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Abstract—Connected systems with switching between three linear discrete-time subsystems are
considered, and a new frequency-domain criterion for the existence of a quadratic Lyapunov
function ensuring the stability of such systems under arbitrary switching is proposed. The
application of this criterion is demonstrated on an example of a third-order system.
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1. INTRODUCTION

The theory of discrete-time systems has been actively developing lately. Various aspects of this
theory have been discussed in relatively recent publications [1–7]; also, see the bibliography therein.
This paper is devoted to the quadratic stability problem of connected discrete-time systems [3]
with switching between three linear stationary subsystems under any switching laws. The term
“connected system” will be explained below. By quadratic stability we mean the stability of
a system that can be established using a Lyapunov function from the class of quadratic forms
or quadratic Lyapunov functions (QLFs). For a connected system with switching between two
subsystems, this problem is equivalent to the absolute stability problem of a discrete-time system
with a single nonlinearity [3], and a quadratic stability criterion for such a system is the well-known
Tsypkin’s criterion [8]. In the case of switching between two subsystems, connectedness means that
the rank of the difference of the matrices determining the switched subsystems is one.

For connected discrete-time systems with switching between three linear subsystems, a frequency-
domain criterion for the existence of a QLF was established in [3]. The disadvantages are an
excessively cumbersome procedure for obtaining this criterion and an excessively cumbersome form
of the final result. They can be explained as follows. The quadratic stability of a switched system
ensues from the existence of a common quadratic Lyapunov function (CQLF). In the case under
consideration, the existence of a CQLF is determined by the feasibility of a system of three Lyapunov
linear matrix inequalities (LMIs) for discrete-time systems. This system of LMIs is connected,
and one resulting matrix inequality equivalent to it was derived in [3]. However, (a) this matrix
inequality is not an LMI and (b) the frequency-domain conditions of its feasibility cannot be
obtained based on the generalized Kalman–Szegö–Popov lemma [9, 10], as it was done in [3] in the
case of Tsypkin’s criterion. To overcome inconvenience (b), a fractional linear transformation was
used in [3] to pass from the system of LMIs for discrete-time systems to the equivalent system of
Lyapunov LMIs for continuous-time systems. The resulting matrix inequality for this system is
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again not an LMI, but its feasibility conditions were established in [3] in the form of a frequency-
domain criterion based on the frequency theorem [11, p. 54] (the Kalman–Yakubovich–Popov
(KYP) lemma). The conditions of this criterion are expressed through the elements of a “transfer
matrix” for the continuous-time system obtained by the transformation. Finally, using a rather
cumbersome procedure, these elements are expressed through the elements of the “transfer matrix”
of the original discrete-time system.

In this paper, we apply a new result (Theorem 2 of [12]) to the original system of three Lyapunov
LMIs for discrete-time systems to obtain an equivalent resulting matrix inequality that is an LMI.
Next, we demonstrate that the feasibility of this LMI can be established by the generalized Kalman–
Szegö–Popov lemma in the frequency-domain criterion form. This yields a new frequency-domain
criterion for the quadratic stability of the systems under consideration, the main aim of the paper.

Section 2 describes the system of three Lyapunov LMIs for discrete-time systems, whose feasi-
bility is equivalent to the quadratic stability of the systems under consideration. The main result
of this paper—the frequency-domain criterion for quadratic stability—is presented in Section 3.
A numerical example of a third-order system is provided in Section 4; for this system, the proposed
criterion is applied to analytically find the entire quadratic stability domain on the parameter.

2. PROBLEM STATEMENT

Consider a linear discrete-time switched system of the form

x(t+ 1) = A(t)x(t), A(t) ∈ A = {A1, A2, A3}, (1)

where As ∈ R
n×n and A(t) : Z+ −→ A is a mapping from the set Z+ of nonnegative integers into A.

By assumption, the matrices As are stable (Schur, see [13]), i.e., r(As) = max
ν

|μν(As)| < 1 for

s = 1, 3, where μν denote the eigenvalues of the matrix As. The stability of the switched system (1)
will be analyzed using QLFs of the form

v(x) = x�Lx, L = L� = ‖lij‖ni,j=1, (2)

where the symbol {·}� means transpose.

According to [3], the existence of a QLF (2) is determined by the feasibility of the system of
LMIs

Is = A�
s LAs − L < 0, s = 1, 3. (3)

System (1) is connected [3] if the matrices {A1, A2, A3} can be represented as

A1 = A,

A2 = A+ b1c
�
1 ,

A3 = A+ b2c
�
2 ,

bi, ci ∈ R
n.

(4)

In this case, system (3) can be written in the form

I1 = A�LA− L < 0,

I2 = (A+ b1c
�
1 )

�L(A+ b1c
�
1 )− L < 0,

I3 = (A+ b2c
�
2 )

�L(A+ b2c
�
2 )− L < 0.

(5)

The problem under consideration is to obtain a frequency-domain criterion for the feasibility of
the system of LMIs (5).
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3. SYSTEMS WITH SWITCHING BETWEEN THREE LINEAR
DISCRETE-TIME SUBSYSTEMS

To investigate the feasibility of system (5) we use Theorem 2 of [12]. In the formulas below, the
symbols “•” denote the elements below the principal diagonal of an appropriate symmetric matrix
that coincide with the corresponding elements above this diagonal.

Theorem 1. Let the inequalities in the system

I1 < 0, I2 = I1 +Q1 < 0, I3 = I1 +Q2 < 0 (6)

be LMIs with respect to the unknown variable ν, i.e., Is = Is(ν), s = 1, 3, and Qj(ν) =
pj(ν)q

�
j + qjp

�
j (ν), where pj = pj(ν) linearly depends on ν and qj is independent of ν, j = 1, 2.

Then system (6) is equivalent to the single matrix inequality

̂̃
I =

⎛⎜⎜⎜⎜⎜⎝
I1(ν) p1(ν) +

τ1
2
q1 p2(ν)− p1(ν) +

τ2
2
q2 − τ1

2
q1

(•)� −τ1 τ1 − τ2 + τ3
2

(•)� • −τ3

⎞⎟⎟⎟⎟⎟⎠ < 0, (7)

which is an LMI with respect to (ν, τ1, τ2, τ3).

With Theorem 1 applied to system (5), the feasibility of system (5) becomes equivalent to
the feasibility of the single matrix inequality with respect to the elements of the matrix L and
the three additional parameters τ1, τ2, τ3. The applicability of Theorem 1 to system (5) and the
resulting matrix inequality follow from the relations below. Let the matrix I1(ν) be the matrix
(A�LA− L) of system (5), i.e., I1(ν) = I1(L) = A�LA− L. (The role of the parameter ν is played
by the matrix L.) The difference of the matrices (I2−I1) from (5) can be represented as p1q

�
1 +q1p

�
1 :

I2 − I1 = A�
2 LA2 −A�

1 LA1 = (A+ b1c
�
1 )

�L(A+ b1c
�
1 )−A�LA

= (A�L+ c1b
�
1 L)(A+ b1c

�
1 )−A�LA

= A�Lb1c
�
1 + c1b

�
1 LA+ c1b

�
1 Lb1c

�
1 .

(8)

With the notations p01 = p01(L) = A�Lb1 and δ11 = δ11(L) = b�1 Lb1, we have

I2 − I1 = p01c
�
1 + c1(p

0
1)

� + δ11c1c
�
1 = p1q

�
1 + q1p

�
1 , (9)

where p1 = p1(L) = A�Lb1 +
(
δ11(L)

2

)
c1 and q1 = c1.

Similarly, let p02 = p02(L) = A�Lb2 and δ22 = δ22(L) = b�2 Lb2; then

I3 − I1 = p02c
�
2 + c2(p

0
2)

� + δ22c2c
�
2 = p2q

�
2 + q2p

�
2 , (10)

where p2 = p2(L) = A�Lb2 +
(
δ22(L)

2

)
c2 and q2 = c2.

Thus, by Theorem 1, system (5) is equivalent to the single matrix inequality

̂̃
I =

⎛⎜⎜⎜⎜⎜⎝
A�LA− L p1(L) +

τ1
2
c1 p2(L)− p1(L) +

τ2
2
c2 − τ1

2
c1

(•)� −τ1 τ1 − τ2 + τ3
2

(•)� • −τ3

⎞⎟⎟⎟⎟⎟⎠ < 0, (11)

which is an LMI with respect to (L, τ1, τ2, τ3).

Now we demonstrate that the feasibility of the LMI (11) is determined based on the generalized
Kalman–Szegö–Popov lemma [10].
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Lemma 1. The LMI (11) is equivalent to the LMI⎛⎜⎜⎜⎝ A�LA− L A�LB̂ +
Ĉτ

2

B̂�LA+
τĈ�

2
B̂�LB̂ − Γ

⎞⎟⎟⎟⎠ < 0, (12)

where

B̂ =
(
B̂1 B̂2

)
=
(
b1 b2 − b1

)
, Ĉ =

(
Ĉ1 Ĉ2

)
=

(
c1 c2 − τ̂1

τ̂2
c1

)
,

T =

(
τ̂1 0
0 τ̂2

)
, Γ =

⎛⎜⎝τ̂1 −τ̂1 + τ̂2 − τ̂3
2

• τ̂3

⎞⎟⎠ .

The proof of Lemma 1 is given in the Appendix.

Necessary and sufficient conditions for the feasibility of the LMI (12) are determined in the form
of a frequency-domain inequality from the generalized Kalman–Szegö–Popov lemma [9, 10]. As a
result, we arrive at the following quadratic stability criterion for system (1).

Theorem 2. Let the matrix A be Schur (r(A) < 1), and let there exist numbers τ̂s > 0, s = 1, 3,
such that Γ > 0 and the frequency-domain inequality

D(λ) = Γ +Re [T Ĉ�(A− λEn)
−1B̂] > 0 (13)

holds for all λ ∈ C, |λ| = 1, where En is an identity matrix of dimensions (n×n). (In this inequal-

ity, ReW = (W +W ∗)/2, W ∗ = W
�

is the Hermitian conjugate to W ; from this point onwards,

the symbol { · } means complex conjugation and the inequality sign is interpreted as the positive
definiteness of an appropriate Hermitian form.) Then the connected system (1) has a CQLF (sys-
tem (5) is feasible, and system (1) is stable). If system (5) feasible, then such a set of numbers
τ̂s > 0, s = 1, 3, exists.

Let us write the frequency-domain condition (13) in detail. It seems logical to treat W (p) =

C�(A− pEn)
−1B, p ∈ C, as an analog of the transfer matrix for system (1), where C =

(
c1 c2

)
and B =

(
b1 b2

)
. With the notation Δ(p) = (A− pEn)

−1, we have

W (p) = C�Δ(p)B =

(
w11 w12

w21 w22

)
, where wij(p) = c�i Δ(p)bj. (14)

For the sake of simplicity, we eliminate the hats, using τs instead of τ̂s. From (13) it follows that

D(λ) = Γ + Re T Ŵ (λ) = Γ + 1/2
[
T Ŵ (λ) + Ŵ ∗(λ)T �

]
,

where

Ŵ (λ) = Ĉ�Δ(λ)B̂

(
c1 c2 − τ1

τ2
c1

)�
Δ(λ)

(
b1 b2 − b1

)

=

⎛⎜⎜⎝
w11(λ) w12(λ)− w11(λ)

w21(λ)− τ1
τ2
w11(λ) w22(λ)− τ1

τ2
w12(λ)− w21(λ) +

τ1
τ2
w11(λ)

⎞⎟⎟⎠ .
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Finally, we write the inequality D(λ) > 0 from (13) as

D(λ) = Γ +
1

2

⎛⎝2τ1Re w11 τ1w12 + τ2w21 − 2τ1Re w11

(•) 2τ1Re (w11 − w12) + 2τ2Re (w22 − w21)

⎞⎠ > 0. (15)

(For the sake of brevity, wij is taken instead of wij(λ).)

Remark 1. Theorem 2 remains valid when replacing inequality (13) with inequality (15), where
wij = wij(λ)= c�i Δ(λ)bj , i, j = 1, 2.

If system (1) is a triangular switched system [3], i.e., c1 = c2 � c, then w11 = w21 � W1 =
c�Δ(λ)b1 and w22 = w12 �W2 = c�Δ(λ)b2. In this case, inequality (15) can be written as

D(λ) =

⎛⎜⎝τ1(1 + ReW1)
−τ1 + τ2 − τ3 + τ1W2 + τ2W1

2
− τ1ReW1

(•) τ3 + (τ2 − τ1) (ReW2 − ReW1)

⎞⎟⎠ > 0. (16)

Remark 2. For the triangular system (1) (c1 = c2 = c), Theorem 2 remains valid when replacing
inequality (13) with inequality (16), where Wj =Wj(λ) = c�Δ(λ)bj , j = 1, 2.

Compare conditions (15) and (16) of the criterion in Theorem 2 for connected switched systems
and triangular switched systems with those of Theorem 2 from [3] and their modification for
triangular systems (formulas (6.3)–(6.5) from [3]). Significant progress is evident.

Remark 3. Inequalities (13), (15), and (16) are linear in the parameter T ; therefore, without
losing generality, let τ3 = 1 in these inequalities. Thus, the inequalities under consideration will
contain only two additional parameters each: τ1 > 0 and τ2 > 0.

The well-known Tsypkin’s criterion [8] is a quadratic stability criterion under switching between
two subsystems. The criterion of Theorem 2 can be considered an analog of Tsypkin’s criterion
under switching between three subsystems.

4. NUMERICAL SOLUTION

The quadratic stability problem for system (1) is numerically solved by applying standard soft-
ware tools for checking the feasibility of the system of LMIs (5) of dimension 3n with respect to
n(n+1)/2 unknowns. Due to Lemma 1, it is possible to check the feasibility of the single LMI (12)
of dimension (n + 2) with respect to n(n + 1)/2 + 3 unknowns instead of the system of LMIs (5).
This transition allows significantly simplifying the problem, especially for large n.

5. AN EXAMPLE

Consider a connected switched system of the form (1) from the example presented in [3]. In this
example, the matrices As in (1) are given by (4) with

A1 = A =

⎛⎜⎝ 0 0 −0.5
0.5 0 −1.5
0 0.5 −1.5

⎞⎟⎠, b1 = k1

⎛⎜⎝0
0
1

⎞⎟⎠, b2 = k2

⎛⎜⎝0
1
0

⎞⎟⎠,
c1 = c2 = c =

⎛⎜⎝0
0
1

⎞⎟⎠,
(17)
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where ki � 0 are the parameters determining the stability domain of the switched system. Then
the matrices A2 and A3 take the form

A2 =

⎛⎜⎝ 0 0 −0.5
0.5 0 −1.5
0 0.5 −1.5 + k1

⎞⎟⎠, A3 =

⎛⎜⎝ 0 0 −0.5
0.5 0 −1.5 + k2
0 0.5 −1.5

⎞⎟⎠. (18)

In the sequel, system (1) with the matrices As (17), (18) will be referred to as system (1;17).

Re-examining the example from [3] can be explained as follows. In the example from [3], given
k1 = k2 = k, the entire quadratic stability domain on the parameter k was found. This result was
obtained using the necessary (separately) and sufficient (separately) conditions for the feasibility
of the system of LMIs (5). As it turned out, the estimates under these conditions coincide; hence,
the resulting quadratic stability domain is entire. Note that the conditions from [3] essentially rest
on the triangular property of the system, i.e., c1 = c2 = c.

This section aims to repeat the result from [3] based on the criterion of Theorem 2. Although
the considerations below use a variant of Theorem 2 from Remark 2, this theorem does not include
the triangularity requirement.

The presentation here involves the auxiliary calculations from [3]. Obviously, the matrix A1

is Schur, |μi(A1)| < 1, since μi(A1) = −0.5, i = 1, 3. The matrix A2 is Schur for k1 ∈ [0, 3.375),
whereas the matrix A3 is Schur for k2 ∈ [0, 0.25).

The functions Wj(λ) = c�(A− λEn)
−1bj from (16) have the form

W1(λ) = −8k1λ
2/(2λ+ 1)3 and W2(λ) = −4k2λ/(2λ + 1)3,

det (A− λE) = −(0.5 + λ)3. Inequality (16) should be checked for all λ ∈ C such that |λ| = 1. For
the set |λ| = 1, we use the parameterization λ = 1−iω

1+iω for all ω ∈ [−∞,∞]. Let us calculate W1(λ)

andW2(λ) for λ = 1−iω
1+iω .We write the real and imaginary parts ofWj

(
1−iω
1+iω

)
, simultaneously adopt-

ing the simplified notations ReWj

(
1−iω
1+iω

)
= Rj(ω) = Rj and ImWj

(
1−iω
1+iω

)
= Ij(ω) = Ij (see [3]):

R1 = R1(ω) = ReW1

(
1− iω

1 + iω

)
=

−8k1(1 + ω2)(27 + 18ω2 − ω4)

(9 + ω2)3
,

I1 = I1(ω) = ImW1

(
1− iω

1 + iω

)
=

−64k1ω
3(1 + ω2)

(9 + ω2)3
,

R2 = R2(ω) = ReW2

(
1− iω

1 + iω

)
=

−4k2(1 + ω2)(27 − 36ω2 + ω4)

(9 + ω2)3
,

I2 = I2(ω) = ImW2

(
1− iω

1 + iω

)
=

−4k2(1 + ω2)(54ω − 10ω3)

(9 + ω2)3
.

(19)

In terms of (19), inequality (16) takes the form

D(ω) =

⎛⎜⎝τ1(1 +R1)
−τ1 + τ2 − τ3 + τ1R2 + τ2R1 − 2τ1R1

2
+ i

τ1I2 − τ2I1
2

(•) τ3 + (τ2 − τ1) (R2 −R1)

⎞⎟⎠ > 0.

Letting k2 = k1 = k, we make the change ω2 = y � 0. It is required to find the largest domain [0, k∗)
for which there exists a set of parameters τi > 0, j = 1, 2, 3, such that D(ω) ∼= D(y) > 0 for
k ∈ [0, k∗) and all y � 0. Checking the inequality D(y) > 0 reduces to checking the inequalities

(A) D11 = τ1(1 +R1) > 0, (B) D22 = τ3 + (τ2 − τ1)(R2 −R1) > 0, (C) detD(y) > 0,
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where Dij = Dij(y), i, j = 1, 2, are the elements of the matrix D(y). (In fact, it suffices to check
(A) and (C).) Inequality (A) is equivalent to

P1(y) = (9 + y)3D11(y) = τ1(1 +R1)

= τ1(9 + y)3 − 8τ1k(1 + y)(27 + 18y − y2)

= τ1(1 + 8k)y3 + τ1(27 − 136k)y2 + τ1(243 − 360k)y + τ127(27 − 8k) > 0.

The check of inequality (A) coincides with that of inequalities (7.4) and (7.5) from [3]. As was
shown in [3], for k < 0.44, the inequality P1(y) > 0 holds for all y � 0.

In view of Remark 3, we assume that τ3 = 1 and, for brevity, τ2 − τ1 � δ. Then checking
inequality (B) reduces to checking the inequality

P2(y) = (9 + y)3D22(y) = (9 + y)3 + 4kδ(1 + y)(27 + 72y − 3y2)

= (1− 12kδ)y3 + (27 + 276kδ)y2 + (243 + 396kδ)y + 729 + 108kδ > 0.

Consider inequality (C):

detD = D11D22 −D12D12 = D11D22 − (ReD12)
2 − (ImD12)

2 > 0.

With the notations P3(y) � 2(9 + y)3 ReD12 and P4(y) � 2(9 + y)3 ImD12, we have

P3(y) = 2(9 + y)3ReD12(y) = 2
(
τ1(R2 −R1) + δR1 + δ − 1

)
(9 + y)3,

P4(y) = 2(9 + y)3 ImD12(y) = 2
(
τ1I2 − τ2I1

)
(9 + y)3.

Using the expressions from (19) gives

P3(y) = y3[4k(2δ − 3τ1) + δ − 1] + y2[27(δ − 1) + 4k(69τ1 − 34δ)]

+ y[9(27(δ − 1)− 40kδ + 44kτ1)] + [27(27(δ − 1)− 4k(2δ − τ1))],

P4(y) = 4kτ1
√
y(1 + y)(10y − 54) + 64kτ2y

√
y(1 + y)

= 4k
√
y(1 + y)

(
τ1(10y − 54) + 16τ2y

)
.

Inequality (C) is equivalent to

P (y) � (9 + y)6detD(y) = P1(y)P2(y)− 1

4
P3(y)

2 − 1

4
P4(y)

2 > 0. (20)

The polynomial P (y) is of degree 6 in the variable y. Its coefficients fs = fs(k) for y
s are functions

of k that depend on the additional parameters τ1 and τ2. The coefficient f6(k) of this polynomial
at y6 is

f6(k) = τ1(1 + 8k)(1 − 12kδ) − (1/4)[4k(2δ − 3τ1) + δ − 1]2.

The condition f6(k) � 0 is necessary for fulfilling P (y) > 0 for all y � 0. The function f6(k) repre-
sents a polynomial of degree 2 in the variable k. Its coefficient at k2 is a6 = −96τ1δ − 4(2δ − 3τ1)

2 =
−4(2τ2 + τ1)

2, i.e., a6 < 0 since τj > 0. It follows that f6(k) is a concave function. The desired do-
main [0, k∗) can be estimated from above by the half-interval [0, 0.25) (the Schur domain of the
matrix A3). We check the values f6(0) and f6(0.25) :

f6(0) = τ1 − (1/4)
(
δ − 1

)2
,

f6(0.25) = τ1(1 + 2)(1 − 3δ)− (1/4)
(
(2δ − 3τ1) + δ − 1

)2
.
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The condition f6(0) > 0 gives the parameter estimate 4τ1 >
(
δ − 1

)2
. Let us transform the expres-

sion for f6(0.25) :

f6(0.25) = 3τ1(1−3δ)− 1

4

(
3δ−3τ1−1

)2
=−1

4

(
3δ+3τ1−1

)2
=−1

4

(
3τ2−1

)2
.

As a result, f6(0.25) < 0 for all parameter values except for τ2 = 1/3. Thus, letting τ2 = 1/3 is the
single possibility to obtain the largest domain [0, k∗) in which f6(0.25) > 0. If we take τ2 = 1/3 and
define τ1 so that f6(0) > 0, the concavity of f6(k) will imply f6(k) > 0 for all k ∈ [0, 0.25). Partly
by chance, partly to obtain δ = 0, we set τ1 = τ2 = 1/3. In this case, f6(0) = 1/12 > 0.

As it turns out, for τ1 = τ2 = 1/3, the other coefficients fs(k), s = 0, . . . , 5, of the polynomial

P (y) =
6∑

s=0
fs(k)y

s from (20) are concave functions in the variable k. In addition, the inequalities

fs(0) > 0 and fs(0.25) > 0, s = 0, . . . , 5, hold for the values of these functions at the limit points
of the half-interval [0, 0.25). The tedious verification of this fact by elementary algebra techniques
is omitted here. Thus, we have fs(k) > 0 for all k ∈ [0, 0.25), s = 0, . . . , 6. Hence, inequality (20)
is valid for all y � 0. According to Theorem 2, the quadratic stability domain of system (1;17)
is exhausted by the set [0, 0.25). Due to its coincidence with the Schur domain of the matrices
{A1, A2, A3} defining system (1;17) (on the parameter k1 = k2 = k), this domain is the entire
stability domain of system (1;17) under arbitrary switching.

6. CONCLUSIONS

A connected system with switching between three linear discrete-time subsystems has been
considered. An existence criterion for a QLF of such systems has been established, both as a
frequency-domain condition and as feasibility conditions of a single LMI. As an illustrative example,
the frequency-domain criterion has been applied to a third-order system, analytically yielding its
entire quadratic stability domain on the parameter k. In the case under study, this domain coincides
with the entire stability domain of system (1;17) under arbitrary switching.

APPENDIX

Proof of Lemma 1. We define the new parameters

τ̂1 � δ11 + τ1, τ̂2 � δ22 + τ2.

Then

p1(L) +
τ1
2
c1 = A�Lb1 +

δ11
2
c1 +

τ1
2
c1 = A�LB̂1 +

τ̂1
2
Ĉ1,

p2(L)− p1(L) +
τ2
2
c2 − τ1

2
c1

= A�Lb2 −A�Lb1 +
δ22 + τ2

2
c2 − δ11 + τ1

2
c1

= A�L(b2 − b1) +
τ̂2
2
c2 − τ̂1

2
c1 = A�LB̂2 +

τ̂2
2
Ĉ2.

(A.1)

It suffices to represent the matrix

⎛⎜⎝−τ1 τ1−τ2+τ3
2

• −τ3

⎞⎟⎠ in the form
(
B̂�LB̂ − Γ

)
.
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Considering b�1 Lb2 � δ12 and b�2 Lb1 � δ21, we write the matrix B̂�LB̂ as

B̂�LB̂ =

(
b�1

b�2 − b�1

)
L
(
b1 b2 − b1

)
=

(
b�1 L

b�2 L− b�1 L

)(
b1 b2 − b1

)
=

(
δ11 δ12 − δ11

δ21 − δ11 δ22 − 2δ12 + δ11

)
.

(A.2)

Thus, it is required to find the elements of the matrix Γ = ‖γij‖ni,j=1 so that⎛⎜⎝−τ1 τ1 − τ2 + τ3
2

• −τ3

⎞⎟⎠ =

(
δ11 − γ11 δ12 − δ11 − γ12

δ21 − δ11 − γ21 δ22 − 2δ12 + δ11 − γ22

)
. (A.3)

Since −τ1 = δ11 − τ̂1, the equality of the elements {·}11 of the matrices from (A.3) gives γ11 = τ̂1.
In view of −τ2 = δ22 − τ̂2, the equality of the elements {·}12 leads to

τ1 − τ2 + τ3
2

=
−δ11 + τ̂1 + δ22 − τ̂2 + τ3

2
= δ12 − δ11 − γ12.

Consequently,
δ11 + δ22 + τ̂1 − τ̂2 + τ3 = 2δ12 − 2γ12.

By the equality of the elements {·}22, we have

−τ3 = δ22 − 2δ12 + δ11 − γ22.

Summing the last two equalities yields

τ̂1 − τ̂2 = −2γ12 − γ22.

Letting γ22 = τ̂3, we obtain
γ12 = (−τ̂1 + τ̂2 − τ̂3)/2.

Thus, ⎛⎜⎝−τ1 τ1 − τ2 + τ3
2

• −τ3

⎞⎟⎠ =
(
B̂�LB̂ − Γ

)
,

where

Γ =

⎛⎜⎝τ̂1 −τ̂1 + τ̂2 − τ̂3
2

• τ̂3

⎞⎟⎠ .

The proof of Lemma 1 is complete.
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Abstract—This paper considers technical systems described by nonlinear dynamic models. The
fault tolerance property of such systems is ensured by introducing feedback with full or partial
fault decoupling. The solution is based on separating a subsystem insensitive or minimally
sensitive to faults and its subsequent analysis. For this purpose, a logical-dynamic approach is
used, which operates only linear algebra methods. An illustrative practical example is provided.
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1. INTRODUCTION

Modern technical systems (robots, control systems) are subjected to various faults in their
elements. Redundancy is one way to eliminate the effect of such faults [1]; however, it requires
excessive resources and is not always implementable in practice. The use of fault diagnosis methods
is a more promising approach to improving the reliability, safety, and efficiency of such systems. In
real time, these methods have to detect emerging faults and determine the values of the changed
system parameters and errors in the readings of their sensors. After that, all identified changes
with undesirable consequences are promptly parried.

Various fault diagnosis methods were thoroughly described in [2], including the basic terminology
in this area. According to [2], a fault is understood as an unacceptable deviation of at least one of
the characteristic properties or variables of a system from its standard (nominal) behavior. In this
paper, such a deviation is represented by an unknown bounded time-varying function d(t) added
to certain components of the system state vector depending on the fault location.

As is known [3], adaptive systems designed to parry the consequences of faults and changes in
the parameters of control objects can be divided into two large groups: systems with self-adjusting
structure (self-organizing systems) and systems with self-tuning parameters (self-tuning systems).
In the former case, certain structural changes are made to the system being diagnosed, i.e., it is
reconfigured to remove failed elements and use redundant ones. In the latter case, depending on
the changes in the parameters of the control object, emerging faults, or external influences, only
certain parameters of the used controller are tuned according to some algorithm embedded in the
self-tuning device. The system with faults and changed parameters should continue functioning,
preserving its most important characteristics within the admissible limits.
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Each of the above approaches has peculiarities, which somewhat restrict the scope of their
practical application. In particular, the possibility of involving redundant elements is limited by
the maximal design-achievable and operational (mass and size, energy, etc.) characteristics of
specific robots.

Examples of implementing such an approach were described in [4, 5]. The cited authors solved
the problem of fault-tolerant control of underwater robots in case of failure of one thruster (the first
work mentioned) and in case of faulty electric actuators installed in the manipulator joints (the
second one). In both cases, it was proposed to disconnect the faulty actuator and then distribute
its control actions between the others with additional connection of the redundant ones. The
disadvantage of such systems is the need for extra actuators in robots, which complicates the design
and appreciably increases the cost of robots. In addition, the feasibility of using redundancy must
be justified by additional calculations of reliability indicators. As a rule, redundancy elements have
the same reliability as the replaced ones; as a result, the possibility of increasing the reliability of
robots through redundancy is significantly limited. Fault adaptation methods based on self-tuning
allow avoiding additional hardware costs, but their use admits degradation of some (usually minor)
performance indicators of robots, possibly affecting the tactical and technical characteristics of
robots and, in some cases, even requiring correction of the mission.

Fault-tolerant self-tuning systems with a reference model are known; their design principles
were presented in [6, 7]. The main peculiarity of this class of systems is the availability of an
explicit technical device (model) with given dynamic properties. In this case, the dynamics of the
entire system are reduced to the desired dynamics of the model. Such adaptation systems to faults
and variable parameters have found application in both ground and underwater robotics [8–10],
providing high-quality control of robots with rather simple means without identifying the parameter
deviations caused by faults or other external factors during their operation. As the main drawback
of such systems, we note the presence of high-frequency oscillations in the self-tuning loop, which
in some cases may significantly reduce the quality of adaptation to emerging faults and variable
parameters. In addition, during the operation of such systems, the deviations of parameters from
their nominal values are not determined; therefore, in the case of critical faults (e.g., short-circuit
in some winding turns of the anchor chain of electric motors, the appearance of significant external
torques on motor shafts), the robots will not be promptly stopped, and their further breakdown
will not be prevented. The systems under consideration also neglect errors in the readings of robot
sensors.

Optimal and robust principles of adaptive systems design are often used in engineering to
compensate for the consequences of emerging faults and parameter deviations from nominal val-
ues [11–13]. The advantage of such systems is a sufficiently high level of robustness to the uncertain
parameters of robots, but they are built based on a linearized model, which restricts their applica-
tion to fault-tolerant control of the spatial motion of complex dynamic objects.

Currently, variable-structure systems operating in sliding mode are a common type of robust
control systems. Examples of their use for fault-tolerant robot control were described in [14–17].
Control systems with adaptation to emerging faults and parameter deviations based on variable-
structure systems have several considerable benefits compared to other types of fault-tolerant sys-
tems. Despite this fact, they also suffer from the disadvantage that, in order to ensure the perfor-
mance of a variable-structure system within the entire range of changes in robot parameters, such
systems are designed in the worst case (when these parameters correspond to the lowest system
performance). As a result, even in the absence of faults, additional control signals are generated,
which will increase their amplitude and energy consumption and, consequently, reduce the au-
tonomous operation time. That is, fault-tolerant control systems of this class have a deliberately
underestimated performance.
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Fig. 1. The implementation scheme of the proposed solution.

The approaches and methods discussed above are illustrated mainly by examples of robots, but
their peculiarities also apply to many modern technical systems.

A certain alternative to the considered methods is approaches based on full or partial fault
decoupling: a fault is detected, but the values of the changed system parameters are not determined,
and the control action on the system is corrected by using a specially built compensator and a new
control. As a result, the system will execute its main operations with the previous or admissibly
reduced quality. By assumption, the execution of these operations depends not on all components
of the system state vector but only on some part of them, defined by a known function, and these
components have to be fully or partially decoupled from possible system faults.

Figure 1 shows the implementation scheme of the proposed solution, where u(t) and y(t) are the
control vector and output of the system, respectively, z(t) is the state vector of the compensator,
v(t) is the new control, and g∗ is a function defined below. The control u(t) was constructed to
execute certain operations by the system, and the new control v(t) must be constructed to execute
the same operations by the system with the compensator, with the same or admissibly reduced
quality.

This approach has certain limitations: figuratively speaking, it can be implemented if there exists
a control signal between the fault location and the system variables that need to be decoupled from
this fault; the control signal is used for fault decoupling.

For systems described by nonlinear difference equations, such an approach was implemented
in [18, 19] based on full decoupling using a rather complex mathematical apparatus of function
algebra. In distinction, this paper considers systems given by nonlinear differential equations
subject to faults. For such a system, it is required to find a description of the compensator and a
function g∗ to decouple from faults, fully or partially, given components of the system state vector.

The problem of determining the new control v(t) is not considered below since this control
depends on the tasks solved by the system and can be determined when specifying these tasks.
After the compensator is built, the new control can be determined by known methods [20]; the
compensator depends on given components of the system state vector and the fault location and
is independent of the tasks solved by the system.

Note that for affine systems, such a problem was solved in [21] based on full decoupling by rather
complicated methods of differential geometry. The novelty of this paper is that the systems under
consideration may contain unsmooth nonlinearities; the problem is solved using the logical-dynamic
approach [22], which allows analyzing nonlinear systems by linear algebra methods under definite
restrictions on the class of solutions. Moreover, partial fault decoupling is studied in addition to
full decoupling.

The remainder of this paper is organized as follows. Section 2 presents the main models: descrip-
tions of the given nonlinear system and its submodel used to build the compensator. In Section 3,
a fault-insensitive submodel is constructed; in Section 4, a submodel minimally sensitive to faults.
Section 5 is devoted to the compensator design. An illustrative example is provided in Section 6,
and Section 7 concludes the paper.
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2. MAIN MODELS

Consider systems described by the nonlinear model

ẋ(t) = Fx(t) +Gu(t) + CΨ(x(t), u(t)) +Dd(t),

y(t) = Hx(t),
(2.1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
l are the state vector, control input, and output, respectively;

F and G are known constant matrices that describe linear dynamics; H, C, and D are known
constant matrices; d(t) is a scalar function that describes faults (if there are no faults, d(t) = 0; when
faults occur, d(t) becomes an unknown bounded time-varying function); Ψ(x, u) is the nonlinear
part represented as

Ψ(x, u) =

⎛⎝ ϕ1(A1x, u)
. . .

ϕq(Aqx, u)

⎞⎠ ,

where A1, . . . , Aq are known constant row matrices, and ϕ1, . . . , ϕq are arbitrary nonlinear func-
tions.

Remark 1. If the system may have several faults, then (generally speaking) it is necessary to
build a bank of several compensators for fault decoupling. The method under consideration cannot
be applied to decouple from sensor faults; if the value of such a fault is unknown, it is necessary
to exclude the readings of the corresponding sensor from the control system or use a virtual sensor
instead [23].

Note that the nonlinear system (2.1) can be obtained from the general nonlinear system

ẋ(t) = f(x(t), u(t), d(t)),

y(t) = h(x(t))
(2.2)

by several transformations [22].

By assumption, faults in the system change the value of some system parameter. As a result,
d(t) represents the product of this change by some component of the vector x(t) or u(t) and is an
unknown bounded time-varying function; the matrix D indicates the fault location. The fault can
be detected and isolated by known fault diagnosis methods (e.g., see [2]), but the function d(t) still
remains unknown.

By another assumption, the function of the components of the system state vector x(t) for full
or partial fault decoupling is given by a known matrix H0 defining the variable y0(t) = H0x(t).
Such decoupling is ensured by introducing dynamic feedback into the system, being implemented
through a compensator generally described by the nonlinear equations

ż(t) = ϕ(z(t), v(t), y(t)),

u(t) = g∗(z(t), v(t), y(t)),
(2.3)

where z(t) ∈ R
k denotes the state vector of a compensator of dimension k < n, v(t) is the new

control, and the functions ϕ and g∗ have to be determined. Note that the variable y0(t) must be
expressed through the state vector z(t).

For the discrete-time analog of system (2.2), the problem of insensitivity to (or full decoupling
from) disturbances and faults via feedback was solved in a general form in [18, 19] based on a rather
complex mathematical apparatus of function algebra. In this paper, we solve the problem of full or
partial decoupling with insensitivity (or minimal sensitivity) to faults for system (2.1) within the
logical-dynamic approach [22], which operates only linear algebra methods.
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The problem solution involves a submodel of system (2.1) insensitive or minimally sensitive to
faults and a compensator built on its basis. Note that interval observers in [24] were designed by
building a minimal-dimension submodel. In contrast, the compensator supplying the feedback is
built based on a submodel of a maximal dimension k < n, which provides the best conditions for
satisfying the equality y0(t) = H0x(t). This submodel is described by the equation

ẋ∗(t) = F∗x∗(t) +G∗u(t) + J∗y(t) + C∗Ψ∗(x∗(t), y(t), u(t)), (2.4)

where x∗(t)∈R
k stands for the state vector of the submodel of dimension k < n; F∗, G∗, J∗, and

C∗ are the matrices to be determined;

C∗Ψ∗(x∗, y, u) =

⎛⎜⎝ ϕi1(A∗1,i1x∗ +A∗2,i1y, u)
. . .

ϕik(A∗1,ikx∗ +A∗2,iky, u)

⎞⎟⎠ , (2.5)

where A∗1,i1 , A∗2,i1 , . . . , A∗1,ik , and A∗2,ik are the matrices to be determined; C∗Ψ∗ denotes the func-
tion C∗Ψ in which the vector x is replaced by x∗ and y through the relation Aix = A∗1,ix∗ +A∗2,iy,
where i = i1, . . . , ik are the numbers of the nonzero columns of the matrix C∗.

3. BUILDING THE FAULT-INSENSITIVE SUBMODEL

We clarify that submodel (2.4) for building the compensator is a virtual object. In fact, it
represents part of system (2.1) whose dynamics are determined by the state vector x∗ related to
the vector x by x∗(t) = Φx(t), where Φ is some constant matrix. Generally speaking, these vectors
can be related by a nonlinear function, and the assumption of its linearity restricts the class of
solutions; it is characteristic of the logical-dynamic approach used here.

According to [22, 24], this matrix satisfies the equations

ΦF = F∗Φ+ J∗H, ΦG = G∗, ΦC = C∗, ΦD = D∗

Ai = (A∗1,i A∗2,i)

(
Φ
H

)
, i = i1, . . . , ik.

(3.1)

The last equality in (3.1) is valid if

rank

(
Φ
H

)
= rank

⎛⎜⎝ Φ
H
A′

⎞⎟⎠ , (3.2)

where the matrix A′ consists of the rows Ai1 , . . . , Aik .

To solve the problem, we introduce the additional condition y0(t) = H∗x∗(t) for some matrix H∗,
i.e., the variable y0(t) = H0x(t) must be expressed through the compensator state vector. In view
of x∗(t) = Φx(t), it follows that

rank
(
Φ

)
= rank

(
Φ
H0

)
. (3.3)

If this condition fails, the problem is unsolvable. Under this condition, the matrix H∗ is found from
the equation H∗Φ = H0.

To ensure the fault-insensitivity condition ΦD = D∗ = 0, we introduce a matrix D0 of maximal
rank such that D0D = 0. Then ΦD = 0 implies Φ = ND0 for some matrix N. Let us replace the
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matrix Φ in ΦF = F∗Φ+ J∗H with ND0, i.e., ND0F = F∗ND0 + J∗H. After the separation of the
unknown and known matrices, the resulting expression can be written as

( N −F∗N −J∗ )

⎛⎜⎝ D0F
D0

H

⎞⎟⎠ = 0. (3.4)

Solving equation (3.4) yields the matrices F∗, J∗, and N, which are, in turn, allow finding the
matrix Φ. Let the compound matrix ( X Y Z ) contain all linearly independent solutions of
equation (3.4), i.e.,

( X Y Z )

⎛⎜⎝ D0F
D0

H

⎞⎟⎠ = 0. (3.5)

Comparing equations (3.4) and (3.5), we obtain the equality Y = −F∗X. Therefore, the matrices
Y and X cannot be arbitrary: the rows of Y must be linearly expressed through the rows of X.
To consider this fact, the rows of Y that are linearly independent of the rows of X must be removed.
This procedure is implemented using Algorithm 1, where Yj denotes the jth row of the matrix Y,
j = 1, . . . , p, and p is the number of rows in the matrix Y.

Algorithm 1.

(1) Set j = 1.

(2) If rank(X) = rank

(
X
Yj

)
, pass to Step 4; otherwise, to Step 3.

(3) Remove the jth row from the matrix ( X Y Z ), set p := p− 1, and return to Step 1.
(4) If j < p, set j := j + 1 and return to Step 2; otherwise, complete the procedure.

Let ( X0 Y0 Z0 ) denote the matrix outputted by the algorithm. For this matrix, the rows
of the matrix Y0 are linearly expressed through the rows of the matrix X0. Letting Φ := X0D0

and C∗ := ΦC, we construct the matrix A′; if the matrix Φ satisfies condition (3.2), a nonlinear
fault-insensitive compensator can be built. Otherwise, full fault decoupling is unreachable, and
robust methods should be used. If condition (3.3) fails for this matrix, the problem is unsolvable.

Letting J∗ = −Z0 and G∗ = ΦG, we find the matrix F∗ from the algebraic equation Y0 = −F∗X0.
It surely has a solution because, according to Algorithm 1, Y0 is linearly expressed through the
rows of the matrix X0. Thus, the matrices describing the linear part of the submodel have been
obtained. To construct the nonlinear part, we take C∗ = ΦC and determine the matrices A∗1,i
and A∗2,i, i = i1, . . . , ik, from equation (3.1). This gives the nonlinear part (2.5) and, consequently,
the entire submodel (2.4).

4. BUILDING THE ROBUST SUBMODEL

If ( X0 Y0 Z0 ) = 0 or the matrix Φ does not satisfy condition (3.2), the fault-insensitive
compensator cannot be built. In this case, it is necessary to address robust methods to minimize
the fault contribution to model (2.4). For this purpose, we write the relation ΦF = F∗Φ+ J∗H
in a form similar to (3.3), removing the fault-insensitivity constraint ΦD = D∗ = 0 and separating
the unknown matrices from the known ones:

( Φ −F∗Φ −J∗ )

⎛⎜⎝ F
E
H

⎞⎟⎠ = 0, (4.1)
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where E is an identity matrix of appropriate dimensions. Now equation (4.1) can have solutions
admitting the model’s sensitivity to faults.

As above, we consider the compound matrix ( X Y Z ) containing all linearly independent
solutions of equation (4.1), i.e.,

( X Y Z )

⎛⎜⎝ F
E
H

⎞⎟⎠ = 0.

Applying Algorithm 1 to the matrix ( X Y Z ), we obtain the matrix ( X∗ Y∗ Z∗ ) in which
Y∗ = −MX∗ with some matrix M. If this equation has several solutions, they will correspond to
several matrices Φ : Φ(1), . . . , Φ(s). By determining, for each of them, the norm ‖Φ(i)D‖ corre-
sponding to the fault contribution to the compensator, we can choose the variant with the smallest
norm value corresponding to the minimal fault contribution to the submodel.

A better result can be obtained by setting the matrix Φ =
∑s

i=1 viΦ
(i) and assigning the weights

v1, . . . , vs based on minimization of the norm ‖ΦD‖. However, this approach is possible only if the
matrix F∗ in the expression ΦF = F∗Φ+ J∗H remains the same for different Φ. We implement this
approach by choosing F∗ in the canonical form

F∗ =

⎛⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ , (4.2)

which will additionally simplify the design procedure. Due to the canonical form (4.2), equa-
tions (3.1) become [22]

ΦiF = Φi+1 + J∗iH, i = 1, . . . , k − 1, ΦkF = J∗kH, (4.3)

where Φi and J∗i are the ith rows of the matrices Φ and J∗, respectively, i = 1, . . . , k. According
to [22], these equations can be convolved into one:

( Φ1 −J∗1 −J∗2 . . . −J∗k )V (k) = 0, (4.4)

where

V (k) =

⎛⎜⎜⎜⎜⎝
HF k

HF k−1

. . .

H

⎞⎟⎟⎟⎟⎠ .

Also, see [22], the minimization problem of the fault contribution to the submodel reduces to min-
imizing the norm ‖ΦD‖ = ‖( Φ1 −J∗1 −J∗2 . . . −J∗k )D(k)‖ subject to condition (4.4), where

D(k) =

⎛⎜⎜⎜⎜⎝
D FD F 2D . . . F k−1D

0 HD HFD . . . HF k−2D
. . . . . . . . . . . . . . .

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎠ .

When solving this problem, we find a maximal dimension k < n for which equation (4.4) has
several (more than one) linearly independent solutions of the form ( Φ1 −J∗1 −J∗2 . . . −J∗k ).
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All these solutions, s totally, are combined into a matrix W so that each row represents some
solution of equation (4.4):

W =

⎛⎜⎜⎝
Φ
(1)
1 −J (1)

∗1 −J (1)
∗2 . . . −J (1)

∗k
. . . . . . . . . . . . . . .

Φ
(s)
1 −J (s)

∗1 −J (s)
∗2 . . . −J (s)

∗k

⎞⎟⎟⎠ .

Due to the considerations above, another solution is an arbitrary linear combination of the rows of
this matrix with the vector of weights v = (v1, . . . , vs). The problem is to determine such a vector v
that minimizes the norm ‖vWD(k)‖.

To solve this problem, we find the singular value decomposition of the matrix product WD(k) :

WD(k) = UDΣDVD,

where UD and VD are orthogonal matrices; depending on the numbers of rows and columns in the
matrix WD(k), the matrix ΣD has the form

ΣD = (diag(σ1, . . . , σw) 0)

or

ΣD =

(
diag(σ1, . . . , σw)

0

)
,

with w = min(s, k) and 0 � σ1 � . . . � σw being the singular values of the matrix WD(k)

[22, 25]. The first transposed column of the matrix UD is chosen as the vector of weights
v = (v1, . . . , vs). By the structure of singular value decomposition and the properties of orthog-
onal matrices, the norm of the matrix vWD(k) equals the minimal singular value σ1 [22], and
( Φ1 −J∗1 −J∗2 . . . −J∗k ) = vW. Then the rows of the matrix Φ are determined from (4.3)
and the matrix A′ is constructed. If this matrix satisfies conditions (3.2) and (3.3), we take
G∗ = ΦG and C∗ = ΦC and find the matrices A∗1,i and A∗2,i, i = i1, . . . , ik, from equation (3.1);
this completes the robust model design. Note that this solution will be optimal for the chosen
dimension k; changing the dimension may yield a better solution of the problem in terms of mini-
mizing the norm ‖(Φ1 − J∗1 − J∗2 . . . − J∗k)D

(k)‖. If condition (3.2) or (3.3) fails, it is necessary
to choose the second or subsequent transposed columns of the matrix UD.

5. BUILDING THE COMPENSATOR

To avoid confusion, we denote the compensator state vector by z(t) := x∗(t), leaving unchanged
the notations for the other elements, particularly the matrix H∗ and the function f∗.

From this point onwards, condition (3.3) is assumed valid, i.e., y0 = H∗z. We denote by Xy the
set of components of the vector z participating in the formation of y0. For building the compensator,
model (2.4) will be written in a compact form:

ż(t) = f∗(z(t), u(t), y(t)). (5.1)

Even if this model does not explicitly contain the unknown function d(t) (when full decoupling
is reached), its state vector is affected by faults due to the presence of the vector y(t) in (5.1).
To build the compensator, this effect must be eliminated by adjusting the control vector u(t) via
feedback with a new control vector v(t). The algorithm below performs the necessary analysis and
generates the feedback if possible. Let f∗j denote the jth component of the function f∗.
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Algorithm 2.

(1) Divide the components of the vector y into two disjoint sets, Yg (good) and Yb (bad), according
to the rules: the variable yi is included in Yg if it does not appear in the function f∗ or can be
expressed through the components of the vector z; otherwise, yi is included in Yb. If Yb = ∅,
full or partial fault decoupling is reached without the compensator since yi in the function f∗
can be replaced by a function of the vector z.

(2) If Yb 	= ∅, for each yi ∈Yb find a variable zj such that f∗j depends on yi and is independent of
u. Let Xb denote the set of all such zj ; it consists of all components of the state vector that
are affected by the fault because f∗j includes the variable yi not compensated by the control.
If Xb = ∅, pass to Step 4.

(3) For each zj ∈Xb find the functions f∗i that depend on zj . If all f∗i depend on u, add zj to Yb and
remove it from Xb. If for some i this condition fails, then the variable zi cannot be decoupled
from faults; if zi ∈Xy, i.e., this variable participates in the formation of the variable y0, then
the problem has no solution. If zi 	∈ Xy, add zi to Xb and continue executing Step 3 until
Xb = ∅ or Xb stops changing. The final set Yb contains the variables that will participate in
the feedback to compensate for the effect of faults.

(4) Find in the function f∗(z, u, y) all terms of the form γi(z, u, y), i = 1, . . . , r, that depend on u
and elements from the set Yb; by assumption, r � m. Form a system of equations for the new
control vector v = (v1 . . . vm)T :

v1 = γ1(z, u, y),
. . .

vr = γr(z, u, y).

Supposing the feasibility of this system with respect to the variables u1, . . . , ur, find its solution:

u1 = γ1(z, u, y, v),
. . .

ur = γr(z, u, y, v);

ur+1 = vr+1, . . . , um = vm.

(5.2)

Replace the vector u in (5.1) with the vector v according to the rules (5.2), which gives the
dynamic part of the compensator (2.3); its static part coincides with (5.2).

6. EXAMPLE

Consider the nonlinear system

ẋ1 = u1/ϑ1 − a1
√
x1 − x2 − d,

ẋ2 = u2/ϑ2 + a1
√
x1 − x2 − a2

√
x2 − x3,

ẋ3 = a2
√
x2 − x3 − a3

√
x3 − ϑ7,

y = x1,

(6.1)

where a1 = ϑ4
√
2ϑ8/ϑ1, a2 = ϑ5

√
2ϑ8/ϑ2, and a3 = ϑ6

√
2ϑ8/ϑ3. These equations describe the

known three-tank system (Fig. 2), where x1, x2, and x3 are the liquid levels in the tanks [26].
The system consists of three tanks with cross sections ϑ1, ϑ2, and ϑ3, respectively; the tanks are
interconnected by pipes with cross sections ϑ4 and ϑ5. The liquid flows in the first and second
tanks, flowing out of the third one through a pipe of a cross section ϑ6 located at a height ϑ7;
the parameter ϑ8 is the gravitational constant. The controls u1 and u2 correspond to the exter-
nally supplied fluid. A nonzero value d(t) > 0 corresponds to leakage in the first tank; the variable
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Fig. 2. A three-tank system.

y0(t) = ( 0 0 1 )x(t) = x3(t) must be insensitive to it. The amount of leakage is assumed to be
unknown, so it cannot be compensated for by increasing u1 and the proposed method should be
used instead.

For the sake of simplicity, let a1 = a2 = a3 = 1 and ϑ7 = 0. The initial conditions and control
are supposed to be such that x1(t) � x2(t) � x3(t) � 0 for all t � 0.

Clearly, F = 0 for (6.1), and the considered approach cannot be applied directly. To over-
come this difficulty, we transform (6.1) by introducing the formal terms −(x1 − x2) + (x1 − x2),
((x1 − x2)− (x2 − x3))− ((x1 − x2)− (x2 − x3)), and (x2 − x3 − x3)− (x2 − x3 − x3) into the
first, second, and third equations, respectively. The term −(x1 − x2) is added to the linear part;
the term (x1 − x2), to the nonlinear part. The remaining terms are handled similarly. As a result,
the system is described by the following matrices and nonlinearities:

F =

⎛⎜⎝ −1 1 0
1 −2 1
0 1 −2

⎞⎟⎠ , G =

⎛⎜⎝ 1 0
0 1
0 0

⎞⎟⎠ , H =
(
1 0 0

)
, H0 =

(
0 0 1

)
,

D =

⎛⎜⎝ −1
0
0

⎞⎟⎠ , C =

⎛⎜⎝ 1 0 0
−1 1 0
0 −1 1

⎞⎟⎠ , Ψ(x) =

⎛⎜⎝ −√
A1x+A1x

−√
A2x+A2x

−√
A3x+A3x

⎞⎟⎠ ,

A1 = (1 − 1 0), A2 = (0 1 − 1), A3 = (0 0 1).

Since D =
(
1 0 0

)T
, we have D0 =

(
0 1 0
0 0 1

)
, and equation (3.5) takes the form

( X Y Z )

⎛⎜⎜⎜⎜⎜⎝
1 −2 1
0 1 −2
0 1 0
0 0 1
1 0 0

⎞⎟⎟⎟⎟⎟⎠ = 0.

The solution is

( X Y Z ) =

(
1 0 2 −1 −1
0 1 −1 2 0

)
.

As is easily verified, the condition of Step 2 of Algorithm 1 holds for both rows of the matrix Y.
Therefore,

( X0 Y0 Z0 ) = ( X Y Z ),

and consequently,

J∗ =

(
1
0

)
, F∗ =

(
−2 1
1 −2

)
, Φ =

(
0 1 0
0 0 1

)
, G∗ =

(
0 1
0 0

)
.
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Fig. 3. The behavior of the variable x3(t) = y0(t).

In view of H0 =
(
0 0 1

)
, condition (3.3) is obviously valid; the matrix H∗ is found from the

equation H0 = H∗Φ and has the form H∗ = (0 1).

As a result, the linear part of submodel (2.4) is described by the equations

ẋ∗1 = u2 − 2x∗1 + x∗2 + y,

ẋ∗2 = x∗1 − 2x∗2,

where x∗1 = Φ1x = x2 and x∗2 = Φ2x = x3. In addition, y0 = H∗x∗ = x∗2, i.e., Xy = {x∗2}.

All columns in the matrix C∗ = ΦC =

(
−1 1 0
0 −1 1

)
are nonzero, and the matrix A′ hence

contains three rows A1, A2, and A3; condition (3.2) holds for it. Solving equation (3.1) yields

A∗1,1 = (−1 0), A∗2,1 = 1, A∗1,2 = (1 − 1), A∗2,2 = 0, A∗1,3 = (0 1), A∗2,1 = 0.

Therefore, the nonlinear part (2.5) takes the form

C∗Ψ∗(x∗, y, u) =

⎛⎝ √
y − x∗1 − (y − x∗1)−

√
x∗1 − x∗2 + (x∗1 − x∗2),

√
x∗1 − x∗2 − (x∗1 − x∗2)−√

x∗2 + x∗2

⎞⎠ .

Finally, adding it to the linear part gives the nonlinear submodel

ẋ∗1 = u2 +
√
y − x∗1 −

√
x∗1 − x∗2,

ẋ∗2 =
√
x∗1 − x∗2 −√

x∗2.
(6.2)

Since y = x1 is not expressed through the vector z := x∗, Step 1 of Algorithm 2 yields Yg = ∅
and Yb = {y}. Step 2 of this algorithm leads to Xb = ∅; Step 4 yields r = 1 and the single equation
v2 = u2 +

√
y − z1, which is obviously solvable for u2 :

u2 = v2 −
√
y − z1.

Setting v1 = u1 and substituting the above formula for u2 into (6.2), we finally arrive at the com-
pensator description

ż1 = v2 −
√
z1 − z2,

ż2 =
√
z1 − z2 −√

z2,

u1 = v1,

u2 = v2 −
√
y − z1.

(6.3)
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For numerical simulation, we select u1(t) = 5 and u2(t) = 2 sin(5t). Figure 3 shows the behavior
of the variable x3(t) = y0(t) of system (6.1) with the initial state x(0) = 0 for five different cases.
Curve 1 corresponds to the case without the fault and decoupling; curve 2, to the case where the
fault d = 4 occurs at the time instant t = 8, but fault decoupling is not introduced (the variable
changes its dynamics for t > 8). Curves 3 and 4 correspond to the introduction of decoupling with
v2(t) = 2 + sin(5t) at the time instant t = 0 in the system without the fault and with the fault,
respectively; since curves 3 and 4 coincide, the fault is not manifested (has no effect on x3(t)).
Curve 5 corresponds to the system with the fault and decoupling with v2(t) = 2 + sin(5t) introduced
at the time instant t = 8; until this instant the behavior of the variable y0(t) coincides with curve 1.

Clearly, curves 3 and 4, where the decoupling with v2(t) = 2 + sin(5t) is introduced at the
time instant t = 0, do not coincide with curve 1 (the behavior of the variable without the fault).
To achieve this coincidence, it is necessary to solve the control problem for the variable v2(t) in
system (6.1) with the compensator (6.3). This is an independent problem solved by known methods.
A similar picture is observed in case 5: when the fault occurs and the compensator is introduced,
the variable y0(t), t > 8, changes its behavior, and the coincidence with its dynamics without the
fault can be achieved by solving the control problem for the variable v2(t).

7. CONCLUSIONS

This paper has considered technical systems described by nonlinear dynamic models. The fault
tolerance property of such systems has been ensured by introducing feedback with full or partial
fault decoupling. The solution is based on the logical-dynamic approach, which operates only linear
algebra methods. An illustrative practical example has been provided.
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Abstract—The problem of stabilizing a chain of three integrators subject to a phase constraint
is studied. Continuous constrained control in the form of nested sigmoids, which guarantees
the fulfillment of the phase constraint, is synthesized. A Lyapunov function is constructed, and
necessary and sufficient conditions of global stability of the closed-loop system are established.
The discussion is illustrated by numerical examples.
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1. INTRODUCTION

The problem of stabilizing a chain of three integrators subject to a phase constraint by means
of a continuous control is studied. Stabilization of chains of integrators is one of the topical
control problems, which has been widely discussed in the literature during last several decades
(see, e.g., [1, 2] and references therein). The interest to this problem is due to the fact that original
models in many applications are specified as chains of integrators and the controls developed for
chains of integrators are easily extended to other classes of systems.

Among the variety of stabilizing controls applied to solving this problem, the class of feedbacks in
the form of nested (both smooth and non-smooth) saturation functions can be distinguished [2–14].
The interest to such feedbacks is explained by the number of remarkable properties of the closed-
loop system obtained: they automatically take into account boundedness of the control resource and
ensure fulfillment of certain phase constraints, which is especially important far from the equilibrium
state, as well as guarantee exponential rate of the deviation decrease near the equilibrium [3–7].
Note also the use of such feedbacks in the problems related to the adjustment of coefficients in the
robust control laws [8].

The use of feedbacks in the form of nested saturation functions gives rise to study of quite
complicated nonlinear systems (in the case of non-smooth saturation functions, these are linear
switching systems), stability analysis of which is a nontrivial task. Global stability has been proved
mainly for second-order systems with nested saturators [3, 5, 9] and sigmoids [3, 10]. Practically
in all works studying systems of order three or higher, only local stability was proved [3, 4, 11, 12].
In rare cases of feedbacks of special form, global stability has been established for systems of order
three [12] (piecewise continuous control) or four [13] (impulse control). As far as the authors
know, the problem of global stability for the general case of n nested saturators was considered
only in the works by A. Teel [2, 14]. However, global stability has been proved only in the case
where limit values of the nested saturators satisfy certain inequalities, which are seldom fulfilled in
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Fig. 1. Examples of saturation functions: sat(x) (1); tanh(x) (2); 2arctan(x)/π (3); x/(1 + |x|) (4).

practice [2, Theorem 2.1]. The authors are not aware of works (except for abovementioned Teel’s
papers) where global stability were proved for a system of order three or higher stabilized by a
continuous control guaranteeing fulfillment of a phase constraint.

Saturation function is a continuous nondecreasing function S(x) of scalar variable that has finite
limits when x→ ±∞. Among the saturation functions, the class of smooth strongly increasing
functions called sigmoids can be distinguished [15]. In the literature, one can meet several slightly
differing definitions of the sigmoids. We will use the following

Definition 1. Sigmoid is a smooth strongly increasing odd function of scalar variable σ(x) sat-
isfying the following conditions:

(a) σ(x) → ±1 as x→ ±∞;
(b) maxx σ

′(x) = σ′(0);
(c) σ′(0) = 1.

Functions satisfying the above definition but having different from ones limits at infinity and deriva-
tive at zero are referred to as sigmoid functions. Any sigmoid function S(x) can be constructed
from a sigmoid σ(x) by specifying two coefficients: S(x) = k2σ(k1x), k1, k2 > 0. It is easy to see
that, for any two sigmoid functions S1(x) and S2(x), S(x) = S1(S2(x)) is also a sigmoid function.
When proving global stability, we will need the inequalities

S(x)x > 0 ∀x 	= 0, (1)

[S(x+ x0)− S(x0)]x > 0 ∀x 	= 0, ∀x0, (2)

which directly follow from the definition of the sigmoid.

The family of the sigmoid functions includes error function, arctangent, hyperbolic tangent,
and other functions of similar form. The limit case of the sigmoid is the non-smooth saturation
function called saturators: sat(x) = x when |x| � 1 and sat(x) = sgn(x) when |x| > 1. Examples
of the saturation functions are shown in Fig. 1. Other examples of the saturation functions and
discussions of their properties can be found in [15]. In the control problems, the hyperbolic tangent
is most often used as a sigmoid since it approximates the saturator better than other smooth
saturation functions and, moreover, its derivatives are expressed in terms of the function itself. In
the framework of this study, it does not matter what sigmoid is used in the feedback, since the
proof of global stability is valid for any functions satisfying the above definition.

In this work, we suggest to stabilize a chain of three integrators by means of a special feedback
including two nested sigmoids. The goal of the study is to prove global stability of the closed-loop
system obtained under certain simple conditions on the feedback coefficients.
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2. PROBLEM STATEMENT

We consider the problem of stabilizing a third-order integrator

ẋ1 = x2, ẋ2 = x3, ẋ3 = U(x), x ≡ [x1, x2, x3]
T, (3)

at the origin by means of a smooth feedback U(x) guaranteeing the fulfillment of the phase con-
straint

|x3(t)| � X3. (4)

Such a statement naturally comes to existence in many applications, for example, when stabilizing a
mechanical system [11], where state variables are position, velocity, and traction (acceleration) and
the system is controlled by varying the traction (e.g., by means of a step motor). A similar system
with the phase constraint on the third variable, but with a discontinuous control, was considered
in [16]. Since the traction in real systems is limited, the stabilizing control must not result in the
violation of the phase constraint (4), where X3 is the maximum possible traction.

The stabilizing control is sought in the form

U(x) = −k5(x3 + k4σ2(k3(x2 + k2σ1(k1x1)))), (5)

where σ1 and σ2 are arbitrary sigmoids. The feedback of this form guarantees the fulfillment of phase
constraint (4) with X3 = k4 if |x3(0)| � k4. Indeed, suppose that the phase constraint is satisfied
at the initial moment. Variable x3(t) achieves local extremum on the trajectory when U(x) = 0; on
the other hand, from formula (5), it is seen that the control equals zero when x3 = −k4σ2(·). Hence,
|x3(t)| cannot be greater than k4; i.e., domain |x3| � k4 is an invariant set of the system. Thus,
if variable x3 cannot physically exceed its limit value (like, for instance, in the abovementioned
example of the mechanical system), then it is sufficient to study stability of the system in this
invariant set. We, however, consider a more general problem statement and will prove stability
for any initial conditions in R3. In so doing, if the initial point belongs to the invariant set, then
the phase constraint (4) is fulfilled for any t � 0; otherwise, starting from some (depending on the
initial conditions) finite instant.

Additional advantages of control (5) are (a) exponential rate of the deviation decrease near the
equilibrium and (b) its boundedness for any deviations from the equilibrium state as long as the
phase constraint is fulfilled at the initial point.

Coefficients k2 and k4, which set limits of sigmoid variations, are referred to as model parameters,
since their values are determined by the model of the system under study, and, unlike the other three
coefficients cannot be selected arbitrarily. Given k2 and k4, parameters k1, k3, and k5 determine
the character of the transition process [5, 7] and are referred to as design parameters. They are
selected by the designer of the control system with the aim, for instance, to optimize (in one or
another sense) its performance.

Without loss of generality, the model parameters can be set equal to ones, which reduces the
number of system parameters to three. Indeed, let us turn to the dimensionless model by ap-
plying the same change of variables and time as in the two-dimensional case [5], i.e., t̃ = k4t/k2,
x̃1 = k4x1/k

2
2 , and x̃2 = x2/k2, and define the third dimensionless variable as x̃3 = x3/k4. Sub-

stituting the new variables into system (3), (5) and turning to differentiation with respect to the
dimensionless time, we obtain the dimensionless model in which k̃2 = k̃4 = 1 and three other coeffi-
cients are given by the formulas k̃1 = k1k

2
2/k4, k̃3 = k2k3/k4, and k̃5 = k2k5/k4. In what follows, we

assume that all variables and parameters are dimensionless and will use the same notation (without
tilde) for them. In the dimensionless model, feedback (5) takes the form

U(x) = −k5(x3 + σ2(k3(x2 + σ1(k1x1))). (6)
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The goal of the study is to determine the conditions on the coefficients for which the proposed
feedback stabilizes the system in the entire space, i.e., to establish conditions of global stability of
system (3), (6). The study of stability presented in the next section is based on the construction
of an integral Lyapunov function of the closed-loop system. We will prove that the necessary
conditions of stability of the linearized in the neighborhood of the origin system are sufficient for
its global stability. Note that the application of other known approaches to studying stability, for
example, those based on the construction of the Lurie–Postnikov function or on the immersion
into the class of linear nonstationary systems with subsequent application of methods of absolute
stability theory allows one to prove, as a rule, only local stability (even if the system under study
is stable in the whole) and construct an estimate of the invariant attraction domain.

3. GLOBAL STABILITY CONDITIONS

Theorem 1. System (3), (6), where σ1(·) and σ2(·) are arbitrary sigmoids, is globally asymptot-
ically stable if and only if all the feedback coefficients are positive and k5 > k1.

Proof. Necessity. In order that the system be globally stable, it is necessary that the linearized
in the neighborhood of the origin system

ẋ1 = x2, ẋ2 = x3, ẋ3 = −k5x3 − k5k3x2 − k5k3k1x1

be stable. Applying the Hurwitz criterion to the latter system, we find that it is stable when all
the coefficients are positive and the condition k5 > k1 holds. Sufficiency. Let coefficients k1, k3
and k5 be positive. Let us consider the function

V (x) = k25

x1∫
0

σ2(k3σ1(k1s))ds + k5

x2∫
0

σ2(k3(s+ σ1(k1x1)))ds +
1

2
(x3 + k5x2)

2 (7)

and prove that it is Lyapunov function of system (3), (6).

Let Φ1 and Φ2 denote the first and second, respectively, integral terms in (7). Let us prove that
their sum and, hence, the entire function V (x) are positive ∀x ∈ R3.

Let us transform the second term Φ2 by changing the integration variable s̃ = s+ σ1(k1x1):

Φ2 = k5

x2+σ1(k1x1)∫
σ1(k1x1)

σ2(k3s̃)ds̃ = k5

x2+σ1(k1x1)∫
0

σ2(k3s̃)ds̃− k5

σ1(k1x1)∫
0

σ2(k3s̃)ds̃.

In the second term on the right-hand side of the last formula, we perform implicit one-to-one
(by virtue of monotonicity of function σ1) change of the integration variable s̃ = σ1(k1s). Taking
into account that ds̃ = k1σ

′
1(k1s)ds, where the prime denotes differentiation with respect to the

argument, the sum of Φ1 and Φ2 takes the following form:

Φ1 +Φ2 = k5

x1∫
0

σ2(k3σ1(k1s))[k5 − k1σ
′
1(k1s)]ds + k5

x2+σ1(k1x1)∫
0

σ2(k3s̃)ds̃.

The second integral on the right-hand side of this formula is positive by virtue of (1). Since the
derivative of the sigmoid satisfies the condition σ′(s) � 1 and, by the assumption of the theorem,
k5 > k1, we have

k5 − k1σ
′
1(k1s) > 0, (8)

from which it follows that the first integral and, hence, function V (x) are positive for all x 	= 0.
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It is evident that V (x) tends to infinity as ||x|| → ∞. Further, differentiating V (x) by virtue of
system (3), (6) and omitting the argument k1x1 of functions σ1 and σ′1 to shorten the notation, we
obtain

V̇ = k25σ2(k3σ1(·))x2 + k5x2

x2∫
0

σ′2(k3(s+ σ1(·)))k3σ′1(·)k1ds

+ k5σ2(k3(x2 + σ1(·)))x3 + (x3 + k5x2)[−k5(x3 + σ2(k3(x2 + σ1(·))) + k5x3]

= k25σ2(k3σ1(·))x2 − k25σ2(k3(x2 + σ1(·)))x2 + k1k3k5σ
′
1(·)x2

x2∫
0

σ′2(k3(s+ σ1(·)))ds.

Let us transform the integral on the right-hand side of the last expression:

x2∫
0

σ′2(k3(s+ σ1(·)))ds =
x2+σ1(·)∫
σ1(·)

σ′2(k3s̃)ds̃ =
1

k3
σ2(k3(x2 + σ1(·))) − 1

k3
σ2(k3σ1(·)).

Substituting the expression obtained into the formula for V̇ (x), we get

V̇ (x) = k5σ2(k3σ1(·))x2(k5 − k1σ
′
1(·)) − k5σ2(k3(x2 + σ1(·)))x2(k5 − k1σ

′
1(·))

= −k5(k5 − k1σ
′
1(·))[σ2(k3(x2 + σ1(·))) − σ2(k3σ1(·))]x2.

The product of the expression in the square brackets and x2 is positive by virtue of (2), from which,
with regard to (8), it follows that the derivative is negative definite for any x2 	= 0. The derivative
vanishes only on the set x2 = 0, which contains no entire trajectories but x = 0.

Thus, function V (x) satisfies all the conditions of the Barbashin–Krasovski theorem [20], and,
hence, the origin is asymptotically stable equilibrium of system (3), (6) in the whole. The theorem
is proved.

4. NUMERICAL EXAMPLES

As an illustration, we present results of numerical calculations for the feedback (6) in the form
of nested hyperbolic tangents with the coefficients k1 = 1, k3 = 3, and k5 = 5. Figure 2 shows the
invariant set of the system bounded by the level surface of the Lyapunov function (7) V (x) = k25 .
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Fig. 2. Level surface of the Lyapunov function (7).
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Fig. 3. Projections of cross-sections of the invariant set by planes x3 = const onto the plane (x1, x2).

Fig. 4. Plots of deviation x1(t) (1), velocity x2(t) (2), acceleration x3(t) (3), and control U(t) (4).

For greater clarity, Fig. 3 shows projections of six cross-sections of the level surface onto the plane
(x1, x2) (in Fig. 2, these cross-sections are depicted by bold lines) by the planes x3 = ci, c1 = −26,
c2 = −16, c3 = −6, c4 = 4, c5 = 14, and c6 = 24.

Results of solving stabilization problem for the system with initial conditions x1(0) = 0.1,
x2(0) = 1.4, x3(0) = −1 are presented in Fig. 4, which demonstrates efficiency of the stabiliza-
tion. The curves marked by 1, 2, 3, and 4 are plots of dependencies of deviation x1, velocity x2,
acceleration x3, and control U , respectively, on time. Although at the initial instant, the system
moves in the direction opposite to the equilibrium state, the deviation, after natural growth at
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the initial stage, rapidly (exponentially) decreases, the phase constraint is fulfilled for any t � 0,
control is reasonably constrained and does not result in overshooting.

5. CONCLUSIONS

The problem of stabilizing a chain of three integrators by a continuous control that guarantees
the fulfillment of a phase constraint on the third state variable has been studied. By turning
to dimensionless state variables, the original problem depending on five feedback coefficients has
been reduced to study of a three-parameter system. Advantages of the proposed feedback in the
form of nested sigmoids have been discussed. The basic result of the work is construction of the
Lyapunov function by means of which sufficient conditions of global stability of the closed-loop
system have been established. Numerical examples illustrating efficiency of stabilization by means
of the proposed feedback have been presented.
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Abstract—This paper is devoted to the optimal control of mixed (stationary and periodic
impulse) harvesting of a renewable resource distributed on the Earth’s surface. Examples of such
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1. INTRODUCTION

Two-dimensional (2D) manifolds homeomorphic to a sphere are commonly used as a mathemat-
ical model of the Earth’s surface. The dynamics of a renewable resource distributed on the Earth’s
surface can be modeled by a second-order semilinear evolutionary equation on a 2D sphere. In
local coordinates, it has the form

∂q

∂t
−

2∑
l,m=1

∂

∂xl

(
al,m(x)

∂q

∂xm

)
= A(x)q −B(x)q2, al,m(x) = am,l(x), (1)

where the matrix a characterizes the resource diffusion, and the coefficients A and B are the resource
renewal and saturation rates of the environment. Essentially, equation (1) combines two classical
models: the Verhulst logistic model [1] and the Fourier heat propagation model [2].

Equations of the form (1) arise when modeling various reaction–diffusion processes in a dis-
tributed environment. One example is the famous model proposed by A.N. Kolmogorov, G.I. Petro-
vskii, and N.S. Piskunov [3] and R.A. Fischer [4]. Information about other models, the history and
bibliography of the works on this topic can be found in [5]. Also, the interested reader is referred
to the monograph [6], covering several applied aspects.

Second-order semilinear evolutionary equations in Euclidean space domains have been studied
quite thoroughly; for example, see [7–9]. On closed manifolds, particularly spheres, they have been
investigated to a lesser extent. It is appropriate to mention the papers devoted to the equations
with periodically fragmented coefficients [5, 10] (in fact, equations on a torus). This case, important
from an applied point of view, occurs when modeling periodic media. Of course, equations of the
form (1) on a 2D sphere are also of significant interest: this is a standard model of the Earth’s
surface used in applications.
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Note that many applied problems lead to equations of the type (1) with discontinuous coeffi-
cients. In particular, this is characteristic of optimal control problems. Therefore, it is desirable
to choose a class of admissible solutions to construct a satisfactory theory of the corresponding
equations with minimal regularity requirements for their coefficients. In this paper, such a class
consists of weak solutions. In the class of weak solutions, it is possible to study equations of the
form (1) on a 2D sphere with fairly light regularity requirements for their coefficients.

2. FUNCTION SPACES AND EVOLUTIONARY EQUATIONS

2.1. Function Spaces

Let S2 be a 2D sphere of unit radius, {(y1, y2, y3) ∈ R
3 | (y1)2 + (y2)2 + (y3)2 = 1}, standardly

embedded in the 3D Euclidean space R
3. The stereographic projection

h : S2\(0, 0, 1) � (y1, y2, y3) → (y1, y2)

1− y3
∈ R

2

relative to the pole (0, 0, 1) specifies a local coordinate system defined on S
2 everywhere except

the pole [11] (lecture 6). An embedding in the Euclidean space R
3 induces on S

2 a Riemannian
metric g, whose inverse image relative to h−1 has the form

(h−1)∗g = 4
(dx1)2 + (dx2)2

((x1)2 + (x2)2 + 1)2
.

Here h−1 is a mapping inverse to the stereographic projection, i.e.,

h−1 : R2 � (x1, x2) → 1

(x1)2 + (x2)2 + 1
(2x1, 2x2, (x1)2 + (x2)2 − 1) ∈ S

2. (2)

The metric g defined on the tangent bundle TS2 admits a natural extension to tensor bun-

dles (TS2)
⊗m ⊗

(T ∗
S
2)
⊗l

, m, l = 0, 1, 2, . . . , which will be denoted by the same symbol g. On

(TS2)
⊗0 ⊗

(T ∗
S
2)
⊗0

= S
2 × R, the metric is g(r1, r2) = r1r2 for r1, r2 ∈ R. Also, g induces on S

2

a complete metric space structure and a measure μ = μg, whose image relative to the stereographic
projection has the form

d(μ ◦ h) = 4dx1dx2

((x1)2 + (x2)2 + 1)2
. (3)

These structures are used to build the Lebesgue spaces of functions and tensor fields,

Lp(S2) and Lp
(
(TS2)

⊗m ⊗
(T ∗

S
2)
⊗l)

, where p � 1 and m, l = 0, 1, 2, . . . , as well as the Sobolev

spaces W 1,p(S2) and W 1,p
(
(TS2)

⊗m ⊗
(T ∗

S
2)
⊗l)

[12, Ch. 2] and the Hölder spaces Cα(S2) and

Cα((TS2)
⊗m ⊗

(T ∗
S
2)
⊗l

), 0 < α � 1 [13, Sec. 10.2.4; 14; 15; 16, §1]. For this purpose, the stere-
ographic coordinates (2) can be applied. For example, the function spaces Lp(S2) on a sphere and
Lp(R2, μ ◦ h) on the plane with the measure (3) are isometric for p � 1.

Consider real-valued measurable functions u and v defined on S
2 and let

ess sup
x∈S2

u(x) = inf
S⊆S2,
μ(S)=0

sup
x∈S2\S

u(x),

ess inf
x∈S2

u(x) = sup
S⊆S2,
μ(S)=0

inf
x∈S2\S

u(x), 〈u, v〉 =
∫
S2

uvdμ.
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IfB is a Banach space with a norm ‖ · ‖B, then for fixed T0 ∈ (0,+∞) and T1 ∈ (0,+∞], T0 < T1,
the spaces Lp([T0, T1);B) with the norms

‖q‖Lp([T0,T1);B) =

⎛⎜⎝ T1∫
T0

‖q(t)‖pBdt
⎞⎟⎠

1
p

, p � 1,

‖q‖L∞([T0,T1);B) = ess sup
t∈[T0,T1)

‖q(t)‖B

are also Banach spaces; see [17, Ch. III, §1] and [18, Ch. II, §2]. The intersection

W ([T0, T1);X) = L2((T0, T1);W
p,1(X)) ∩ L∞([T0, T1);L

2(X))

is also a Banach space with the norm

‖q‖2W ([T0,T1);X) = ess sup
t∈[T0,T1)

〈q(t), q(t)〉 +
T1∫

T0

〈g(dq(t), dq(t)), 1〉dt.

For brevity, we will use the abbreviation a.e. whenever some properties are valid almost every-
where in the measure μ on S

2, see (3).

2.2. Evolutionary Equations

Along with g, let another metric a be defined on the sphere S
2. Assume that this metric is

measurable and there exist a0, a1 ∈ (0,+∞) such that

a0g(η, η) � a(η, η) � a1g(η, η), η ∈ T ∗
S
2, a.e. (4)

In the stereographic coordinates x1 and x2 (2), the estimate (4) has the form

4a0(η
2
1 + η22)

((x1)2 + (x2)2 + 1)2
� a1,1(t)η21 + 2a1,2(t)η1η2 + a2,2(t)η22 � 4a1(η

2
1 + η22)

((x1)2 + (x2)2 + 1)2
.

Consider the differential operator d∗a,g : C∞(T ∗
S
2) � w → d∗a,gw ∈ C∞(S2) adjoint to the exterior

differentiation operator d with respect to the metrics g and a, i.e.,

〈a(du, ω), 1〉g = 〈u, d∗a,gω〉g, u ∈ C∞(S2), ω ∈ C∞(T ∗
S
2);

for details, see [19, Ch. VIII, §1]. In the system of the stereographic coordinates x1 and x2 (2),

d∗a(t),gω = −((x1)2 + (x2)2 + 1)2
2∑

l,m=1

∂

∂xl
a(dxl, dxm)

((x1)2 + (x2)2 + 1)2
ω

(
∂

∂xm

)
.

Given a function u ∈ C∞(S2), we define the geometric Laplacian (the Laplace–de Rahm operator),
i.e., the linear second-order differential operator [20, Ch. IV, §5]

� = �a,g = d∗a,g ◦ d. (5)

Due to the estimate (4), the operator (5) is uniformly elliptic on S
2.

Hence, the second-order evolutionary equation

∂q

∂t
+�q = (A(x) − u(x))q −B(x)q2 (6)
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is parabolic on S
2. In the stereographic coordinates x1 and x2 (2), it takes the form

∂q

∂t
− ((x1)2 + (x2)2 + 1)2

2∑
l,m=1

∂

∂xl
a(dxl, dxm)

((x1)2 + (x2)2 + 1)2
∂u

∂xm
= (A(x)− u(x))q −B(x)q2;

cf. (1). The unknown function q = q(t, x) corresponds to the density of the renewable resource
under consideration at a point x of the sphere S2 at a time instant t, the metric a characterizes the
resource diffusion, the function u is the control of its stationary (permanent) harvesting, and the
coefficients A and B are the resource renewal and saturation rates of the environment.

Weak solutions, subsolutions, and supersolutions are defined in a conventional way [8, Ch. VI,
§1, 5] and [9, §1.5]. In particular, a weak solution of equation (6) on the half-open interval [T0, T1)
is a function q ∈W ([T0, T1);S

2) such that q2 ∈ L2([T0, T1)× S
2) and

〈q, p〉(t) +
t∫

T0

(
〈dq, dp〉L2(T ∗S2) − 〈q, p′〉

)
(τ)dτ = 〈q, p〉(0) +

t∫
T0

〈(A− u)q −Bq2, p〉(τ)dτ

for each p ∈ C∞([T0, T1);S
2) and t ∈ [T0, T1). A weak solution q of equation (1.5) that takes a given

initial value of the resource density,

q(T0) = q0, q0 ∈ L∞(S2), q0 � 0 a.e., (7)

is called a weak solution of the Cauchy problem (6), (7) on [T0, T1).

In the presentation below, all solutions, subsolutions, and supersolutions are assumed to be
weak, and the adjective “weak” is omitted for brevity.

3. PERIODIC IMPULSE HARVESTING AND CONTROLLED SOLUTIONS

3.1. Periodic Impulse Harvesting

The periodic impulse harvesting of a renewable resource is mathematically modeled by the
solution q of the Cauchy problem (6), (7) with the additionally imposed conditions

q(kT ) = sq(kT−), k = 1, 2, . . . . (8)

Here T ∈ (0,+∞) is a given period, and the measurable factor s, 0 � s � 1 a.e., characterizes the
impulse harvesting rate. The solution of problem (6), (8) is a function q ∈ L∞([0,+∞) × S

2) that
resolves equation (6) on [kT, (k + 1)T ), has the left-hand limit values q(kT−), and satisfies a.e.
equalities (8). If for T0 = 0 this solution takes a.e. the initial value (7), then it represents the
solution of problem (6), (7), (8). The solution of problem (6), (8) is said to be periodic if

q(t+ T ) = q(t), t ∈ [0,+∞). (9)

We define the admissible sets U and S of stationary and impulse controls

U = {u ∈ L∞(S2) | U1 � u � U2},
S = {e−βv | v ∈ L∞(S2), V1 � v � V2, 〈1, v〉 � E}, (10)

where U1, U2, V1, V2, β ∈ L∞(S2) and E ∈ [0,+∞). Here U1 and U2 characterize the constraints on
the possible density of stationary resource harvesting, E is the admissible harvesting effort, and the
limits V1 and V2 describe the minimum technically feasible density of impulse harvesting and its
maximum possible density given the available physical capacity of the environment and ecological
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constraints. In essence, V1(x) and V2(x) are the minimum and maximum efforts that can be applied
at a point x to achieve the goals. The impulse factor form s = e−β(x)v(x) in (8) stems from the
search theory [21–23]. The factor β(x) in the exponent characterizes the complexity of detecting
and extracting the resource at a point x ∈ S

2, and v(x) is the effort applied.

Remark 1. As is easily checked, the sets of admissible stationary U and impulse S controls (10)
are convex, closed in L2(S2), and bounded in L∞(S2). Since the space L2(S2) is reflexive, by
the Eberlein–Šmulyan theorem, the sets bounded in the norm ‖ · ‖L2(S2) are sequentially weakly
precompact [24, App. to Ch. V, §4]. In addition, each convex and closed subset of L2(S2) is weakly
closed [25, Sec. 2.9]. Therefore, the sets of admissible controls U and S are sequentially weakly
compact. A subset in L2(S2) is weakly compact if and only if it is sequentially weakly compact,
and sequentially weakly precompact sets are norm-bounded [25, Sec. 2.9]. Therefore, the sets U
and S are weakly sequentially compact in L2(S2) [24, App. to Ch. V, §4 ].

Remark 2. Obviously, q = 0 is a periodic subsolution of problem (6), (7), (8). Due to the con-
straints imposed above on equation (6) and the admissible controls, B � B0 > 0 and 0 � s � 1 a.e.
Hence, the constant function q = c is a periodic supersolution of problem (6), (7), (8) for
c � Q(‖ q0 ‖L∞(S2)), where

Q : R � r → max

{
r,

1

B0
(‖A‖L∞(S2) +max{‖U1‖L∞(S2), ‖U2‖L∞(S2)})

}
∈ R. (11)

3.2. Controlled Solutions

The solutions q = q(t; q0, u, s) of problem (6), (7), (8) and the periodic solutions q = q(t;u, s) of
problem (6), (8) with admissible controls u ∈ U and s ∈ S will be called controlled solutions. They
possess the following properties.

Theorem 1. Assume that the metric a is measurable and satisfies the estimate (4) and the coef-
ficients A,B ∈ L∞(S2) and B � B0 a.e. for some B0 ∈ (0,+∞). Then:

(a) For any u ∈ U, s ∈ S, there exists a unique controlled solution q = q(t; q0, u, s). In addition,
q ∈ C([(k − 1)T, kT );L2(S2)), k = 0, 1, . . . , and

0 � q(t; q0, u, s) � Q
(
‖ q0‖L∞(S2)

)
, t ∈ [0,+∞), (12)

where Q is the function (11), and for any ε ∈ (0, T ) there exists a number α, 0 < α � 1, such that

q ∈ Cα

( ∞⋃
k=1

[(k − 1)T + ε, kT )× S
2

)
.

(b) If sequences {qm} ⊆ L∞(S2), {um} ⊆ U, and {sm} ⊆ S weakly converge in L2(S2), i.e.,
qm ⇀ q0, um ⇀ u0, and sm ⇀ s0, and qm � 0 and qm 	= 0 a.e., then the weak convergence

lim
m→+∞

q (· ; qm, um, sm) = q (· ; q0, u0, s0)

holds in the spaces L2([0, NT );W 1,2(S2)) for any N = 1, 2, . . . and in the norms
‖ · ‖C(∪N

k=1
[(k−1)T+ε,kT )×S2) for any ε ∈ (0, T ).

(c) For any u ∈ U and s ∈ S, there exists a unique controlled periodic solution q = q∞(t;u, s)
such that

lim
t→+∞

‖q(t; q0, u, s)− q∞(t;u, s)‖L∞(S2) = 0, ‖q0‖L∞(S2) > 0.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 7 2024



OPTIMAL CONTROL OF HARVESTING 691

(d) If sequences {um} ⊆ U and {sm} ⊆ S weakly converge in L2(S2), i.e., um ⇀ u0 and sm ⇀ s0,
then the periodic solutions from item (c) have the weak convergence

lim
m→+∞

q∞(· ;um, sm) = q∞(· ;u0, s0)

in the space L2((0, T );W 1,2(S2)) and in the norms ‖ · ‖C([ε,T )×S2) for any ε ∈ (0, T ).

The proof is given in subsection 4.5.

Remark 3. There exist at most two periodic solutions q of problem (6), (8). According to
Remark 2, one of them is the trivial solution q = 0. If q∞ = 0, then by Theorem 1 the other
disappears; if q∞ 	= 0, then the third does the same.

4. PROBLEM STATEMENT, THE MAIN RESULT, AND FINDINGS

4.1. Problem Statement

According to assertion (a) of Theorem 1, the following functional is well-defined for the admis-
sible sets of stationary U and impulse S controls (10):

F : {q0 ∈ L∞(S2)|q0 � 0 a.e.} × U×S � (q0, u, s)

−→ lim
t→+∞

1

t

⎛⎝ t∫
0

〈q(τ ; q0, u, s), u〉dτ +
∑

0<kT�t

〈q(kT−; q0, u, s), 1− s〉
⎞⎠ ∈ R,

(13)

where q = q(t; q0, u, s) is a controlled solution. Its value is the time-averaged sum of the stationary
(first term) and impulse (second term) resource harvestings.

Let us pose the following problem: It is required to establish the existence of stationary u0 ∈ U
and impulse s0 ∈ S controls that maximize the functional F (13), and investigate the impact of the
initial value q0 (7) on F (q0, u0, s0), cf. [26] and [27].

4.2. The Main Result

Using Theorem 1, we provide a comprehensive solution of this problem. Namely, the following
result is true; cf. [28].

Theorem 2. Assume that all conditions of Theorem 1 are satisfied. Then:

(a) For any initial values q0 (7), ‖q0‖L∞(S2) > 0, and admissible controls u ∈ U, s ∈ S, we have
the equality

F (q0, u, s) = F (q∞(0;u, s), u, s) =
1

T

⎛⎝ T∫
0

〈q∞(τ ;u, s), u〉dτ + 〈q∞(T−;u, s), 1 − s〉
⎞⎠ . (14)

(b) If sequences {um} ⊆ U and {sm} ⊆ S weakly converge in L2(S2), i.e., um ⇀ u0 and sm ⇀ s0,
and a sequence {qm} ⊆ L∞(S2) is such that qm � 0 and qm 	= 0 a.e., then

lim
m→+∞

F (qm, um, sm) = F (q∞(0;u0, s0), u0, s0).

(c) The functional F (13) is bounded and its supremum is achieved at admissible controls u0 ∈ U
and s0 ∈ S so that

supF (q0, u, s) = F (q∞(0; u0, s0), u0, s0).
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Proof.

(a) Clearly, the value of the functional F (q0, u, s) will not change when replacing the zero
lower limits of integration and summation in its definition (13) by any T0 ∈ [0,+∞). Next, for
controlled solutions q = q(t; q0, u, s) of problem (6), (7), (8) and a periodic solution q = q∞(t;u, s)
of problem (6), (8), we have∣∣∣∣∣∣∣

t∫
T0

〈q(τ)− q∞(τ), u〉dτ +
∑

T0<kT�t

〈q(kT−)− q∞(kT−), 1 − s〉
∣∣∣∣∣∣∣

�
(
t ‖ u ‖L∞(S2) sup

τ�T0

‖q(τ)− q∞(τ)‖L∞(S2)+[t]‖1− s‖L∞(S2) sup
kT�T0

‖q(kT−)− q∞(kT−)‖L∞(S2)

)
� t

(
max{‖U1‖L∞(S2), ‖U2‖L∞(S2)}+ 1

)
sup
τ�T0

‖q(τ) − q∞(τ)‖L∞(S2), t ∈ [T0,+∞).

By assertion (c) of Theorem 1, it follows that |F (q0, u, s)− F (q∞(0;u, s), u, s)| = 0. Due to defini-
tion (13), F (q∞(0;u, s), u, s) equals the right-hand side of equality (14).

(b) According to assertion (a), we have

F (q0, um, sm) =
1

T

⎛⎝ T∫
0

〈q∞(τ ;um, sm), um〉dτ + 〈q∞(T−;um, sm), 1 − sm〉
⎞⎠ .

By assertion (d) of Theorem 1, it is possible to pass to the limit on the right-hand side of this
expression as m → +∞ [29, Ch. 1, §5]. As a result, in view of (14), we arrive at the desired
conclusion.

(c) There exist sequences of initial values {qm} ⊆ L∞(S2) and admissible controls {um} ⊆ U and
{sm} ⊆ S such that

supF (q0, u, s) = lim
m→+∞

F (qm, um, sm).

Due to Remark 1, the sets of admissible controls U andS are sequentially weakly compact in L2(S2).
Hence, there exist subsequences {uml

} and {sml
} that weakly converge in L2(S2), i.e., uml

⇀ u0 ∈ U
and sml

⇀ s0 ∈ S. By assertion (b), we obtain

supF (q0, u, s) = lim
m→+∞

F (qm, um, sm) = F (q∞(0;u0, s0), u0, s0).

The proof of Theorem 2 is complete.

4.3. Findings

According to assertion (c) of Theorem 1, after choosing admissible stationary and impulse con-
trols, the renewable resource density will uniformly tend to a unique limit state for any nonzero
initial values. According to assertion (c) of Theorem 2, admissible controls can be chosen so that
for each exploitation cycle, the amount of resource harvesting coincides with the maximum possible
time-averaged amount of resource harvesting. In other words, with the optimal control of renewable
resource exploitation, any nonzero initial resource density will tend to a limiting state ensuring the
maximum of resource harvesting in one exploitation cycle.
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5. PROOF OF THEOREM 1

5.1. Auxiliary Assertions

According to Remark 1, the subsolution of problem (6), (7), (8) is the zero function q = 0, and
the supersolution is the constant function q = Q(‖q0‖L∞(S2)). Therefore, the known results for
second-order semilinear parabolic equations on a sphere [30–32] imply the following.

Lemma 1. Assume that all conditions of Theorem 1 are satisfied. Then for each u ∈ L∞(S2)
there exists a unique solution q = q( · ; q0, u) of problem (6), (7) on the half-open interval
[T0,+∞). Moreover, q ∈ C([T0,+∞);L2(S2)), 0 � q(t) � Q(‖q0‖L∞(S2)) a.e. for t ∈ [T0,+∞),
and for each ε > 0 it is possible to find α = α(ε, ‖q‖L∞([T0,+∞))×(S2)), 0 < α � 1, and C =
C(ε, ‖q‖L∞([T0,+∞))×S2) � 0 such that q ∈ Cα([T0 + ε,+∞)) × S

2 and ‖q‖Cα([T0+ε,+∞))×(S2) � C.

In addition, we have the following fact.

Lemma 2. Assume that all conditions of Theorem 1 are satisfied. If sequences {qm} ⊆ L∞(S2)
and {um} ⊆ U weakly converge in L2(X), i.e., qm ⇀ q0 and um ⇀ u0, then the solutions
q = q(t; qm, um) of the Cauchy problem (6), (7) have the weak convergence

lim
m→+∞

q(· ; qm, um) = q(· ; q0, u0)

in L2([T0, T1);W
1,2(X)) and in the norms ‖ · ‖C([T0+ε,T1)×X) for any ε ∈ (0, T1 − T0).

Proof. By assertion (a) of Theorem 1, for m = 1, 2, . . . there exists a unique controlled solution
q(t; qm, um) on the half-open interval [T0, T1). Since the sequence {‖qm‖L∞(S2)} is bounded (see
Remark 1), we obtain

0 � q(t; qm, um) � Q

(
sup

(m=0,1,...
‖qm‖L∞(S2)

)
, t ∈ [T0, T1), m = 1, 2, . . . .

Therefore, based on the a priori estimates for the solutions of linear second-order parabolic equa-
tions [8, ch. VI, §1] and [9, §1.5], there exists a constant C1 such that

‖q(· ; qm, um)‖
L2
(
(T0,T1);W 1,2(X)

) � C1, m = 1, 2, . . . ; (15)

by assertion (a) of Theorem 1, for ε ∈ (0, T1 − T0) it is possible to find C2 and 0 < α � 1 such that

‖q(· ; qm, um)|[T0+ε,T1)×X ‖Cα([T0+ε,T1)×X)� C2, m = 1, 2, . . . . (16)

Due to (15) and the Eberlein–Šmulyan theorem (see [24, App. to Ch. V, §4], the sequence
{q(· ; qm, um)} is sequentially weakly precompact in L2

(
(T0, T1);W

1,2(X)
)
because this space is

reflexive [17, Ch. III, §1]. In turn, due to (16) and the Arzelá–Ascoli theorem, the sequence
{q(· ; qm, um)|[T0+ε,T1)×X} is sequentially precompact in the norms ‖ · ‖C([T0+ε,T1)×X). Hence, from
{q(· ; qm, um)} it is possible to select a subsequence {q(· ; qml

, uml
)} that weakly converges to the

limit function

q̃(t) = lim
m→+∞

q(t; qml
, uml

) ∈ L∞([T0, T1);L
∞(X))

in L2((T0, T1);W
1,2(X)) and in the norms ‖ · ‖C([T0+ε,T1)×X) for any ε ∈ (0, T1 − T0).

For q0 = qml
and u = uml

, the solution of problem (6), (7) is defined by

〈q(· ; qml
, uml

), p〉(t) +
t∫

T0

(
〈dq(· ; qml

, uml
), dp〉L2(T ∗S2) − 〈q(· ; qml

, uml
), p′〉

)
(τ)dτ

= 〈qml
, p〉(0) +

t∫
T0

〈(A− uml
)q(· ; qml

, uml
)−Bq2(· ; qml

, uml
), p〉(τ)dτ.
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Passing to the limit as l → +∞ [29, Ch. 1, §5] yields

〈q̃, p〉(t) +
t∫

T0

(〈dq̃, dp〉L2(T ∗S2) − 〈q̃, p′〉)(τ)dτ = 〈q0, p(0)〉+
t∫

T0

〈(A− u0)q̃ −Bq̃2, p〉(τ)dτ,

i.e., the limit function q̃ is the solution of problem (6), (7) on [T0, T1) with the initial value q0 and
the stationary control u0. By assertion (a) of Theorem 1, the solution of problem (6), (7) is unique
and, consequently, q̃(t) = q(t; q0, u0). The proof of Lemma 2 is complete.

5.2. Proof of Assertions (a) and (b)

Assertion (a) is a corollary of Lemma 1.

Assertion (b) is established by induction on N = 1, 2, . . . . For N = 1, the desired re-
sult follows from Lemma 2 for [T0, T1) = [0, T ). Assume that it is true for N � 1. Then
the sequence {q(NT−; qm, um, sm)} converges to q(NT−; q0, u0, s0) in ‖ · ‖C(X); therefore,
{smq(NT−; qm, um, sm)} weakly converges to s0q(NT−; q0, u0, s0) in L2(X) [29, Ch. 1, §5]. By
Lemma 2, for [T0, T1) = [NT, (N + 1)T ), we arrive at the weak convergence

lim
m→+∞

q(· ; smq(NT−; qm, um, sm), um, sm) = q(· ; s0q(NT−; q0, u0, s0), u0, s0)

in L2((0, T );W 1,2(X)) and in the norms ‖ · ‖C([ε,T )×X) for any ε ∈ (0, T ). Thus, the desired result
holds for (N + 1) as well, and the proof is complete.

5.3. Proof of Assertion (c)

We choose an arbitrary number r ∈ (0,+∞) and consider the closed function interval

[0, Q(r)]L∞(X) = {w ∈ L∞(X)|0 � w � Q(r)a.e.},
where Q is the function (11). By Lemma 1, the Poincaré operator

P u
[T0,T1)

: [0, Q(r)]L∞(X) � w → q(T1;w, u) ∈ C(X)

is well defined, where q = q(t;w, u) is the solution of problem (6), (7) on the half-open interval
[T0,+∞) with the initial value q0 = w and the admissible control u ∈ U (10); cf. [33, Ch. III, §21].
In addition,

0 = P u
[0,T

2
)
0, P u

[0,T
2
)
Q(r) � Q(r), 0 = P u

[T
2
,T )

0, P u
[T
2
,T )
Q(r) � Q(r)

due to Remark 2 and the comparison principle for weak solutions [9, Sec. 2.1.2], and, consequently,

P u
[0,T

2
)
([0, Q(r)]L∞(X)) ⊆ [0, Q(r)]L∞(X),

P u
[T
2
,T )

([0, Q(r)]L∞(X)) ⊆ [0, Q(r)]L∞(X).
(17)

For the admissible controls s ∈ S (10), we have 0 � s � 1 a.e., therefore

s[0, Q(r)]L∞(X) ⊆ [0, Q(r)]L∞(X). (18)

Thus, the composition of the Poincaré operator and multiplication by s is well-defined:

S : [0, Q(r)]L∞(X) � v → P u
[0,T

2
)
sP u

[T
2
,T )
v ∈ [0, Q(r)]L∞(X). (19)
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Obviously, 0 is an equilibrium for S, i.e., S(0) = 0, whereas Q(r) a super-equilibrium, i.e.,
S(Q(r)) � Q(r) [33, Ch. I, §1]. According to assertion (a) and the Arzelá–Ascoli theorem, the
operator S is continuous and has a precompact image. By the comparison principle, S strongly
preserves order on [0, Q(r)]L∞(X) [33, Ch. I, §1]. Due to the strict concavity of the right-hand side
of equation (6), the operator S is strictly sublinear, i.e., βS(v) < S(βv) for v ∈ [0, Q(r)]L∞(X)\0
and 0 < β < 1. Hence, for any r ∈ (0,+∞), S has a unique fixed point v0 = Sv0 on the closed
interval [0, Q(r)]L∞(X) such that

lim
k→∞

‖Sk(v)− v0‖L∞(X) = 0 (20)

for any v ∈ [0, Q(r)]L∞(X)\0 [33, Ch. I, §5]. In view of the inclusions (17) and (18), the function

q∞,0 = sP u
[T
2
,T )
v0 ∈ [0, Q(r)]L∞(X); (21)

since equation (6) is autonomous (all its coefficients do not depend on t), it follows that

sP u
[0,T )q∞,0 = sP u

[0,T )

(
sP u

[T
2
,T )
v0

)
= sP u

[T
2
,T )

(
P u
[0,T

2
)
sP u

[T
2
,T )
v0

)
= sP u

[T
2
,T )
Sv0 = sP u

[T
2
,T )
v0 = q∞,0.

Thus, q∞,0 is a fixed point of the operator sP u
[0,T ). As q∞(t;u, s) we choose the solution q(t; q∞,0, u, s)

of problem (6), (7), (8) with the initial value q∞,0 (21). By assertion (a), this solution exists, is
unique, and satisfies the estimate 0 � q∞(t;u, s) � Q(r) on the half-open interval [0,+∞); more-
over, it satisfies the periodicity condition (9) because q∞,0 is a fixed point with respect to the
operator sP u

[0,T ).

Let q(t; q0, u, s) be the solution of problem (6), (7), (8) with q0 ∈ [0, Q(r)]L∞(X)\0. Then

w(t) = ±(q(t; q0, u, s)− q∞(t;u, s))

satisfies the weak maximum principle on the half-open intervals [kT, k(T + 1)), k = 1, 2, . . .
[8, Ch. VI, §7] and, consequently,

|q(t; q0, u, s)− q∞(t;u, s)| � |q(kT ; q0, u, s)− q∞(kT ;u, s)|, t ∈ [kT, k(T + 1)).

Since q(kT ; q0, u, s) = (sP u
[0,T ))

kq0 and q∞(kT ;u, s) = (sP u
[0,T ))

kq∞,0, it follows that

‖q(t; q0, u, s)− q∞(t;u, s)‖C(X) �
∥∥∥ (sP u

[0,T )

)k
q0 −

(
sP u

[0,T )

)k
q∞,0

∥∥∥
L∞(X)

;

by the construction of S (19) and the fixedness of q∞,0 (21) with respect to sP u
[0,T ), we obtain

‖q(t; q0, u, s)− q∞(t;u, s)‖C(X) �
∥∥∥∥sP u

[T
2
,T )
Sk−1P u

[0,T
2
)
q0 − sP u

[T
2
,T )
v0

∥∥∥∥
L∞(X)

, (22)

t ∈ [kT, k(T + 1)), because (sP u
[0,T ))

k = sP u
[T
2
,T )

(
P u
[0,T

2
)
sP u

[T
2
,T )

)k−1

P u
[0,T

2
)
. According to (17),

P u
[0,T

2
)
q0 ∈ P u

[0,T
2
)
([0, Q(r)]L∞(X)\0) ⊆ [0, Q(r)]L∞(X)\0;

due to (22), (20), the continuous operator sP u
[T
2
,T )
, and the arbitrary choice of r ∈ (0,+∞), we

finally arrive at assertion (a).
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5.4. Proof of Assertion (d)

By Lemma 1, there exist constants C and α, 0 < α � 1, such that

‖q∞(T−;um, sm)‖Cα(X) � C

uniformly in m = 1, 2, . . . . According to the Arzelá–Ascoli theorem, it is therefore possible to select
a subsequence {q∞(T−;uml

, sml
)} from {q∞(T−;um, sm)} that will converge in the norm ‖ · ‖C(X)

to the limit function

qT = lim
l→+∞

q∞(T−;uml
, sml

). (23)

It suffices to establish the equality

qT = q∞(T−;u0, s0) (24)

regardless of the choice of {q∞(T−;uml
, sml

)}. In this case, the entire sequence {q∞(T−;um, sm)}
will converge to q∞(T−;u0, s0) in the norm ‖ · ‖C(X) and {smq∞(T−;um, sm)} will weakly converge
to s0q∞(T−;u0, s0) in L

2(X) [29, Ch. 1, §5]; in the final analysis, Lemma 2 will imply assertion (d)
since q∞ satisfies conditions (8) and (9).

By conditions (8) and (9), q∞(0;uml
, sml

) = sml
q∞(T−;uml

, sml
); hence,

q∞(t;uml
, sml

) = q(t; sml
q∞(T−;uml

, sml
), uml

, sml
), t ∈ [0, T ),

as the solution of problem (6), (7) is unique (Lemma 1). Due to (23), the subsequence
{sml

q∞(T−;uml
, sml

)} weakly converges in L2(X) to s0qT . According to Lemma 2, passing to
the limit on the right-hand side of this equality yields

qT = q(T−; s0qT , u0, s0).

Thus, the solution q = q(t; s0qT , u0, s0) satisfies the periodicity condition

q(0; s0qT , u0, s0) = s0q(T−; s0qT , u0, s0),

i.e., is a periodic solution of problem (6), (8). Hence, considering Remark 3, either q∞(T−;u0, s0) =
q(T−; s0qT , u0, s0) (making (24) valid) or q∞(T−;u0, s0) > 0, q(T−; s0qT , u0, s0) = 0, which is
equivalent to the conditions

‖q∞(T−;u0, s0)‖C(X) > 0, qT = 0. (25)

We proceed by contradiction, showing that under conditions (25), the assertion

lim
k→+∞
l→+∞

q(kT−; q0, uml
, sml

) = 0, q0 > 0, (26)

and its negation are simultaneously false; see items 1) and 2) below.

1) Assume that conditions (25) hold and assertion (26) is true.
By assertion (a), for ε > 0 there exists a natural number k0 = k0(ε) such that

‖q(kT−; q0, u0, s0)− q∞(T−;u0, s0)‖C(X) < ε, k = k0, k0 + 1, . . . .

By assertion (b), for ε > 0 and k = 1, 2, . . . there exists a natural number l0 = l0(ε, k) such that

‖q(kT−; q0, uml
, sml

)− q(kT−; q0, u0, s0)‖C(X) < ε, l0, l0 + 1, . . . .
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Consequently, based on

‖q(kT−; q0, uml
, sml

)‖C(X) � ‖q∞(T−;u0, s0)‖C(X)

− ‖q(kT−; q0, u0, s0)− q∞(T−;u0, s0)‖C(X)

− ‖q(kT−; q0, uml
, sml

)− q(kT−; q0, u0, s0)‖C(X),

for any ε > 0, k = k0(ε), k0(ε) + 1, . . . and l = l0(ε, k), l0(ε, k) + 1, . . ., we have

‖q(kT−; q0, uml
, sml

)‖C(X) � ‖q∞(T−;u0, s0)‖C(X) − 2ε.

Choosing ε =
‖q∞(T−;u0,s0)‖C(X)

4 > 0 in accordance with (25), we derive the estimate

‖q(kT−; q0, uml
, sml

)‖C(X) �
‖q∞(T−;u0, s0)‖C(X)

2
,

which contradicts assertion (26). Thus, conditions (25) and assertion (26) lead to a contradiction.
2) Assume that conditions (25) hold and assertion (26) is false. Then for some initial q0 > 0 (7),

there exists a number δ0 > 0 such that, for N = 1, 2, . . . , it is possible to find numbers k0 =
k0(N) � N and l0 = l0(N) � N for which∥∥∥q(k0(N)T−; q0, uml0(N)

, sml0(N)
)
∥∥∥
C(X)

� δ0. (27)

Due to (23) and (25), for any ε > 0 there exists a number l1 = l1(ε) such that

‖q∞(T−;uml
, sml

)‖C(X) < ε, l = l1, l1 + 1, . . . .

By assertion (a), for ε > 0 and l = 1, 2, . . . there exists a natural number k1 = k1(ε, l) such that

‖q(kT−; q0, uml
, sml

)− q∞(T−;uml
, sml

)‖C(X) < ε, k = k1, k1 + 1, . . . .

Therefore, for 0 < δ � δ0 and l = l1
( δ
2

)
, l1

( δ
2

)
+ 1, . . . and k = k1

( δ
2 , l

)
, k1

( δ
2 , l

)
+ 1, . . . , we have∥∥∥q (k0(N)T−; q0, uml0(N)

, sml0(N)

)∥∥∥
C(X)

‖q(kT−; q0, uml
, sml

)‖C(X) (28)

� ‖q(kT−; q0, uml
, sml

)− q∞(T−; q0, uml
, sml

)‖C(X)

+ ‖q∞(T−; q0, uml
, sml

)‖C(X) < δ.

From (27) and (28) it follows that, for N = l1
(
δ
2

)
, l1

(
δ
2

)
+ 1, . . . there exists a number

k2 = k2(δ, k0(N), l0(N)) ∈
{
k0(N), . . . , k1

(
δ

2
, l0(N)

)
− 1

}
for which ∥∥∥q (k2(δ, k0(N), l0(N))T−; q0, uml0(N)

, sml0(N)

)∥∥∥
C(X)

� δ, (29)∥∥∥q ((k2(δ, k0(N), l0(N)) + k)T−; q0, uml0(N)
, sml0(N)

)∥∥∥
C(X)

< δ, k = 1, 2, . . . .

Consider the sequence {qN} composed of

qN = q(k2(δ, k0(N), l0(N))T−; q0, uml0(N)
, sml0(N)

), N = l1

(
δ

2

)
, l1

(
δ

2

)
+ 1, . . . .
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By assertion (a), there exist constants C and α, 0 < α � 1, such that ‖qN‖Cα(X) � C uniformly
in N.

Based on the Arzelá–Ascoli theorem, we select a subsequence {qNβ
} from the sequence {qN}

that converges in the norm ‖ · ‖C(X) to the limit function

q0,∞ = lim
β→+∞

qNβ
.

In view of the first inequality in (29), ‖q0,∞‖C(X) � δ. Since the sequence
{
sml0(Nβ )

qNβ

}
weakly

converges in L2(X) to s0q0,∞ [29, Ch. 1, §5], by assertion (b), for an arbitrary number ε > 0 and
k = 1, 2, . . . there exists β0 = β0(ε, k) such that∥∥∥q(kT−; sml0(Nβ)

qNβ
, uml0(Nβ)

qNβ
, sml0(Nβ)

)
− q(kT−; s0q0,∞, u0, s0)

∥∥∥
C(X)

< ε (30)

for β = β0, β0 + 1, . . . . By assertion (c), for ε > 0 there exists k3 = k3(ε) such that

‖q(kT−; s0q0,∞, u0, s0)− q∞(T−;u0, s0)‖C(X) < ε, k = k3, k3 + 1, . . . . (31)

Hence, the following results are the case. First, since∥∥∥q (kT−; sml0(Nβ)
qNβ

, uml0(Nβ )
, sml0(Nβ )

)∥∥∥
C(X)

� ‖q∞(T−;u0, s0)‖C(X)

− ‖q(kT−; s0q0,∞, u0, s0)− q∞(T−;u0, s0)‖C(X)

−
∥∥∥q(kT−; sml0(Nβ )

qNβ
, uml0(Nβ )

, sml0(Nβ )

)
− q(kT−; s0q0,∞, u0, s0)

∥∥∥
C(X)

,

considering (31) and (30), for k � k3(ε) and β � β0(ε, k) we have∥∥∥q (kT−; sml0(Nβ )
qNβ

, uml0(Nβ)
, sml0(Nβ)

)∥∥∥
C(X)

� ‖q∞(T−;u0, s0)‖C(X) − 2ε. (32)

Second, by the construction of qN and the autonomous property of equation (6),

q
(
kT−; sml0(Nβ)

qNβ
, uml0(Nβ )

, sml0(Nβ )

)
= q

(
(k2(δ, k0(N), l0(N)) + k)T−; q0, uml0(N)

, sml0(N)

)
,

and the second inequality in (29) gives∥∥∥q (kT−; sml0(Nβ )
qNβ

, uml0(Nβ )
, sml0(Nβ )

)∥∥∥
C(X)

< δ, k = 1, 2, . . . . (33)

From (32) and (33), for k = k3(ε) and β = β0(ε, k3(ε)), we derive the inequality

‖q∞(T−;u0, s0)‖C(X) < δ + 2ε.

With

ε =
‖q∞(T−;u0, s0)‖C(X)

4
and δ = min

{‖q∞(T−;u0, s0)‖C(X)

4
, δ0

}
,

the first condition in (25) leads to the contradictory estimate ‖q∞(T−;u0, s0)‖C(X) < 0. Thus,
conditions (25) and the negation of assertion (26) bring to a contradiction as well.
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Synthesis of Itô Equations for a Shaping Filter

with a Given Spectrum

M. M. Khrustalev∗† and D. S. Rumyantsev∗,a

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
e-mail: an3030@mail.ru

Received August 6, 2023

Revised January 15, 2024

Accepted January 20, 2024

Abstract—The analytical method for the synthesis of a generator of a random process with a
given spectrum in the form of a linear system of Ito’s equations is proposed. The stationarity
of a random process is assumed, the spectral and corresponding transfer functions of which are
defined in the form of rational fractions. The coefficients of the system of Ito’s equations of
the generator are found from recurrent algebraic relations. The method is focused on working
with mathematical models of nature random processes, such as the Dryden’s wind model. The
transformation of the spectra of the wind gust model in three directions is presented in detail
and the corresponding stochastic equations are given.

Keywords : Ito’s stochastic differential equation, spectral density, transfer function, shaping
filter, random disturbance generator, Dryden wind turbulence model
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1. INTRODUCTION

The shaping filter allows you to generate a random signal with a given spectral density from
a white noise signal [1, Section 6.6; 2, Section 10.1; 3, Section 5.1.5]. The shaping filter and the
analyzed system form some extended system, the input of which is affected by white noise (Fig. 1).
This shows a way to move from representing a system in terms of transfer functions (shown in the
diagram) to stochastic differential equations. The results of the article will be useful to researchers
for adding random factors to a dynamic model and simulating natural phenomena (movement of
air masses, water flow, etc.).

There are many known models of wind gusts [4], but in the article only the Dryden [5] turbulence
model is considered in detail, which at the output gives a stochastic process determined by velocity
spectra. The spectral density of the signal is an even fractional-rational function of frequency and
can be represented in the form of two complex conjugate factors, from which the transfer function
of the shaping filter is found [1, Section 6.6; 3, Section 5.1.5].

Trying to directly write a high-order differential equation whose output has a given spectrum usu-
ally results in high-order white noise derivatives. The representation of these derivatives in the form
of generalized functions [6] and the generalization of the Itô equations in the form of Leontief-type
equations [6] are known, but such equations are complicated and little studied. In [3, Section 3.3.3]
the transition from a linear stochastic differential equation of higher order to a linear system of
stochastic differential equations of first order is considered, but to find the coefficients of the sys-
tem it is necessary to differentiate the coefficients of the original equation (if it is not stationary).
The proposed method allows us to describe a natural random process using the well-studied Ito

† Deceased.
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Fig. 1. Connection diagram for the shaping filter.

equations [3]. The resulting equations, for example, can be used in conjunction with the equations
of the mathematical model of the aircraft [7].

A method is proposed for obtaining relatively simple stochastic differential equations for synthe-
sizing the output signal using a known transfer function. Next, we will consider transfer functions
under the assumption that the corresponding spectra are known.

Two ways of transforming any fractional-rational transfer function, leading to the same result,
are presented below. The function is decomposed into a sum of fractions, the numerators of which
are real numbers, and the denominators of which are polynomials. In this case, all operations are
arithmetic. And the process flow diagram can be depicted as a sum of integrating links. Based on
the new notation, it is possible to construct a system of linear stochastic differential Ito equations.

There is a slightly more complex way of similar transformation of the transfer function
[8, Section 2.3]. If the transfer function W (p) is given, then for the corresponding system of linear
equations of the form

ẋ = Ax+ bu
y = cx

(1)

it is necessary to find the matrix A and the vector b. The output vector c is given. The first
Frobenius form of the state equation matrix A is selected so that its characteristic polynomial
coincides with the denominator of the transfer function. The elements of the vector b are found
from solving the system of equations

W (p) = c(Ep −A)−1b

by the method of indefinite coefficients by equating factors with equal powers of the variable p of
polynomials of numerators on the left and right [8, Example 2.7].

In the proposed approach, the output vector c is in the process of being solved and is not known
in advance. As a result, matrix inversion is not required and only the coefficients of the Ito equation
are calculated using arithmetic operations.

The transformation to obtain the equation (1) is not unique [8]. Therefore, it is not always
possible to achieve “minimal implementation” (1), i.e., obtain the minimum possible number of
variables in the Ito equation.

2. MATHEMATICAL PROBLEM STATEMENT

Let the spectral density of the disturbance under study be defined as Φ(ω) = |W (iω)|2, here

W (p) =
Pm(p)

Qn(p)
=
a0p

m + a1p
m−1 + . . . + am−1p+ am

b0pn + b1pn−1 + . . . + bn−1p+ bn
, (2)

and ai (i = 0,m), bj (j = 0, n) are constant real coefficients. The poles and zeros of the func-
tion W (p) are located in the left half-plane. W (p) is the transfer function of the linear differential
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Wф(p)
u(t) x(t)

Fig. 2. Block diagram of a shaping filter.

equation

b0x
(n) + b1x

(n−1) + . . .+ bn−1x
′ + bnx

= a0u
(m) + a1u

(m−1) + . . .+ amu.
(3)

The block diagram of the shaping filter is shown in Fig. 2. If standard white noise (the derivative
of the standard Wiener process) u(t) is supplied to the input, then the equation (3) becomes
stochastic, but in the general case contains higher derivatives of white noise.

The goal is to replace the equation with a system of linear differential equations that satisfies
two conditions: a) the system does not contain derivatives of the input signal, b) its output, linearly
dependent on the state, coincides with the output of the equation. Such a system of equations, as
shown below, can easily be converted into the Ito system of equations.

It turns out that for the transformation it is enough to represent the transfer function (2) as a
sum of rational fractions, the numerators of which are real coefficients (zero-order polynomials). In
the case when all the zeros of the denominator of a rational fraction are real, such a transformation
is known [9], but requires finding the zeros of the denominator, which in the general case is only
possible numerically. The proposed transformation does not require finding zeros and for any
proper rational fraction with both real and complex zeros of the denominator, it can be performed
analytically. The coefficients of the modified transfer function are found sequentially from a chain
of linear equations.

A method for transforming a n order linear stochastic equation (3) to an equivalent first order
linear system of equations not containing white noise derivatives is shown in [3, Section 3.3.3]. In
this case, the equation is not stationary and the coefficients ai (i = 0,m), bj (j = 0, n) depend
on time t, and to find the coefficients of an equivalent system, it is necessary to differentiate the
functions ai, bj . For a stationary system, new coefficients are found from recurrent arithmetic
relations.

3. TRANSFER FUNCTION CONVERSION

The main idea is to represent the original function W (p) as the sum of several functions Wi(p),
i = 1,m+ n, see Fig. 3. The input and output signals will not change as a result of this conversion.

The proposed representation of the transfer function (2) has the form

W (p) =
Pm(p)

Qn(p)
=

α1

pn−m
+

α2

pn−m+1
+ . . . +

αm

pn−1

+
1

Qn(p)

(
βn−1

pn−1
+
βn−2

pn−2
+ . . .+

β1
p

+ β0

)
.

(4)

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 7 2024



704 KHRUSTALEV, RUMYANTSEV

W1

W2

...

Wm + n

u(t) x(t)
+

Fig. 3. Block diagram of the sum of several shaping filters.

The number of coefficients αi (i = 1,m), βj (j = 0, n− 1) is m+ n. They can be obtained by
equating the left and right sides of the equations (2) and (4).

βn−1 + αmbn = 0,
βn−2 + αmbn−1 + αm−1bn = 0,
βn−3 + αmbn−2 + αm−1bn−1 + αm−2bn = 0,
. . .
βn−m+1 + αmbn−m+2 + . . . + α2bn = 0,
βn−m + αmbn−m+1 + . . . + α2bn−1 + α1bn = 0,
βn−m−1 + αmbn−m + . . . + α2bn−2 + α1bn−1 = 0,
. . .
β2 + αmb3 + αm−1b4 + . . . + α2bm+1 + α1bm+2 = 0,
β1 + αmb2 + αm−1b3 + . . . + α1bm+1 = 0,
β0 + αmb1 + αm−1b2 + . . . + α1bm = am,

αmb0 + αm−1b1 + . . . + α1bm−1 = am−1,
αm−1b0 + . . . + α1bm−2 = am−2,

. . .
α2b0 + α1b1 = a1,

α1b0 = a0.

Let us write a short form, which is a system of recurrent equations, with the help of which the
coefficients can be calculated sequentially:

α1 =
a0
b0
, αk =

1

b0

[
ak−1 −

k−1∑
s=1

αsbk−s

]
, k = 2,m,

β0 = am −
m∑
s=1

αsbm−s+1,

βk = −
m∑
s=1

αsbm+k−s+1, k = 1, n−m,

βk = −
n−k∑
s=1

α−n+m+k+sbn−s+1, k = n−m+ 1, n − 1.
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There is another way to converse the transfer function. Let the transfer function have the form

W (r)(p) =
a
(r)
0 pn−r + a

(r)
1 pn−r−1 + . . .+ a

(r)
n−r−1p+ a

(r)
n−r

b0pn + b1pn−1 + . . . + bn−1p+ bn
, (5)

1 � r � n. The superscript (r) indicates the function number and the degree of the numerator
polynomial. The degree of the numerator polynomial W (r+1)(p) is less than the degree of the
numerator polynomial W (r)(p), since n− (r + 1) < n− r. Let us denote B(p) = b0p

n + b1p
n−1+

. . . + bn−1p+ bn and perform a series of conversions of the function W (r)(p), consisting of succes-
sively reducing the degree of the numerator polynomial to zero.

W (r)(p) =
a
(r)
0 pn + a

(r)
1 pn−1 + . . . + a

(r)
n−rp

r

prB(p)

=
1

p rB(p)

[
a
(r)
0

b0
B(p)− a

(r)
0

b0

(
b1p

n−1 + . . . + bn−1p+ bn
)

+
(
a
(r)
1 pn−1 + a

(r)
2 pn−2 + . . .+ a

(r)
n−rp

r
)]

=
a
(r)
0

b0

1

pr
+

1

B(p)

[(
a
(r)
1 − a

(r)
0

b0
b1

)
pn−r−1 + . . .

+

(
a
(r)
n−r−1 −

a
(r)
0

b0
bn−r−1

)
p+

(
a
(r)
n−r −

a
(r)
0

b0
bn−r

)]

− a
(r)
0

b0

1

B(p)

[
bn−r+1

p
+
bn−r+2

p2
+ . . .+

bn
pr

]
.

Let’s determine the coefficients a
(r+1)
α = a

(r)
1+α − (a

(r)
0 /b0)b1+α, α = 0, n − r − 1, for the new func-

tion W (r+1). Then

W (r)(p) =
a
(r)
0

b0

1

pr
+W (r+1)(p)− a

(r)
0

b0

1

B(p)

r∑
k=1

bn−r+k

pk
, (6)

and W (r+1)(p) =W (r)(p)− a
(r)
0

b0

1

pr
+
a
(r)
0

b0

1

B(p)

r∑
k=1

bn−r+k

pk
.

The maximum number of steps is n− r. The function W (r)(p) is defined at the rth step, it is
necessary to find W (r+1)(p), W (r+2)(p), . . . . The numerator of the last function W (r+s)(p) is a
zeroth order polynomial, and then the calculation will be completed. Each next found function
W (r+k+1)(p) must be substituted into the current function W (r+k)(p).

4. CREATING A RANDOM DISTURBANCE GENERATOR

Let’s consider the transfer function (4), which is the sum of integrating links with their own gain

factors [10]. For link 1/pn−m the corresponding equation will be x1 = u/pn−m, or x
(n−m)
1 = u. The

link 1/pn−m+1 will give the equation x2 = u/pn−m+1 = u/(pn−mp) = u/pn−m × 1/p = x1 × 1/p, or
x′2 = x1. This is how differential equations for the first m outputs are successively found. In the
same way, using the denominator Qn(p), we obtain the output equation xm+1, which then needs to
be integrated another n − 1 times using the terms in brackets from (4). The last step will be the
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summation of all outputs with the corresponding coefficients α, β. Let us write down the system of
differential equations and the output equation corresponding to the transfer function (4) and (3):

x
(n−m)
1 = u, x′2 = x1, x′3 = x2, . . . x′m = xm−1,

b0x
(n)
m+1 + b1x

(n−1)
m+1 + . . .+ bn−1x

′
m+1 + bnxm+1 = u,

x′m+2 = xm+1, . . . x′m+n = xm+n−1,

x = α1x1 + α2x2 + . . .+ αmxm + β0xm+1 + β1xm+2 + . . . + βn−1xm+n.

(7)

The order of the resulting system is N � 3n− 2.

The system (3) can be easily written as a system of first-order equations (7) and, assuming that
u(t) is standard white noise, transformed into a system of Ito equations Nth order.

The transformation does not change the transfer function W (p) for the output x = α1x1+
α2x2 + . . . (see (7)). Nevertheless, the transfer functions of the outputs x1, x2, . . . have a cer-
tain number of zero poles. Thus, Wk(p) for xk, k = 1,m has the form Wk(p) = 1/pn−m+k−1. In
practice, this will lead to instability in process modeling (due to calculation errors). However, this
situation can be corrected by making the replacement p = (q −Δ)/λ (q = λp+Δ), Δ/λ > 0 in the
original transfer function W (p). Then

W ∗(q) =
P ∗
m(q)

Q∗
n(q)

=
Pm

(
q−Δ
λ

)
Qn

(
q−Δ
λ

) =
α∗
1

qn−m
+

α∗
2

qn−m+1
+ . . .

+
α∗
m

qn−1
+

1

Q∗
n(q)

(
β∗n−1

qn−1
+
β∗n−2

qn−2
+ . . .+

β∗1
q

+ β∗0

)
.

By inverse transformation q = λp+Δ we get

W (p) =
Pm(p)

Qn(p)
=

α∗
1

(λp+Δ)n−m
+

α∗
2

(λp +Δ)n−m+1
+ . . . .

The transfer functions of the output components x1, x2, . . . of such an expansion will have poles in
the left half-plane.

5. EXAMPLE

Let the transfer function be given

W (p) =
p2 + 2p+ 1

p3 + 3p2 + 2p+ 2
.

It is required to write it in the form of a sum of fractions with zero-order polynomials in the
numerators.

As a result of the transformation we get

W ∗(q) =W (q − 1) =
(q − 1)2 + 2(q − 1) + 1

(q − 1)3 + 3(q − 1)2 + 2(q − 1) + 2
=

q2

q3 − q + 2
.

Here n = 3, m = 2, a∗0 = 1, a∗1 = 0, a∗2 = 0, b∗0 = 1, b∗1 = 0, b∗2 = −1, b∗3 = 2, α∗
1 =

a∗0
b∗0

= 1,

α∗
2 = 1

b∗0
[a∗1 − α∗

1b
∗
1] = 0, β∗0 = a∗2 − [α∗

1b
∗
2 + α∗

2b
∗
1] = 1, β∗1 = −[α∗

1b
∗
3 + α∗

2b
∗
2] = −2, β∗2 = −[α∗

2b
∗
3] = 0.

W ∗(q) =
1

q
+

(
1− 2

q

)
1

q3 − q + 2
,

W (p) =
1

p+ 1
+

(
1− 2

p+ 1

)
1

p3 + 3p2 + 2p+ 2
.
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Let’s write the solution in the second way

W (1)(q) =
q2

q3 − q + 2
=

q2

B(q)
, B(q) = q3 − q + 2,

W (2)(q) =
q2

B(q)
− 1

q
+

1

B(q)
× 2

q
=
q3 −B(q) + 2

qB(q)
=

1

B(q)
.

We use (6)

W (1)(q) =
1

q
+

1

B(q)
− 1

B(q)

2

q
=

1

q
+

(
1− 2

q

)
1

B(q)
=W ∗(q).

The results are the same.

Let us write down the derivation of the Ito equations for W (p) in accordance with (7). The first
term gives the equation u = (p + 1)x1. The second equation will be u = (p3 + 3p2 + 2p+ 2)x2 =
((p + 1)3 − (p + 1) + 2)x2. Let us denote (p + 1)x2 = x4, (p + 1)x4 = x5, then u = (p+ 1)x5−
x4 + 2x2. The third equation would be u = (p + 1)(p3 + 3p2 + 2p+ 2)x3, or (p+ 1)x3 = x2.

The required system of Ito equations and the output equation have the form

dx1 + x1dt = dw, dx2 + (x2 − x4)dt = 0,

dx3 + (x3 − x2)dt = 0, dx4 + (x4 − x5)dt = 0,

dx5 + (x5 − x4 + 2x2)dt = dw,

x = x1 + x2 − 2x3.

Based on the transfer function, a linear system of Ito differential equations was obtained that does
not contain derivatives of the input signal. Of course, the choice of a new variable was made so
that it would be easy to isolate the cube of the sum in the denominator of the transfer function,
and then obtain first-order linear equations.

6. DRYDEN WIND TURBULENCE MODEL

The US Department of Defense uses the Dryden gust model in some aircraft design and simu-
lation applications. This mathematical model considers the speed components of continuous gusts
of wind as random processes [5, 11]. The MATLAB documentation provides an implementation of
the transfer function for wind gusts [12]. Twelve transfer functions are defined for gust models in
the longitudinal, horizontal and vertical directions. However, only three types of different functions
can be distinguished, differing from the model functions only by constant coefficients A, B, C, D
(see [12]):

G1(p) = A
1

1 + Cp
, G2(p) = A

1 +Bp

(1 +Cp)2
, G3(p) =

Ap

1 + Cp
× 1 +Bp

(1 +Dp)2
.

The first type of function G1(p) is a simple integrator and does not require any transformation.
The required system of Ito equations for G1(p) has the form

dx+
1

C
xdt =

A

C
dw.

Let’s look at the second one. It is required to obtain a system of Ito equations for the transfer
function G2(p). Then

G∗
2(q) = G2

(
q − 1

C

)
=
A

C

Bq + C −B

q2
=
A

C

(
B

q
+
C −B

q2

)
.

G2(p) =
A

C

(
B

1 + Cp
+

C −B

(1 + Cp)2

)
.
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The desired system of Ito equations and the output equation for G2(p) have the form

dx1 +
1

C
x1dt =

1

C
dw, dx2 +

1

C
(x2 − x1)dt = 0,

x =
A

C

(
Bx1 + (C −B)x2

)
.

If we make another change of variables q = p+ 1, we will get a rather cumbersome system of
5th order equations. We invite readers to see this for themselves.

Let’s consider the third function G3(p) and replace the variable: p = (q − 1)/D. Then

G∗
3(q) = G3

(
q − 1

D

)
= A

Bq2 + (D − 2B)q +B −D

DCq3 + (D2 −DC)q2
.

Let’s represent the last expression using (4):

G∗
3(q) = A

[
α1

q
+
α2

q2
+

1

b0q3 + b1q2

(
β2
q2

+
β1
q

+ β0

)]
,

then b0 = DC, b1 = D2 −DC, α1 = B/(DC), α2 =
[
D − 2B −B(D2 −DC)/(DC)

]
/(DC), β0 =

B −D − (D2 −DC)
[
D − 2B −B(D2 −DC)/(DC)

]
/(DC), β1 = 0, β2 = 0.

Let’s do the reverse change of variables and get the function

G3(p) = A

[
α1

1 +Dp
+

α2

(1 +Dp)2
+

β0
b0(1 +Dp)3 + b1(1 +Dp)2

]
.

Let us write down the derivation of the Ito equations for G3(p) in more detail. The first and
second terms give x1 =

u
1+Dp , x2 =

u
(1+Dp)2 = u

1+Dp × 1
1+Dp = x1

1+Dp . Let’s consider the third term:

x3 =
u

b0(1+Dp)3+b1(1+Dp)2 = u
(1+Dp)2 × 1

b0(1+Dp)+b1
= x2

b0(1+Dp)+b1
. Then the desired system of Ito

equations and the output equation for G3(p) have the form

dx1 +
1

D
x1dt =

1

D
dw, dx2 +

1

D
(x2 − x1)dt = 0,

dx3 − 1

Db0
x2dt+

b0 + b1
Db0

x3dt = 0,

x = A
[
α1x1 + α2x2 + β0x3

]
.

Dryden’s wind turbulence model is not the only one. For example, the von Karman model [13]
has other transfer functions such as

G(p) = A
1 +Bp

1 + Cp+Dp2
.

The corresponding system of Ito equations for this function will contain 6 variables. We do not
present the transformed function here because it turned out to be too cumbersome. Perhaps a not
very successful variable replacement was chosen. Therefore, the researchers themselves, depending
on the coefficients C and D of the denominator polynomial, must choose a manner for replacing
the variable.

The discussion about the choice of turbulence model continues [14]. It can be seen that the
number of variables in the Ito equation for the Dryden model is no more than three, and in the
von Karman model no less than six. Accordingly, the computational complexity of the wind gust
modeling algorithm increases.
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7. CONCLUSION

The proposed method for conversing the transfer function allows us to bring it to such a form
that the system of differential equations equivalent to the differential equation (3) does not contain
derivatives of the input signal u(t). Assuming that u(t) is white noise, the system can easily be
transformed into a system of Ito equations.

The results can be used not only for stochastic differential equations, but also for ordinary
differential equations with constant coefficients of the form (3) with scalar input and output sig-
nals [3, Section 1.3.4].

In the presented method it is impossible to influence the number of variables, but in the
method [8] it is possible to influence the number of output variables for the output signal y = cx
(see (1)) and, accordingly, the type shaping filter shown in Fig. 3. Therefore, in the approach
discussed above, the structure of the output signal becomes known only as a result of solving the
problem. And in the method described in [8], the type of the output signal is known in advance.
But the proposed solution, unlike [8], does not require matrix inversion, but uses only recursive
arithmetic operations to find the coefficients of polynomials.

The results of calculations and numerical modeling of dynamic processes for the systems con-
sidered in the article are not specifically presented here. In the opinion of the authors, a fairly
complete study with various modeling results was carried out in [14].
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Abstract—This paper considers a noncooperative game of quantity competition among firms
in an oligopoly market under general demand and cost functions. Each firm’s optimal response
to the strategies of other firms is assessed by the magnitude and sign of its conjectural varia-
tion, expressing the firm’s expectation regarding the counterparty’s supply quantity change in
response to the firm’s unit change in its supply quantity. A game of n firms with the sum of
conjectural variations (SCV) regarding all counterparties as the generalized response character-
istic is studied. The existence of a bifurcation of the players’ response is revealed; a bifurcation
is a strategy profile of the game in which both positive and negative responses are possible
with an infinite-magnitude SCV value. Methods are developed for calculating the SCV value
under different types of inverse demand functions (linear and power) and cost functions (linear,
power, and quadratic), and the impact of these characteristics of firms on the bifurcation state
is comparatively analyzed.

Keywords : oligopoly, conjectural variation, bifurcation, Stackelberg leadership
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1. INTRODUCTION

In an oligopoly game, players (firms) make assumptions about the strategies of other players
(the environment) underlying their optimal response to these strategies. In the case of quantity
competition, the assumptions of firms are formalized by conjectural variations [1]. This case is
often considered by researchers [2] due to the preferability of quantity competition: it results in a
smaller output, higher prices, and higher profits than price competition [3]. A conjectural variation
(hereinafter, meaning a quantity conjectural variation) is the firm’s expectation regarding the
counterparty’s supply quantity change in response to the firm’s unit change in its supply quantity.
In oligopoly theory, it is conventional to consider the optimal (consistent [4]) conjectural variation
calculated from the player’s necessary condition of optimality, i.e., the one corresponding to the
player’s best response. In other words, the player’s strategy choice model (utility function) being
unknown, the awareness of the conjectural variation allows predicting the player’s behavior.

In addition, when assessing the conjectural variations, a player can assume that the counterparty
is also assessing him, i.e., suppose the former’s optimal behavior. In this case, the counterparty
is called a Stackelberg leader whereas the given player a follower. However, the counterparty may
argue by analogy, treating the given player as a Stackelberg leader and calculating the conjectural
variation from the leader’s optimal response (thereby becoming a second-level leader for the given
player). This sequence of players’ reasoning is called strategic reflexion. Thus, an analysis of
conjectural variations inevitably leads to the problem of multilevel leadership [5]. Consequently,
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the vector of the conjectural variations of all players is a complex characteristic of the strategy
profile of the game with these mental profiles of the firms, as conjectural variations are functions
of the role of each player in the hierarchy of multilevel leadership.

In an oligopoly game of n > 2 players, the firm’s behavior is determined by the sum of its
conjectural variations (SCV) regarding all environment players. If the player’s SCV is negative,
then its optimal strategy is to increase the supply quantity, and vice versa. Therefore, in the
n-player game, the awareness of all components of the vector of conjectural variations of all players
is not necessary for predicting the game outcome: it suffices to know the components of the SCV
vector of all players. No doubt, the awareness of the players’ utility functions is required to
determine the SCV vector; nevertheless, given available limits for typical utility functions and the
nature of SCV changes, one receives an information base for predicting game outcome limits.

Typical utility functions are defined by a set of demand functions and cost functions [5–19]. In
the studies of oligopoly, the most common inverse demand functions are the linear [5, 6, 9–15] and
power [5, 16–19] ones. The set of functions describing the costs of oligopolists is somewhat wider:
the linear function [10, 12–14, 16, 18], the power function [6, 17], and the quadratic function [5, 7–9,
11, 15, 19]. Obviously, in the vast majority of publications, researchers consider the linear models
of demand and costs: in this case, it is easy to calculate conjectural variations from the best
response functions (reaction functions) in explicit form. The power cost function can be either
convex or concave for different degrees; a concave cost function corresponds to the positive scale
effect whereas a convex cost function to the negative scale effect. The quadratic cost function is
used only to describe the negative scale effect in the convex case: otherwise, the transition to a
decreasing dependence of costs on output may occur, which disagrees with the economic realities.

Thus, when assessing the behavior of firms in an oligopoly game, a topical problem is to analyze
the nature and limits of SCV changes due to the changes in the profile of their reflexive beliefs
under different utility functions of the players.

2. FORMULATION OF THE OLIGOPOLY GAME MODEL

Consider quantity mono-product competition in an oligopoly of n > 2 firms. Let all firms have
a common inverse demand function P (Q) decreasing in the total supply quantity Q, and let the
cost function Ci(Qi) of each firm i be nondecreasing in its supply quantity Qi.

We suppose the possibility of reflexion for each player (firm), given by a reflexion rank r. The
player’s reflexive behavior consists in putting forward some beliefs about the strategies of its envi-
ronment (the other players), which leads to the appearance of phantom players in the game [20]. In
this case, reflexion rank is a numerical characteristic of such beliefs, and the sequence of reflexion
ranks defines the following hierarchy of phantom players:

—At rank r = 1, the player is aware that the environment does not know its strategy, i.e., the
other players are followers and this player becomes a first-level Stackelberg leader.

—At rank r = 2, according to the player’s information, it is surrounded by first-level Stackelberg
leaders; hence, this player becomes a second-level Stackelberg leader.

—At an arbitrary rank r, the player knows that the environment players are (r − 1)th-level
Stackelberg leaders; therefore, this player becomes an rth-level Stackelberg leader.

Thus, the real game of firms in an oligopoly market will be treated below as an information
game of phantom players, each having different leadership levels depending on the degree of its
awareness. Such a situation is commonly called multilevel leadership (a multiple leader–follower
game) [5], and leadership levels are given by the reflexion rank r.

A multiple leader–follower game is a tuple of the form

Γ = 〈N, {Qi, i ∈ N}, {Πi, i ∈ N}, {ri, i ∈ N}〉,
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where N = {1, . . . , n} denotes the set of players, {Qi, i ∈ N} is their action vector (the strategy
profile of the game), {Πi, i ∈ N} is the vector of their utility functions, and {ri, i ∈ N} is the vector
of their ranks.

The utility function of player i has the form

Πi(Q,Qi) = P (Q)Qi − Ci(Qi).

Differentiating the utility functions of the players, we define the system of necessary conditions for
Nash equilibrium:

P (Q) + (1 + Sr
i )QiP

/
Q − C

/
iQi

= 0, i ∈ N, (1)

where Sr
i =

∑
j∈N\iQ

/
j(r)Qi

is the sum of the conjectural variations of player i at a reflexion rank r

(each component Q
r/
jQi

is the conjectural variation of player i, i.e., the expected change in the

quantity of player j in response to the unit quantity increase of player i); the value Q
r/
jQi

= ρrij is
calculated by differentiating equation (1) for player j, which confirms its optimality.

An equilibrium in this game, i.e., a solution of system (1) that maximizes the utility functions
Πi(Q,Qi) of the players, exists under the condition established by W. Novshek [21]:

P
/
Q + P

//
QQQ < 0.

This condition depends on the type of demand functions: for linear and exponential demand
functions, it is satisfied; for the power demand function, it fails, and the existence of an equilibrium

requires the nondecreasing property of the cost functions, C
/
iQi

� 0.

The solution of system (1) can be found if the SCV values Sr
i are known for all players. They

are calculated using the following recurrent formula [6] at an arbitrary reflexion rank:

Sr
i =

⎛⎜⎜⎜⎜⎝ 1∑
j∈N\i

1

uj − Sr−1
j + 1

− 1

⎞⎟⎟⎟⎟⎠
−1

. (2)

Due to (2), the player’s SCV depends on two characteristics of the environment players:

—the mental types of players, defined by their SCV values Sr−1
j at the previous reflexion rank;

—the technological types related to the type of the cost functions of the environment players,

defined by the parameters uj ; for some types of demand functions (if P
//
QQQi

	= 0, see below), this
parameter also describes the player’s mental type.

Note that formula (2) is presented for the conjectural variations independent of the actions of

players, i.e., under the condition ρ
/
ijQi

= 0; the more general case ρ
/
ijQi

	= 0 was described in [6].
It was also demonstrated therein that conjectural variations weakly depend on the supply quantities

of players, i.e., ρ
/
ijQi

≈ 0. Below, we will justify this premise for the demand and cost functions under
considerations, showing that the SCV values and types of the demand and cost functions of the
environment players have the greatest impact on the player’s SCV value.

Proposition 1. The parameter ui in (2) is given by

ui = −1 +
P

/
Qi

+ (1 + Sr−1
i )QiP

//
QQi

− C
//
iQiQi

| P /
Q |

. (2a)
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We will call ui the nonlinearity coefficient since it characterizes the impact of the nonlinear-
ity of the demand and cost functions on the type of equation (1) of player i : for ui = −2, the
corresponding equation of system (1) is linear.

Thus, according to (1), the computation of the game equilibrium directly depends on the SCV
value. In turn, this value is predetermined by the peculiarities of the functions P (Q) and Ci(Qi);
see formula (2). Therefore, we will study possible SCV values under different combinations of these
functions.

3. RESULTS

3.1. Methods for Calculating Conjectural Variations

Whenever the player’s number i does not matter, it will be omitted below, and the player’s
action will be denoted by q = Qi∀i ∈ N. Consider the inverse demand functions

P1(Q) = a− bQ, a > 0, b > 0, a� b, (3a)

P2(Q) = AQα, A > 0, α < 0, | α |< 1, (3b)

and the cost functions

C1(q) = B0 +B1q, B0 � 0, B1 > 0, (4a)

C2(q) = B0 +B1q
β, B0 � 0, B1 > 0, β ∈ (0, 2), (4b)

C3(q) = B0 +B1q +
B2

2
q2, B0 � 0, B1, B2 > 0, (4c)

where a, b,A, and α are the constant coefficients of the demand functions and B0, B1, B2, and β
are the constant coefficients of the cost functions.

Here, we adopt the notations of function types: Pk(Q), k = 1, 2, is the demand function of type k
(k = 1 corresponds to the linear function and k = 2 to the power function); Cm(q), m = 1, 2, 3, is
the cost function of type m (m = 1 corresponds to the linear function, m = 2 to the power function,
and m = 3 to the quadratic function).

Using formula (2), we derive expressions for P
/
Q, P

/
q , P

//
Qq, and C

//
qq in the case of the functions (3)

and (4):

P
/
1Q

= P
/
1q = −b, P

//
1Qq

= 0, (5a)

P
/
2Q

= P
/
2q = AαQα−1, P

//
2Qq

= Aα(α− 1)Qα−2, (5b)

C
//
1qq = 0, C

//
2qq = B1β(β − 1)qβ−2, C

//
3qq = B2. (5c)

As a result, the parameters ukm, k = 1, 2, m = 1, 2, 3, of the functions (3) and (4) are given by

u11 = −2, u21 = −2 + (1 + Sr−1)(1− α)
q

Q
, (6a)

u12 = −2− B1

b
β(β − 1)qβ−2,

u22 = −2 + (1 + Sr−1)(1− α)
q

Q
− B1

A | α | Qα−1
β(β − 1)qβ−2,

(6b)

u13 = −2− B2

b
, u23 = −2 + (1 + Sr−1)(1 − α)

q

Q
− B2

A | α | Qα−1
. (6c)

Note that the parameter B1 in (6) corresponds only to the case of the power function.
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3.2. Comparative Analysis of Conjectural Variations

With the notation sri =
∑

j∈N\i
1

uj−Sr−1
j +1

, formula (2) is simplified to

Sr
i =

(
1

sri
− 1

)−1

, (7)

where sri expresses the aggregate of the cost functions and SCV values of the environment of player i,
i.e., a generalized characteristic of the technological and mental types of the other players.

Due to formula (7), the function Sr
i (uj , S

r−1
j ) suffers from a discontinuity of the second kind

(Fig. 1) under the condition

sri =
∑

j∈N\i

1

uj − Sr−1
j + 1

= 1; (7a)

moreover, it takes infinitely large positive and negative values as sri → 1− 0 and sri → 1 + 0, respec-
tively. The function sri (uj , S

r−1
j ) has a discontinuity of the second kind for Sr−1

j = uj + 1∀j ∈ N\i,
which does not cause a discontinuity of the function Sr

i (uj , S
r−1
j ).

The discontinuity of the second kind of the function Sr
i (uj , S

r−1
j ) means that at the point of

discontinuity (u0j , S
0,r−1
j ), j ∈ N\i, player i at a reflexion rank r can simultaneously have two SCV

values (+∞ and −∞). Let us consider the sequential reflexion of the players regarding each other’s
behavior as a dynamic process on the numerical sequence of ranks r = 1, 2, . . . . Then, by analogy
with the solutions of some differential equations, we can say that there is a bifurcation of the
player’s beliefs. In this case, the bifurcation state of the beliefs of player i is a combination of the

0

0

1

–1

Si
r

Si
r (σ0) Si

r (σ00) Si
r

Qi
*

si
r

Fig. 1. The SCV value of player i depending on the aggregate of the cost functions and SCV values of the
environment (top) and the equilibrium action of player i depending on SCV value (bottom).
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technological types of the environment players, defined by their cost functions, and the mental types
of the environment players, expressed by their leadership levels (numerically defined in the SCV
form), under which player i can simultaneously expect infinitely large, both positive and negative,
reactions (SCV values) of the environment.

Function (7) (see the upper part of Fig. 1) allows estimating the following intervals of SCV
changes:

Sr
i =

⎧⎪⎨⎪⎩
∈ [−1, 0) if sri � 0

∈ (0,∞) if 0 < sri < 1

∈ (−∞,−1) if sri < −1.

(7b)

Hence, by characterizing the dependence of the aggregate sri on the environment’s nonlinearity
coefficients uj , which depend on the types of the demand and cost functions and are low-sensitive
to the supply quantities, and on the environment’s SCV value Sr−1

j , which depends on the latter’s
mental type, we can estimate the impact of these parameters on the player’s SCV value.

To qualitatively analyze in comparative terms the impact of the types of the functions Pk(Q)
and Cm(q) and study the bifurcation phenomenon, we consider the case of identical players. Assume
that for all environment players, the nonlinearity coefficients and SCV values are the same: uj = u
∀j ∈ N , Sr−1

j = σ ∀j ∈ N. In this case,

Sr
i =

n− 1

u+ 2− σ − n
, sri =

n− 1

u− σ + 1
. (8)

Formulas (7a) and (8) lead to the following result.

Proposition 2. If uj = u∀j ∈ N and Sr−1
j = σ ∀j ∈ N, then the SCV function Sr

i (u, σ) has the
following properties:

i) a discontinuity of the second kind at σ = σ0 = u+ 2− n (except for the case of the linear
demand and cost functions) and

lim
σ→(u+2−n)−0

Sr
i = ∞, lim

σ→(u+2−n)+0
Sr
i = −∞; (8a)

ii) values belonging to the intervals

Sr
i

{∈ (0,∞) if σ ∈ (−∞, σ0)

∈ (−∞, 0) if σ ∈ (σ0,∞)
(8b)

(except for the case of the linear demand and cost functions, in which Sr
i ∈ [−1, 0)).

A clear illustration of a bifurcation follows from the explicit-form solution of the system of
equilibrium equations (1), known for the case of the linear demand and cost functions. However,
in this case, infinite values of conjectural variations do not arise (they are bounded by the range
(−1, 0]). For power cost functions, an explicit-form solution does not exist [6], so we consider the
case of the linear demand function and the quadratic cost functions.

Proposition 3. In the case of the linear demand function and the quadratic cost functions, the
general solution of game (1) has the form

Q∗
i =

Di

[
n∏

j=1\i

(
γrj −1

)
+

n∑
j=1\i

n∏
μ=1\j,i

(
γrμ−1

)]
−

n∑
j=1\i

[
Dj

n∏
μ=1\i,j

(
γrμ−1

)]
n∏

j=1

(
γrj − 1

)
+

n∑
j=1

n∏
μ=1\j

(
γrμ − 1

) ; (9)
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in the particular case n = 3, the formula reduces to

Q∗
i =

Di

(
3∏

j=1\i
γrj − 1

)
−

3∑
j=1\i

3∏
μ=1\i

Djγ
r
μ +

3∑
j=1\i

Dj

γr1γ
r
2γ

r
3 − γr1 − γr2 − γr3 + 2

; (9a)

in the particular case n = 3 with the identical types of the players, D = Di ∀i ∈ N, the formula
becomes

Q∗
i = D

3∏
j=1\i

γrj −
3∑

j=1\i
γrj + 1

γr1γ
r
2γ

r
3 − γr1 − γr2 − γr3 + 2

, (9b)

where

Di =
a−B1i

b
, γi = 2 + Sr

i +
B2i

b
,

and the symbol “*” indicates the game equilibrium.

Under a belief bifurcation, two cases are simultaneously possible. They will be described based
on (9b) for the identical (same-type) environment players, see the corresponding condition in Propo-
sition 2. Then, considering (6c), we have γj = γ = −uj + Sr−1

j = −u+ σ, j = 2, 3, and γ < 0 for

σ = σ0 since B2 > 0.

The first case Sr
i → ∞ means that for the environment players, the optimal strategy is infinite

growth of the supply quantity, limited by the parameters of the demand function P (Q) and the
technological capabilities of the firms. (Recall that conjectural variations are considered as strate-
gies.) In this case, if the environment’s SCV values Sr

j , j = N\i, are finite numbers, then by (9b)

the player’s optimal response vanishes on the right, i.e., Qr∗
i → 0 + 0. In other words, the player

seeks to reduce the supply quantity to zero.

The second case Sr
i → −∞ implies an infinite reduction in the supply quantity by the environ-

ment players, although they can actually reduce the supply only to zero. Due to (9b), the player’s
optimal response vanishes on the left, i.e., Qr∗

i → 0− 0. This can be interpreted as the player’s
largest acceptable response to the negative value of the total supply quantity predicted by this
player based on Sr

i → −∞.

Interestingly, a belief bifurcation should lead to an action bifurcation at the subsequent reflexion
ranks. This fact can also be demonstrated from the optimal SCV formula (8) and the equilibrium
action (9b).

If Sr
i → ∞, at the next reflexion rank (r + 1), we consider the situation from the environment’s

viewpoint (i.e., as σ → ∞); from (8) it follows that Sr+1
j → 0. Returning to player i at rank (r + 2),

for which σ → 0, from (8) we also obtain limσ→0 s
r+2
i = n−1

u−σ+1 < 0 since u < −2 by (6c). Con-

sequently, Sr+2
i → −1 as σ → σ00 = u+ 1, and when preserving the environment’s responses by

the type Sr+1
j → 0, formula (9b) implies Q∗

1 → ∞ (γ = 1 and Q∗
1 = D γ2−2γ+1

γ1(γ2−1)−2(γ−1) ). Thus, the

SCV-defined mental response bifurcation leads to an equilibrium bifurcation in the game. These
considerations are illustrated in Fig. 1 (the lower part).

The case of identical players is the basis for comparatively analyzing the impact of the types of
demand and cost functions on the SCV value. According to (8a), the bifurcation point σ0 shifts
upwards when increasing the nonlinearity coefficients u of the environment players and behaves
oppositely when decreasing u decreases. In other words, a bifurcation state occurs under higher
values of the environment’s SCV value. Due to conditions (8b), if the nonlinearity coefficients
are larger, the environment’s SCV value should be larger so that Sr

i belongs to the corresponding
ranges.
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Let us characterize the dependence of the SCV value of player i on the nonlinearity coefficient ul
of some environment player l as well as on the environment’s SCV value and q,Q.

Proposition 4. The SCV value Sr
i of player i at a reflexion rank r has the following properties:

i) goes down when increasing the nonlinearity coefficient ul of environment player l and up when
increasing Sr−1 :

S
r/
iul < 0, S

r/
iSr−1 > 0; (10a)

ii) in the case of the linear demand function, is independent of q under the linear and quadratic
cost functions of the environment, goes down (up) when increasing q for β > 1 (for β < 1, respec-
tively) under the power cost functions of the environment, and is independent of Q under any cost
functions of the environment:

S
r/
i q

∣∣∣∣
k=1
m=1,3

= S
r/
i Q

∣∣∣∣
k=1
m=1,2,3

= 0, S
r/
i q

∣∣∣∣
k=1
m=2

{
< 0 for β > 1,

> 0 for β < 1;
(10b)

iii) in the case of the power demand function, goes down (up) when increasing q if Sr−1 > −1
(if Sr−1 < −1, respectively) under the linear and quadratic cost functions of the environment, down
if Sr−1 > −1 under the convex power cost functions (β > 1) and under the concave power cost
functions (β < 1) provided that ϕ < 1, and up (down) if Sr−1 < −1 under the concave power cost
functions (under the convex power cost functions provided that ϕ < −1, respectively);

goes up (down) when increasing Q if Sr−1 > −1 (if Sr−1 < −1, respectively) under the linear cost
functions and the quadratic cost functions (in the latter case, goes down provided that ζ < 1), up
(down) if Sr−1 > −1 under the convex power cost functions (β > 1) (under the concave power cost
functions (β < 1) provided that ϕ < 1, respectively), and down (up) if Sr−1 < −1 under the concave
power cost functions (under the convex power cost functions provided that ψ > −1, respectively):

S
r/
i q

∣∣∣∣
k=2
m=1,3

{
< 0 for Sr−1 > −1,
> 0 for Sr−1 < −1,

S
r/
i Q

∣∣∣∣
k=2
m=1

{
> 0 for Sr−1 > −1,
< 0 for Sr−1 < −1,

S
r/
i q

∣∣∣∣
k=2
m=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0 if ϕ < 1 for t = 1,
< 0 for t = 2,
> 0 for t = 3,
< 0 if ϕ < −1 for t = 4,

S
r/
i Q

∣∣∣∣
k=2
m=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0 if ψ > 1 for t = 1,
> 0 for t = 2,
< 0 for t = 3,
< 0 if ψ > −1 for t = 4,

S
r/
i Q

∣∣∣∣
k=2
m=3

{
> 0 for Sr−1 > −1,
< 0 if ζ < 1 for Sr−1 < −1;

(10c)

iv) weakly depends on the supply quantities of the players compared to the impact of the envi-
ronment’s SCV value:

S
r/
i q � S

r/
i Sr−1 , (10d)
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where

ϕ =
B1β(1 − β)(2− β)qβ−3

A|α||1 + Sr−1|(1− α)Qα−2
, ψ = ϕ

1− α

2− β
, ζ =

B2Q
2−α

A|α||1 + Sr−1|q ,

and the additional notations are

t = 1 : Sr−1 > −1 ∧ β < 1, t = 2 : Sr−1 > −1 ∧ β > 1,

t = 3 : Sr−1 < −1 ∧ β < 1, t = 4 : Sr−1 < −1 ∧ β > 1.

Now we compare the bifurcation points under different demand and cost functions.

Proposition 5. Under different types of the demand and cost functions of the environment, the
bifurcation point σ0 satisfies the following relations:

σ023 > σ021, (11a)

σ022 > σ021 for β > 1, (11b)

σ021 > σ012 for B1 > B̄1, (11c)

σ021 > σ013 for B2 < B̄2, (11d)

σ012 > σ022 for B1 <
¯̄B1, if β > 1 or for B1 >

¯̄B1 if β < 1, (11e)

σ013 < σ023 for B2 <
¯̄B2, (11f)

σ012 > σ013 ∧ σ022 > σ023 for β > 1 and
B1

B2
>

1

λ
, (11g)

where

B̄1 = b
δ

λ
, B̄2 = bδ, ¯̄B1 =

δ

λ
(χ− b), ¯̄B2 = δ

χb

χ− b
,

δ = (1 + Sr−1)(1− α)
q

Q
, χ = A|α|Qα−1 > 0, λ = β(β − 1)qβ−2.

The corresponding relations for the bifurcation point under the other types of the demand and
cost functions of the environment are presented in the Appendix.

4. FINDINGS

According to Proposition 2, a belief bifurcation occurs for a player when the environment’s SCV
value increases from σ = u+ 2− n− 0 to σ = u+ 2− n+ 0; furthermore, a greater magnitude
of the SCV value is required to destabilize the equilibrium in the case of more players since the
bifurcation point decreases with increasing n.

Proposition 4 reveals the following major factors affecting the player’s SCV value. First, there
is the factor of the market-technological conditions of the game, determined by the nonlinearity
coefficient: the greater the nonlinearity coefficient of the environment players is, the smaller the
SCV value will be (i.e., the greater its magnitude will be). As a rule, the SCV value is negative,
and the growing magnitude of the SCV value indicates enhancing the player’s response. Therefore,
the combinations of the demand and cost functions resulting in higher values of the nonlinearity
coefficient contribute to enhancing the player’s response. In particular, these include games with
quadratic cost functions or power cost functions with the positive scale effect (β < 1), which lead
to greater values of the nonlinearity coefficient compared to the linear cost model regardless of the
demand model; for details, see the Appendix.

Second, symmetric response is observed for the players, i.e., the greater the environment’s SCV
value is, the greater the player’s SCV value will be. This player response consonance, qualitatively
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0

Si
r

σ0 σ

Fig. 2. The player’s SCV value depending on the environment’s SCV value.

illustrated in Fig. 2, is expressed as a two-step process. If the environment has negative SCV
values, then increasing them (decreasing their magnitudes) is accompanied by a growth in the
positive SCV value of the player (Sr

i → ∞). In economic terms, the player expects expansion of
the environment and, as a result, will reduce the supply quantity to zero according to formula (9b).
Then a bifurcation point occurs, and the process changes in the opposite direction: applying
formula (8) to the environment yields Sr+1

j = n−1
u+2−Sr

i −n and, consequently, Sr+1
j → 0. In other

words, the environment expects the player’s zero reaction. But in response to this situation (Fig. 2),
the player’s SCV value again increases, i.e., Sr+2

j → −1,motivating the player to increase the supply
quantity.

Third, the greatest impact on the player’s SCV value is exerted by the environment’s SPV values
and types of the demand and cost functions. Despite that the player’s SCV value depends on its
supply quantity and the total supply quantity of all players through the nonlinearity coefficients
of the environment (for the nonlinear functions), this impact is negligibly small compared to the
impact of the mental types of the environment conditioned by its leadership levels.

Proposition 5 identifies the following properties of a bifurcation.

The case of the power demand function leads to a greater value of the bifurcation point under the
quadratic cost function (k = 2,m = 3) compared to the linear cost function (k = 2,m = 1) since
the quadratic function models the negative scale effect. Similarly, in the case of the power demand
function, the bifurcation point under the power cost function (k = 2,m = 2) with the negative
scale effect (β > 1) exceeds the corresponding point under the linear cost function (k = 2,m = 1);
the converse situation occurs given the positive scale effect.

Compared to the linear demand function and different cost functions (m = 2, 3), the case of
the power demand function and the linear cost function (k = 2,m = 1) leads to an increase in the
bifurcation point under certain values of the coefficients B1 and B2 :

i) if B̄1 < 0 (i.e., given the positive scale effect for Sr−1 < −1 and the negative scale effect for
Sr−1 > −1) since

B̄1 =
b(1 + Sr−1)(1− α)

β(β − 1)Qqβ−3

{
> 0 if (β > 1 ∧ Sr−1 > −1) ∨ (β < 1 ∧ Sr−1 < −1)

< 0 if (β < 1 ∧ Sr−1 < −1) ∨ (β > 1 ∧ Sr−1 > −1);

and the scale effect as the technological type of players is opposite to the impact of the environment’s
SCV value as the mental type of players;

ii) if B̄1 > 0 and B1 > B̄1, i.e., for a high growth rate of the power function;

iii) if B̄2 > 0, i.e., for Sr−1 > −1 since B̄2 > 0 = b(1 + Sr−1)(1− α) q
Q .
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Compared to the quadratic cost functions (m = 3) with any demand functions (k = 1, 2), the
case of the power cost functions (m = 2) gives the following relations for the bifurcation point:

i) The bifurcation point under the power cost functions is greater if the scale effect is negative
(β > 1), for B2 � B1, since

B1
B2

> 1
λ implies B1β(β − 1)qβ−2 > B2, and β(β − 1)qβ−2 � 1.

ii) The bifurcation point under the power cost functions is smaller if the scale effect is positive
(β < 1) because, in this case, B1β(β − 1)qβ−2 < 0.

The case of the quadratic cost functions (m = 3) with the linear (k = 1) and power (k = 2)
demand functions demonstrates two possibilities in which enhancing the environment’s response
compensates for the nonlinearity impact of the demand function:

i) The bifurcation point under the power cost functions is greater if Sr−1 > −1 and B2 is

sufficiently small (B2 <
¯̄B2) since

¯̄B2 =
b(1+Sr−1)(1−α)A|α|qQα−2

A|α|Qα−1−b
> 0 if A� b.

ii) The bifurcation point under the power cost functions is smaller if Sr−1 > −1( ¯̄B2 < 0).

5. CONCLUSIONS

The market-technological conditions of an oligopoly game are described by a combination of the
market demand function and the players’ cost functions, which together determine their utility func-
tions. Based on the analysis of the variety of such combinations arising in different applied problems
of oligopoly modeling, this study has demonstrated the importance of the market-technological con-
ditions of an oligopoly game for the stability of the game equilibrium. As has been established, the
reason of destabilizing equilibrium, or a bifurcation of the players’ actions, is a bifurcation of their
beliefs: under a definite constellation of the beliefs of environment players, the player can evaluate
their optimal reaction as positive and negative simultaneously. In turn, the specified constellation
of players’ beliefs is predetermined by their Stackelberg leadership levels and expressed by some
SCV value of the environment, which can be called a bifurcation point.

The bifurcation point depends on the number of players and the nonlinearity coefficient of their
utility functions, and the nonlinearity coefficient is determined by the types of the demand and
cost functions. If the bifurcation point is greater for a particular combination of the demand and
cost functions of the players (i.e., the SCV value of the environment has a smaller magnitude), the
game situation will be more sensitive to changes in the mental types of the players. In other words,
the game equilibrium can be easier destabilized in dynamics.

It is characteristic that the equilibrium cannot be destabilized under the linear demand and cost
functions. Therefore, gradual changes of the equilibrium actions will be observed in real oligopoly
games with the linear dependencies of the market-technological parameters, a phenomenon often
encountered in practice.

APPENDIX

Proof of Proposition 1. The parameter ui in [6] is the component of the second-order condition

for the optimum of the player’s utility function2, i.e., Π
//
iQiQi

= ui − Sr−1
i < 0. Based on (1), we

write this condition as P
/
Qi

+ (1 + Sr−1
i )P

/
Q + (1 + Sr−1

i )QiP
//
QQi

− C
//
iQiQi

< 0; in view of P
/
Q < 0,

this inequality can be divided by |P /
Q| :

P
/
Qi

|P /
Q
|
− 1−Sr−1

i +
(1+Sr−1

i )QiP
//
QQi

|P /
Q
|

−
C

//
iQiQi

|P /
Q
|
< 0, which finally

yields (2a).

2 In [6], this parameter has the form ui = −2−
C

//
iQiQi

b
since it was derived under the linear demand function, for

which P
/
Q = P

/
Qi

= −b.
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Proof of Proposition 3. Given (3a) and (4c), equations (1) take the form

a− bQ− b(1 + Sr
i )Qi −B2iQi −B1i = 0,

or
γiQi +

∑
j=N\i

Qjq−i = Di, i ∈ N ;

solving this system by Cramer’s rule gives (9).

Proof of Proposition 4. By denoting zr−1
j = 1

uj−Sr−1
j +1

and differentiating the expression (7), we

obtain

S
r/
i ul

=

(
1

Sr
i

− 1

)
(sri )

−2
(
zr−1
j

)/
ul

= − (1− sri )
−2

(
ul − Sr−1

l + 1
)−2

< 0, (A.1)

S
r/
i q = S

r/
i ul

u
/
l q, S

r/
i Q = S

r/
i ul

u
/
l Q, S

r/
i Sr−1 > 0, S

r/
i ul

< 0. (A.2)

To simplify the analysis of formulas (6), let us introduce the notations

δ = (1 + Sr−1)(1 − α)
q

Q

{
> 0 for Sr−1 > −1

< 0 for Sr−1 < −1,
χ = A|α|Qα−1 > 0, (A.3)

λ = β(β − 1)qβ−2

{
< 0 for β < 1

> 0 for β > 1.

In addition, with the compact notations x, y, z,X, Y, and Z for ukm, k = 1, 2,m = 1, 2, 3, formu-
las (6) reduce to

x = u11 = −2, X = u21 = −2 + δ, (A.4a)

y = u12 = −2− B1

b
λ, Y = u22 = −2 + δ − B1

χ
λ, (A.4b)

z = u13 = −2− B2

b
, Z = u23 = −2 + δ − B2

χ
. (A.4c)

Analysis of (A.3) and (A.4) shows the existence of four possible cases depending on the values
of the parameters β and Sr−1, further indicated by the symbol t: 1) t = 1 : Sr−1 > −1 ∧ β < 1; in
this case, δ > 0 ∧ λ < 0; 2) t = 2 : Sr−1 > −1 ∧ β > 1; in this case, δ > 0 ∧ λ > 0; 3) t = 3 : Sr−1 <
−1 ∧ β < 1; in this case, δ < 0 ∧ λ < 0; 4) t = 4 : Sr−1 < −1 ∧ β > 1; in this case, δ < 0 ∧ λ > 0.

Differentiating (A.4) yields

x/q = z/q = 0, X/
q = Z/

q =
δ

q
,

y/q = −B1λ

bq
(β − 2), Y /

q =
δ

q
− B1λ

χq
(β − 2),

(A.5)

x
/
Q = y

/
Q = z

/
Q = 0, X

/
Q = − δ

Q
,

Y /
q = − δ

Q
− B1λ

χq
(β − 2), Z

/
Q = − δ

Q
− B2

χQ
(1− α).

(A.6)
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Due to (A.2) and (A.3), from these formulas we obtain the following results:

1) under the linear demand function (k = 1),

S
r/
i q

∣∣∣∣
k=1
m=1,3

= S
r/
i Q

∣∣∣∣
k=1
m=1,3

= 0, S
r/
i q

∣∣∣∣
k=1
m=2

{
< 0 for β > 1
> 0 for β < 1,

2) under the power demand function (k = 2), Y
/
q > 0, i.e., due to (A.1), S

r/
i q

∣∣∣∣
k=2
m=2

< 0 if

δ + B1λ
χ (2− β) > 0; this inequality leads to the four possible cases: for t = 1, the inequality

1 > −B1λ
χδ (2− β) is valid, and the substitution of (A.3) gives 1 > ϕ = B1β(1−β)(2−β)qβ−3

A|α||1+Sr−1|(1−α)Qα−2 ; for

t = 2, the inequality is the same and ϕ < 0, i.e., Y
/
q > 0 without additional conditions; for t = 3,

we have δ + B1λ
χ (2− β) < 0, and consequently, Y

/
q < 0; for t = 4, Y

/
q > 0 if ϕ < −1; the derivatives

Y
/
Q > 0 and Z

/
Q > 0 are considered by analogy.

Let us compare S
r/
i Sr−1 and S

r/
i q by magnitude, observing that

S
r/
i Sr−1 = (1− sri )

−2(ul − Sr−1
l + 1)−2, S

r/
i q = (1− sri )

−2(ul − Sr−1
l + 1)−2u

/
l q.

From (A.5) it follows that

u
/
11q = u

/
13q = 0, u

/
21q = u

/
23q = (1 + Sr−1)(1 − α)

1

Q
,

u
/
12q =

B1

b
(β − 2)β(β − 1)qβ−3,

u
/
22q = (1 + Sr−1)(1− α)

1

Q
− B1

A|α|Qα−1
(β − 2)β(β − 1)qβ−3.

Obviously, limq→∞ u
/
l q → 0, and therefore, S

r/
i q � S

r/
i Sr−1 .

Proof of Proposition 5. For the linear and quadratic cost functions with any parameter values,
we have the relations

x > z, X > Z.

In the other cases, the nonlinearity coefficients satisfy the following relations: x < X for Sr−1 > −1;

x < y for β < 1; x < Y for B1 <
¯̄̄
B1; x < Z for B2 <

¯̄̄
B2; X < Y for β > 1; X < y for B1 > B̄1;

X < z for B2 < B̄2; y < Y for B1 <
¯̄B1 if β > 1, or for B1 >

¯̄B1 if β < 1; z < Z for B2 <
¯̄B2; y < z

for β > 1 and B1
B2

> 1
λ ; Y < Z for β > 1 and B1

B2
> 1

λ ; Y < Z for β > 1 and B1
B2

> 1
λ , where

¯̄̄
B1 = δχλ ,

B̄1 = b δλ ,
¯̄̄
B2 = δχ, B̄2 = bδ, ¯̄B1 =

δ
λ(χ− b), and ¯̄B2 = δ χb

χ−b . Due to (10a), greater values of ukm
lead to smaller values of Sr

ikm. Therefore, these relations yield the desired inequalities for σ0km.
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Abstract—This paper explores the problem of influencing the environment by a group of au-
tonomous robots through the creation and use of road infrastructure. The model object is ant
roads (trails). We identify the main aspects of the behavior of different ant species in the process
of collective foraging, and actions that together lead to the appearance of a phenomenon that
the observer perceives as an ant road. We develop and describe an animat behavior model in
the process of arranging a route. We define a list of mechanisms, a set of sensory capabilities,
and effectors that are necessary for the robot to implement options for arranging the route.
The results of simulation modeling for solving the foraging problem with route clearing are
consistent with theoretical models. The simulation results confirm our assumption that the
route arrangement can be carried out by individual efforts of animats (robots) and without the
need to organize joint actions.

Keywords : social behavior models, collective robotics, autonomous mobile robots, bio-inspired
models, foraging task
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1. INTRODUCTION

Usually, the task of moving autonomous agents (robots) is solved by methods of constructing
an optimal or suboptimal route. If the robot has an environmental map and the starting and
ending points of the route are determined, then various optimization methods are used to solve the
problem [1]. If there is no map, the robot either pre-builds this map (SLAM methods, Simultaneous
Localization and Mapping), or the map is constructed with the target point search [2]. Some of
the methods used take into account changes in the environment, but practically nowhere is the
problem that a robot can change this environment itself considered. For example, if there is an
obstacle that prevents the robot from moving in the right direction, it can bypass the obstacle or
remove it if it is movable and the robot has manipulators to move it. Here the problem arises of
finding a balance between the costs of bypassing the obstacle and clearing the road.

There are two aspects to this work. On the one hand, the behavior of an agent moving along
the route will be considered from the point of view of the bio-inspired methods application. On the
other hand, this problem is used to raise the question of the technical inexpediency of modeling
the external, phenomenological side of animal behavior instead of identifying and implementing the
basic mechanisms of their behavior.

The use of social behavior models (SBM) is one of the approaches to solving complex tasks of
group robots control in difficult non-deterministic environments. SBM consider the socio-inspired
organization of robot interaction as one of the adaptive mechanisms that allows solving group
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tasks in complex dynamic environments where the use of centralized control methods is difficult or
impossible [3, 4]. Here the term “society” is considered as an exclusively biological concept.

Ants are a prime example of social animals. They form so-called eusocial communities — the
most complex form of social organization. This community is characterized by such signs as the
presence of a territory assigned to the group, a permanent composition of the group, cohesion (the
desire of group members to stick together), individuals specialization, etc. [5, p. 109].

The use of SBM to solve group robotics tasks is as follows: formalization of various behavioral
patterns of social animals; development of mechanisms and algorithms that implement these models;
creation of software and technical solutions based on them, allowing to perform applied tasks of
group robots control. Previous research in the field of SBM has focused on the interaction of agents
with the environment and with each other. Now the issue of agents influencing the environment is
becoming relevant.

SBM belong to bio-inspired approaches, therefore, the issues of methodology for creating bio-
inspired models are important.

2. METHODOLOGICAL ASPECTS

There are two extremes in the field of bio-inspired models related to the modeling of social
behavior of animals. The first is to create artificial models “inspired by nature.” These are Ant
Colony Optimization algorithms [6], Grey Wolf Optimizer [7], Butterfly Optimization Algorithm [8]
and similar stochastic algorithms [9], optimizing the search in the solution space. For example, the
Ant Colony Optimization algorithm is based on the concept of a pheromone trace [6]. Some ant’s
species leave an odorous trail: a pheromone that evaporates over time. Foraging ants move in
the direction of increasing the intensity of this odor when searching for resources. The pheromone
analogue serves as the basis for gradient search in a solution space. Another example is the Gray
Wolf Optimizer algorithm (GWO). The GWO mimics the hierarchy of individuals and hunting
mechanism of grey wolves in nature [7]. This algorithm contains many biological terms, but in
fact “individuals” are solutions in a space that is described by some non–monotonic function.
At each step, the algorithm evaluates three best solutions, then the “individuals” are shifted in
space according to certain rules, the solutions are evaluated again under the assumption that the
best solution is located in the geometric center of the “dominant” individuals. Thus, this algorithm
is a completely artificial mechanism, for which only the general principle of dividing individuals by
weight in decision-making is taken from nature. Such methods solve optimization problems well,
but have little to do with the actual behavior of living organisms.

The other extreme is an attempt to simulate natural mechanisms in the form in which they are
observed in nature (a phenomenological approach). The authors take certain natural phenomena,
more precisely, a description of human observations of these phenomena, and model their external
effects. This approach leads to the emergence of numerous realizations of these phenomena. For
example, in [10, 11], the authors describe an implementation of ant foraging, which is a complex
behavior and involves the search and transportation of food. Other authors even propose “gen-
eralized approaches” to such modeling [12]. But all these solutions are particular ways of solving
specific problems.

One of the most striking examples is aggression or agonistic behavior. Quite a long time ago,
biologists proposed to consider aggression as an external manifestation of certain social behavior
types, such as parental, nutritional, etc. [13]. But so far, aggression is explicitly or implicitly
declared a basic mechanism or a separate behavior type (see [14, 15]). However, this phenomenon
can be realized with the help of other basic elements [16].

In contrast to the above approaches, the SBM paradigm assumes that any complex social be-
havior or phenomenon consists of a small number of basic mechanisms. This corresponds to the
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approach of M.L. Tsetlin school in the field of collective behavior [17]. To model behavior, it is
necessary to understand what basic elements it consists of and how the observed effects arise, not
to introduce unnecessary entities, but to use a combination of basic mechanisms to implement any
behavior. This has both a technical and a pragmatic rationale.

As an example, let’s give the phenomenon of leadership. Leadership is just some observable
phenomenon. The individual does not have a special “leader” block, and insects do not have
specific tasks related to dominance. It’s just that the behavior of an individual depends on the
presence or absence of other individuals nearby. If there is someone stronger (larger, well-fed, etc.)
nearby, then the individual begins to behave like a subordinate — it follows the leader. Following
a leader is understood in a broad sense: both movement and imitation of the leader’s actions in the
end. This is one of the basic models of social behavior [5, 18]. If there is no one more successful or
stronger nearby, then the individual itself becomes someone whom others perceive as a leader. The
individual itself does not perform any “leadership functions”, but continues to do its own actions —
construction, foraging, etc. And we observe the effect of self-organization: individuals next to the
“leader” begin to perform similar work.

Another good example is the phenomenon of ant roads. This is a well-established term often
used in literature [19–21]. In this paper, we will try to show that the term “ant trails” appeared as
a result of human interpretation of the observed actions of individual ants and their groups, which
are usually performed during foraging.

Trail construction is considered one of the most interesting examples of ants working together,
which has an impact on the habitat. There are many descriptions of how roads arise, how they are
maintained in working order for a long time, etc. Therefore, the desire to model this mechanism is
justified, in particular, in order to efficiently use resources or minimize energy consumption during
movement. However, an attempt at formalization leads to a rethinking of the road phenomenon in
determining the mechanisms underlying it.

The first question is: what are we really observing? The answer to this question determines
which models and mechanisms need to be implemented. Strictly speaking, a trail is not only an
element of infrastructure. A trail or road is a concept included in the agent’s knowledge base about
his environment, part of the so-called world model. From the point of view of semiotics as the
science of sign systems, which determines the applied aspect of the knowledge representation form,
this concept should include the image (perception of the sign), ways of using it (meaning of the
sign) and influence goal setting (personal meaning of the sign) [22]. Formally, the sign S describes
the entities or concepts of the agent’s world. It can be represented as follows: S =< n, p, a,m >,
where n is the sign name, p is the perception (description or set of characteristics), m is the sign
meaning (procedures related to the concept), a is the personal meaning (the component responsible
for goal setting).

On the other hand, there is the concept of a route. This is a fundamentally different entity.
This is an observable external; it does not have to be part of the agent’s world model. As will be
seen later, the “road” activity of social insects can be reduced to the arrangement of routes. We
will understand the route arrangement as a set of actions performed on the area through which the
route runs, and aimed at changing its physical characteristics in order to reduce the energy costs
of passing the route.

3. TRAILS AND ROUTES

The road aspect is very interesting for group robotics (GR). GR solves practical tasks such
as monitoring, reconnaissance, patrolling, etc.; therefore, moving along certain routes plays an
essential role. Important mechanisms are not only cooperation and coordination of actions, but
also the creation of road infrastructure by robots themselves during self-organization. Researchers
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do not pay enough attention to the latter issue, although the benefits of clearing a route to increase
movement speed, for example, are obvious.

Biologists consider roads to be one of the main structure elements of the protected area of many
ant species [20], and the roads construction is a vivid example of collective behavior [23]. But an
attempt to find a definition of the ant road did not yield results. Biologists often use terms without
giving any definitions at all. For example, one of the prominent Russian researchers A.A. Zakharov
gives a classification of ant roads, but does not define the road [19]. Biologists from other countries
use similar terms: trails, trail construction [24], infrastructure construction [23]. But they also do
not give definitions, at best they give a brief description, for example: “physical trails, i.e. pathways
that are cleared of obstacles” [24]. And it gives the impression of “well-established terminology”
from the category of “everyone knows what ant roads (trails) are.”

Let’s try to approach this issue from a constructive point of view. We will understand by a
road a strip of land equipped or adapted and used for movement, or the surface of an artificial
structure, i.e. something that is the result of purposeful activity. This is similar to the definition
that can be found in official documents.

Such definitions are not constructive for SBM. This is an exclusively external phenomenological
description. To implement behavioral models, it is necessary that the road become the essence of
the agent’s world model. It should be a kind of sign that has at least two components: a number
of signs recognized by the agent (perception) and many related behavioral procedures (meaning).
But besides the term “road” there is the concept of a path or route. A route is a way from one
point of interest to another. The route is recorded or evaluated by an external observer, i.e. he
does not have to be represented in the agent’s world model.

In this work, it is assumed that in the ant world there is no road as a specially created structure,
but there is a route, for example, from the nest to the foraging area. There are many confirmations
that the concept of “ant road” is a human interpretation of the movement of ants along a certain
route. For example, in [21, p. 38] it is said about determining “the direction of forage roads or
forager flows in cases where there are no permanent roads.” Or in [20] when describing roads deep
into the soil: “In the rest of the territory, ants used ordinary roads which represent a stream of
foragers while actively using trunks and branches of fallen trees to move.”

Let’s further consider the two main road phenomena described in insect biology, replacing the
term road (trail) with the term route.

3.1. Route Formation

Let’s describe the process of forming the ant’s route based on data from [21, p. 10]. First, the
scout ants explore the area in search of food resources (for example, aphid habitats). If scouts
discover new food source, they return to the nest, mobilizes its nestmates and take them to this
place. If it is a renewable resource, foragers begin to visit this place regularly. The route usually
does not run in a straight line, but where it is more convenient to walk: partially along fallen
branches and tree trunks. But if the route passes over the ground then there are irregularities,
small debris, vegetation that interfere with walking. Then the ants begin to arrange the route to
make it more “convenient,” reducing energy costs. One removes debris, the other pushes aside
soil particles, the third destroys small vegetation. The surface is leveled, and the route sometimes
becomes more direct and shorter. As a result of the individual, over time, the same “cleared trail”
is formed [24], which the observer sees. People perceive this usually narrow cleared strip along
which ants move as a road or trail (Fig. 1). In places, it passes through fallen branches or tree
trunks (Fig. 1a) [20–21, 23], then it can only be detected by the ants flow. But on the ground,
this “trail” is clearly visible even in the absence of ants on it (Fig. 1b), and the observer may have

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 7 2024



“PITFALLS” OF BIO-INSPIRED MODELS 729

(a) (b)

Fig. 1. Examples of “ant roads”: (a) a stream of leaf-cutting ants passing along the trunk of a tree;
(b) an anthill of a red forest ant with two “roads.”

the impression that he sees a certain construction that appeared as a result of coordinated actions
(construction).

It is convenient to call this “construction” a road by analogy with human roads. But for a person,
a road is a construction with a certain set of signs that determine human behavior in relation to
it. Ants do not have such unambiguous recognition. The experience indirectly confirming this is
described by A.A. Zakharov [21, p. 11]. On one of the roads, the researchers seized all foragers and
observer ants from the side of the nest adjacent to the road. Thus, there are no ants left in the
nest that know this road. The ant family regained possession of the lost part of the territory a few
days later, but the original road network and many aphid colonies in the experimental sector were
lost. Consequently, other ants who do not know the area could not recognize the roads that exist
on it and reuse them.

3.2. Clearing the Route

On the one hand, the ant’s activity in “road maintenance” is energetically beneficial. For
example, loaded leafcutter ants travel 4–10 times faster on cleared trails than on uncleaned ones [25],
and on average a colony of such ants spends only a few days per season clearing trails [26]. On
the other hand, there are studies [23] with the same leafcutter ants, confirming the hypothesis that
there are no feedback mechanisms between individuals, nor recruitment mechanisms specifically for
clearing the trail. The mathematical model [23] shows that the results of trail clearing experiments
can be explained by a fixed probability that the forager will eliminate the interfering obstacle, and
this does not require the mobilization of other ants.

So, using the concept of a route, we can explain all the observed phenomena of the appearance,
use and support of the “road ants infrastructure,” more precisely, the rational use of the territory.

This statement may seem unnecessarily categorical. We will not delve into terminology issues,
we will talk about tunnels [27], roads deep into the soil [20], etc. Of course, environmental change
affects the nature of the agent’s behavior: he will preferably move along a convenient, well-trodden
area. In this sense, the tunnel is the ultimate case of such a “preference”, because in the tunnel the
ant does not have the opportunity to choose another path. Let us repeat that if we consider the
road not as the essence of the world model of an external observer, but as the essence (sign) of the
agent’s world model, then behavioral procedures (the sign meaning), its image (perception), and
meaning (explicit meaning from the point of view of the objective function) should be associated
with such an entity-sign. But exactly all this is not observed in the agent’s behavior.
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4. THE ROUTE ARRANGEMENT

Based on the above, we will assume that ants do not have a separate type of activity for
the construction and maintenance of road infrastructure. Individual foraging ants, moving along
a familiar route, perform some actions. The result of these actions is perceived by an outside
observer as a road. These actions are auxiliary. Therefore, the solution of the task of arranging the
route should, if possible, be performed using methods and mechanisms that have previously been
implemented and have already been used for other tasks, and not introduce entities beyond what
is necessary.

The agent must move from one point to another to solve various tasks: patrolling, foraging, etc.
Here, the task of movement is solved not at the level of route planning and building an optimal
trajectory, but at the behavioral level (like ants). Let’s take foraging as an example. Foragers
regularly go to the food source and move it to the “base,” and the route connects the base and the
source location. The agent does not have an environmental map (like the ant [28]): he remembers
the route by visual landmarks and compass [29, 30]. During the movement, the agent remembers
landmarks and approximate compass direction, so his route is a set of relatively straight segments
from one landmark to another (Fig. 2).

Fig. 2. Example of a route from a “base” to a source.

Movement characteristics. The direction of the agent’s movement is determined by the local
goal and context at every time. A local goal for ants can be a visible landmark, a pheromone
trail, polarized light data. The current context is the state of surface, obstacles, etc. The context
determines the characteristics of movement, obstacle avoidance, local preferences, etc. In this sense,
movement is the “resultant” of tendencies to go in the right direction, as well as to go in such a
way that it is “more convenient.” This is precisely the effect of the “trodden” path on the agent’s
movement. The more intense the flow, the more the path is “trampled,” the more preferable it will
be to move along it. But such a “well–equipped” route is not a road, it’s just “more convenient”
to go that way.

The efficiency of movement is determined by energy consumption, which depends on the time
of movement along the route. The time depends on the total length and curves of the route: the
agent moves in a straight line faster than when turning, in particular, when bypassing an obstacle.
Thus, removing obstacles and straightening the route will increase energy efficiency. In addition,
the number of landmarks that the agent can recognize should be sufficient for steady movement
along the route. This increases the probability of successful passage from the base to the source
and back.
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The route arrangement for ants in general may include different actions:
1. Trampling (compaction of the soil without additional effort of ants).
2. Clearing the route (cleaning up debris and vegetation).
3. The use of improvised material to increase the convenience of passing along the route, for

example, laying plant debris on a swampy route section.
4. Surface leveling, including digging into the soil.
The procedure for clearing the route. When an agent goes along a known route, he knows in

which direction he needs to move. If there is an obstacle in front of him that prevents him from
walking straight, he can bypass it or move it to the side. To do this, it must recognize obstacles
and distinguish between movable and non-movable ones. He can perceive these same obstacles as
landmarks.

The clearing procedure determines where and how the obstacles are removed. The main question
is not in which direction or how far the interfering objects are moving. Difficulties arise when
obstacles shift into piles or shafts, forming new landmarks. In fact, the creation of a new landmark
means the agent’s explicit impact on the environment.

Note that using displaced obstacles as new landmarks is not the same as reacting to a pheromone
trail. On the one hand, if an agent detects such a landmark, it cannot identify it as a landmark
along the path. On the other hand, the pheromone in ants is a label that is perceived by ants as
a sign that another ant’s route is passing here. The odorous trail left by the scout can be used
by foragers for self-mobilization: they begin to move along this trail in the direction from the nest
(they know its location) [31]. In the case of moving an obstacle, only the agent who walks along
the route known to him can remember this obstacle as a landmark.

Participants in the clearing. Any forager can become a participant in the clearing, since there are
no special clearing ants [32]. The probability that an ant will start clearing depends on its condition.
Foragers carrying cargo are never engaged in clearing (for leafcutter ants, see [23]). There is also
an estimate of the probability that an ant, when faced with an obstacle, will eliminate it.

So, clearing a route leads to its opening, a reduction in its length and to the creation of additional
landmarks along the route.

5. THE AGENT’S BEHAVIOR MODEL FOR ROUTE ARRANGEMENT

Biologists’ research confirms that the route arrangement in ants is energetically efficient [25, 26].
Consequently, the assessment of the agent’s actions during foraging can also be based on changes
in energy costs. Here is a model describing this process and allowing evaluation of the effectiveness
of the agent. This is a simplified qualitative model; it does not aim to describe all the details of
the route clearing process.

Suppose there is an agent solving the problem of transporting some resource (“food”) from the
foraging area to the base. The amount of “food” determines the positive contribution to its energy
balance. The agent expends energy on traversing the route from the base to the source location, as
well as clearing the route from obstacles. Let’s assume that the agent functions in such a discrete
time, where each clock cycle can determine a certain period of its existence. The environment in
which the agent operates is determined by a limited amount of non-reproducible resource in the
foraging area, as well as many obstacles along the route. The agent can remove these obstacles
with some probability, reducing the route length, but at the same time spending some of its energy
on cleaning.

The task is to evaluate energy efficiency as a function of the agent energy consumption, which
depends on the properties of the medium and the probability that the agent will clear the route.

Let f(t) is the delivered resource, and C(t) is the cost of delivering the resource. The delivered
resource is determined by the agent’s load capacity and in the simple case f(t) = f(0) = const. All
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the values used are dimensionless and are defined as the energy received or spent in conventional
units, and the time t is discrete. Then the effectiveness of agent E(t) at time t can be determined
as follows:

E(t) = f(t)− C(t). (1)

The cost of delivering the resource C(t) (1) consists of the cost of completing the route L(t),
clearing work W (t) and searching for food on the area Cf (t):

C(t) = L(t) +W (t) + Cf (t). (2)

The cost of completing the route L(t) (2) depends on the distance L0 between the “base” and
the “foraging area” and on the saturation of obstacles:

L(t) = L0 + kLρ(t). (3)

Here L0 is an approximately direct route, L0 = const; ρ(t) is the saturation of obstacles; kL is
the coefficient determining the cost of bypassing the obstacle.

The cost of clearing work W (t) (2) depends on the saturation of obstacles ρ(t) and on the pw is
probability that the agent will remove the obstacle, pw = const:

W (t) = pwρ(t). (4)

The cost of searching for food Cf (t) (2) is inversely proportional to the amount of food in the
area:

Cf (t) = kF /(F (t) + ε). (5)

Here kF is coefficient of the searching cost, kF ∈ R, and ε is introduced so that when F (t) = 0
the costs would be finite, ε ∈ R, ε > 0. The amount of food in the area F (t) (5) decreases with
time:

F (t) = F0 − ft. (6)

Here F0 is the initial amount of food on the area. The saturation of obstacles ρ(t) (4) also
decreases as the clearing progresses:

ρ(t+ 1) = ρ(t)− kwW (t) = ρ(t)− kwpwρ(t) = ρ(t)(1− kwpw) (7)

or, in the end:
ρ(t) = ρ0(1− kwpw)

t. (8)

Here kw is the coefficient of actions’ effectiveness to remove an obstacle. As a result, we get an
expression for the agent effectiveness:

E(t) =
F0f − f2t+ fε− kF

F (t) + ε
− L0 − ρ0(1− kwpw)

t(kL + pw). (9)

Obviously, the function determining the amount of resource in the area F (t) must be redefined
so that it is bounded from below by zero. If F (t) = 0, then the value of f(t) is reset (the agent
does not bring anything):

F (t) = max(F0 − ft, 0), f(t) =

{
f0, if F (t)− f0 > 0,
0 else.

(10)

This model allows us to evaluate the effectiveness of the agent’s actions during foraging and build
a qualitative graph for E(t) (10). Figure 3 shows graphs of E(t) and obstacle saturation ρ(t) (7)
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Fig. 3. Graphs of the effectiveness of the agent’s actions E(t) and the saturation
of obstacles ρ(t) in numerical modeling.

Fig. 4. Graphs of the effectiveness of the agent’s actions E(t) in simulation modeling.
The average of 10 experiments and the standard deviation.

for the following parameter values: the cost of passing a direct route L0 = 1; the probability that
the agent will remove the obstacle pw = 0.1; the cost factor for bypassing the obstacle kL = 0.5; the
initial saturation of obstacles ρ(0) = 1; initial amount of food in the area F (0) = 100; load capacity
of the agent f = 2; clearing efficiency coefficient kw = 0.9; cost factor for food search kF = 1, ε = 1.

Graph E(t) in Fig. 3 shows that the agent’s efficiency increases as the route is cleared, reaches
a maximum when the number of obstacles decreases below a certain threshold, but then decreases
due to a decrease in the amount of food.

Negative values of E(t) on the graph mean that when F (t) = 0, the agent only spends its
resources while traveling along the route, not replenishing them (works at a loss).
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6. SIMULATION MODELING

Simulation modeling was performed using the Kvorum multi-agent modeling system created at
the Kurchatov Institute Research Center [33]. The agent moved between two points: from the
“nest” to the “foraging area.” The time spent on the road was calculated, taking into account the
avoidance of obstacles and/or the cost of removing them, and the time spent on the site searching
for food. After finding the resource, the agent instantly returned to the “nest” and went back to the
foraging area. The experiment ended when the time to search for food exceeded 2000 cycles: then
it was believed that the food on the site was over. Figure 4 shows a graph of the E(t) efficiency for
a number of simulation experiments. It can be seen from the graph in Fig. 4 that the effectiveness
of the agent’s actions varies in a similar way to what numerical modeling shows. At first, the
effectiveness of the agent’s actions increases, since clearing the route leads to a decrease in the time
to complete the path. Then comes the stabilization period (35–55 passes, Fig. 4). As the area is
depleted, the time to search for food increases, and efficiency decreases.

7. MECHANISMS FOR THE IMPLEMENTATION
OF ROUTE ARRANGEMENT OPTIONS

Trampling (natural compaction of the soil). This process is difficult to implement in the labora-
tory conditions, but in a natural environment it happens naturally when many robots move in the
same way. The assessment of the sufficient number of robots is based on an estimate of the number
of active foraging ants: for the Formica family of 500 individuals, it ranges from 15 to 45 individ-
uals [34]. Minimum requirements are imposed on the robot: it must be able to navigate by visual
landmarks and compass, memorize the route, return to “base” and repeat the route.

Clearing the route (removing obstacles from it). To do this, in addition to the previously listed
mechanisms, the robot must be able to: (1) identify obstacles, (2) distinguish movable obstacles
from stationary ones, (3) shift or transfer obstacles to the side, (4) return to movement along
the route, (5) refine the memorized route, because shifting obstacles changes the configuration
of landmarks along the route. In papers [35, 36], a way of navigating by visual landmarks and
compass is described, in which the route is remembered approximately. Returning to the route can
be implemented as a continuation of the movement “in the same direction,” taking into account
the landmarks. Therefore, it is necessary to move the obstacle a short distance, sufficient to clear
the way and comparable to the size of the robot.

To clear the route, the robot must determine how and when it makes a choice between bypassing
and moving an obstacle. After moving the obstacle, the robot must determine further actions: will
he follow the route or continue clearing the way.

Surface alignment (horizontal alignment) To do this, the robot must have effectors capable of
cutting off the top layer of soil or “laying trenches.” This is too strong a requirement, but you can
limit yourself to movable elements (obstacles) that you can either drive over or go around them.
The robot can shift such elements with an effector in the form of a blade: in this case, clearing the
route will also lead to alignment.

The use of improvised material. This is a more difficult option. First, the robot must be able
to determine that there is an area in front of it that is inconvenient for movement, for example, a
recess. Secondly, he must find an element nearby that can align this area. But this option can be
considered as a continuation of the previous one, by analogy with ants that shift the soil to level
the surface of the trail [23]. And the robot can move obstacles that interfere with the passage to
these inconvenient areas. A general list of mechanisms is given in Table. In it, all the previous
mechanisms are needed for each next option.
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Mechanisms for implementing options for a route arranging by a robot

Options for arranging a route Mechanisms

1. Trampling Localization by visual landmarks and compass
Memorizing the route
Returning to the “base”
Repeating the route

2. Clearing the route Obstacle identification
Recognition of movable and stationary obstacles
Shifting obstacles to the side

3. Surface alignment Identification of an obstacle that can be skirted from
the side or run over

4. The use of improvised material Identification of an inconvenient area where an ob-
stacle can be moved

8. CONCLUSION

This paper has two aspects — technical and methodological. The first aspect is concerning
the behavior modeling and is as follows. The reasoning and simulation results above confirm the
assumption that in fact there are no roads in the world of ants in the sense that man puts into this
concept. There are only routes and directions of movement, and the route arrangement in order to
reduce energy costs in a simple case can be carried out without organizing joint purposeful activities
of many agents (robots). Thus, we have shown that without creating new entities, without involving
any artificial structures, we can get the same result and observe the same phenomenon, which
biologists call “ant roads.” Formally, this means the absence of the “road” entity in the agent’s
world model, which entails the absence of the need to create behavioral procedures corresponding
to this sign, representation/recognition, etc. This greatly simplifies the solution of the problem.

The second aspect is methodological. It emphasizes that the attitude towards bio-inspired
models should be critical and constructive. Let’s go back to the title of the paper and summarize
what the “pitfalls” of bio-inspired models are.

1. Superficial analogies in bio-inspired behaviors are a dangerous thing. “Nature-inspired” mod-
els often have nothing to do with what is available in nature. The danger lies in the fact that
such a superficial view ignores the mechanisms underlying a particular behavior. As a re-
sult, specific models are obtained that reflect only the external, phenomenological aspects of
natural phenomena.

2. The identification and implementation of basic behavioral mechanisms has purely practical
aspects. This saves effort when developing systems, makes it possible to combine these basic
mechanisms and provides flexibility. An example of this approach is the paradigm of social
behavior models.

3. Real biological models and descriptions of phenomena also require a critical attitude. The
point is that biologists and technical specialists use different concepts. The latter should
consider important the essence of the phenomenon, as well as its constituent elements and
the causal relationships between them. Without this, it is unclear what needs to be modeled.
An example of this phenomenon is ant roads, which were discussed in this paper.
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Abstract—The problem of parametric synthesis of a model predictive control (MPC) system by
the chemical process of production of the kerosene fraction of an industrial fractionator under
conditions of constraints and uncertainty is considered. The optimal parameters of the MPC
algorithm are obtained as a result of solving the problem of multi-criteria optimization, taking
into account the intervally specified parameters of the plant model.
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1. INTRODUCTION

Model predictive control (MPC) has recently developed a lot due to the fact that it has a number
of significant advantages in solving the problems of control multidimensional industrial plants in
the presence of constraints on control actions [1–3].

When finding the values of control actions at each time step k, the optimization problem is
solved. The objective function using the predict of P forward time steps (ỹk+j, j = 1, . . . , P ) is
minimized by selecting the increment values of the control variables Δu on the control horizon M .
The values of the control actions are determined by M ssteps forward, but only the first change is
used Δuk, i.e. at the current time. After uk is executed, the measurement of the output variable
comes in the next step yk+1 and the model error is corrected, since the measured value yk+1, as
a rule, does not coincide with the forecast value. For a multidimensional system consisting of
controlled variables (CV) nCV and manipulated variables (MV) nMV , the matrix of the system
dynamics is formed from the coefficients of the finite step response (FSR):

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1 0 . . . 0

S2 S1 0
...

...
...

. . . 0
SM SM−1 . . . S1
SM+1 SM . . . S2

...
...

. . .
...

SP SP−1 . . . SP−M+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where Si =

⎡⎢⎢⎢⎢⎣
S11,i S12,i . . . S1nMV ,i

S21,i . . . . . . S2nMV ,i
...

...
...

...
SnCV 1,i . . . . . . SnCV nMV ,i

⎤⎥⎥⎥⎥⎦ – matrix nCV × nMV of step response coefficients for

the ith time step.

First-order transfer function with a delay are mainly used as initial data for predictive models
in the form of an FSR:

F (s) =
g

τs+ 1
e−θs.

The parameters of the model for a multivariable system can be written as matrices:

Ĝ =

⎛⎜⎝ ĝ1,1 . . . ĝ1,nMV

...
. . .

...
ĝnCV ,1 . . . ĝnCV ,nMV

⎞⎟⎠, T̂ =

⎛⎜⎝ τ̂1,1 . . . τ̂1,nMV

...
. . .

...
τ̂nCV ,1 . . . τ̂nCV ,nMV

⎞⎟⎠, Θ̂ =

⎛⎜⎜⎝
θ̂1,1 . . . θ̂1,nMV

...
. . .

...

θ̂
CV ,1 . . . θnCV ,nMV

⎞⎟⎟⎠,
where Ĝ is the matrix of the gain coefficients, T̂ is the matrix of the time constants, Θ̂ is the
matrix of the delay values.

The elements of the matrix S are formed on the basis of Ĝ, T̂ and Θ̂:⎧⎪⎪⎨⎪⎪⎩
Si = 0, iΔt � Θ̂

Si = Ĝ

⎛⎝1− e
−(iΔt−Θ̂)

T̂

⎞⎠ , iΔt > Θ̂.

The control problem can be formulated as an optimization problem with the following objective
function [4]:

min
ΔUk

J = ÊT
k+1QÊk+1 +ΔUT

kRΔUk

s.t.

y−
k+j � ỹk+j � y+

k+j (j = 1, . . . , P ) ,

u− � uk+j � u+ (j = 0, 1, . . . ,M − 1) ,

Δu− � Δuk+j � Δu+ (j = 0, 1, . . . ,M − 1) ,

where uk =
[
u1|k, . . . , unMV |k

]T
is a vector of MV values at time k; ΔUk = [Δuk, . . . ,Δuk+M−1]

is a matrix M of changes in MV values at time k (Δuk =
[
Δu1|k, . . . ,ΔunMV |k

]T
); ỹk+j =[

ỹ1|k+j, . . . , ỹnCV |k+j

]T
is a vector of corrected predicted CV values at time k + j; Q and R are

diagonal weight matrices for prioritizing elements Êk+1 and controlling changes ΔUk, respectively.

The predictable error vector Êk+1 is defined as

Êk+1 = Yref
k+1 − Ỹk+1,

where Yref
k+1 is the vector of given CV values at time k+1, Ỹk+1 is the vector of corrected predicted

values:

Ỹk+1 = SΔUk + Ŷo
k+1 + [yk − ŷk] ,

where Ŷo
k+1 =

∑N−2
i=1 Si+1Δuk−i + SNuk−N+1 is the vector of forecasts of unforced responses.
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This paper considers the MPC algorithm, in which the increments of control actions (MV) are
determined analytically [5]:

ΔU(k) = KCÊ
o(k + 1),

where Êo(k + 1) is the predicted deviations from the initial trajectory with the constancy of the
values of future control actions; KC is the matrix of the regulator gain, which is calculated as

KC =
(
STQS+R

)−1
STQ.

In spite of its advantages, MPC depends on the accuracy of the model, and transients in the
control system can deteriorate in the presence of uncertainty, perturbations, and model errors
(mismatch of the MPC model with the model of the controlled plant) [6]. In the existing works,
in order to compensate for the uncertainty, it is proposed to introduce output predictors into the
structure of the control system for various parameters of the plant (family of plants) [7, 8], which
increases the complexity of the control system in the case of multidimensional plants, and the
number of required computing resources of the MPC algorithm for finding a sequence of optimal
increments of control actions increases significantly. In contrast to the known works, in this paper,
it is proposed to take into account the uncertainty of the plant at the design stage of the MPC
algorithm, i.e. to search for the optimal parameters of the regulator based on the predictive model
(weight matrices Q and R), when the parameters of the plant are set intervally.

2. DESCRIPTION OF THE PROCESS UNIT
AND FORMULATION OF THE PROBLEM

A fractionation column C-2 is considered (Fig. 1), in which a multicomponent hydrocarbon
crude mixture is divided into naphta, kerosene, and other fractions. Column C-2 has an additional
side stripping column—a column for stripping the C-3 kerosene fraction. Column C-2 contains
44 valve trays in the rectification section and 12 valve trays in the stripping section. Excess heat in
the column is removed by bottom pumparound (BPA). The top temperature (TIC1) is controlled
by the supply of reflux in the upper part of the C-2 fractionator. The purpose of column C-3
is the stripping of light hydrocarbons from the kerosene fraction due to the heat of the BPA of
column C-2 supplied to the reboiler E-2. Light hydrocarbon vapors from column C-3 are returned
to column C-2. The temperature of the product kerosene at the outlet of column C-3 is controlled
by the TIC2 loop. The plant in question has nCV = 2 and nMV = 2. The matrix of transfer

Fig. 1. Process unit block diagram.
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Table 1. Transfer matrix of the plant

Top temperature C-2
(TIC1.SV)

Bottom temperature
C-3 (TIC2.SV)

TIBP KERO F1,1 =
g1,1

τ1,1s+ 1
e−θ1,1s F1,1 =

g1,2

τ1,2s+ 1
e−θ1,2s

FV1.MV % of valve opening E-2 F2,1 =
g2,1

τ2,1s+ 1
e−θ2,1s F2,2 =

g2,2

τ2,2s+ 1
e−θ2,2s

functions of the plant is presented in Table 1. Transfer functions are aperiodic links of the 1st order
with a delay.

The control task is to maintain the initial boiling point of the kerosene fraction (TIBP KERO)
within a set range.

3. DETERMINATION OF THE OPTIMAL PARAMETERS OF THE REGULATOR
BASED ON THE PREDICTIVE MODEL FOR QUALITY CONTROL

OF THE INDUSTRIAL FRACTIONATOR PRODUCT

Let us denote the parameters of the transfer functions of the plant in the form of the following
matrices:

G =

(
g1,1 g1,2
g2,1 g2,2

)
, T =

(
τ1,1 τ1,2
τ2,1 τ2,2

)
, Θ =

(
θ1,1 θ1,2
θ2,1 θ2,2

)
.

Matrices of parameters of the transfer functions of the regulator (to find the FSR):

Ĝ =

(
ĝ1,1 ĝ1,2
ĝ2,1 ĝ2,2

)
, T̂ =

(
τ̂1,1 τ̂1,2
τ̂2,1 τ̂2,2

)
, Θ̂ =

(
θ̂1,1 θ̂1,2
θ̂2,1 θ̂2,2

)
.

Set the upper and lower limits of the parameter ranges:

G =

(
0.2 0.9
−0.5 0.9

)
, T =

(
18 18
20 14

)
, Θ =

(
8 7
9 7

)
,

G =

(
0.1 0.5
−1 0.45

)
, T =

(
6 6
8 6

)
, Θ =

(
2 3
1 1

)
.

Let us assume that the actual parameters of the transfer functions of the plant lie in the middle of
the specified range:

G =
G+G

2
=

(
0.15 0.7
−0.75 0.675

)
, T =

T+T

2
=

(
12 12
14 10

)
, Θ =

Θ+Θ

2
=

(
5 4
6 4

)
.

To study the transient processes in the control system, we set the vector of tasks by CV
r = [r1 r2] = [1 0.8]. The adjusting parameters of the regulator are the matrix of weights
by error CV Q = diag {Q1,Q2} and the matrix of weights by increment MV R = diag {R1,R2}.
In the course of the study, it was established that the quality of regulation depended not so much on
the values of the weights Q and R as on the ratio of the weights relative to each other. Therefore,
within the framework of this study, the weights Q = diag {Q1,Q2} are set.

As a criterion for the accuracy of control tasks according to CV, the mean square error relative
to the desired dynamics was chosen [9]:

J =
NM∑
i=1

nCV∑
q=1

(
yrefi,q − yi,q

)2
,
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where yrefi,q is the value of the desired trajectory q CV at the ith time point, yi,q is the actual value
of q CV at the ith time point.

Thus, the optimization problem can be written as:

min
R>0

J =
NM∑
i=1

nCV∑
q=1

(
yrefi,q − yi,q

)2
,

whereR > 0 means that all diagonal elements are positive. The calculation of the desired trajectory
is made according to the following expression:

yrefi,q =
rq
∑nMV

j=1 Gq,j

(
1− e

t̃
Tq,j

)
∑nMV

j=1 |Gq,j| , t̃ =

{
i−Θq,j, i � Θq,j

0, i < Θq,j,

where i = 1, . . . , NM are the time points, and q = 1, . . . , nCV is the CV number for which the
desired trajectory is calculated. The purpose of this study is to find such values of the weights
R = diag {R1,R2} that the output variables of the plant are as close as possible to the desired
dynamics for various parameters Ĝ, T̂ and Θ̂, lying within the specified range.

To determine the robust optimal values of R, consider cases where one of the parameters Ĝ, T̂
and Θ̂ lies at the boundary of the ranges, and the rest are in the middle. The cases under
consideration are presented in Table 2.

Table 2. Controller model parameter variations

Index p̃
Parameter value

Index p̃
Parameter value

Ĝ T̂ Θ̂ Ĝ T̂ Θ̂

1 G T Θ 4 G T Θ

2 G T Θ 5 G T Θ

3 G T Θ 6 G T Θ

The optimization problem in a general form for each of the cases under consideration can be
represented as:

min
R>0

J p̃ =
NM∑
i=1

nCV∑
q=1

(
yrefi,q −

(
yi−1,q + Sp̃

i

(
Sp̃T
i QSp̃

i +R
)−1

Sp̃T
i QÊo (k + 1)

))2

,

where

⎧⎪⎨⎪⎩
Sp̃
i = 0, iΔt � Θ̂p̃

Sp̃
i = Ĝp̃

(
1− e

− iΔt−Θ̂p̃

T̂p̃

)
, iΔt > Θ̂p̃.

To determine the optimal (in this case, robust) parameters of the MPC algorithm, we will vary
the values R = diag {R1,R2} in the range 0.1 � R1 � 35 and 0.1 � R2 � 40 in increments of 0.2.
The graphs in Fig. 2 show the surfaces of the change in the accuracy criterion. Table 3 shows the
weights R at which the criteria values J p̃ are minimal.

Table 3. Optimal values of R for different criteria J p̃

Rp̃=1
opt Rp̃=2

opt Rp̃=3
opt Rp̃=4

opt Rp̃=5
opt Rp̃=6

opt

R1 0.1 0.7 6.9 2.5 8.9 0.1

R2 32.9 1.1 28.5 12.1 32.9 3.5
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Fig. 2. Criteria values J p̃ for different R1 and R2.

Fig. 3. Change of J̆ at different values R1 and R2.

Due to the fact that the optimal values of the weight matrix R are different for the 6 cases under
consideration, we will use the convolution of criteria [10] to find the robust optimal parameters:

J̆ =
6∑

p̃=1

wp̃ × J p̃.

Since the values of the criteria for the cases under consideration have the same physical dimen-
sion, we assume that the value of wp̃ = 1, p̃ = 1, . . . , 6. Figure 3 shows the surface of change J̆
when the values of R1 and R2 change. The values of the weights R corresponding to the minimum

value of the criterion J̆ are equal to RJ̆
opt = diag {5.3, 17.1}.

Figure 4 presents the optimal values of R in the plane R1R2. Figure 5 shows the CV transients

when the values of R = Rp̃=1
opt and R = RJ̆

opt.

It can be concluded from the graphs in Fig. 5 that the use of weights R selected on the basis
of J̆ , i.e. taking into account the variations in the parameters of the object, makes it possible to

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 7 2024
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Fig. 4. Location of optimal values of R.

Fig. 5. CV transients at R = Rp̃=1
opt and R = RJ̆

opt.

reduce the deviation from the desired trajectory in comparison with the case when the optimal
weights are selected on the basis of only one of the criteria J p̃, i.e. without taking into account the
uncertainty of the parameters of the plant.

Table 4. Values of criteria J p̃ (deviation from the desired dynamics) for different R

R1 R2 p̃ = 1 p̃ = 2 p̃ = 3 p̃ = 4 p̃ = 5 p̃ = 6

Rp̃=1
opt 0.1 32.9 1.34848 6.06283 2.00167 2.62597 2.03054 2.39714

Rp̃=2
opt 0.7 1.1 3.7571 0.06194 2.29674 0.73448 2.6284 0.18394

Rp̃=3
opt 6.9 28.5 1.59663 1.89024 1.25891 0.64345 0.82054 0.90192

Rp̃=4
opt 2.5 12.1 2.38149 0.71668 1.44793 0.21418 1.2088 0.15819

Rp̃=5
opt 8.9 32.9 1.54609 2.1035 1.26915 0.82553 0.80598 1.13606

Rp̃=6
opt 0.1 3.5 2.97203 0.43404 1.54271 0.3417 1.48232 0.04001

RJ̆
opt 5.3 17.1 1.94841 0.87779 1.38022 0.2607 1.05938 0.28966

4. CONCLUSION

In the framework of this work, a search was made for the robust optimal values of the weights R
for the control system based on the predictive model, taking into account the parametric uncertainty
of the parameters of the control plant. The optimal weights were found for cases where one of the
parameters is at the boundary of the range, and the rest are in the middle. With the help of

convolution of criteria, robustly optimal values RJ̆
opt = diag {5.3, 17.1} were found that ensure the

best quality of control of the TIBP KERO of kerosene fraction of the industrial fractionator. It is
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shown that the use of RJ̆
opt made it possible to reduce the deviation from the desired dynamics in

comparison with the use of the optimal value of R without taking into account the uncertainty.
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