relative position of the hyperbola and the ellipse for y = 5
6 , z = 8, θ = 3π

4 .

Since y21 � 0, then from (14) we obtain that x1 should satisfy the condition:

x21 �
4y sin4 θ

(1 + cos θ)2

√
z sin2 θ + cos2 θ = (x1)

2
∗. (15)

Let us substitute the obtained expression (14) for y21 into the stability condition (13). We obtain
the following inequality

(1 + cos θ)2 x21 + (2− cos θ)a1 + b1 � 0. (16)
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Fig. 4. Relative position of the hyperbola and the ellipse for y = 5
6 , z = 8, θ = 5π

6 .

Fig. 5. Relative position of x2
10 and (x1)

2
∗ for y = 5

6 , z = 8.

The left hand side of defines a parabola whose branches are directed upwards. Let x10 be the
abscissa of the intersection point of the parabola with the positive semiaxis Ox1. Let us find x10
explicitly

x210 = −(2− cos θ) a1 + b1

(1 + cos θ)2
.

After substitution the values of a1 and b1, we write the expression for x210 in explicit form:

x210 =
y sin4 θ

√
z sin2 θ + cos2 θ

(1 + cos θ)2

(
2− 3 cos θ +

cos θ

z sin2 θ + cos2 θ

)
. (17)
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For x21 � x210 the stability condition (3) will be satisfied. Thus, regular precessions exist when
the condition (15) is satisfied, and they will be stable if the condition (3) is satisfied. From this
fact we can draw the following conclusions (Fig. 5):

1. For x210 < (x1)
2∗, regular precessions of the body are stable for any admissible values of x1, y1

(and, accordingly, for any values of constants p1 and p2 of the first integrals).

2. For x210 > (x1)
2∗, regular precessions are stable only if the condition x21 > x210 holds.

3.1. The Case z > 1

First of all let us consider the case of elongated ellipsoid of revolution, z > 1. We will find the
conditions under which x210 > (x1)

2∗. We obtain

3 (1− z) cos3 θ + 2 (1− z) cos2 θ + (3z − 1) cos θ + 2z < 0.

By factoring the left hand side, we obtain the following inequality:

3 (z − 1) (cos θ + 1)

(
cos θ − 1

6
− 1

6

√
25z − 1

z − 1

)(
cos θ − 1

6
+

1

6

√
25z − 1

z − 1

)
> 0. (18)

The first three factors in the left hand side of inequality (18) are positive. It can be shown that
for z > 1 the following condition is valid:

1

6
+

1

6

√
25z − 1

z − 1
> 1.

Thus, the factor

cos θ − 1

6
− 1

6

√
25z − 1

z − 1

in the left hand side of (18) is always negative. Therefore the condition (18) is equivalent to the
condition

cos θ − 1

6
+

1

6

√
25z − 1

z − 1
< 0. (19)

Let us consider the latter condition. The function

1

6
− 1

6

√
25z − 1

z − 1

increases monotonically for z > 1. It takes the value −1 for z = 2 and then it asymptotically tends
to −2

3 . Thus for 1 < z � 2 we obtain

cos θ − 1

6
+

1

6

√
25z − 1

z − 1
� 0,

and therefore the condition (19) is not satisfied. From this fact we conclude that for 1 < z � 2
regular precessions of the rigid body are stable for any value of θ and for any admissible values of
the parameters x1 and y1 (and accordingly, for any admissible values of the constants p1 and p2 of
the first integrals).

Figure 6 presents the Poincare–Chetaev bifurcation diagram for y = 2, z = 12
11 at the level y1 = 0.

On this figure the straight line θ = π corresponds to permanent rotations of the body about its axis
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Fig. 6. Section of the surface (11) by the plane y1 = 0 for y = 2, z = 12
11 .

Fig. 7. Relative position of the hyperbola and the ellipse for y = 2, z = 12
11 , θ = 5π

6 .

of dynamical symmetry. It is easy to see the stable regular precessions of the body which branch
off from this straight line. In addition, on the plane of dimensionless variables x1 and y1 for the
fixed values of θ the corresponding hyperbola (11) and ellipse (13) were constructed (see Fig. 7).
It is easy to see, that they do not intersect in the considered case.
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Fig. 8. Section of the surface (11) by the plane y1 = 0 for y = 2, z = 5
2 .

Fig. 9. Relative position of the hyperbola and the ellipse for y = 2, z = 5
2 , θ = θ2.

Let us introduce the new value θ = θ2:

θ2 = arccos

(
1

6
− 1

6

√
25z − 1

z − 1

)
. (20)

We can conclude that for z > 2 the inequality (19) holds for cos θ < cos θ2 and does not hold for
cos θ � cos θ2.
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Figure 8 presents the Poincare–Chetaev bifurcation diagram for y = 2, z = 5
2 at the level y1 = 0.

It is easy to see, that the regular precessions of the body, branching off the permanent rotations,
are unstable near the value θ = π, and then, passing through the inflection point, become stable.
The inflection point corresponds to θ = θ2, where θ2 is determined by (20).

In addition Fig. 9 shows the hyperbola (11) and the ellipse (13) on the plane of dimensionless
variables x1 and y1 for θ = θ2, where θ2 is determined by (20). It is clear that for θ = θ2 the
hyperbola and the ellipse touch but do not intersect.

Taking into account all the obtained results we can conclude that the condition (18) is valid for
z > 2 and cos θ < cos θ2. And it is not satisfied for any other values of the parameters. Thus, regular
precessions of the rigid body located in the flow of particles are stable for any values of x1, y1 (and,
accordingly, for any values of dimensionless constants p1 and p2 of the first integrals), if 1 < z � 2
or if z > 2 and cos θ > cos θ2. If z > 2 and cos θ < cos θ2, then the regular precessions of the body
are stable under condition x21 > x210.

3.2. The Case z < 1

Now we study the stability of regular precessions of the body bounded by the oblate ellipsoid of
revolution, z < 1. All previously find expressions for x210 and (x1)

2∗ will have the same form (15), (17)
for the oblate ellipsoid. The conditions, under which x210 > (x1)

2∗, will be the same (18). Simplifying
them, we obtain the following condition:

(
cos θ − 1

6
− 1

6

√
1− 25z

1− z

)(
cos θ − 1

6
+

1

6

√
1− 25z

1− z

)
< 0. (21)

It is easy to see, that for z ∈ [ 1
25 , 1

)
the condition (21) does not hold. Thus, we can conclude,

that for z ∈ [
1
25 , 1

)
we have x210 � (x1)

2∗ and therefore regular precessions of the body in the flow
of particles will be stable for any values of x1, y1.

3.3. The Case z < 1
25

Finally, let us consider the case z < 1
25 . The condition (21) will be satisfied for the following

values of θ:

θ ∈
(
arccos

(
1

6
+

1

6

√
1− 25z

1− z

)
, arccos

(
1

6
− 1

6

√
1− 25z

1− z

))
. (22)

Let us introduce the value θ = θ1 such that

θ1 = arccos

(
1

6
+

1

6

√
1− 25z

1− z

)
.

It is easy to obtain that for θ ∈ (0, θ1)∪(θ2, π) the condition (21) will not satisfied, and therefore,
regular precessions of the body will be stable for any values of x1, y1. If θ ∈ (θ1, θ2), then regular
precessions will be stable only for x21 > x210.

Figure 10 presents the Poincare–Chetaev bifurcation diagram for y = 101
200 , z = 1

100 at the level
y1 = 0. It is easy to see, that the regular precessions of the body, branching off from the permanent
rotations, are stable near θ = π, and its stability is preserved as the angle θ decreases to θ2. Further,
for θ ∈ (θ1, θ2), the regular precessions of the body become instable, and for θ < θ1 they become
stable again.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 9 2024
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Fig. 10. Section of the surface (11) by the plane y1 = 0 for y = 101
200 , z = 1

100 .

y
1

x
1

2

0

–2

–4

1 2–1–2

4

3

1

–1

–3

Fig. 11. Relative position of the hyperbola and the ellipse for y = 101
200

, z = 1
100

, θ = arccos
(

1
6
+ 1

6

√
1−25z
1−z

)
.

Figures 11 and 12 shows the hyperbola (11) and the ellipse (13) on the plane of dimensionless
variables x1 and y1 for

z =
1

100
, θ = arccos

⎛
⎝1

6
+

1

6

√
1− 25z

1− z

⎞
⎠ and θ = arccos

⎛
⎝1

6
− 1

6

√
1− 25z

1− z

⎞
⎠ .

It is clear that for these values of θ the hyperbola (11) and the ellipse (13) touch, but do not
intersect.
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y
1

x
1

2

0

–2

–4

1 3–1–2

4

3

1

–1

–3

–3 2

Fig. 12. Relative position of the hyperbola and the ellipse for y = 101
200

, z = 1
100

, θ = arccos
(

1
6
− 1

6

√
1−25z
1−z

)
.

Thus we can finally conclude that all the regular precessions (6) of a dynamically symmetric rigid
body with a fixed point, bounded by the ellipsoid of revolution and located in a flow of particles,
will be stable for any values of x1, y1 (and, accordingly, for any values of the dimensionless constants
p1 and p2 of the first integrals), if the ratio of the squares of the semiaxes of the ellipsoid is satisfied
to the condition

1

25
� z � 2.

For z > 2 the regular precessions of the body will be stable for any values of x1 and y1 if θ lies
in the interval

θ ∈
⎡
⎣0, arccos(1

6
− 1

6

√
25z − 1

z − 1

)⎞⎠ .

For values of θ, belonging to the interval

θ ∈
⎡
⎣arccos(1

6
− 1

6

√
25z − 1

z − 1

)
, π

⎞
⎠

the regular precessions are stable if the following condition is valid

x21 >
y sin4 θ

√
z sin2 θ + cos2 θ

(1 + cos θ)2

(
2− 3 cos θ +

cos θ

z sin2 θ + cos2 θ

)
.

For

0 < z <
1

25
the regular precessions of the body will be stable for any values of x1 and y1, if θ belongs to the set

θ ∈
⎛
⎝0, arccos

⎛
⎝1

6
+

1

6

√
1− 25z

1− z

⎞
⎠
⎞
⎠⋃⎛

⎝arccos

⎛
⎝1

6
− 1

6

√
1− 25z

1− z

⎞
⎠ , π

⎞
⎠ .
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For any θ, belonging to the interval

θ ∈
⎡
⎣arccos

⎛
⎝1

6
+

1

6

√
1− 25z

1− z

⎞
⎠ , arccos

⎛
⎝1

6
− 1

6

√
1− 25z

1− z

⎞
⎠
⎤
⎦

the regular precessions will be stable if the following condition is valid

x21 >
y sin4 θ

√
z sin2 θ + cos2 θ

(1 + cos θ)2

(
2− 3 cos θ +

cos θ

z sin2 θ + cos2 θ

)
.

These are the main results of study the stability of regular precessions of a dynamically sym-
metric body with a fixed point, bounded by the ellipsoid of revolution, in a flow of particles.

FUNDING

This work was supported by the Russian Science Foundation, project no. 24-11-20009.

REFERENCES

1. Lagrange, J.L., Mechanique analitique, Paris: Desaint, 1788.

2. Routh, E.J., The advanced part of a treatise on the dynamics of a system of rigid bodies: Being part II
of a treatise on the whole subject, 6th ed., New York: Dover, 1955.

3. Tournaire, L.-M., Memoire sur la rotation des corps pesant, C. R. Acad. Sci., Paris, 1860, vol. 50, no. 1,
pp. 476–481.

4. Skimel, V.N., To problems of stability of motion of a heavy rigid body with a fixed point, PMM, 1956,
vol. 20, no. 1, pp. 130–132.

5. Chetaev, N.G., On the stability of rotation of a rigid body with a fixed point in the Lagrange case,
PMM, 1954, vol. 18, no. 1, pp. 123–124.

6. Karymov, A.A., Determination of forces and moments due to light pressure acting on a body in motion
in cosmic space, J. Appl. Maths. Mechs., 1962, vol. 26, no. 5, pp. 1310–1324.

7. Karymov, A.A., Stability of rotational motion of a geometrically symmetrical artificial satellite of the
Sun in the field of light pressure forces, J. Appl. Maths. Mechs., 1964, vol. 28, no. 5, pp. 1117–1125.

8. Beletsky, V.V., Motion of an Artificial Satellite about its Center of Mass, Jerusalem: Israel Program for
Scientific Translation, 1966.

9. Beletsky, V.V. and Yanshin, A.M., Vliyanie aerodinamicheskikh sim na vrashchatel’noe dvizhenie
iskusstvennykh sputnikov (The Influence of Aerodynamics Forces on Spacecraft Rotation), Kiev: Naukova
Dumka, 1984.

10. Burov, A.A. and Karapetyan, A.V., The motion of a solid in a flow of particles, J. Appl. Maths. Mechs.,
1993, vol. 57, no. 2, pp. 295–299.

11. Sidorenko, V.V., Rotational Motion of Spacecraft with Solar Stabilizer, Kosm. Issled., 1992, vol. 30,
no. 6, pp. 780–790.

12. Karapetyan, A.V., Ustoichivost’ statsionarnykh dvizhenii (Stability of Steady Motions), Moscow: Edi-
torial URSS, 1998.

13. Karapetyan, A.V., Ustoichivost’ i bifurkatsiya dvizhenii (Stability and Bifurcation of Motions), Moscow:
Mosk. Gos. Univ., 2020.

14. Kalenova, V.I., Karapetyan, A.V., Morozov, V.M., et al., Nonholonomic Mechanical Systems and Sta-
bilization of Motion, J. Math. Sci., 2007, vol. 146, pp. 5877–5905.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 9 2024



STABILITY OF REGULAR PRECESSIONS OF A BODY 893

15. Karapetyan, A.V., On construction of the effective potential in singular cases, Regular Chaot. Dynam.,
2000, vol. 5, no. 2, pp. 219–224.

16. Aleksandrov, P.S., Lektsii po analiticheskoi geometrii (Lectures on analytical geometry), Moscow: Nauka,
1968.

17. Bronshtein, I.N. and Semendyayev, K.A., A Guide-Book to Mathematics for Technologists and Engineers,
Oxford: Pergamon Press, 1964.

18. Karapetyan, A.V. and Kuleshov, A.S., Steady Motions of Nonholonomic Systems, Regular and Chaot.
Dynam., 2002, vol. 7, no. 1, pp. 81–117.

19. Gadzhiev, M.M. and Kuleshov, A.S., On the Motion of a Rigid Body with a Fixed Point in a Flow of
Particles Moscow Univ. Mechs. Bull., 2022, vol. 77, no. 3, pp. 75–86.

20. Kuleshov, A.S. and Gadzhiev, M.M., Problem of Motion of a Rigid Body with a Fixed Point in a Particle
Flow Vestnik St. Petersburg Univ. Maths., 2022, vol. 55, no. 3, pp. 353–360.

21. Gadzhiev, M.M. and Kuleshov, A.S., Nonintegrability of the Problem of the Motion of an Ellipsoidal
Body with a Fixed Point in a Flow of Particles, Russ. J. Nonlin. Dynam., 2022, vol. 18, no 4, pp. 629–637.

22. Gadzhiev, M.M. and Kuleshov, A.S., On stability of steady motions of a body with a fixed point, Trudy
MAI, 2023, no. 129, pp. 1–20.

This paper was recommended for publication by A.G. Kushner, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 9 2024


