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Abstract—The problem of parametric synthesis of a model predictive control (MPC) system by
the chemical process of production of the kerosene fraction of an industrial fractionator under
conditions of constraints and uncertainty is considered. The optimal parameters of the MPC
algorithm are obtained as a result of solving the problem of multi-criteria optimization, taking
into account the intervally specified parameters of the plant model.
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1. INTRODUCTION

Model predictive control (MPC) has recently developed a lot due to the fact that it has a number
of significant advantages in solving the problems of control multidimensional industrial plants in
the presence of constraints on control actions [1–3].

When finding the values of control actions at each time step k, the optimization problem is
solved. The objective function using the predict of P forward time steps (ỹk+j, j = 1, . . . , P ) is
minimized by selecting the increment values of the control variables Δu on the control horizon M .
The values of the control actions are determined by M ssteps forward, but only the first change is
used Δuk, i.e. at the current time. After uk is executed, the measurement of the output variable
comes in the next step yk+1 and the model error is corrected, since the measured value yk+1, as
a rule, does not coincide with the forecast value. For a multidimensional system consisting of
controlled variables (CV) nCV and manipulated variables (MV) nMV , the matrix of the system
dynamics is formed from the coefficients of the finite step response (FSR):

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1 0 . . . 0

S2 S1 0
...

...
...

. . . 0
SM SM−1 . . . S1
SM+1 SM . . . S2

...
...

. . .
...

SP SP−1 . . . SP−M+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where Si =

⎡⎢⎢⎢⎢⎣
S11,i S12,i . . . S1nMV ,i

S21,i . . . . . . S2nMV ,i
...

...
...

...
SnCV 1,i . . . . . . SnCV nMV ,i

⎤⎥⎥⎥⎥⎦ – matrix nCV × nMV of step response coefficients for

the ith time step.

First-order transfer function with a delay are mainly used as initial data for predictive models
in the form of an FSR:

F (s) =
g

τs+ 1
e−θs.

The parameters of the model for a multivariable system can be written as matrices:

Ĝ =

⎛⎜⎝ ĝ1,1 . . . ĝ1,nMV

...
. . .

...
ĝnCV ,1 . . . ĝnCV ,nMV

⎞⎟⎠, T̂ =

⎛⎜⎝ τ̂1,1 . . . τ̂1,nMV

...
. . .

...
τ̂nCV ,1 . . . τ̂nCV ,nMV

⎞⎟⎠, Θ̂ =

⎛⎜⎜⎝
θ̂1,1 . . . θ̂1,nMV

...
. . .

...

θ̂
CV ,1 . . . θnCV ,nMV

⎞⎟⎟⎠,
where Ĝ is the matrix of the gain coefficients, T̂ is the matrix of the time constants, Θ̂ is the
matrix of the delay values.

The elements of the matrix S are formed on the basis of Ĝ, T̂ and Θ̂:⎧⎪⎪⎨⎪⎪⎩
Si = 0, iΔt � Θ̂

Si = Ĝ

⎛⎝1− e
−(iΔt−Θ̂)

T̂

⎞⎠ , iΔt > Θ̂.

The control problem can be formulated as an optimization problem with the following objective
function [4]:

min
ΔUk

J = ÊT
k+1QÊk+1 +ΔUT

kRΔUk

s.t.

y−
k+j � ỹk+j � y+

k+j (j = 1, . . . , P ) ,

u− � uk+j � u+ (j = 0, 1, . . . ,M − 1) ,

Δu− � Δuk+j � Δu+ (j = 0, 1, . . . ,M − 1) ,

where uk =
[
u1|k, . . . , unMV |k

]T
is a vector of MV values at time k; ΔUk = [Δuk, . . . ,Δuk+M−1]

is a matrix M of changes in MV values at time k (Δuk =
[
Δu1|k, . . . ,ΔunMV |k

]T
); ỹk+j =[

ỹ1|k+j, . . . , ỹnCV |k+j

]T
is a vector of corrected predicted CV values at time k + j; Q and R are

diagonal weight matrices for prioritizing elements Êk+1 and controlling changes ΔUk, respectively.

The predictable error vector Êk+1 is defined as

Êk+1 = Yref
k+1 − Ỹk+1,

where Yref
k+1 is the vector of given CV values at time k+1, Ỹk+1 is the vector of corrected predicted

values:

Ỹk+1 = SΔUk + Ŷo
k+1 + [yk − ŷk] ,

where Ŷo
k+1 =

∑N−2
i=1 Si+1Δuk−i + SNuk−N+1 is the vector of forecasts of unforced responses.
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This paper considers the MPC algorithm, in which the increments of control actions (MV) are
determined analytically [5]:

ΔU(k) = KCÊ
o(k + 1),

where Êo(k + 1) is the predicted deviations from the initial trajectory with the constancy of the
values of future control actions; KC is the matrix of the regulator gain, which is calculated as

KC =
(
STQS+R

)−1
STQ.

In spite of its advantages, MPC depends on the accuracy of the model, and transients in the
control system can deteriorate in the presence of uncertainty, perturbations, and model errors
(mismatch of the MPC model with the model of the controlled plant) [6]. In the existing works,
in order to compensate for the uncertainty, it is proposed to introduce output predictors into the
structure of the control system for various parameters of the plant (family of plants) [7, 8], which
increases the complexity of the control system in the case of multidimensional plants, and the
number of required computing resources of the MPC algorithm for finding a sequence of optimal
increments of control actions increases significantly. In contrast to the known works, in this paper,
it is proposed to take into account the uncertainty of the plant at the design stage of the MPC
algorithm, i.e. to search for the optimal parameters of the regulator based on the predictive model
(weight matrices Q and R), when the parameters of the plant are set intervally.

2. DESCRIPTION OF THE PROCESS UNIT
AND FORMULATION OF THE PROBLEM

A fractionation column C-2 is considered (Fig. 1), in which a multicomponent hydrocarbon
crude mixture is divided into naphta, kerosene, and other fractions. Column C-2 has an additional
side stripping column—a column for stripping the C-3 kerosene fraction. Column C-2 contains
44 valve trays in the rectification section and 12 valve trays in the stripping section. Excess heat in
the column is removed by bottom pumparound (BPA). The top temperature (TIC1) is controlled
by the supply of reflux in the upper part of the C-2 fractionator. The purpose of column C-3
is the stripping of light hydrocarbons from the kerosene fraction due to the heat of the BPA of
column C-2 supplied to the reboiler E-2. Light hydrocarbon vapors from column C-3 are returned
to column C-2. The temperature of the product kerosene at the outlet of column C-3 is controlled
by the TIC2 loop. The plant in question has nCV = 2 and nMV = 2. The matrix of transfer

Fig. 1. Process unit block diagram.
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Table 1. Transfer matrix of the plant

Top temperature C-2
(TIC1.SV)

Bottom temperature
C-3 (TIC2.SV)

TIBP KERO F1,1 =
g1,1

τ1,1s+ 1
e−θ1,1s F1,1 =

g1,2

τ1,2s+ 1
e−θ1,2s

FV1.MV % of valve opening E-2 F2,1 =
g2,1

τ2,1s+ 1
e−θ2,1s F2,2 =

g2,2

τ2,2s+ 1
e−θ2,2s

functions of the plant is presented in Table 1. Transfer functions are aperiodic links of the 1st order
with a delay.

The control task is to maintain the initial boiling point of the kerosene fraction (TIBP KERO)
within a set range.

3. DETERMINATION OF THE OPTIMAL PARAMETERS OF THE REGULATOR
BASED ON THE PREDICTIVE MODEL FOR QUALITY CONTROL

OF THE INDUSTRIAL FRACTIONATOR PRODUCT

Let us denote the parameters of the transfer functions of the plant in the form of the following
matrices:

G =

(
g1,1 g1,2
g2,1 g2,2

)
, T =

(
τ1,1 τ1,2
τ2,1 τ2,2

)
, Θ =

(
θ1,1 θ1,2
θ2,1 θ2,2

)
.

Matrices of parameters of the transfer functions of the regulator (to find the FSR):

Ĝ =

(
ĝ1,1 ĝ1,2
ĝ2,1 ĝ2,2

)
, T̂ =

(
τ̂1,1 τ̂1,2
τ̂2,1 τ̂2,2

)
, Θ̂ =

(
θ̂1,1 θ̂1,2
θ̂2,1 θ̂2,2

)
.

Set the upper and lower limits of the parameter ranges:

G =

(
0.2 0.9
−0.5 0.9

)
, T =

(
18 18
20 14

)
, Θ =

(
8 7
9 7

)
,

G =

(
0.1 0.5
−1 0.45

)
, T =

(
6 6
8 6

)
, Θ =

(
2 3
1 1

)
.

Let us assume that the actual parameters of the transfer functions of the plant lie in the middle of
the specified range:

G =
G+G

2
=

(
0.15 0.7
−0.75 0.675

)
, T =

T+T

2
=

(
12 12
14 10

)
, Θ =

Θ+Θ

2
=

(
5 4
6 4

)
.

To study the transient processes in the control system, we set the vector of tasks by CV
r = [r1 r2] = [1 0.8]. The adjusting parameters of the regulator are the matrix of weights
by error CV Q = diag {Q1,Q2} and the matrix of weights by increment MV R = diag {R1,R2}.
In the course of the study, it was established that the quality of regulation depended not so much on
the values of the weights Q and R as on the ratio of the weights relative to each other. Therefore,
within the framework of this study, the weights Q = diag {Q1,Q2} are set.

As a criterion for the accuracy of control tasks according to CV, the mean square error relative
to the desired dynamics was chosen [9]:

J =
NM∑
i=1

nCV∑
q=1

(
yrefi,q − yi,q

)2
,
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where yrefi,q is the value of the desired trajectory q CV at the ith time point, yi,q is the actual value
of q CV at the ith time point.

Thus, the optimization problem can be written as:

min
R>0

J =
NM∑
i=1

nCV∑
q=1

(
yrefi,q − yi,q

)2
,

whereR > 0 means that all diagonal elements are positive. The calculation of the desired trajectory
is made according to the following expression:

yrefi,q =
rq
∑nMV

j=1 Gq,j

(
1− e

t̃
Tq,j

)
∑nMV

j=1 |Gq,j| , t̃ =

{
i−Θq,j, i � Θq,j

0, i < Θq,j,

where i = 1, . . . , NM are the time points, and q = 1, . . . , nCV is the CV number for which the
desired trajectory is calculated. The purpose of this study is to find such values of the weights
R = diag {R1,R2} that the output variables of the plant are as close as possible to the desired
dynamics for various parameters Ĝ, T̂ and Θ̂, lying within the specified range.

To determine the robust optimal values of R, consider cases where one of the parameters Ĝ, T̂
and Θ̂ lies at the boundary of the ranges, and the rest are in the middle. The cases under
consideration are presented in Table 2.

Table 2. Controller model parameter variations

Index p̃
Parameter value

Index p̃
Parameter value

Ĝ T̂ Θ̂ Ĝ T̂ Θ̂

1 G T Θ 4 G T Θ

2 G T Θ 5 G T Θ

3 G T Θ 6 G T Θ

The optimization problem in a general form for each of the cases under consideration can be
represented as:

min
R>0

J p̃ =
NM∑
i=1

nCV∑
q=1

(
yrefi,q −

(
yi−1,q + Sp̃

i

(
Sp̃T
i QSp̃

i +R
)−1

Sp̃T
i QÊo (k + 1)

))2

,

where

⎧⎪⎨⎪⎩
Sp̃
i = 0, iΔt � Θ̂p̃

Sp̃
i = Ĝp̃

(
1− e

− iΔt−Θ̂p̃

T̂p̃

)
, iΔt > Θ̂p̃.

To determine the optimal (in this case, robust) parameters of the MPC algorithm, we will vary
the values R = diag {R1,R2} in the range 0.1 � R1 � 35 and 0.1 � R2 � 40 in increments of 0.2.
The graphs in Fig. 2 show the surfaces of the change in the accuracy criterion. Table 3 shows the
weights R at which the criteria values J p̃ are minimal.

Table 3. Optimal values of R for different criteria J p̃

Rp̃=1
opt Rp̃=2

opt Rp̃=3
opt Rp̃=4

opt Rp̃=5
opt Rp̃=6

opt

R1 0.1 0.7 6.9 2.5 8.9 0.1

R2 32.9 1.1 28.5 12.1 32.9 3.5
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Fig. 2. Criteria values J p̃ for different R1 and R2.

Fig. 3. Change of J̆ at different values R1 and R2.

Due to the fact that the optimal values of the weight matrix R are different for the 6 cases under
consideration, we will use the convolution of criteria [10] to find the robust optimal parameters:

J̆ =
6∑

p̃=1

wp̃ × J p̃.

Since the values of the criteria for the cases under consideration have the same physical dimen-
sion, we assume that the value of wp̃ = 1, p̃ = 1, . . . , 6. Figure 3 shows the surface of change J̆
when the values of R1 and R2 change. The values of the weights R corresponding to the minimum

value of the criterion J̆ are equal to RJ̆
opt = diag {5.3, 17.1}.

Figure 4 presents the optimal values of R in the plane R1R2. Figure 5 shows the CV transients

when the values of R = Rp̃=1
opt and R = RJ̆

opt.

It can be concluded from the graphs in Fig. 5 that the use of weights R selected on the basis
of J̆ , i.e. taking into account the variations in the parameters of the object, makes it possible to

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 7 2024
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Fig. 4. Location of optimal values of R.

Fig. 5. CV transients at R = Rp̃=1
opt and R = RJ̆

opt.

reduce the deviation from the desired trajectory in comparison with the case when the optimal
weights are selected on the basis of only one of the criteria J p̃, i.e. without taking into account the
uncertainty of the parameters of the plant.

Table 4. Values of criteria J p̃ (deviation from the desired dynamics) for different R

R1 R2 p̃ = 1 p̃ = 2 p̃ = 3 p̃ = 4 p̃ = 5 p̃ = 6

Rp̃=1
opt 0.1 32.9 1.34848 6.06283 2.00167 2.62597 2.03054 2.39714

Rp̃=2
opt 0.7 1.1 3.7571 0.06194 2.29674 0.73448 2.6284 0.18394

Rp̃=3
opt 6.9 28.5 1.59663 1.89024 1.25891 0.64345 0.82054 0.90192

Rp̃=4
opt 2.5 12.1 2.38149 0.71668 1.44793 0.21418 1.2088 0.15819

Rp̃=5
opt 8.9 32.9 1.54609 2.1035 1.26915 0.82553 0.80598 1.13606

Rp̃=6
opt 0.1 3.5 2.97203 0.43404 1.54271 0.3417 1.48232 0.04001

RJ̆
opt 5.3 17.1 1.94841 0.87779 1.38022 0.2607 1.05938 0.28966

4. CONCLUSION

In the framework of this work, a search was made for the robust optimal values of the weights R
for the control system based on the predictive model, taking into account the parametric uncertainty
of the parameters of the control plant. The optimal weights were found for cases where one of the
parameters is at the boundary of the range, and the rest are in the middle. With the help of

convolution of criteria, robustly optimal values RJ̆
opt = diag {5.3, 17.1} were found that ensure the

best quality of control of the TIBP KERO of kerosene fraction of the industrial fractionator. It is
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shown that the use of RJ̆
opt made it possible to reduce the deviation from the desired dynamics in

comparison with the use of the optimal value of R without taking into account the uncertainty.
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