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On February 3, 2023, an outstanding mathematician and a wonderful person, Boris Teodorovich
Polyak passed away. For a long time he headed Laboratory 7 of the Institute of Control Sciences,
RAS, and was a generator of bright scientific ideas for decades, so we decided to arrange a special
issue of the journal Automation and Remote Control, dedicated to his memory. The articles in this
collection are mostly authored by the members of our lab, and the publication of this issue is not
devoted to the sad anniversary of the death of Boris Teodorovich, but to his birthday on May 4,
1935.

The range of scientific interests of Prof. Polyak is striking in its diversity, as can be seen from
the list of research papers which he authored and which we present in our issue. It is also worth
mentioning that, in addition to the breadth of interests of Boris Teodorovich, this bibliography list
testifies to a large number of his co-authors, — he has always generously shared his ideas with both
students and younger followers and older colleagues.

Of course, within the framework of one issue, it is impossible to cover all areas of research interest
of Boris Teodorovich, but we tried to collect articles on the topics that interested him most in recent
years. These include the optimization theory, which he loved since his youth, and the methods of
the classical theory of automatic control, robustness and rejection of exogenous disturbances, linear
matrix inequalities, superstability, applied problems of energy systems research, and the peak effect.
Due to the limitations on the volume of one issue, some of the submitted articles were transferred
to the 6th issue of the journal.

Next year we plan to publish another special issue dedicated to the 90th anniversary
of Prof. Polyak; the circle of authors is expected to be much wider.

On behalf of all members of lab. 7 of the Instutute of Control Science,

Editior of the issue,

P.S. Shcherbakov
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The compilers of this list are grateful to the readers for possible additions as well as indications
of inaccuracies and simple mistakes. In our point of view, for experts in the corresponding fields
of science, the list of Boris Polyak’s research works well characterizes the epoch and reflects the
popularity of various topics and the change of priorities over time. A complete and accurate
bibliography will be published in a separate brochure.
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Abstract—The problem of finding the arrangement of closed-loop control system poles that
minimizes an objective function is considered. The system optimality criterion is the value of the
H∞ norm of the frequency transfer function relative to the disturbance with constraints imposed
on the system pole placement and the values of the H∞ norm of the sensitivity function and the
transfer function from measurement noise to control. An optimization problem is formulated as
follows: the vector of variables consists of the characteristic polynomial roots of the closed loop
system with the admissible values restricted to a given pole placement region; in addition to
the optimality criterion, the objective function includes penalty elements for other constraints.
It is proposed to use a logarithmic scale for the moduli of the characteristic polynomial roots
as elements of the vector of variables. The multi-extremality problem of the objective function
is solved using the multiple start procedure. A coordinate descent modification with a pair of
coordinates varied simultaneously is used for search.
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1. INTRODUCTION

Rejection of an unmeasurable disturbance is one of the main tasks of control design [1]. On the
other hand, the resulting system must satisfy robustness conditions since the plant model used for
control design is inaccurate. For linear systems, first of all, the requirements for stability margins
must be met [2]. These requirements can be specified as the minimum acceptable stability margins
radius [3] or limiting the value of the sensitivity function [4, 5]. The H∞ norm of the measurement
noise sensitivity function can serve as a measure of robustness to unmodeled dynamics [5, 6].

Many control design techniques lead to an optimization problem. For example, the methods
of H∞ optimization [7] and invariant ellipsoids [1] reduce to an optimization procedure for solving
a system of linear matrix inequalities. If the variables are the coefficients of a fixed-structure con-
troller, the optimization problem may become non-convex and multi-extremal [8, 9]. The successful
results of solving such problems allowed developing similar approaches for tuning PID controllers
widely used in practice [10, 11].

For a linear single-input single-output (SISO) system, the following idea of optimization of the
closed-loop system pole placement was proposed in [12]: the controller coefficients are found via the
standard pole placement procedure, and the roots of the desired characteristic polynomial of the
closed loop system are searched using an optimization procedure for specified quality criteria and
constraints. The standard global optimization procedure from the MATLAB Global Optimization
Toolbox [13] was used in [12]. The value of the H∞ norm of the transfer function relative to the
disturbance was chosen as a quality criterion under given constraints on the values of theH∞ norms
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of the sensitivity function and the transfer function from measurement noise to control. In addition,
constraints were imposed on the system pole placement.

This article is devoted to developing an optimization procedure for finding an optimal closed-loop
system pole placement that minimizes a given objective function subject to specified constraints;
in the corresponding optimization problem, the vector of variables consists of the characteristic
polynomial roots of the closed loop system.

2. PROBLEM STATEMENT

Consider a linear SISO system whose structure is presented in Fig. 1. Let the plant be described
by the transfer function

P (s) =
b(s)

a(s)
=

bn−1s
n−1 + · · · + b0

sn + an−1sn−1 + · · ·+ a0
, (1)

where s is the Laplace transform variable; the coefficients ai, bi ∈ R (i = 0, . . . , n − 1) have known
values, and at least one of the coefficients bi is nonzero; the polynomials a(s) and b(s) are co-
prime. The frequency response function is obtained for s = jω, where ω ∈ [0,∞). By assumption,
as frequency response functions are used, all system signals (including the unmeasured exogenous
disturbance) are integrable and satisfy the restrictions for applying the Fourier transform [2]:

+∞∫

−∞
|f(t)|dt <∞.

Suppose that the controller’s transfer function has the form

C(s) =
d(s)

c(s)
=

dn−1s
n−1 + · · · + d0

cn−1sn−1 + · · · + c0
, (2)

where the controller order (n−1) is determined by the order of the plant model (1). A higher-order
controller, which can be constructed, e.g., by adding an integral component to the controller, is not
considered here. A lower-order controller cannot be constructed by the pole placement technique;
see the explanation below.

According to the pole placement method [14, 15], the polynomials c(s) and d(s) of the con-
troller (2) can be obtained by solving the equation

a(s)c(s) + b(s)d(s) = δ(s), (3)

where the left-hand side is the characteristic polynomial of system (1), (2) in which a(s) and b(s)
are the known polynomials of the plant’s transfer function, and δ(s) is a given desired characteristic
polynomial. As is known [14], there exists a unique solution of this equation under the condition
deg d(s) < deg a(s) or deg c(s) < deg b(s). In addition, under the condition deg δ(s) > 2 deg a(s)− 1,

Fig. 1. Closed loop system: y—measured output, ν—measurement noise, r—reference signal, e—control error,
u—control, and f—disturbance.
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the causality of control is satisfied: deg d(s) 6 deg c(s). Then, by choosing the desired polyno-
mial δ(s) of degree deg δ(s) = 2deg a(s)− 1, we obtain the solution (2) for which the conditions
deg d(s) 6 deg c(s) and deg d(s) < deg a(s) hold. In this case, equation (3) can be solved by com-
piling a system of 2n linear algebraic equations with 2n unknowns when equating the coefficients
of the left- and right-hand sides of equation (3) at the equal powers of s:












cn−1

. . .
c0

dn−1

. . .
d0












= W−1






δ2n−1

. . .
δ0




 , (4)

where W ∈ R
2n×2n is a matrix obtained from the coefficients ai, bi (i = 0, . . . , n − 1).

Thus, for any plant (1), one can find a controller of the form (2) ensuring any given characteristic
polynomial δ(s) of degree (2n− 1) for the closed loop system. Note that for an unstable plant of
order n, there may not exist a controller of order below (n− 1) ensuring at least the stability of the
system. Therefore, we consider a controller of order (n− 1) to ensure not only stability but also
other system properties of the system by choosing an appropriate desired characteristic polynomial.

The characteristic polynomial can be represented as

δ(s) =
nr∏

i=1

(s+ λi)
nc∏

k=1

(s2 + 2ζkω̆ks+ ω̆2
k), (5)

where nr = 2n − 2nc − 1 is the number of real roots of the polynomial δ(s) and nc is the number
of complex conjugate pairs of the roots; the values λi, ω̆k ∈ R and ζk ∈ [0, 1] determine the closed-
loop pole placement and the coefficients δ0, . . . , δ2n−2 in (4) while δ2n−1 = 1. Let ω̆k denote the
natural frequencies of the system since the notation ω is used for the frequency variable in transfer
functions.

In addition to the standard constraints λi > 0, ω̆k > 0, and 0 < ζk 6 1, which ensure the stability
of the closed loop system, it is possible to specify the supplementary ones

0 < λmin 6 λi 6 λmax, 0 < ω̆min 6 ω̆k 6 ω̆max, 0 < ζmin 6 ζk 6 1 (6)

to obtain the desired speed and damping rate of the system and limit the high-frequency compo-
nents.

Similar to [12], the value of H∞ norm of the frequency response function relative to the distur-
bance is taken as the system quality criterion:

‖Gyf (jω)‖∞ = sup
ω

∣
∣
∣
∣

b(jω)c(jω)

δ(jω)

∣
∣
∣
∣ . (7)

Moreover, the following constraints must be satisfied:

— for the H∞ norm of the sensitivity function, the inequality

‖S(jω)‖∞ = sup
ω

∣
∣
∣
∣

a(jω)c(jω)

δ(jω)

∣
∣
∣
∣ 6 Smax (8)

to ensure the required stability margins;
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— for the H∞ norm of the frequency response function relative to the noise, the inequality

‖Guν(jω)‖∞ = sup
ω

∣
∣
∣
∣

a(jω)d(jω)

δ(jω)

∣
∣
∣
∣ 6 Nmax (9)

to ensure the robustness of the system in the presence of unmodeled dynamics by limiting the
controller gain [5, 6].

Thus, the problem is to find a controller of the form (2) that minimizes the exogenous disturbance
effect on the the plant (1) in terms of the norm (7) subject to the constraints (6), (8), and (9)
under given values ai, bi (i = 0, . . . , n − 1), λmin, λmax, ω̆min, ω̆max, ζmin, Smax, and Nmax. It can be
formulated as an optimization problem.

Problem 1. Find

min
x∈Q
‖Gyf (jω, x)‖∞

subject to

‖S(jω, x)‖∞ 6 Smax,

‖Guν(jω, x)‖∞ 6 Nmax,
(10)

where Smax and Nmax are given values. The vector of variables x ∈ R
2n−1 has the form

x = [λ1, . . . , λnr , ω̆1, . . . , ω̆nc , ζ1, . . . , ζnc ], (11)

where nr and nc are given values such that 0 6 nc 6 n − 1, nr = 2n − 2nc − 1, and n is a known
order of the plant (1). The admissible region Q is determined by inequalities (6) with the given
parameters λmin, λmax, ω̆min, ω̆max, and ζmin. In accordance with (7)–(9), the frequency response
functions Gyf (jω, x), S(jω, x), and Guν(jω, x) are constructed from the given polynomials a(jω)
and b(jω) of the plant (1), the polynomial δ(jω) determined for the vector (11) by formula (5),
and the controller polynomials c(jω) and d(jω) whose coefficients are found by solving system (4).

Note that the constraints (6), (8), and (9) may be not satisfied simultaneously; in this case, the
set of admissible values will be empty. This issue is not considered here: the constraints are assumed
to be consistent. For a particular problem, an iterative process can be carried out in practice to
find acceptable values of the constraints for reaching an acceptable value of the objective function.

3. SEARCH FOR THE OPTIMAL ROOTS OF THE CHARACTERISTIC POLYNOMIAL

3.1. Objective Function with Penalties

We use the penalty function method to satisfy the constraints. For the value ‖G(jω, x)‖∞, the
penalty function G̃(x) is given by

G̃(x) =







0 if ‖G(jω, x)‖∞ 6 Gmax

ln
‖G(jω, x)‖∞

Gmax
if ‖G(jω, x)‖∞ > Gmax.

(12)

In this case, the objective function takes the form

f(x) = ‖Gyf (jω, x)‖∞ + µ1S̃(x) + µ2G̃uν(x), (13)

where µ1 > 0 and µ2 > 0 are weight coefficients, and S̃(x) and G̃uν(x) are the penalty functions
obtained using (12) for the constraints (10). Note that due to (12), the objective function (13) is
non-differentiable at the points where ‖S(jω, x)‖∞ = Smax or ‖Guν(jω, x)‖∞ = Nmax. Moreover,
the functions (7)–(9) may be non-convex and multi-extremal, and their gradients are not written
in explicit form.
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3.2. Scaling of the Variables

The logarithmic scale is often used to analyze dynamic systems in the frequency domain [2].
Note that the elements λi and ω̆k of the vector of variables (11) are the natural frequencies of the
system. We convert them to a logarithmic scale, thus assigning a greater weight to changes in the
roots with a modulus close to zero (slow system dynamics) compared to changes in those with a
large modulus (fast system dynamics):

x̃ = [lg λ1, . . . , lg λnr , lg ω̆1, . . . , lg ω̆nc, ζ1, . . . , ζnc ]

= [λ̃1, . . . , λ̃nr , ω̃1, . . . , ω̃nc , ζ1, . . . , ζnc ],
(14)

where λ̃i and ω̃i are the common logarithms of the variables λi and ω̆i, respectively. In this case,
the constraints (6) take the form

0 < lg λmin 6 λ̃i 6 lg λmax,

0 < lg ω̆min 6 ω̃k 6 lg ω̆max,

0 < ζmin 6 ζk 6 1.

(15)

To calculate the objective function, the values of the variables must be rescaled to (11) by raising

to the tenth power: λi = 10λ̃i , i = 1, . . . , nr, and ω̆i = 10ω̃i , i = 1, . . . , nc. The notations without
the subscripts, λ̃, ω̃, and ζ, will be used for the corresponding groups in the vector of variables (14):

λ̃ = [λ̃1, . . . , λ̃nr ],

ω̃ = [ω̃1, . . . , ω̃nc ],

ζ = [ζ1, . . . , ζnc ].

Accordingly, the vector (14) will be represented as x̃ = [λ̃, ω̃, ζ].

The dynamics with frequencies exceeding manyfold the minimum natural frequency of the control
plant are often neglected during system design. Therefore, the difference between the common
logarithms of the admissible values of the moduli of the characteristic polynomial roots usually is
not greater than 5. For example, when considering a system with slow dynamics and λmin = 0.001
and λmax = 1, we obtain lg λmin = −3 and lg λmax = 0; for a system with fast dynamics, lg λmin = 2
and lg λmax = 6 under the same or similar values for lg ω̆min and lg ω̆max. Then the choice of the
minimum step for the groups of variables λ̃ and ω̃ is obvious. It follows from practical considerations
that a step from 0.0001 to 0.01 will be quite small under such scales. This step is also reasonable
for the group ζ, whose elements belong to the range [ζmin, 1].

3.3. Multiple Start

Multiple start is a standard approach to settling the multi-extremality problem of the objective
function (13): the search procedure is executed from different initial points. For the problem under
consideration, the initial values can be chosen, e.g., using the following rule:

— Choose the number of alternatives n1, n2, and n3 for the groups of variables λ̃, ω̃, and ζ, respec-
tively.

— For the groups λ̃ and ω̃, create alternatives in which the first elements of the groups are uniformly
distributed in the admissible range and the remaining elements are uniformly distributed in the
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range [λ̃1, lg λmax] or [ω̃1, lg ω̆max], respectively:

λ̃
(ℓ)
1 = lg λmin + ℓ

lg λmax − lg λmin

n1 + 1
, ℓ = 1, . . . , n1,

λ̃
(ℓ)
i = λ̃

(ℓ)
1 + (i− 1)

lg λmax − λ̃
(ℓ)
1

nr
, i = 2, . . . , nr,

ω̃
(ℓ)
1 = lg ω̆min + ℓ

lg ω̆max − lg ω̆min

n2 + 1
, ℓ = 1, . . . , n2,

ω̃
(ℓ)
i = ω̃

(ℓ)
1 + (i− 1)

lg ω̆max − ω̃
(ℓ)
1

nc
, i = 2, . . . , nc.

(16)

— Use the same values for all elements of the group ζ :

ζ
(ℓ)
i =







1− ζmin

2
if n3 = 1

ζmin + (ℓ− 1)
1− ζmin

n3 − 1
if n3 > 1,

i = 1, . . . , nc, ℓ = 1, . . . , n3. (17)

— Create the set of n1 · n2 · n3 initial points by combining all alternatives for each group.

For example, 32 initial points will be obtained if n1 = 4, n2 = 4, and n3 = 2.

When building another grid of the initial values, one should keep in mind the following: the
rearrangement of any elements within the groups λ̃ and ω̃ makes no sense because, due to (5), the
resulting polynomial δ(s) will be the same regardless of the order of the elements in the group.

3.4. Search Method

The objective function (13) is generally non-convex, multi-extremal, and non-differentiable at
some points; therefore, standard search methods will not necessarily find a global minimum. For the
problem under consideration, we use a combined method in which coordinate descent is applied for
the group of variables ζ whereas the groups λ̃ and ω̃ are merged to execute the search procedure by
the pairs of coordinates. The dimension of the vector [λ̃, ω̃] equals na = nr+nc, and na!/(2(na−2)!)
pairs can be made from the elements of this vector. For na = 10, we have 45 pairs, which is
computationally feasible. For most practical 1D problems, this restriction will be satisfied; for
higher-dimension problems, however, some pairs should be discarded. For example, only neighbor
elements can be combined into pairs, which gives (na − 1) pairs; alternatively, pairs can be formed
separately for the groups λ̃ and ω̃.

We determine the next point (k+ 1) after varying a pair of elements i, j (i = 1, . . . , na − 1, j =
i+ 1, . . . , na) as follows:

x̃k+1 = argmin
α,β

f(x̃k + αei + βej), (18)

where ei and ej are the vectors with ones for elements i and j, respectively, and zeros for all other
elements; α and β are values from some set of variations, e.g.,

α, β ∈ {0, 0.001, − 0.001, 0.01, − 0.01}. (19)

If the result of (18) is α = β = 0, then a new point has not been obtained. If a new record
value of the objective function is reached, then the 1D search procedure can be executed for the
corresponding values α and β :

x̃k+1 = argmin
γ

f(x̃k + γαei + γβej), (20)

where, e.g., γ ∈ {0, 10}.
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Fixed steps are used due to the nonconvexity of the objective function: finding an optimal step
in a given direction may be a computationally difficult task.

When varying the elements of the groups λ̃ and ω̃, we take into account that the objective
function is independent of the rearrangement of these elements. Therefore, it is possible to fix an
order of elements λ̃1 6 λ̃2 6 . . . 6 λ̃nr , ω̃1 6 ω̃2 6 . . . 6 ω̃nc and, in addition to the bounds (15),
use neighbor elements as bounds as well. For example, in the case nr > 2,

λ̃1 ∈ [lg λmin, λ̃2],

λ̃i ∈ [λ̃i−1, λ̃i+1], 1 < i < nr,

λ̃nr ∈ [λ̃nr−1, lg λmax].

(21)

After the search procedure (18) for all pairs (i = 1, . . . , na − 1, j = i + 1, . . . , na), we execute
coordinate descent for the group ζ :

x̃k+1 = argmin
η

f(x̃k + ηei), i = 1, . . . , nc, (22)

where η is the set of fixed steps and ei is the vector with one for element (i + nr + nc) and zeros
for the other elements. For example, the set of steps can be

η ∈ {0.001,−0.001, 0.01,−0.01, 0.05,−0.05}. (23)

The elements of the group ζ are varied within the specified bounds: ζi ∈ [ζmin, 1].

Thus, Problem 1 is solved using the following algorithm for na > 1.

Algorithm 1.

1. Choose the penalty weight coefficients µ1 and µ2 for the objective function (13) and set the
search threshold ε.

2. Generate a grid of initial points as described in subsection 3.3 and take the first initial point.

3. Calculate the value of the objective function at the initial point, f
(ℓ)
min.

4. Take a pair of elements from the groups of variables λ̃ and ω̃.
5. Execute (18) through the exhaustive search procedure over the set (19).
6. If a new record value of the objective function is obtained, execute (20) in the obtained

direction and go to the new point.
7. Take the next pair of elements from the groups of variables λ̃ and ω̃ and revert to Step 5. If

the exhaustive search procedure for the pairs is completed, proceed to Step 8.
8. If nc > 0, take an element of the group ζ. Otherwise, proceed to Step 11.
9. Execute (22) through the exhaustive search procedure over the set (23).
10. Take the next element from the group ζ and revert to Step 9. If the exhaustive search

procedure within the group ζ is completed, proceed to Step 11.

11. If the record value of the objective function f̂ yielded by Steps 4–10 is less than f
(ℓ)
min − ε,

replace the value f
(ℓ)
min with f̂ and revert to Step 4 with the corresponding new point. Otherwise,

remember the objective function value min (f
(ℓ)
min, f̂) and the corresponding point x̃, take the next

initial point, and revert to Step 3. If the search procedure for all initial points obtained in Step 2
is completed, proceed to Step 12.

12. Find the minimum among the objective function values obtained for all initial points and
the corresponding point x̃. Complete the search procedure.

Additional search stages can be embedded in this algorithm if the objective function value does
not decrease in Step 11: 1) increase the weight coefficients µ1 and µ2 and continue the search
procedure from the resulting point; 2) continue the search procedure with smaller values of the set
of variations (19) for α and β.
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4. EXAMPLES

4.1. Underwater Vehicle Position Control

The transfer functions for local coordinate system positioning were identified in [16]. In this
section, we consider control design for the coordinate z with the identified transfer function

Pz(s) =
0.018

s(0.98s + 1)
. (24)

The two-degree-of-freedom (2DOF) PID controller presented in [16] allows setting a desired
transfer function of the closed loop system. For this example, we take the desired transfer function

Pm(s) =
1

(0.98s + 1)(0.5s + 1)
. (25)

The denominator of the transfer function (25) must be included in the desired characteristic
polynomial of the closed loop system when designing a 2DOF controller. Then there are only
two roots left for variation. Assume that they form a complex conjugate pair of roots of the
characteristic polynomial. In this case, the controller coefficients

C(s) =
d2s

2 + d1s+ d0
s(c1s+ c0)

(26)

are obtained from the equation

s2(0.98s + 1)(c1s+ c0) + 0.018(d2s
2 + d1s+ d0) = (0.98s + 1)(0.5s + 1)(s2 + 2ζω̆ + ω̆2).

This example illustrates the search procedure for the variables ζ and ω̆. Since na = 1 here, we
use coordinate descent instead of Algorithm 1.

Let the following bounds be specified:

ω̆min = 0.6, ω̆max = 20, ζmin = 0.8, Smax = 1.7, Nmax = 150. (27)

Weight coefficients should be assigned for the penalty functions of the objective function (13).
These coefficients are chosen so that the constraints have priority over disturbance rejection. Note
that the penalty functions are included in (13) as the ratio of the H∞ norm to its admissible

Fig. 2. Coordinate descent: x̃ = [ω̃, ζ].
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maximum value whereas theH∞ norm of the frequency response function relative to the disturbance
is used in absolute units. Therefore, to choose the weight coefficients, it is necessary to estimate
the value ‖Gyf (jω)‖∞. For example, for the minimum values from the admissible region ω̆ = 0.6,
ζ = 0.8, we obtain ‖Gyf (jω)‖∞ = 0.0239. Then the values µ1 = 1 and µ2 = 0.1 can be taken. The
set of steps (23) is used for both variables.

Figure 2 shows the surface of the objective function on a grid with steps of 0.02 for ω̃ and 0.01
for ζ within the given constraints. Also, this figure presents the objective function values in each
step of the coordinate descent procedure with the initial point

x̃0 =

[
lg ω̆max + lg ω̆min

2
,
1 + ζmin

2

]

= [0.5396, 0.9].

The minimum point is ω̆ = 0.6928, ζ = 0.821, and the corresponding values are

‖S(jω)‖∞ = 1.27, ‖Guν(jω)‖∞ = 149.97, ‖Gyf (jω)‖∞ = 0.0206.

4.2. Controller for a Two-Mass System

Consider the benchmark problem presented in [17], i.e., a robust control design for two trolleys
joined by a spring. For this problem, the pole placement optimization method was used to build
a controller satisfying the speed and robustness requirements of the system [12]. Note that the
standard global optimization procedure from the MATLAB Global Optimization Toolbox [13] was
applied therein to find the optimal roots of the characteristic polynomial. In this subsection, we
use Algorithm 1 to solve the same problem.

Let the transfer function relative to control be

P (s) =
1

s2(s2 + 2)
. (28)

In this plant, control and disturbance are applied at different points, and the open-loop transfer
function relative to the disturbance is known:

Pf (s) =
s2 + 1

s2(s2 + 2)
. (29)

In this case, the H∞ norm of the closed-loop frequency transfer function relative to the disturbance
differs from (7) and is calculated as

‖Gyf (jω)‖∞ = sup
ω

∣
∣
∣
∣

bf (jω)c(jω)

δ(jω)

∣
∣
∣
∣ , (30)

where bf (jω) is the numerator polynomial of the transfer function (29).

Similar to [12], we design a controller of the form (2) with n = 4 under the following bounds
and constraints:

λmin = ω̆min = 0.1, λmax = ω̆max = 100, ζmin = 0.7, Smax = 1.665, Nmax = 100. (31)

We choose the desired structure of the characteristic polynomial (5) with nr = 1 and nc = 3
and the weight coefficients µ1 = µ2 = 100 for the penalty functions in (13). Let the threshold for
varying the objective function be ε = 10−6. We form twenty-four initial points for multiple start by
choosing n1 = 4, n2 = 3, and n3 = 2 and using (16) for the groups λ̃ and ω̃ as well as the following
alternatives for the group ζ : 1) all elements equal ζmin; 2) all elements equal one.
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Fig. 3. The values of the objective function f(x) at each iteration of the search algorithm.

Fig. 4. The values of the objective function f(λ̃1, ω̃1).

The resulting minimum point of the objective function (13) is

xmin = [0.3417, 1.4138, 1.4145, 3.6593, 0.701, 0.700, 0.700], (32)

for which

‖S(jω)‖∞ = 1.665, ‖Guν(jω)‖∞ = 99.96, ‖Gyf (jω)‖∞ = 5.296. (33)

The minimum was found in twenty iterations from an initial point. Figure 3 shows the graph of the
record values of the objective function. Other six points of multiple start yielded ‖Gyf (jω)‖∞ < 6
under the valid constraints. The remaining initial points led to local minima with the invalid
constraint ‖S(jω)‖∞ 6 Smax or a higher value of ‖Gyf (jω)‖∞. Only two of the twenty-four initial
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points of multiple start resulted in the same local minimum; in the rest cases, the search procedure
was completed at different points.

Figure 4 shows the surface of the objective function calculated for the vector x̃ with only the first
two elements being varied on a grid (and the rest equaling the obtained values (32)) and search
alternatives for these two elements from the initial points [0.5, 0.5] and [−1, 0.5]. Obviously, the
search procedure converged to different local minima with values of the objective function equal to
19.8 and 5.3, respectively. In other words, the objective function in this example has a complicated
ravine surface even in the simplified case with two variables.

The same example with the same constraints was solved by several methods in [12]. The con-
troller with ‖Gyf (jω)‖∞ = 5.301, the result almost coinciding with (33), was obtained using systune,
the fixed-structure control system tuning procedure [18] of the MATLAB Robust Control Toolbox.
The solution by the pole placement optimization method using the standard global optimization
procedure was implemented in [12]; the resulting controller rejects the disturbance slightly worse,
ensuring the value ‖Gyf (jω)‖∞ = 6.64.

Thus, the search algorithm proposed in this article found a better solution than the standard
global optimization procedure. The solution obtained by systune is practically not improved, which
suggests its global minimum character.

5. CONCLUSIONS

The control design problem using the pole placement method has been considered, and an
algorithm has been developed to find the desired poles based on the specified system quality criteria
and constraints. The value of the H∞ norm of the frequency transfer function relative to the
disturbance has been selected as the quality criterion of the system, and the maximum admissible
values of the H∞ norms of the sensitivity function and the frequency transfer function relative
to the measurement noise have been set as the constraints. The resulting search algorithm can
be used for other criteria and constraints. In this case, only the penalty components (12) in the
objective function (13) will be changed. Note that in the example of subsection 4.1, the controller
structure differs from (2) since an integral component has been added to the controller. Thus, the
scope of application of the developed approach is not restricted to systems with the controller (2):
it covers all controller structures that can be obtained by the pole placement method. Also, for the
sake of simplicity, an exogenous disturbance has been applied along with the control action in the
system structure. Indeed, the real transfer function relative to the disturbance is often unknown;
in this case, such a simplification of the system structure still allows considering the effect of the
disturbance in the system. If the plant’s transfer function relative to the disturbance is known (see
the example of subsection 4.2), it should be used when forming the transfer function of the closed
loop system relative to the disturbance.

The advantages of the proposed search method are due to considering the properties of the
characteristic polynomial roots. The logarithmic scale taken for the moduli of the characteristic
polynomial roots provides the following benefits. First, it serves to reasonably choose the increment
of the variables in the search procedure. Second, it allows one to form a limited set of initial points
for the multiple start procedure. The search algorithm with a pair of simultaneously varied elements
finds the minimum for an objective function with a complicated surface. Thus, the known features
of the vector of variables in the problem under consideration have been utilized to develop an
effective constrained minimization algorithm for a non-convex multi-extremal objective function.
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Abstract—We consider some problems with a set-valued mapping, which can be reduced to
minimization of a homogeneous Lipschitz function on the unit sphere. Latter problem can be
solved in some cases with a first order algorithm—the gradient projection method. As one of
the examples, the case when set-valued mapping is the reachable set of a linear autonomous
controlled system is considered. In several settings, the linear convergence is proven. The
methods used in proofs follow those introduced by B.T. Polyak for the case where Lezanski–
Polyak–Lojasiewicz condition holds. Unlike algorithms that use approximation of the reachable
set, the proposed algorithms depend far less on dimension and other parameters of the problem.
Efficient error estimation is possible. Numerical experiments confirm the effectiveness of the
considered approach. This approach can also be applied to various set-theoretical problems
with general set-valued mappings.

Keywords : gradient projection method, set-valued integral, strong convexity, supporting set,
Lipschitz condition, nonsmooth analysis
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1. INTRODUCTION

Let Rn be a real Euclidean space with the inner product (·, ·) and norm ‖ · ‖ =
√

(·, ·). Define the
ball Br(a) = {x ∈ R

n : ‖x− a‖ 6 r}, (a ∈ R
n, r > 0) and the unit sphere S1 = ∂B1(0). Denote

by intN and ∂N the interior and the boundary of a set N ⊂ R
n, respectively. Recall that the

supporting function for a closed convex setN ⊂ R
n and vector p ∈ R

n is s(p,N ) = supx∈N (p, x) and
the supporting subset is N (p) = {x ∈ N : (p, x) = s(p,N )}. The set N (p) is called the supporting
element if it is a singleton. For a convex compact set N the set N (p) is the subdifferential (in the
sense of convex analysis) of the supporting function s(p,N ) at the point p. Let PNx be the metric
projection of a point x ∈ R

n onto a closed convex set N .

Let N ⊂ R
n\{0} be a convex compact set and f(p) = s(p,N ). Consider the problem

min
‖p‖=1

f(p) = J. (1)

It is obvious that the solution of problem (1) is a unit vector p0 such that p0 = −z0/‖z0‖,
PN 0 = {z0} and J = (p0, z0). Also z0 ∈ N (p0). Thus finding the projection of zero z0 = PN 0
is equivalent to the problem (1). The general projection problem can be solved the same way as
PNx = x+ PN+(−x)0.

There are many ways to solve the problem of projecting a point onto a convex closed set N , that
depend on how the set N is defined. If the set N is a polyhedron, then it can be solved with the
help of quadratic programming: min ‖x‖2 under conditions (pi, x) 6 s(pi,N ), where {pi} is the set
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of unit normals to N . Method of alternating projections under the transversality condition can be
found in [1, Section 8.5]. In [2], the author considers properties of projector operators. They also
consider convergence of an iterative projection/reflection algorithm for finding points that achieve
a local minimum distance between two closed convex sets or one closed convex set and a closed
prox-regular set. Usefulness of conditional gradient-like methods for determining projections onto
convex sets was considered in [3]. In [4], the authors proposed an iterative algorithm for metric
projection of a point onto a level set of a quadric function. Some algorithms for finding the Bregman
projection of a point onto a closed convex set can be found in [5].

The best rate of convergence for the algorithms considered in the papers above is linear. Besides
that, in many cases, the considered algorithms do not allow one to obtain an efficient computational
procedure.

Further we shall assume that we know supporting function s(p,N ) and supporting subset N (p).
“We know” means that we can efficiently compute s(p,N ) and N (p) for any vector p ∈ R

n\{0}.
Suppose that M⊂ R

n is a convex compact set and R(·) : [0, T ]→ 2R
n
, R(0) = {0}, is a set-

valued mapping with convex compact values that is continuous in Hausdorff metric. Consider a
few problems that can be solved in the framework of statement (1).

Problem (P1). For given t > 0, find the distance between sets R(t) and M, i.e. the value of
ρ(R(t),M) = infx∈R(t), y∈M ‖x− y‖. Find minimal t > 0, so that ρ(R(t),M) = 0.

Problem (P2). For given t > 0, check whether the inclusion R(t) ⊂M holds. Find maximal
t > 0, so that R(t) ⊂M.

Problem (P3). For given t > 0, check whether the inclusion R(t) ⊃M holds. Find minimal
t > 0, so that R(t) ⊃M.

Problems (P1)–(P3) can be stated for an arbitrary set-valued continuous mapping with convex
compact images R(t) and a convex compact set M. Consider a particular case of a set-valued
integral of the form

R(t) =
t∫

0

F(s) ds, (2)

where F is a set-valued mapping with convex compact values. By default we shall assume that
0 ∈ F(s) for all s > 0. The last integral is treated as the Aumann integral [6]

t∫

0

F(s) ds =







t∫

0

u(s) ds : u(s) ∈ F(s)—a measurable selector






.

By the Lyapunov theorem on vector measures [7] the value of the integral is convex and compact.
From formula (2) and the inclusion 0 ∈ F(s) for all s ∈ [0, t] we conclude that {R(t)}t>0 is increas-
ing: R(t1) ⊂ R(t2) for all 0 6 t1 6 t2. It is also possible to consider a setM(t) depending on t.

The support function and supporting subset for integral (2) can be calculated easily: for a unit
vector p and any t > 0 we get

s(p,R(t)) = s



p,

t∫

0

F(s) ds


 =

t∫

0

s (p,F(s)) ds, R(t)(p) =
t∫

0

F(s)(p) ds. (3)

Another class of sets for which we know the supporting function and the supporting element are
finite sums of linear images of some fixed sets M with known s(p,M) and M(p), e.g. ellipsoids.
Suppose that R(t) =∑m

k=1Ak(t)B1(0), where Ak(t) are continuous nondegenerate matrices for all
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t > 0. Then

s(p,R(t)) =
m∑

k=1

s(p,Ak(t)B1(0)) =
m∑

k=1

‖AT
k (t)p‖, R(t)(p) =

m∑

k=1

Ak(t)A
T
k (t)p

‖AT
k (t)p‖

. (4)

Note that a finite sum of ellipsoids is, in general, not an ellipsoid.

Our most important example is the reachable set of an autonomous linear controlled system,
which is described by a differential inclusion

x′(t) ∈ Ax(t) + U , x(0) = 0, x ∈ R
n, A ∈ R

n×n, (5)

where U ⊂ R
n is a compact, 0 ∈ U . The reachable set (all points to which the system can arrive at

the given moment of time) can be represented in the form

R(t) =
t∫

0

eAsU ds. (6)

The most important strengthening of the convexity condition is the concept of strong convexity
with radius R. The set in R

n is strongly convex with radius R if it can be represented as an
intersection of closed balls of radius R [8, 9]. This property can also be defined via the modulus of
convexity [10]. In [8], the authors proved that the set-valued integral (2) is strongly convex if the
multifunction F(s) has strongly convex values. In [11], the local strong convexity in certain sense
was proved for integral (2) with F(s) = A(s)U , where A(s) is a certain class of smooth matrices
and U is a polyhedron. In [12], the second order approximation in time of a Runge-Kutta type
scheme for discretization of strongly convex differential inclusions was considered.

Various problems with set-valued integrals can be solved with the help of approximation of values
of the integrals. In [13], the authors describe different methods to construct an approximation
of the reachable set of a controlled system, see Table 1 therein. One of the most general and
effective methods is based on the supporting function (it is also called hyperplane method), see,
for example, [14]. We can consider an outer polyhedral approximation forM of the form

{x ∈ R
n : (p, x) 6 s(p,M), ∀p ∈ G}, (7)

where G ⊂ R
n is a finite grid of unit vectors and solve the problem for the approximation. The

disadvantage of this approach is that a reasonable approximation can be obtained only in a space
of low dimensions 2 6 n < 5, see [15].

There are also different approaches using special approximations, e.g. with zonotopes [16] or
ellipsoidal technique [17]. The latter technique sometimes permits to describe the reachable set
locally.

In the present paper we think R(t), M, N to be either the value of a set-valued integral or
a finite sum of ellipsoids. We shall show how to reduce different problems, e.g. (P1)–(P3), with
such sets to the problem (1). The function f(p) in (1) turns out to be the supporting function of
some convex compact set N , which depends on R(t) andM. Lezanski-Polyak-Lojasiewicz (LPL)
condition [18, formula (4.6)] is proven in problem (1), from which a linear convergence rate for
gradient projection algorithm is obtained. The supporting function f(p) and its gradient can be
computed, e.g. using formula (3) for a set-valued integral or by (4) for sum of ellipsoids. With the
supporting function and its gradient we obtain an efficient calculation scheme. We also consider
a local condition of strong convexity: for some R > 0 for the solution p0 of (1) the inclusion
N ⊂ BR(N (p0)−Rp0) holds. Under this condition the problem can be solved with the help of the
gradient projection method with a fixed step-size or with Armijo’s step-size. We prove a linear rate
of convergence for all algorithms and consider various examples.
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There is another way to solve (1) using the conditional gradient (CG) method: take the func-
tion g(x) = 1

2‖x‖2, a starting point x1 ∈ N and iterations xk = argmaxx∈N (−g′(xk), x), xk+1 ∈
Argminx∈[xk,xk] g (x). Note that, to ensure the linear convergence of this algorithm, strong convex-
ity of N is usually required [18, Therorem 6.1, 5].

1.1. Notation and Auxiliary Results

Recall that for sets M and N from R
n we have M+N = {x+ y : x ∈ M, y ∈ N} and

M ∗ N = {x : x+N ⊂M} = ⋂

x∈N (M− x). These operations are called the Minkowski sum
and difference of setsM and N .

Denote by ̺(x,M) = infy∈M ‖x− y‖ the distance from a point x to a setM.

The Hausdorff distance on the space of convex compacts in R
n can be defined like this: for any

convex compact setsM,N ⊂ R
n

h(M,N ) = max
‖p‖=1

|s(p,M) − s(p,N )|.

Define [a]−: [a]− = |a| for a 6 0 and [a]− = 0 for a > 0. Then [min‖p‖=1(s(p,M) − s(p,N ))]− is
the halfdistance from N toM and it is equal to maxx∈N ̺(x,M).

Suppose that the set R(t) (6) depends on parameter t. Then we shall denote the supporting
set for a vector p by R(t)(p). From the Aumann’s or Riemann’s definition of the integral for any
matrix J ∈ R

m×n we have JR(t) = ∫ t
0 Je

AsU ds. In particular, for any vector p ∈ R
n

R(t)(p) =
t∫

0

(eAsU)(p) ds.

A set M⊂ R
n is strongly convex with radius R > 0 if we can represent M as intersection of

some collection of closed Euclidean balls with radius R. For any strongly convex set M with
radius R > 0 there exists another strongly convex set N with radius R such thatM+N = BR(0)
[8, 19]. Strong convexity of a compact convex setM with radius R is equivalent to the Lipschitz
condition for the supporting element M(p) on the unit sphere: for all ‖p‖ = ‖q‖ = 1 we have
‖M(p) −M(q)‖ 6 R‖p− q‖ [8].

We shall say that a convex set M⊂ R
n is uniformly smooth with constant r > 0 if we have

M =M0 + Br(0), whereM0 ⊂ R
n is a convex compact set. For more details see [20, Definition 2.1].

Let S0 ⊂ R
n be a smooth manifold without boundary, x ∈ S0, ε > 0. For a differentiable

function f : S0 + intBε(0)→ R define S = S(f, x) = {x ∈ S0 : f(x) 6 f(x)}. Assume S to be a
smooth manifold with the boundary ∂S ⊂ {x ∈ S0 : f(x) = f(x)}. We shall say that the Lezanski–
Polyak–Lojasiewicz (LPL) condition holds on S [18; 21, Section 3.2] with a constant µ > 0 if
Ω = Argminx∈S f(x) 6= ∅ and for all x ∈ S the following inequality holds

‖PTxf
′(x)‖2 > µ(f(x)− f(Ω)). (⋆)

Here Tx is the tangent subspace to the manifold S at the point x ∈ S, PTx is the orthogonal projector
onto Tx, f ′(x) is the Frechet gradient of the function f at the point x ∈ S.

Lemma 1. For any nonzero vectors p, q ∈ R
n we have

∥
∥
∥

p
‖p‖ −

q
‖q‖

∥
∥
∥ 6

‖p−q‖√
‖p‖ ‖q‖

,

Proposition 1 [8]. Suppose that a set-valued mapping F : [0, t]→ 2R
n
is continuous in the Haus-

dorff metric and has strongly convex images F(s) with radius R(s) for all s ∈ [0, t], that is integrable
at [0, t]. Then the integral P =

∫ t
0 F (s) ds is strongly convex with radius R =

∫ t
0 R(s) ds.

It should be mentioned that the set-valued integral can be strongly convex even when F(s) is
not. itself. For example, this situation typically takes place for the reachable set R(t) of system (5)
in dimension n = 2 [22]. Nevertheless, the reachable set in dimensions n > 3 is often not strongly
convex.
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Let us look at an elementary example of a system mentioned in (5) (a similar system is considered
in Example 1 below). Let the control set be a segment: U = co {±v}. Define an analytic function
gp(s) = (p, eAsv). The supporting set R(t)(p) is a singleton, provided that gp(s) 6≡ 0. This is
guaranteed by full rank conditions

span{Aiv}n−1
i=0 = R

n ⇔ spanR(t) = R
n.

Since gp is analytic, the equation gp = 0 has a finite number of roots in [0, t]. The supporting
element can be written down as

R(t)(p) =
t∫

0

eAsv × sign gp(s) ds =
k∑

i=0

ǫi

si+1(p)∫

si(p)

eAsv ds, (8)

where si(p), i = 1, k are the roots of gp(s), s0 = 0, sk+1 = t, ǫi = ±1 is equal to sign of gp(s) when
s ∈ [si, si+1]. Therefore, the behaviour of supporting element is defined by dependence of roots
of analytic function gp(s) on parameter p. If all roots are simple and lie on interval (0, t), then
it follows from implicit function theorem that the support element depends smoothly on p in the
neighbourhood. Therefore, the supporting element is locally Lipschitz. On the other hand, gp can
have roots with multiplicity greater than one belonging to [0, t]. In this case the supporting element
is typically not locally Lipschitz, which means that the strong convexity fails. This is illustrated in
the example below. However, it is easy to show the set of vectors p, such that gp has non-simple
zeros on [0, t], has measure zero on the unit sphere. Some generalizations of this approach to
set-valued integrals can be seen in [11].

Note that if all eigenvalues of A are real, then the number of switchings in optimal control
u(t) = U(eAT (T−t)p) = v × sgngp(T − t) is no greater than n− 1, it is a special case of Feldbaum
theorem, see [23, Theorem 2.11]. In the examples below, we consider a dynamical system defined
by ẋ = Ax+Bu, u ∈ U , t ∈ [0, T ]. The optimal control that guides the system to the support
element R(t)(p) is [24]:

u(t) = U(B⊤eA
⊤(T−t)), t ∈ [0, T ]. (9)

Consider the system

ẋ = Ax+Bu, x(0) = 0, u ∈ R : |u| 6 1, A =






−1 1 0
0 −1 1
0 0 −1




 , B =






0
0
1




 . (10)

Following what was said above, let gp(s) = (p, eAsB) = 1
2e

−s
(
p1s

2 + 2p2s+ 2p3
)
.

Let p0 =
1
3(2,−2, 1), note that gp0(s) = 1

3e
−s(s− 1)2 has a multiple root s = 1. We are interested

in behaviour of supporting element near p0. Remember that f(s) ≍ g(s), s→ 0, if f(s) = O(g(s))

and g(s) = O(f(s)), s→ 0. Define for ε ∈ (0, 1) a unit vector q = q(ε) = (2,−2,1−ε)√
9−2ε+ε2

. It is easy to

see that ‖p − q(ε)‖ ≍ ε, ε→ 0, and to find the roots gq(ε) =: s1,2(ε) = 1±√ε. Then for t > 1 +
√
ε

we can write down the supporting element in the following way:

R(t)(p)−R(t)(q) =
1+

√
ε∫

1−√
ε

e−s(s2, 2s, 2)⊤ ds,

‖R(t)(p)−R(t)(q)‖ >
1+

√
ε∫

1−√
ε

2e−s ds ≍ √ε, ε→ 0.

Therefore, the supporting element fails to be Lipschitz in a neighbourhood of p0, so the reachable
set R(t) is not strongly convex.
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Fig. 1. Attainable set of (10) and normal vectors, where the supporting element is not locally Lipschitz, t = 2.

The reachable set for t = 2 can be seen at Fig. 1. Normal vectors, for which the supporting
element is not locally Lipschitz, can be seen in the upper part of the figure. They lie on the
boundary of the normal cone at the tip of the set. Moreover, it is evident that the reachable set
is structured like a CW complex. This structure appears as a result of (8), since the supporting
element can be determined by positions and multiplicities of the roots of gp(s) on [0, t] and the sign
of gp around the left end of the segment. If the system has a matrix with real eigenvalues, then the
overall multiplicity of roots of gp is not greater that n− 1. It can be shown, that in this case an
arbitrary configuration of roots substituted into (8) produces a point from ∂Rs(t). Evaluating (8)
on sets of roots with different overall multiplicities allows us to extract curvilinear edges and faces
from the reachable set. Some generalization of the above arguments can be seen in [11].

Lemma 2. Suppose that A1 = J−1AJ is the Jordan form of the matrix A from system (5),
U1 = J−1U, where J ∈ R

n×n is the transfer matrix. If the set R1(t) =
∫ t
0 e

A1sU1 ds is strongly
convex with radius r, then R(t) = ∫ t

0 e
AsU ds is also strongly convex with radius R = rα2/β, where

α = ‖J‖ = max‖h‖=1 ‖Jh‖, β = min‖h‖=1 ‖Jh‖.
Note that by [25, Theorem 3] any ellipsoid

N =

{

x ∈ R
n :

n∑

k=1

x2k
λ2
k

6 1

}

, λ1 > λ2 > . . . > λn > 0,

is strongly convex with radius R =
λ2
1

λn
.

Lemma 3. Suppose that in system (5) U is uniformly smooth with constant r > 0. Then R(t) (6)
is uniformly smooth with constant r0 = r

t∫

0

λ2
n(s)

λ1(s)
ds, where λ1(s) > . . . > λn(s) > 0 are the semiaxes

of the ellipsoid eAsB1(0).
Note that by the proof of Lemma 3 any ellipsoid

N =

{

x ∈ R
n :

n∑

k=1

x2k
λ2
k

6 1

}

, λ1 > λ2 > . . . > λn > 0,

is uniformly smooth with constant r = λ2
n

λ1
.
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In particular, Lemmas 2 and 3 show that it is enough to consider system (5) with the Jordan
form of the matrix A.

The next proposition estimates the rate of decrease for a Lipschitz differentiable function per
step of the gradient projection method.

Proposition 2 [26, Lemma 2]. Consider the problem minM f(x) in R
n. Suppose that M is a

closed set, f ′ is a Lipschitz function with constant L1. Fix 0 < λ 6 1
L1

. Assume that x0 ∈ M and
y0 ∈ PM(x0 − λf ′(x0)). Then

f(x0)− f(y0) >
1

2

(
1

λ
− L1

)

‖x0 − y0‖2.

For the validity of the previous formula the Lipschitz condition for f ′ with constant L1 is essential
on the segment [x0, y0], see the proof of [27, Proposition 2.2].

1.2. Additional Assumptions on R(s)
When solving problems (P1)–P(3) we will require some additional assumptions on sets we work

with. Here we will enumerate all of them, we will only need some of them for each problem.

(1) R(s) is strongly convex with radius RT > 0 for all s ∈ [0, T ].
(2) M is uniformly smooth with constant r > 0: M =M0 + Br(0), also

(a) M0 us strongly convex with constant R0 > 0.
(b) r > RT .

(3) M is strongly convex with constant R0 > 0.
(4) U is uniformly smooth with constant rU > 0: U = U0 + BrU (0).
(5) r(t) > R0, where r(t) = rU

∫ t
0

λ2
n(s)

λ1(s)
and λ1(s) > . . . > λn(s) are the semiaxes of the ellipsoid

eAsB1(0).
The first assumption is fulfilled if, for example, the set eAsU is strongly convex with radius

R(s) > 0. Then from proposition 1 and linearity of the integral it follows that

R(T ) =
T∫

0

eAsU ds =

t∫

0

eAsU ds+

T∫

t

eAsU ds = R(t) +
T∫

t

eAsU ds,

then we obtain that the set

R(t) =
⋂






R(T )− x : x ∈

T∫

t

eAsU ds







is strongly convex with radius RT =
∫ T
0 R(s) ds for all t ∈ [0, T ].

1.3. Structure of the Paper

In Sections 2–4 we formulate sufficient conditions and prove results about linear convergence of
the gradient projection method for a particular optimization problem with supporting functions to
which problems (P1)–(P3) are reduced. This solves problems for a fixed t ∈ [0, T ].

In Section 5 we discuss how we can find the starting point p1 for the iteration process. Estimates
of the probability of finding p1 using random search are given.

In Section 6 we discuss the results of numerical experiments. Here we also consider an algorithm
for finding the optimal t in problems (P1)–(P3).
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2. PROBLEM (P1)

Assumptions: 1, 2(a).

For all t ∈ [0, T ] consider the set N (t) = R(t) + (−M0). The set N (t) is strongly convex with
radius R = RT +R0 as a sum of strongly convex sets [19]. The equality R(t) ∩M = ∅ can be
reformulated as follows: the distance from zero to N (t) is more than r > 0. If the last assertion
is true, then 0 /∈ R(t) + (−M) and otherwise 0 ∈ R(t) + (−M). Using the supporting function we
can check the inclusion as follows: for the function f(p) = s(p,N (t)) = s(p,R(t)) + s(p,−M0) find

min
‖p‖=1

f(p) = J. (11)

If J < −r, then the distance from zero to the set N (t) is greater than r. If J > −r, then the
distance from zero to the set N (t) is no greater than r and hence 0 ∈ R(t) + (−M). Note that

f ′(p) = R(t)(p) + (−M0)(p) =

t∫

0

(eAsU)(p) ds + (−M0)(p). (12)

Theorem 1. Fix ε ∈ (0, 1). Suppose that in (11) J < 0. Then under above mentioned assump-
tions the function f in (11) satisfies the LPL condition on the manifold S = {p ∈ S1 : f(p) 6 0}
with constant µ = |J |. Also the function f has Lipschitz continuous gradient on the set {p ∈ R

n :
1− ε 6 ‖p‖ 6 1 + ε} with Lipschitz constant L1 =

R
1−ε = RT+R0

1−ε .

Consider the following iteration process

p1 ∈ S (i.e. f(p1) 6 0), pk+1 = PS1
(pk − λf ′(pk)), λ ∈

(

0,
1

L1

]

. (13)

If pk ∈ S, then pk+1 ∈ S. Indeed, by Proposition 2

f(pk)− f(pk+1) >
1

2

(
1

λ
− L1

)

‖pk − pk+1‖2 > 0, f(pk+1) 6 f(pk) 6 0.

Consider the point pk − λf ′(pk). We have

‖pk − λf ′(pk)‖ > (pk, pk − λf ′(pk)) = 1− λ(pk, f
′(pk)) = 1− λf(pk) > 1.

Theorem 2. Suppose that the function f is Lipschitz continuous with constant L = ‖N (t)‖, the
function f ′ is Lipschitz continuous on S1 with constant R = RT +R0. Suppose that J < 0. Put
L1 = 2R.

Fix λ ∈ (0,min{ 1
L1

, 1
2L}). Then algorithm (13) converges to a point of minimum p0 ∈ S1 at a

linear rate:

f(pk+1)− f(p0) 6 q(f(pk)− f(p0)),

‖pk+1 − pk‖ 6 qk/2
√

2λ(f(p1)− f(p0)),

q = 1− λ|J |
2Lλ+ 2

∈ (0, 1).

The next example shows that the sharpness condition of the type ∃α > 0 that f(p)− f(p0) >
α‖p − p0‖ for all p ∈ S does not hold.

Consider L > r > 0, ‖p0‖ = 1 and the set N = Br(−Lp0). Then for all p ∈ S1 we have

s(p,N )− s(p0,N ) = L(1− (p, p0)) =
L

2
‖p− p0‖2.
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Remark 1. The above results can be proven under more local assumptions. Instead of the strong
convexity assumption 1 of R(T ) with radius RT we can require the fulfillment for all p ∈ S the
supporting principle for the set R(t): there exists RT > 0 with

R(t) ⊂ BRT
(R(t)(p) −RT p), ∀p ∈ S. (14)

Assumption 2(a) concerningM must be met.

In this situation the set Z(t) = R(t) + (−M0) satisfies the supporting principle for all p ∈ S
with radius R = RT +R0:

Z(t) ⊂ BR(N (t)(p)−Rp), ∀p ∈ S.
For any p, q ∈ S we get ‖N (t)(p)−Rp−N (t)(q)‖2 6 R2, ‖N (t)(q)−Rq−N (t)(p)‖2 6 R2 and

‖N (t)(p) −N (t)(q)‖2 6 2R(p,N (t)(p) −N (t)(q)),

‖N (t)(q) −N (t)(p)‖2 6 2R(q,N (t)(q) −N (t)(p)) = 2R(−q,N (t)(p) −N (t)(q)),

hence ‖N (t)(p)−N (t)(q)‖ 6 R‖p− q‖. Keeping in mind that for any p, q ∈ S the small arc of the
circle of radius 1 with center 0 and endpoints p, q belongs to S, we can repeat proofs of Theorems 1
and 2 for the considered case. In the generalization of Theorem 1 we should take p, q ∈ Rn with p

‖p‖ ,
q

‖q‖ ∈ S, i.e. Lipschitz condition will be proved on the set
{

p ∈ R
n : 1− ε 6 ‖p‖ 6 1 + ε, p

‖p‖ ∈ S
}

.

3. PROBLEM (P2)

Assumptions: 1, 2(b), 3.

Fix ε ∈ (0, r − RT ). Consider ε-neighbourhood Rε(t) = R(t) + Bε(0) of the set R(t). Inclusion
R(t) ⊂M means that

max
x∈Rε(t)

̺(x,M) 6 ε

and otherwise, if maxx∈Rε(t) ̺(x,M) > ε, then R(t) 6⊂ M. Using supporting functions we can
formulate an equivalent problem: for the function f(p) = s(p,M)− s(p,Rε(t)) find minimum

min
‖p‖=1

f(p) = J. (15)

If J > −ε then R(t) ⊂M and if J < −ε then R(t) 6⊂ M.

Let S = {p ∈ S1 : f(p) 6 0}. Suppose that p0 ∈ S1 is a solution of (15).

Assume that S 6= ∅. Consider an iteration process

p1 ∈ S, pk+1 = PS1
(pk − λf ′(pk)). (16)

Theorem 3. Suppose that under assumptions of Section 3 we have J < 0 in problem (15).
Let r0 = r −RT − ε > 0, L = ‖M ∗ Rε(t)‖ > 0. Then for any p1 ∈ S and 0 < λ 6

min{r20/R3
0, 1/(2L), 1/(2R0)} iterations (16) converge at a linear rate to the solution p0:

‖pk+1 − p0‖ 6 q‖pk − p0‖, q =

√

1− 2r20
R0

λ+R2
0λ

2 ∈ (0, 1).

Remark 2. As in Section 2, we can prove the above results under more local assumptions. Instead
of the Assumption 1 on strong convexity of R(s) for all s ∈ [0, T ] with radius RT we can require
the fulfillment for all p ∈ S of the supporting principle for the set R(t): there exists RT > 0 such
that for a number ε ∈ (0, r −RT ) we have

M(p)−R(t)(p) +R(t) ⊂ BRT
(M(p)−RT p) ⊂ Br−ε(M(p)− (r − ε)p) ⊂M, ∀p ∈ S. (17)

Assumptions 2(b), 3 concerningM must be met.
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In the considered situation we have

M(p)−R(t)(p)− εp+Rε(t) ⊂M, ∀p ∈ S (18)

and hence f ′(p) =M(p)−R(t)(p)− ε× p =M(p)−Rε(t)(p) =
(M ∗ Rε(t)

)
(p) for all p ∈ S be-

cause f ′(p) ∈ M ∗ Rε(t) and (p, f ′(p)) = s(p,M ∗ Rε(t)) for all p ∈ S. Indeed, fix p ∈ S. From the
inclusion f ′(p)+Rε(t) ⊂M we get f ′(p) ∈ M ∗ Rε(t). On the other hand (p, f ′(p))+s(p,Rε(t)) =
s(p,M) and thus (p, f ′(p)) = s(p,M)− s(p,Rε(t)) > co (s(p,M)− s(p,Rε(t)) = s(p,M ∗ Rε(t)).

The next steps repeat the proof of Theorem 3.

4. PROBLEM (P3)

Assumptions: 1, 3, 4, 5.

Note that by Lemma 3 the set R(t) is uniformly smooth with constant r(t) and hence RT > r(t).

Fix ε ∈ (0, r(t)−R0). Consider ε-neighbourhood Mε =M+ Bε(0) of the set M. Inclusion
R(t) ⊃M means that

max
x∈Mε

̺(x,R(t)) 6 ε

and otherwise, if maxx∈Mε ̺(x,R(t)) > ε, then R(t) 6⊃ M. On the base of supporting functions
we can formulate the next equivalent problem: for the function f(p) = s(p,R(t))− s(p,Mε) =
s(p,R(t)) − s(p,M)− ε‖p‖ find minimum

min
‖p‖=1

f(p) = J. (19)

If J > −ε then R(t) ⊃M and if J < −ε then R(t) 6⊃ M.

As usual, S = {p ∈ S1 : f(p) 6 0}. Suppose that p0 ∈ S1 is a solution of (19).

Assume that S 6= ∅. Consider an iteration process

p1 ∈ S, pk+1 = PS1
(pk − λf ′(pk)). (20)

Theorem 4. Suppose that under assumptions of Section 4 we have J < 0 in problem (19). Let r =
r(t)−R− ε > 0, L= ‖R(t) ∗ Mε‖. Then for any p1 ∈S and 0<λ6min{r2/R3

T , 1/(2L), 1/(2RT )}
iterations (20) converges at a linear rate to the solution p0:

‖pk+1 − p0‖ 6 q‖pk − p0‖, q =

√

1− 2r2

RT
λ+R2

Tλ
2 ∈ (0, 1).

Remark 3. As in Section 3, we can also prove the above results under more local assumptions.
Instead of the strong convexity Assumption 3 ofM with radius R0 we can require the fulfillment
for all p ∈ S of the supporting condition for the setM: there exists R0 > 0 such that

M⊂ BR0
(M(p)−R0p), ∀p ∈ S. (21)

Assumptions 1, 4 and 5 must be met.

5. CHOOSING THE INITIAL POINT

We choose p1 using random search: in problems (P1)–(P3) we sample a random vector p1 ∈ S1
from a uniform distribution and check the inequality f(p1) 6 0. If it fails, we choose another
random vector p1 ∈S1 and so on. In the present section we estimate the probability P({f(p1) 6 0})
to find an appropriate vector p1. As an example, let us consider (P1) for fixed t > 0. Recall, that
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J < 0 is the solution of problem (11). By assumptions for (P1), the set N (t) is strongly convex
with radius R > 0. Denote z0 = PN (t)0, p0 = −z0/‖z0‖. For a set M⊂ R

n define coneM to be
the (convex) conic hull of the setM, i.e. coneM = {∑n

i=1 λixi : xi ∈ M, λi > 0}. For a pair of
points x, y ∈ R

n, x 6= y, define the ray [x, y) = {x+ t(y − x) : t > 0}.
Let D> 0 and H = {x∈Rn : (p0, x− z0) = 0}. Suppose that K= cone (H ∩BD(z0))⊃ coneN (t).

For example, D can be the diameter of the set N (t), i.e. D = supx,y∈N (t) ‖x− y‖.
The set K is a cone of revolution with axis [0, z0). The angle between the axis and a generatrix

is equal to α, tanα = D
|J | . The polar set K− = {p ∈ R

n : (p, q) 6 0 ∀q ∈ K} is also a cone of

revolution with axis [0,−z0) and the angle between the axis and a generatrix is equal to β = 1
2π−α,

thus cos β = D√
D2+J2

.

By the definition of K we have for any p1 ∈ S1 ∩ K− that f(p1) 6 0. Denote Scap = S1 ∩ K−

and S0 = K− ∩H0, here H0 = {x ∈ Rn : (p0, x) = cosβ}. Note that S0 = H0 ∩Br0(cos β × p0)

with r0 = sin β = |J |√
D2+J2

. (n− 1)-Lebesgue’s measure µn−1S0 6 µn−1Scap and thus

P({f(p1) 6 0}) > µn−1Scap
µn−1S1

>
µn−1S0
µn−1S1

=
rn−1
0

n

Vn−1

Vn
=

1

n

Vn−1

Vn

( |J |√
D2 + J2

)n−1

,

Vn = πn/2

Γ(n
2
+1)

is the volume of a unit ball in R
n.

Suppose now that Br(z0 − rp0) ⊂ N (t) for some r > 0. Then consider a cone of revolution
K = coneBr(z0 − rp0) ⊂ coneN (t) with axis [0, z0). The angle between the axis and a generatrix of
K is equal to α, sinα = r

r+|J | . Define a polar cone K− ⊃ (coneN (t))− with the angle β between the

axis [0,−z0) and a generatrix, cos β = r
r+|J | . We have for any p1 ∈ S1 with f(p1) 6 0 that p1 ∈ Scap,

as previously Scap = S1 ∩ K−. Define S10 = K− ∩H1 with H1 = {x ∈ R
n : (p0, x) = 1}. From the

elementary planimetry it is easy to see that S10 = H1 ∩Br1(p0), r1 = tan β =

√
2r|J |+|J |2

r . Then
µn−1S10 > µn−1Scap and

P({f(p1) 6 0}) 6 µn−1Scap
µn−1S1

6
µn−1S10
µn−1S1

=
rn−1
1

n

Vn−1

Vn
=

1

n

Vn−1

Vn

(√

2r|J |+ |J |2
r

)n−1

.

Finally for a set N (t) of diameter D that is also uniformly smooth with constant r we have

1

n

Vn−1

Vn

( |J |√
D2 + J2

)n−1

6 P({f(p1) 6 0}) 6 1

n

Vn−1

Vn

(√

2r|J |+ |J |2
r

)n−1

. (22)

Similarly with the right estimate in (22) for an R-strongly convex set N (t) one can prove that

1

n

Vn−1

Vn

(√

2R|J |+ |J |2
R+ |J |

)n−1

6 P({f(p1) 6 0}).

This estimate shows that P({f(p1) 6 0}) ≍ |J |n−1 when J → 0. In our consideration |J | is of the
order ε > 0 and in this case the left inequality in (22) gives a more reasonable estimate because in
most examples the value of D is much less than R.

The estimated probability can be very small and strongly influences calculations when either |J |
is close to zero or n is large. In our experiments in the examples below for n in range 3 6 n 6 12
we found p1 in a few dozens attempts at most (for problems (P1), (P2)). Sometimes we needed
about 1000 attempts to find the vector p1 in problem (P3). One of the reasons is that D > 0 in
the above estimate can be chosen to be significantly smaller than the diameter N (t), since we only
need the fulfillment of the inclusion cone (H ∩BD(z0)) ⊃ coneN (t).
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Sometimes we can choose p1 deterministically, see the Algorithm from Section 9.

The step size λ for solving problems (P1)–(P3) can be chosen using the Armijo rule. Its detailed
description can be found in [29].

6. MODELING AND EXAMPLES

Some of the considered examples are low-dimensional (n = 3) for ease of interpretation by a
reader. As shown in the following, convergence rates for such examples and for examples of higher
dimension are the same.

6.1. Problem (P1). Example 1

In this example we calculate the point of time at which the reachable set R first intersects the
target setM.

Consider the system

ẋ = Ax+Bu, x(0) = 0, u ∈ R : |u| 6 1, A =






−1.3 1 0
0 −1.3 1
0 0 −1.3




 , B =






0
0
1




 . (23)

The target set isM =M0 + Br(0), whereM0 is the ball B0.2(0.7,−0.3, 0.35), r = 0.5. Recall
that f(p) in problem (11) depends on t, i.e. f(p, t) = s(p,R(t)) + s(p,−M0).

We first consider the auxiliary problem of finding the distance between sets R(t) and M for
t = 1, with initial condition p1 = (0,03123620, −0,72453809, 0,68852659), f(p1, 1) = −0,05270947.

Figure 2,a: Convergence of the gradient projection algorithm for the auxiliary problem
min‖p‖=1 f(p, t) for t = 1. Approximation of the convergence rate is f(pk, 1) − f(p0, 1) ≈ 0.2486×
0.83043k . The found solution is p0 = (0.87540058, −0.46926876, 0.11602002) with f(p0, 1) =
− 0.573989.

The reachable set and the point closest to the target set are depicted on Fig. 3.

When searching for the minimal time at which intersection occurs, we only know the search
interval [0, T ], but not the starting point p1 for arbitrary moment of time from the interval. There
are two different strategies. The first one is to randomly find p1 ∈ S1 with f(p1, t) < 0 for a given t
and increase t by a small amount. However, due to the time-related nature of (P1) there is a better
algorithm. This algorithm involves keeping track of suitable p, f(p, t) < 0, while increasing the
time.

Fig. 2. Convergence of gradient projection algorithm with step size λ = 0.1. (a) Problem (P1), Example 1,
(b) problem (P1), Example 2.
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Fig. 3. The point of the reachable set R(t) (t = 1) closest to the target set found by gradient projection
algorithm (problem (P1), Example 1).

Algorithm for problem (P1) (finding minimal time)
Data: T > 0, f(p, t), r > 0, tolerance εtol > 0, bounds tlower = 0, tupper = T , time step ∆t > 0.

(1) Put t← 0 and find initial p1 satisfying f(p1, 0) < 0 first. Then run the gradient projection
method which gives p(0) = argmin‖p‖=1 f(p, 0) : f(p(0), 0) < 0.

(2) Put ttest = min{t+∆t, tupper}.
If f(p(t), ttest) > 0, then set ∆t ← ∆t/2 and repeat this step.
If f(p(t), ttest) < 0, then proceed to Step (3).

(3) Run the gradient projection method (13) for function f(p, ttest) with initial point p1 = p(t).
It results in p0 and J = f(p0, ttest) = min‖p‖=1 f(p, ttest) < 0.

(4) If J > −r + εtol, then the reachable set intersects the set M. Update tupper ← ttest, ∆t ←
1
2 min{∆t, tupper − tlower} and proceed to Step (2) with the same t and p(t). Otherwise con-
tinue with Step (5).

(5) If J < −r − εtol, then the reachable set has yet to reach the set M. Update tlower ← ttest,
∆t ← min{2∆t,

tupper−tlower

2 }.
Also update t← ttest, p(t)← p0 and continue with Step (2).
Otherwise finish with Step (6).

(6) A solution is found within given tolerance: |J + r| 6 εtol. Return t0 = ttest as the optimal
time for problem (P1), and p0.

Notes: the algorithm performs bisection-like search on the time interval [0, T ]. Probability
of finding suitable p1 at Step (1) may be estimated using results from Section 5. However, it
can be found non-randomly at Step (1) if we can somehow find a unit separation vector p1 ∈ R

n

such that (p1, x) 6 0 for all x ∈ −M0. Further at each Step (2), the initial value p1 of the gradient
projection algorithm is chosen non-randomly. At Step (5), the time step is doubled for faster search.
The algorithm may also operate if the value T is unknown (i.e. tupper =∞), but for tupper > T
convergence conditions for the gradient projection algorithm may be violated. Nevertheless the
invariance tlower 6 ttest 6 tupper is satisfied.

The algorithm stops when we obtain J with a given tolerance εtol, in all examples here and
below εtol = 10−7 and at the final stage tupper− tlower ∼ 10−6. We also can stop the algorithm with
a given precision with respect to the time t: e.g. when tupper − tlower 6 εtime we finish calculations
and take t ∈ [tlower, tupper]. Here εtime > 0 is an admissible time error.

For system (23) Algorithm converges in 21 steps. The optimal time is 2.7383842,

p0 = (0.77091811,−0.60777697, 0.19050571).
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Fig. 4. Attainable set at the moment of intersection and the optimal trajectory (problem (P1), Example 1).

Figure 4 depicts the reachable set and the target set at the moment when they intersect. The
optimal trajectory (as in 9) with two switches can also be seen. Also see [24].

As was shown in Introduction, the reachable set R(t) of system (23) is not strongly convex. For

U =B×[−1, 1] and t>0 we have s(p,R(t)) = ∫ t0 e−1.3s|p1 s
2

2 +p2s+p3| ds for any p= (p1, p2, p3)∈S1.
For the solution p0 = (0.77091811,−0.60777697, 0.19050571) and t = 2.73838 . . . we have the roots

s1(p0) < s2(p0) of the equation p1
s2

2 + p2s+ p3 = 0 for p = p0. By the inverse function theorem the

roots S1 ∋ p→ si(p), i = 1, 2, of the equation p1
s2

2 + p2s+ p3 = 0 are analytic in some neighbour-
hood of the point p0 ∈ S1. In other words, there exists a number γ > 0 such that the functions

S1 ∩Bγ(p0) ∋ p→ si(p), i = 1, 2,

are Lipschitz continuous with some constant L > 0. Moreover, we can choose the number γ > 0 so
that the first components of p and q are strictly positive and max{s1(p), s1(q)} 6 min{s2(p), s2(q)}
for all p, q ∈ S1 ∩Bγ(p0).

Fix a pair of points p, q ∈ S1∩Bγ(p0). Put M = max
s∈[0,t]

‖eAs‖. Then |si(p)−si(q)| 6 L‖p− q‖ for

i = 1, 2 and for the supporting elements, using the estimate ‖U(eAT sp)− U(eAT sq)‖ 6 2, we have

‖R(t)(p) −R(t)(q)‖ =
2∑

i=1

∥
∥
∥
∥
∥
∥
∥

si(q)∫

si(p)

eAs(U(eAT sp)− U(eAT sq)) ds

∥
∥
∥
∥
∥
∥
∥

6 4ML‖p− q‖.

Thus the part of surface {R(t)(p) : p ∈ S1 ∩Bγ(p0)} is a part of a strongly convex set with radius
R = 4ML. In the present example it’s enough for convergence of the gradient projection algorithm
at time t. The same situation takes place for a time less than t.

6.2. Problem (P1), Example 2

Consider an example in R
12.

A = diag(−0.3,−0.8,−1,−0.7,−0.71,−0.52,−0.37,−0.05,−0.25,−0.89,−0.99,−0.2), U = B1(0).
The target set isM =M0 +Br(0), whereM0 is the ball B0.4(0.3× 1) (1 = (1, 1, . . . , 1)), r = 0.2,
step-size λ = 0.1.
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Fig. 5. The kth components uk of the optimal control (problem (P1), Example 2).

Figure 2,b: convergence of the gradient projection algorithm for the auxiliary problem
min‖p‖=1 f(p, t) for the time t = 0.5 and the initial condition

p1 = (0.02046203, 0.24278712, 0.2199823, 0.33539534, 0.11750331, 0.07584814,

0.44196329, 0.14159412, 0.08314335, 0.32560626, 0.49401057, 0.43339861)

with f(p1, 0.5) = −0.047713028083805786.
Approximation of convergence rate is f(pk, 0.5) − f(p0, 0.5) ≈ 0.1218 × 0.8122k .

The optimal value is

p0 = (0.2730037, 0.30197686, 0.3125336, 0.29647251, 0.29702965, 0.28619273,

0.27727228, 0.2572461, 0.26991497, 0.30680235, 0.31202019, 0.26679398)

with f(p0, 0.5) = −0.2023841828091369.
Algorithm converges in 21 steps to the point

p0 = (0.27281666, 0.3021221, 0.31280135, 0.29655398, 0.29711758, 0.28615572,

0.27713348, 0.25688441, 0.26969324, 0.30700357, 0.31228196, 0.26653741)

and the optimal time is 0.503150463104248.

Figure 5 illustrates the optimal control (per components, each line means one of 12 components).

6.3. Problem (P2). Example 3

The reachable set (as in (23)) is touching the target set from the inside.

The target set is the ellipsoidM = {x : (x− c)TQ(x− c) 6 R2}, with

Q =






4.5 −1.2 −1.6
−1.2 6.8 −2.3
−1.6 −2.3 8




 , c =






−3.4
−3.8
0.3




 , R = 12.

Recall that f(p, t) = s(p,M)− s(p,Rε(t)), here we take ε = 0.05, step-size λ = 0.2.
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Fig. 6. Solution of problem (P2), Example 3.

Figure 6: For system (23) a similar bisection algorithm converges in 19 steps (i.e. |J + ε| 6
εtol = 10−7). The optimal time is t = 1,64610733, p0 = (0,36800454, 0,72705740 − 0,57962073).

6.4. Problem (P2). Example 4. Homothete Inside the Target Set

We solve problem (P2) for a homothete, i.e. the problem is stated as

max
t>0

t : tR ⊂M. (24)

DefineM = B10(0), i.e. the ball centered at 0 of raduis 10. The set R is a strongly convex segment
with endpoints [−0.1, 3, 2.05884573], [−1.9, 3,−1.05884573] and radius of strong convexity R = 3,
i.e. R is the intersection of all closed balls of radius R = 3 containing the endpoints.

The supporting element for a unit vector p = (p1, . . . , pn) for a strongly convex segment with

endpoints [−ae1, ae1] and radius of strong convexity R > a is equal to Rp −
√
R2−a2√
1−p2

1

(I − e1e
T
1 )p if

arctan
( p1√

1−p2
1

)

< arcsin( a
R), otherwise it is equal to sign(p1)ae1. We shall consider the homoth-

ety tR, with parameter ε = 0.1 in the definition of f in (15), and step-size λ = 0.2.

Fig. 7. Problem (P2), Example 4. The homothete is not contained insideM when t = 3.
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For t = 3 the set tR is not contained inM (see Fig. 7). An algorithm, similar to one for prob-
lem (P2), in 21 steps gives the optimal value t0 = 2.62904820 and p0 = (−0.3425777, 0.93398621,
0.10153957) (i.e. |J + ε| 6 εtol = 10−7).

6.5. Problem (P3). Example 5

Consider an example in R
10

A = diag(0.1, 0.75, 0.8, 0.81, 0.82, 0.95, 1.0, 1.0, 1.05, 1.1), U = B1(0). The target set is M =
B0.1(0.1× 1), (1 = (1, 1, . . . , 1)), ε = 0.1, step-size λ = 0.1.

We need 21 runs of the gradient projection algorithm to get the solution point

p0 = (0.44643102, 0.32328081, 0.3153902, 0.3138356, 0.31228874,

0.29286442, 0.28572048, 0.28572048, 0.27875066, 0.27195027)

and the optimal time is t0 = 0.35823087.

7. CONCLUSION

In this paper we used a minimization Problem 1 to propose effective solution methods for several
other problems (P1)—(P3) that involve distances and inclusions between sets. Linear convergence
of proposed algorithms is proven. Several examples are given to prove the effectiveness of proposed
solutions.

APPENDIX

A.1. PROOF OF LEMMA 1

Multiply both sides of the inequality by
√

‖p‖ ‖q‖ and take the square.

A.2. PROOF OF LEMMA 3

By the equality eAs = JeA1sJ−1 we get

R(t) =
t∫

0

JeA1sJ−1U ds =

t∫

0

JeA1sU1 ds = JR1(t).

The result follows from [25, Theorem 3].

A.3. PROOF OF LEMMA 3

We have U = U0 + Br(0). Then R(t) = R0(t) + r
∫ t
0 e

AsB1(0) ds,

R0(t) =

t∫

0

eAsU0 ds.

It is enough to prove that the ellipsoid eAsB1(0) is uniformly smooth with constant r(s) = λ2
n(s)

λ1(s)
.

Consider orthonormal basis where the ellipsoid eAsB1(0) has a canonical form

N =

{

x ∈ R
n :

n∑

k=1

x2k
λ2
k

6 1

}

, λk = λk(s).

Then the matrix L = diag {λ1, . . . , λn} gives LB1(0) = N . The ellipsoid V = {x :
∑n

k=1 λ
2
kx

2
k 6 1}

is strongly convex with radius ρ = λ1/λ
2
n. Hence there exists another compact convex set P with

V + P = Bρ(0) and, taking in mind that LV = B1(0), we have

LV + LP = LBρ(0) = ρLB1(0) = ρN ⇔ 1

ρ
B1(0) +

1

ρ
P = N .

Thus the set N is uniformly smooth with constant 1
ρ = λ2

n/λ1.
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A.4. PROOF OF THEOREM 1

Let I be the identity matrix. Assume that p0 ∈ S1 is the solution of problem (1). From the
necessary condition of extremum f(p0) = (p0, f

′(p0)) = −‖f ′(p0)‖. Then PTp = I − ppT for any
p ∈ S1 and ‖(I − ppT )f ′(p)‖2 = ‖f ′(p)‖2 − f2(p). Hence for all p ∈ S we get

‖f ′(p)‖2 − f2(p) = (‖f ′(p)‖ − f(p))(‖f ′(p)‖+ f(p0) + f(p)− f(p0)).

From the inequality f(p) 6 0 and the fact that the supporting element f ′(p0) = N (t)(p0) has min-
imal norm, we have ‖f ′(p)‖ − f(p) > ‖f ′(p)‖ > ‖f ′(p0)‖ = |J |. It remains to note that ‖f ′(p)‖ +
f(p0) = ‖f ′(p)‖ − ‖f ′(p0)‖ > 0.

For any vectors p, q ∈ R
n, 1− ε 6 ‖p‖, ‖q‖ 6 1 + ε, by Lemma 1 we obtain that

∥
∥
∥

p
‖p‖ −

q
‖q‖

∥
∥
∥ 6

‖p−q‖√
‖p‖ ‖q‖

. Fix such p, q. Then by Lipschitz continuity of the supporting element f ′(ξ) = N (t)(ξ)

on the unit sphere with Lipschitz constant R and by the equality f ′(ξ) = f ′ (ξ/‖ξ‖), for all ξ 6= 0,
we get

‖f ′(p)− f ′(q)‖ 6 R

∥
∥
∥
∥

p

‖p‖ −
q

‖q‖

∥
∥
∥
∥ 6

R‖p − q‖
√

‖p‖ ‖q‖ 6
R

1− ε
‖p− q‖. ⊓⊔

A.5. PROOF OF THEOREM 2

Define qk = pk − λf ′(pk), ‖qk‖ > 1− λ‖f ′(pk)‖ > 1− λL > 1
2 . By ‖pk‖ = ‖pk+1‖ = 1, Lemma 1

and from the inequality

‖pk+1 − pk‖ = ‖PS1
(pk − λf ′(pk))− pk‖ 6

‖pk − qk‖
√

‖pk‖ ‖qk‖
6 λ
√
2‖f ′(pk)‖ 6 λ

√
2L 6

1√
2

we get [pk, pk+1] ⊂ {p ∈ R
n : 1

2 6 ‖p‖ 6 3
2}. By Theorem 1 f ′ is Lipschitz continuous on the

segment [pk, pk+1] with constant L1 = R/(1 − 1
2) = 2R.

We also have the LPL condition for the function f on the set S by Theorem 1 with µ = |J |.
Fix λ from the proposition and ℓ = 1

λ > L1. Put zk = ‖ℓpk − f ′(pk)‖ − (pk, pk − f ′(pk)) > 0,

zk =
‖(I − pkp

T
k )f

′(pk)‖2
‖ℓpk − f ′(pk)‖+ (pk, pk − f ′(pk))

>
‖(I − pkp

T
k )f

′(pk)‖2
2‖ℓpk − f ′(pk)‖

. (A.1)

We have

‖pk+1 − pk‖2 = 2− 2
(pk, ℓpk − f ′(pk))
‖ℓpk − f ′(pk)‖

=
2zk

‖ℓpk − f ′(pk)‖
and from the Lipschitz property of f ′ on the segment [pk, pk+1] with constant L1

f(pk+1)− f(pk) 6 (f ′(pk), pk+1 − pk) +
L1

2
‖pk+1 − pk‖2

= (pk, L1pk − f ′(pk))−
(

L1pk − f ′(pk),
ℓpk − f ′(pk)
‖ℓpk − f ′(pk)‖

)

=

(

ℓpk − f ′(pk) + (L1 − ℓ)pk, pk −
ℓpk − f ′(pk)
‖ℓpk − f ′(pk)‖

)

,

f(pk+1)− f(pk) 6 −zk + (L1 − ℓ)

(

pk, pk −
ℓpk − f ′(pk)
‖ℓpk − f ′(pk)‖

)

= −zk +
L1 − ℓ

‖ℓpk − f ′(pk)‖
zk 6 −zk.

From (A.1) and from the LPL condition with µ = |J | we obtain that

f(pk+1)− f(pk) 6 −
‖(I − pkp

T
k )f

′(pk)‖2
2‖ℓpk − f ′(pk)‖

6 − |J |
2‖ℓpk − f ′(pk)‖

(f(pk)− f(p0)).
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Define ϕ(p) = f(p)− f(p0) for all p ∈ S1. From the estimate ‖ℓpk − f ′(pk)‖ 6 ℓ+ ‖f ′(pk)‖ 6 ℓ+L
we have

ϕ(pk+1) 6

(

1− |J |
2ℓ+ 2L

)

ϕ(pk) = qϕ(pk)

and q ∈ (0, 1) because |J | = ̺(0,N (t)) 6 ‖N (t)‖ = L.

For the points {pk} we have (note that ‖pk − λf ′(pk)‖ > 1)

‖pk+1 − pk‖2 6
2zk

‖ℓpk − f ′(pk)‖
6

2λ(f(pk)− f(pk+1))

‖pk − λf ′(pk)‖
6 2λϕ(pk).

A.6. PROOF OF THEOREM 3

Consider f(p):

f(p) = s(p,M0) + r‖p‖ − s(p,Rε(t)).

The setRε(t) is strongly convex with radiusRT + ε < r. Hence there exists another convex compact
set N (t) with Rε(t) +N (t) = BRT+ε(0) and r‖p‖ − s(p,Rε(t)) = (r −RT − ε)‖p‖ + s(p,N (t)).
Thus for all p ∈ R

n

f(p) = s(p,M0) + (r −RT − ε)‖p‖+ s(p,N (t)) = s(p,M0 +N (t) + Br−RT−ε(0))

and the function f(p) is the supporting function of the set N (t) = M ∗ Rε(t) = M0 + N (t) +
Br−RT−ε(0). The latter set is strongly convex with radius R0 and uniformly smooth with constant
r0 = r−RT −ε > 0. The function f ′ is Lipschitz on the set S1 with constant R0 and as in the proof
of Proposition 2 [pk, pk+1] ⊂ {p ∈ R

n : 1
2 6 ‖p‖ 6 3

2}. Thus for any point p from the segment
[pk, pk+1] we have ‖p‖ > 1

2 and for any p, q ∈ [pk, pk+1] by Lemma 1

‖f ′(p)− f ′(q)‖ =
∥
∥
∥
∥f

′
(

p

‖p‖

)

− f ′
(

q

‖q‖

)∥
∥
∥
∥ 6 R0

∥
∥
∥
∥

p

‖p‖ −
q

‖q‖

∥
∥
∥
∥ 6 R0

‖p− q‖
√

‖p‖ ‖q‖ 6 2R0‖p− q‖,

i.e. f ′ is Lipschitz on any segment [pk, pk+1] with constant 2R0. From the Lipschitz property of f ′

and Proposition 2 f(pk) 6 0 for all k.

‖pk+1 − p0‖2 = ‖PS1
(pk − λf ′(pk))− PS1

(p0 − λf ′(p0))‖2,

‖pk − λf ′(pk)‖ > 1, ‖p0 − λf ′(p0)‖ > 1, i.e. pk − λf ′(pk) /∈ intB1(0), p0 − λf ′(p0) /∈ intB1(0) and
thence

‖pk+1 − p0‖2 6 ‖pk − p0 + λ(f ′(pk)− f ′(p0))‖2

6 ‖pk − p0‖2 − 2λ(pk − p0, f
′(pk)− f ′(p0)) + λ2‖f ′(pk)− f ′(p0)‖.

From the strong convexity of the set N (t) with radius R0 we have ‖f ′(pk)− f ′(p0)‖ 6 R0‖pk − p0‖.
Also by the strong convexity of the set N (t) with radius R0 we have [28, Theorem 2.1 (h)]
(pk − p0, f

′(pk)− f ′(p0)) > 1
R0
‖f ′(pk)− f ′(p0)‖2 and by the uniform smoothness of the set N (t)

with constant r0 [28, Definition 3.2, Theorem 3.6]

(pk − p0, f
′(pk)− f ′(p0)) >

1

R0
‖f ′(pk)− f ′(p0)‖2 >

r20
R0
‖pk − p0‖2.

Thus ‖pk+1 − p0‖2 6 q2‖pk − p0‖2.
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A.7. PROOF OF THEOREM 4

Repeat the proof of Theorem 3. In particular, the function f(p) is the supporting function for
the set R(t) ∗ Mε = R(t) ∗ M ∗ Bε(0). The last set is strongly convex with constant RT and
uniformly smooth with constant r. ⊓⊔
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Abstract—An adaptive state-feedback control system is proposed for a class of linear time-
varying systems represented in the controller canonical form. The adaptation problem is re-
duced to the one of Taylor series-based first approximations of the ideal controller parameters.
The exponential convergence of identification and tracking errors of such an approximation to
an arbitrarily small and adjustable neighbourhood of the equilibrium point is ensured if the
condition of the regressor persistent excitation with a sufficiently small time period is satisfied.
The obtained theoretical results are validated via numerical experiments.

Keywords : adaptive control, time-varying parameters, parametric error, persistent excitation,
identification
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1. INTRODUCTION

Starting from the 1960s, the subject of adaptive control has been one of the central ones for
Laboratory No. 7 of V.A. Trapeznikov Institute of Control Sciences of RAS. Its founder, academi-
cian Yakov Zalmanovich Tsypkin, made a significant contribution to research on adaptation and
learning problems and proposed a unified approach to their solution based on stochastic approxi-
mation methods. Using it, in particular, the problems of identification and parameter estimation
were successfully solved. Subsequently, Boris Theodorovich Polyak proposed optimal and robust
pseudogradient adaptation algorithms and strictly analysed their convergence rate [1, 2]. These
studies have largely become the foundations of the adaptive control theory, which, having started
with linear systems with time-invariant parameters, is gradually being generalised to wider classes
of plants. One such class will be discussed in this study.

One of the subjects of adaptive control theory is the problem of the time-invariant reference
model tracking by a time-varying plant with zero steady-state error. Despite more than 65 years of
efforts, this problem still lacks a universal practical solution, which motivates researchers all over
the world to design new approaches and tools.

Conventional adaptive control algorithms are applicable to linear systems with quasi-time-
invariant parameters. When they are applied to control linear time-varying systems, an uncom-
pensated summand occurs in the derivative of the Lyapunov function, which is proportional to the
rate of the unknown parameters change. As a result, instead of the convergence of the tracking
error to zero, only its boundedness inside some ball with non-adjustable boundary is guaranteed.
In [4], based on the speed-gradient method, these results are generalised to the problem of a time-
varying reference model tracking by a nonlinear time-varying system. In [5, 6], various composite
adaptive laws are proposed, which are claimed to reduce the steady-state error value in case the
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regressor persistent excitation condition is met. In [7], a congelation of variables method is pro-
posed, which allows one to damp the above-mentioned uncompensated summand with the help of
not always suitable for practice high-gain feedback, thus ensuring asymptotic convergence of the
tracking error to zero. The alternative approach [8] also provides asymptotic stability, but uses a
high gain in the adaptive law instead of the control one. Considering the method of majorizing
functions [9, 10], the high gain is also used in the adaptive law, but, in contrast to [8], only dis-
sipativity of the closed-loop system is guaranteed. In [11] an adaptive control system is proposed
that provides exponential convergence of the tracking error to zero for systems represented in the
controllable canonical form with time-varying parameters that are described by known exosystems
with unknown initial conditions. In [12] it is proposed to reduce the problem of adaptive control of
time-varying mechanical systems to the identification of the piecewise-constant parameters of the
polynomial obtained by local expansion of the system time-varying parameters into a Taylor series
of an arbitrary order. In [13, 14], based on the parametric identification methods, an approach
to adaptive-optimal output feedback control of time-varying linear systems is developed under the
assumption that the plant parameters are known time-varying functions of time.

The disadvantages of the described above and other known approaches to solve the time-varying
system adaptive control problems can be classified as follows:

1) application of high-gain in the control or adaptive law (sliding-mode control, high values of
the parameters, nonlinear damping signals, etc.) [7–10, 12];

2) the necessity to meet the parametric identifiability conditions [5, 6, 11, 13, 14];

3) the dimensionality of the identification/adaptation problem to be solved is enlarged by taking
into account the coefficients of the physical laws of the system parameters change or approxi-
mation polynomials [11–14].

A more complete state-of-the-art understanding of the time-varying systems adaptive control
problem can be obtained from the statement sections of the cited studies [4–15]. In this paper,
a new approximation-based adaptive control method, which exploits the parameter identification
theory, is proposed for time-varying systems.

The motivation is to investigate the applicability conditions of the recently proposed algo-
rithm [16] that identifies time-varying parameters of a linear regression equation to solve the
time-varying linear system control problem. According to [16], the problem of time-varying param-
eters identification is reduced to the one of estimation of their piecewise-constant approximation.
As follows from the theoretical conclusions of [16], unlike many existing methods of time-varying
parameters identification, the algorithm from [16] allows one to ensure convergence of the time-
varying parameters identification error to a region, which can be arbitrarily reduced by decreasing
the Taylor series expansion time interval in case the regressor is persistently exciting over a suffi-
ciently small period of excitation Ts. In this study, the approach is proposed to be used to control
a class of linear systems with time-varying parameters. To that end:

1) a non-adaptive control law is proposed for a time-varying system, which feedback and forward
parameters are calculated only via the first (piecewise-constant) approximation of the system
time-varying parameters;

2) in case the control law from 1) is applied, the convergence conditions of the tracking error to
an arbitrarily small neighbourhood of zero are obtained;

3) based on the results from [16], the law to estimate the parameters of the controller from 1) is
proposed, which allows one to ensure the convergence of the tracking error to an arbitrarily
small neighbourhood of zero in case the regressor is persistently exciting with a sufficiently
small period of excitation.

Considering the above-given literature review, the obtained approximation-based approach to
design adaptive control systems for time-varying plants is close to [12]. However, unlike in [12],
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firstly, the time-varying parameters are approximated only by the first summand of Taylor series,
which reduces the computational complexity and does not increase the dimensionality of the iden-
tification problem, and secondly, the step of the obtained estimates interpolation is not needed.
In comparison with other existing solutions [4–14], the proposed algorithm of adaptive control of
time-varying linear systems has the following advantages (+) and disadvantages (–):
(+) high gain and damping components are not used in both control and adaptive laws;
(+) the function of the time-varying parameters change is not required to be known;
(+) no a priori information about the system parameters is used;
(–) the repressor persistent excitation condition is required to be met to achieve even asymptotic

convergence of the tracking error to a neighbourhood of zero;
(–) the value of the steady-state tracking error can be reduced only if the period Ts of the regressor

persistent excitation is small enough;
(–) violation of the parametric identifiability condition (the regressor persistent excitation) may

result in instability of the closed-loop system.
In general, although the proposed solution does not overcome all the shortcomings of the existing

approaches, it expands the set of adaptive control methods for the time-varying systems, and
therefore, in the authors’ opinion, it is of interest.

Notation and Definitions

The following notation is adpoted: f (t) ∈Rn×m means a value of a function f :
[

t+0 , +∞
)

→
R
n×m at the time point t, where t+0 > 0 is an initial time instant; for a vector a∈Rn the notation ||a||

is the Euclidean norm; the minimum and maximum eigenvalues of a matrix A∈Rn×n are denoted
as λmin (A) and λmax (A), respectively. The abbreviation exp stands for the exponential stability.

The definitions of finite and persistent excitation are used to prove theorems and propositions.

Definition 1. A signal ω (t) ∈Rn is finitely exciting over a time range [t1, t2] ⊂
[

t+0 ,∞
)

if there

exists α > 0 such that the following inequality holds:

t2∫

t1

ω (τ)ωT (τ) dτ > αIn. (1.1)

Definition 2. A signal ω (t) ∈Rn is persistently exciting if for all t > t+0 > 0 there exist Ts > 0
and α > 0 such that the following inequality holds:

t+Ts∫

t

ω (τ)ωT (τ) dτ > αIn. (1.2)

Set of signals, for which condition (1.1) or (1.2) is met, we denote as FE or PE, respectively.
A signal ω (t) is persistently exciting if ω ∈PE, and it is finitely exciting if ω ∈FE.

The main result of the study utilises the Taylor formula with integral remainder. The conditions
of existence of such equation are defined in the following lemma [17].

Lemma 1. Let (t1, t2) be an open time interval, and f (t) ∈R be a p-times continuously dif-
ferentiable function of time t, then for any pair of time instants t and a from (t1, t2) it holds
that

f (t) = f (a) +
t− a

1!
f (1) (a) + . . .+

(t− a)p

p!
f (p) (a) +

t∫

a

(t− ζ)p

p!
f (p+1) (ζ) dζ. (1.3)
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2. PROBLEM STATEMENT

We consider continuous linear systems with time-varying parameters

ẋ (t) = A(t)x(t) +B(t)u(t) = A0x (t) + en
(

aT (t) x (t) + b (t)u (t)
)

= A0x (t) + enΦ
T (t)Θ (t) , x

(

t+0

)

= x0,
(2.1)

where

A (t) = A0 + ena
T (t) , B (t) = enb (t) ,

A0 =

[

0(n−1)×1 In−1

01×n

]

, en =

[

0(n−1)×1

1

]

,
ΦT (t) =

[

xT (t) u(t)
]

,

Θ(t) =
[

aT (t) b (t)
]T

,

x (t) ∈Rn is a state vector with unknown initial conditions x0, u (t) ∈R stands for a control
signal, A (t) ∈Rn×n denotes an unknown matrix of the system under consideration, B (t) ∈Rn,
Θ (t) ∈Rn+1 are unknown vectors, A0 ∈Rn×n stands for a Frobenius matrix, en ∈Rn is the nth
Euclidean basis vector. The pair (A (t) , B (t)) is completely controllable for all t > t+0 . The con-
trollability condition for the system (2.1) can be validated via application of, for example, a criterion
given in [18].

A salient feature of the class of systems (2.1) is the fact that control and uncertainty signals
are in the same equation. Such systems are called the ones with matched uncertainty, and they
are widely met in practice. For example, the Euler angles dynamics of a rigid body, assuming its
symmetry, is described by a second-order system with matched uncertainty. Another good example
of a control problem with matched uncertainties is the control of a manipulator state using the
Euler–Lagrange formalism.

The following assumption is adopted with respect to the unknown parameters Θ (t).

Assumption 1. The parameters Θ(t) and their first and second derivatives are continuous and
bounded

‖Θ(t)‖ 6 Θmax,
∥
∥
∥Θ̇ (t)

∥
∥
∥ 6 Θ̇max,

∥
∥
∥Θ̈ (t)

∥
∥
∥ 6 Θ̈max,

where the upper bounds Θmax, Θ̇max and Θ̈max exist, but they are unknown.

The required control quality for the closed-loop system that includes the system (2.1) and the
controller is defined with the help of the reference model with time-invariant parameters

ẋref (t) = A0xref (t)+en
(

brefr (t) + aTrefxref (t)
)

, xref
(

t+0

)

= x0ref , (2.2)

where xref (t)∈Rn is a reference model state vector with known initial conditions x0ref , r(t)∈R
denotes a reference signal, Aref = A0 + ena

T
ref ∈Rn×n stands for a Hurwitz reference model state

matrix, bref is a reference model high frequency gain.

We assume that the reference model (2.2) is chosen in such a way that the matching conditions
are met, i.e the state vector of (2.1) can ideally track the one of (2.2).

Assumption 2. There exist parameters kx (t) ∈R1×n and kr (t) ∈R such that the following equa-
tions hold

aTref − aT (t) = b (t) kx (t) , bref = b (t) kr (t) .

This assumption is necessary and sufficient condition for the existence of a control signal u(t)
that ensures for all t > t+0 that the equations of the system (2.1) coincide with those of the chosen
reference model (2.2). The assumption is ensured to be satisfied by choosing a reference model
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in the form of (2.2), by consideration of a class of systems with a time-invariant sign of the high-
frequency gain b(t) and by a completely controllable pair (A (t) , B (t)). It should be noted that
Assumption 2 imposes the following constraint on the system (2.1): sgn (b (t)) = const,1 and hence
jointly Assumptions 1 and 2 require boundedness of bmax > |b (t)| > bmin > 0.

The aim is to design an adaptive control law u (t), which, if Φ∈PE, ensures exponential con-
vergence (exp) of the error eref (t) = x (t)− xref (t) into the goal set

lim
t→∞
‖eref (t)‖ 6 ∆eref (exp) , (2.3)

in such a way that there exists some parameter of the adaptive control procedure, from which value
the steady-state error ∆eref > 0 depends.

3. PRELIMINARY RESULTS AND TRANSFORMATIONS

An effective solution of the control problem of a linear system with unknown piecewise-constant
parameters has been obtained recently in [19]. In this section the problem of adaptive control of a
system (2.1) with time-varying parameters will be transformed into the one of control of a system
with the piecewise-constant parameters. To this end, first of all, we show that the stated goal (2.3)
is achievable with the help of the non-adaptive control law with known ideal parameters, which
uses only piecewise-constant approximations of the time-varying parameters of the system (2.1) in
its feedback and feedforward summands.

Taking into account Assumption 1, the error equation between the plant (2.1) and the reference
model (2.2) is written as

ėref (t) = Areferef (t) + enb (t) [u (t)− kx (t)x (t)− kr (t) r (t)]

= Areferef (t) + enb (t)
[

u (t)−KT (t)ω (t)
]

,
(3.1)

where

eref (t) = x (t)− xref (t) , ω (t) =
[

xT (t) rT (t)
]T
∈Rn+1,

K (t)=
[

kx (t) kr (t)
]T
∈R(n+1)×1.

The disturbance KT (t)ω (t) is going to be represented as a sum of two terms: with the piecewise-
constant and time-varying parameters. To that end, a growing sequence is introduced

t+i = T

⌊

t− t+0
T

⌋

, i∈N,

where t+i+1 − t+i = T > 0, ⌊.⌋ : R→ Z is a function to round down to the closest integer.

As, owing to Assumptions 1 and 2, the parameters K (t) are differentiable, then, following the
Taylor equation (1.3), it can be written for the neighbourhood T of the time instant t+i :

K (t) = K
(

t+i

)

+

t∫

t+i

K̇ (ζ) dζ

︸ ︷︷ ︸

δK0(t)

, (3.2)

where K
(

t+i

)

= Ki are values of the parameters K (t) at the time instant t+i , ‖δK0 (t)‖ 6 K̇maxT is

the reminder of the zeroth order (p = 0, see (1.3)).

1 Otherwise there exists a time instant ta > t+0 at which b (ta) = 0, and equations from Assumption 2 have no
solution in the general case (bref 6= 0, aref − a (ta) 6= 0n).
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(a) (b)

Fig. 1. Graphical illustration of relationship between K(t), θ (t) and θ̂ (t).

Owing to (3.2), for each time range
[

t+i , t
+
i + T

)

the time-varying parameters K (t) can be ap-

proximated by their value Ki at the beginning of such time range. Then the sequence of such values
{K0,K1, . . . ,Ki} together with the sequence of the switching time instants {t+0 , t+1 , . . . , t+i } define
the piecewise-constant signal, which is the first approximation of the time-varying parameters K (t)
for all t > t+0 :

θ (t) = Ki = K0 +
i∑

q=1

∆θ
qh
(

t− t+q

)

, (3.3)

where ∆θ
q = Kq−Kq−1 is the amplitude of the parameters K (t) change over the time range

[

t+i , t
+
i+1

]

,

h : [t+0 , ∞)→ {0, 1} stands for the Heaviside function.

For all t > t+0 , equation (3.3) allows one to write the time-varying parameters as a sum K (t) =
θ (t) + δK0 (t), which results in the required representation of the disturbance

ėref (t) = Areferef (t) + enb (t)
[

u (t)− θT (t)ω (t)− δTK0 (t)ω (t)
]

. (3.4)

Equation (3.4) motivates to introduce the following implementable continuous non-adaptive
control law

u (t) = θ̂T (t)ω (t) , (3.5a)

˙̂
θ (t) = −γ1

(

θ̂ (t)− θ (t)
)

= −γ1θ̃ (t) , θ̂
(

t+0

)

= θ̂0, (3.5b)

where θ̂ (t) stands for the result of the parameters θ(t) filtration, and γ1 > 0 denotes the filter
parameter.

Considering a particular case K(t) = sin (t) + 2 and T = 1, the relationship between the parame-
ters K(t), θ (t) and θ̂ (t) is explained in Figs. 1a and 1b. For the same example, Fig. 1b demonstrates
the approximation error δK0 (t) and its upper bound K̇maxT = 1.

The conditions, under which the stated goal is achieved by application of the law (3.5a) + (3.5b),
are presented in the following proposition.

Proposition 1. If the condition i 6 imax <∞ is met, then there exists Tmin > 0 such that for all
0 < T < Tmin the control law (3.5) ensures that the stated goal (2.3) is achieved.

Proof of proposition is postponed to Appendix.

According to Proposition 1, in order to solve the stated problem (2.3), it is sufficient to use
piecewise-constant approximations θ(t) of the time-varying parameters of the disturbanceKT(t)ω(t)
to calculate the parameters of the control law (3.5a). Thus the adaptive control problem for a class
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of systems with unknown time-varying parameters (2.1) is reduced to the one of identification of
the unknown piecewise-constant parameters θ (t). To solve this problem, it is natural to be based
jointly on approaches previously developed in [16, 19].

Remark 1. The condition i 6 imax <∞ is required for formal proof of proposition 1 and is not
restrictive for practical scenarios.

4. MAIN RESULT

Following the method of exponentially stable adaptive control of systems with piecewise-constant
parameters [19], for indirect implementation of (3.5), we first obtain a regression equation relating
the parameters θ (t) to the signals calculated on the basis of the measurable vector Φ (t). The result
of such a parameterisation can be formulated as a proposition.

Proposition 2. Using the state of the stable filter (l > 0) with resetting at some time instants t+i

Φ̇ (t) = −lΦ(t) + ΛT
(

t, t+i

)

Φ (t) , Φ
(

t+i

)

= 02(n+1),

Λ
(

t, t+i

)

=
[

In+1

(

t− t+i

)

In+1

]

∈R(n+1)×2(n+1),
(4.1)

normalization procedure

zn (t) = ns (t) e
T
n [x (t)− lx (t)−A0x (t)] ,

ϕT
n (t) = ns (t)ϕ (t) = ns (t)

[

Φ
T
(t) e−l(t−t+i )

]

,

ns (t) =
1

1 + ϕT (t)ϕ (t)
, x (t) =

[

In×n 0n×(n+2)

]

Φ (t) ,

(4.2)

extension (σ > 0)

ż (t) = e−σ(t−t+i )ϕn (t) z
T
n (t) , z

(

t+i

)

= 02n+3, (4.3a)

ϕ̇ (t) = e−σ(t−t+i )ϕn (t)ϕ
T
n (t) , ϕ

(

t+i

)

= 0(2n+3)×(2n+3), (4.3b)

mixing

Y (t) : = adj {ϕ (t)} z (t) , ∆(t) : = det {ϕ (t)} , (4.4)

elimination

za (t) = Y T (t)La, zb (t) = Y T (t)Lb,

La =
[

In×n 0n×(n+3)

]T
∈R(2n+3)×n, Lb =

[

01×n 1 01×(n+2)

]T
∈R(2n+3)×1,

(4.5)

substitution

Y (t) : =
[

∆(t) aTref − za (t) ∆ (t) bref
]T

, M (t) : = zb (t) , (4.6)

and smoothing (k > 0)

Υ̇ (t) = −k (Υ (t)− Y (t)) , Υ
(

t+0

)

= 0n+1, (4.7a)

Ω̇ (t) = −k (Ω (t)−M (t)) , Ω
(

t+0

)

= 0, (4.7b)

we have a perturbed regression equation

Υ(t) = Ω (t) θ (t) + w (t) , (4.8)

where the signals Υ(t) , Ω (t) are calculated via Φ (t) and additionally:
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a) if Φ∈PE⇒ ϕn ∈PE with the period Ts < T , then there exists Tmin > 0 such that for all
0 < T < Tmin and t > t+0 +Ts it holds that

0 < ΩLB 6 Ω (t) 6 ΩUB.

b) if i 6 imax <∞, then for all t > t+0 +Ts it holds that

‖w (t)‖ 6 w1maxe
−γ1(t−t+

0
−Ts) + w2max (T ) ,

lim
T→0

w2max (T ) = 0.

Proof of proposition and definition of w (t) are given in Appendix.

The parameterisation (4.1)–(4.8) uses the procedures proposed to solve the problem of adaptive
control of systems with piecewise-constant parameters [19]. The difference is that the time-varying

matrix Λ
(

t, t+i

)

is used in (4.1) and the states of the filters (4.1) and (4.3) are reset at known,

rather than algorithmically detectable, time instants.

Here we briefly explain the purpose of the procedures in use. Having the measurable signals Φ(t)
at hand, the application of the filter (4.1) allows one to obtain a regression equation with mea-

surable regressor and regressand with respect to parameters ϑ (t) =
[

Θi
T Θ̇T

i eTnx
(

t+i

)]T
, where

Θ
(

t+i

)

= Θi, Θ̇
(

t+i

)

= Θ̇i are the values of the system parameters Θ (t) and the rate of their

change at the time instant t+i . The normalisation (4.2) ensures that all signals used in further
procedures belong to L∞ space. The extension and mixing procedures (4.3), (4.4) allow one to
transform the vector regressor ϕn (t) ∈R2n+3 into a scalar one ∆ (t) ∈R. Owing to ∆ (t) ∈R, the
elimination (4.5) separates the regression equation under consideration into two ones with respect
to the parameters of the piecewise-constant approximation of a (t) and b (t). By substitution (4.6)
of (4.5) into the matching conditions (see assumption 2), we transform the equations with respect
to approximation of the system parameters into the ones with respect to approximation θ (t) of the
perturbation parameters. Smoothing (4.7a), (4.7b) allows one to ensure sufficient smoothness of
the signals Υ (t) and Ω (t).

Having at hand the regression equation (4.8) that regressor and regressand are based only on
measurarble signals Φ (t), we can indirectly implement the law (3.5) and guarantee the achievement
of the goal (2.3).

Theorem 1. Let Φ∈PE⇒ ϕn ∈PE with the period Ts < T , Assumptions 1–2 be met, then there
exists Tmin > 0 such that for all 0 < T < Tmin the control law (3.5a) with the adaptive law

˙̂
θ (t) = −γ (t)Ω (t)

(

Ω (t) θ̂ (t)−Υ(t)
)

= −γ (t)Ω2 (t) θ̃ (t) + γ (t)Ω (t)w (t) , θ̂
(

t+0

)

= θ̂0,

γ (t) =







0, if Ω (t) < ρ∈ (0, ΩLB] ,
γ1

Ω2 (t)
otherwise,

(4.9)

in case i 6 imax <∞ for ξ (t) =
[

eTref (t) vecT
(

θ̃ (t)
)]T

, ensures that:

1) ∀t > t+0 ξ (t) ∈L∞,

2) lim
t→∞

‖ξ (t)‖ 6 ∆ξ (T ) (exp) , lim
T→0

∆ξ (T ) = 0.

Proof of theorem is presented in Appendix.
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Fig. 2. Block diagram of proposed adaptive control system.

The block diagram of the obtained algorithm for adaptive control of systems with time-varying
unknown parameters (2.1) is presented in Fig. 2.

Thus, the developed control system consists of a control law (3.5a), an adaptive law (4.9), a set
of procedures (4.1)–(4.7) to process the measurable signals. In contrast to existing adaptive control
methods [4–14], the proposed approach does not require any a priori information about the system
parameters a (t) and b (t), does not use high-gain in control or adaptive laws, guarantees global
exponential convergence of the error ξ (t) to the bounded neighbourhood of the equilibrium, which
can be adjusted by the parameter T .

Remark 2. The feature of the proposed solution is the relationship between the steady-state
error ∆ξ (T ), the length of the Taylor series expansion interval T and the period of the regressor
persistent excitation Ts. The problem is that the parameter T cannot be made smaller than
the value of the regressor excitation period Ts. However, for a fixed period Ts and a minimum
possible T < Tmin such that T − Ts > 0, the error ξ (t) may be bounded in an unacceptably large
neighbourhood of the equilibrium point ∆ξ (T ). Therefore, in order to reduce the steady-state
error, it is necessary, first of all, to ensure a persistent excitation of the regressor with a sufficiently
small period Ts, which in practice can be achieved by addition of a high-frequency or random test
signal to the reference r (t).

5. NUMERICAL EXPERIMENTS

In Matlab/Simulink numerical experiments have been conducted for the proposed adaptive
system using the explicit Euler solver with a constant step time of τs = 10−3 s.

The system (2.1) was considered with n = 2. The initial conditions, the parameters of the system
and reference model (2.2) were chosen as

x0 =
[

−1 1
]T

, b (t) = 3 + cos (0.4t) sin (0.1t) , aTref (t) =
[

−8 −4
]

,

aT (t) =
[

2 + sin (0.1t) 1 + 5
(

1− e
−1

25
t
)]

, bref = 8.
(5.1)

First, we verified the preliminary conclusions made in Proposition 1. We picked γ1 = 50 as the
filter constant (3.5b), and defined the reference as r (t) = 10. Figure 3 presents the comparison of
the error e1ref (t) for different T .

The obtained results validated the conclusions made in Proposition 1. Indeed, a decrease of T re-
sulted in a decrease of the steady-state value of the tracking error eref (t) when the control law (3.5a)
with (3.5b) was applied. Having checked proposition 1, we proceeded to verify the main result.
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Fig. 3. Behavior of |e1ref (t)| for different T .

Fig. 4. Behavior of regressorsM(t) and Ω (t).

The parameters of the filters (4.1), (4.3), (4.7) and the adaptive law (4.9) were chosen as

l = 10, σ =
0.05

T
, k = 50, ρ = 10−72, γ1 = 100, T = 0.25,

the reference was picked as r (t) = 1 + rd (t) for rd (t) ∼ N
(
0, 10−2

)
. A random signal rd (t) was

added to a unity reference signal to ensure that ϕn ∈PE for the closed-loop system (3.1).

Figure 4 depicts the behavior of the regressorsM(t) and Ω (t) on the logarithmic scale.

It follows from the obtained results that despite the fact that the filters (4.1) and (4.3) were
reset every T seconds, the regressor Ω (t) (unlike M(t)) was globally bounded away from zero
starting from some time instant, which confirms the theoretical conclusions made in statement (a)
of Proposition 2. Figure 4 demonstrates the importance of the smoothing procedure (4.7), which,
as can be seen, allows one to (i) average the values of the regressor M(t) over the period T , and
(ii) avoid discontinuities caused by the reinitialisation of the filters (4.1) and (4.3).

Figure 5 shows the behavior of (a) the state x (t) when the control law (3.5a) with (3.5b) and
with (4.9) is used, (b) the estimates of θ̂i (t) and the true parameters θi (t) + 1 shifted by one for
clarity of illustration, (c) the control signal (3.5a) with (4.9).

Figure 6 compares the values of the integral control quality index of tracking eref (t) and para-
metric θ̃ (t) errors for different values of T .

The simulation results illustrate the conclusions of Propositions 1, 2 and theorem. The goal (2.3)
is achieved, and the steady-state values of the errors eref (t) and θ̃ (t) are directly proportional to
the parameter T .
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Fig. 5. Behavior of (a)–(b) state x (t) when control law (3.5a) used with (3.5b) and with (4.9),
(c) estimates θ̂i (t) and ideal parameters θi (t) + 1 shifted by one for clarity of illustration,
(d) control signal (3.5a) with (4.9).

Fig. 6. Comparison of integral control quality indexes.

6. CONCLUSION

The problem of tracking of a linear time-invariant reference model by a linear time-varying
system is solved. It is proposed to approximate the unknown time-varying parameters of the
ideal control law by piecewise-constant parameters. Parametric identification methods proposed
in [16, 19] are combined to identify these piecewise-constant parameters. The resulting adaptive
control system requires persistent excitation of the regressor with a sufficiently small period to
achieve the control goal, but it does not require a priori information about the unknown parameters
of the system.
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APPENDIX

Proof of Proposition 1. The proof of the proposition is divided into two steps. At the first one
we analyse the properties of the parametric error θ̃ (t), at the second one — the properties of the
tracking error eref (t).

Step 1. Owing to proposition 1 from [19], if i 6 imax <∞, then for the differential equation

˙̃θ (t) = −γ1θ̃ (t)− θ̇ (t) , θ̃
(

t+0

)

= θ̂0 − θ
(

t+0

)

,

the following upper bound holds
∥
∥
∥θ̃ (t)

∥
∥
∥ 6 βmaxe

−γ1(t−t+
0 ), βmax > 0, (A.1)

where θ̇ (t) =
i∑

q=1
∆θ

qδ
(

t− t+q

)

, and δ : [t+0 ;∞)→ {0,∞} is the Dirac function.

Step 2. The following quadratic form is introduced:

Veref = eTrefPeref+
a20
γ1

e−2γ1(t−t+
0 ), H = blockdiag

{

P ,
a20
γ1

}

,

λmin (H)
︸ ︷︷ ︸

λm

‖eref‖2 6 V (‖eref‖) 6 λmax (H)
︸ ︷︷ ︸

λM

‖eref‖2,
(A.2)

where eref (t) =
[

eTref (t) e−γ1(t−t+
0 )
]T

, P = PT > 0 is the solution of the below-given Lyapunov

equation in case λmin (Q) > 2:

AT
refP + PAref = −Q, Q = QT > 0.

The derivative of the quadratic form (A.2) is written as:

V̇eref = eTref

(

AT
refP + PAref

)

eref − 2a20e
−2γ1(t−t+

0 ) + 2eTrefPenbθ̃
Tω + 2eTrefPenbδ

T
θ0ω

= −eTrefQeref − 2a20e
−2γ1(t−t+

0 ) + 2eTrefPenbθ̃
T
(

ωeref + ωr

)

+ 2eTrefPenbδ
T
θ0

(

ωeref + ωr

)

6 −λmin (Q) ‖eref‖2 − 2a20e
−2γ1(t−t+

0 )

+ 2λmax (P ) bmax‖eref‖2
∥
∥
∥θ̃
∥
∥
∥+ 2λmax (P )ωrbmax ‖eref‖

∥
∥
∥θ̃
∥
∥
∥

+ 2λmax (P ) bmaxK̇maxT‖eref‖2 + 2λmax (P ) bmaxωrK̇maxT ‖eref‖ ,

(A.3)

where

‖ω (t)‖ 6
∥
∥
∥

[

eref (t) 0
]∥
∥
∥

︸ ︷︷ ︸
∥
∥ωeref

(t)
∥
∥=‖eref (t)‖

+
∥
∥
∥

[

xref (t) r (t)
]∥
∥
∥

︸ ︷︷ ︸

‖ωr(t)‖ 6 ωr

6 ‖eref (t)‖+ ωr.

Having applied Young’s inequality twice:

2λmax (P )ωrbmax ‖eref‖
∥
∥
∥θ̃
∥
∥
∥ 6 ‖eref‖2 + λ2

max (P )ω2
rb

2
max

∥
∥
∥θ̃
∥
∥
∥

2
,

2λmax (P ) bmaxωrK̇maxT ‖eref‖ 6 λ2
max (P ) b2maxω

2
rK̇2

maxT
2 + ‖eref‖2,

(A.4)
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equation (A.3) is rewritten as:

V̇eref 6
[

−λmin (Q) + 2λmax (P ) bmax

(∥
∥
∥θ̃
∥
∥
∥+ K̇maxT

)

+ 2
]

‖eref‖2

−2a20e−2γ1(t−t+
0 ) + λ2

max (P )ω2
rb

2
max

∥
∥
∥θ̃
∥
∥
∥

2
+ λ2

max (P ) b2maxω
2
rK̇2

maxT
2.

(A.5)

As the parametric error θ̃ (t) converges to zero exponentially (A.2), then, if λmin (Q) > 2, then
there definitely exists a time instant teref > t+0 and constants Tmin > 0, a0 > λmax (P )ωrbmaxβmax

such that for all t > teref and 0 < T < Tmin it holds that

−λmin (Q) + 2λmax (P ) bmax

(

βmaxe
−γ1
(
teref −t+

0

)

+ K̇maxT

)

+ 2 = −c1 < 0,

λ2
max (P )ω2

rb
2
maxβ

2
max − 2a20 = −c2 < 0.

(A.6)

Then the upper bound of the derivative (A.5) for all t > teref is written as

V̇eref 6 −ηerefVeref + λ2
max (P ) b2maxω

2
rK̇2

maxT
2, (A.7)

where ηeref = min
{

c1
λmax(P ) ,

c2γ1
a2
0

}

.

The solution of the differential inequality (A.7) for all t > teref is obtained as

Veref (t) 6 e
−ηeref

(

t− teref

)

Veref

(

teref

)

+
λ2
max (P ) b2maxω

2
rK̇2

maxT
2

ηeref
. (A.8)

Tending time to infinity for (A.8) and considering expression for Veref , it is concluded that (2.3)
holds, which completes the proof.

Proof of Proposition 2. Owing to assumption 2 and following (3.2)–(3.3), we apply the Taylor
formula (1.3) to the parameters Θ (t) to obtain:

Θ (t) = Θ
(

t+i

)

+

δ0(t)
︷ ︸︸ ︷

Θ̇
(

t+i

) (

t− t+i

)

+

t∫

ti

(t− ζ)Θ̈ (ζ) dζ

︸ ︷︷ ︸

δ1(t)

, (A.9)

where Θ
(

t+i

)

= Θi, Θ̇
(

t+i

)

= Θ̇i are the values of the system parameters Θ (t) and the rate of

their change at the time instant t+i , ‖δ1 (t)‖ 6 0.5Θ̈maxT
2 denotes the bounded reminder of the

first order (p = 1), ‖δ0 (t)‖ 6 Θ̇maxT is the bounded reminder of the zeroth order (p = 0).

Equation (A.9) is rewritten in the matrix form

Θ (t) = Λ
(

t, t+i

)

ϑ (t) + δ1 (t) , (A.10)

where ϑ (t) =
[

Θi
T Θ̇T

i

]T
∈R2(n+1).

The substitution of (A.10) into (2.1) yields

ẋ (t) = A0x+ en
(

ΦT (t) Λ
(

t, t+i

)

ϑ (t) + ΦT (t) δ1 (t)
)

. (A.11)

The expression x (t)− lx (t) is differentiated to obtain

ẋ (t)− lẋ (t) = −l (x (t)− lx (t)) +A0x+ en
(

ΦT (t)Λ
(

t, t+i

)

ϑ (t) + ΦT (t) δ1 (t)
)

. (A.12)
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The solution of (A.12) is written as

x (t)− lx (t) = e−l(t−t+i )x (ti) +A0x (t) +

t∫

t+i

e−l(t−τ)enΦ
T (τ) Λ

(

τ, t+i

)

ϑ (τ) dτ

+

t∫

t+i

e−l(t−τ)enΦ
T (τ) δ1 (τ) dτ = A0x (t) + enϕ (t)ϑ (t) + en

t∫

t+i

e−l(t−τ)ΦT (τ) δ1 (τ) dτ

︸ ︷︷ ︸

ε0(t)

,
(A.13)

where ϑ (t) =
[

ϑT (t) eTnx
(

t+i

)]T
∈R2n+3, and the third equality is not violated since the reset of

the filter states (4.1) and the change of parameters occur synchronously at a known time instant t+i ,

i.e. ϑ (t) = const for all t∈
[

t+i , t
+
i + T

)

.

Equation (A.13) is substituted into (4.2) to obtain

zn (t) = ns (t) e
T
n [x (t)− lx (t)−A0x (t)] = ϕT

n (t)ϑ (t) + ε0 (t) , (A.14)

where zn (t) ∈R, ϕn (t) ∈R2n+3 and the perturbation ε0 (t) ∈R is bounded as follows (see defini-
tions of Φ (t) and ϕn (t)):

‖ε0 (t)‖ =
∥
∥
∥
∥
∥
ns (t)

t∫

t+i

e−l(t−τ)ΦT (τ) δ1 (τ) dτ

∥
∥
∥
∥
∥
6

∥
∥
∥ϕT

n (t)
∥
∥
∥ 0.5Θ̈maxT

2. (A.15)

Owing to the multiplication of the regression equation (A.14) by ns (t), the regressor ϕT
n (t),

the regressand zn (t) and the perturbation ε0 (t) are bounded. In addition, according to the upper
bound (A.15), the perturbation ε0 (t) can be reduced by decreasing the parameter T . Therefore,
further on we will use the definition ε0 (t) : = ε0 (t, T ) and imply that any perturbation obtained
by transformation of ε0 (t, T ) can also be reduced by a reduction of T .

Having applied (4.3) and multiplicated z (t) by adj {ϕ (t)}, we have (commutativity of the filter
(4.3a) is not violated as its reinitialization and parameters change happen synchronously at a known
time instant t+i , i.e. ϑ (t) = const for all t∈ [t+i , t+i + T ))

Y (t) : = adj {ϕ (t)} z (t) = ∆ (t)ϑ (t) + ε1 (t, T ) ,

adj {ϕ (t)}ϕ (t) = det {ϕ (t)} I2(n+1)+1 = ∆(t) I2(n+1)+1,

ε1 (t, T ) = adj {ϕ (t)}
t∫

t+i

e−σ(τ−t+i )ϕn (τ) ε0 (τ , T ) dτ ,

(A.16)

where Y (t) ∈R2n+3, ∆(t) ∈R, ε1 (t, T ) ∈R2n+3.

Owing to ∆ (t) ∈R, the elimination (4.5) allows one to obtain the following from (A.16)

za (t) = Y T (t)La = ∆(t)ϑT
a (t) + εT1 (t, T )La,

zb (t) = Y T (t)Lb = ∆(t)ϑb (t) + εT1 (t, T )Lb,
(A.17)

where za (t) ∈R1×n, zb (t) ∈R, and ϑa (t) , ϑb (t) are the first order approximations of the param-
eters a (t) and b (t), respectively (components of the vector Θi).
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In case Assumption 2 is met, following the definition of the signal K (t), the first order approxi-
mations θx (t) and θr (t) of the parameters kx (t) and kr (t), respectively, satisfy the equations

aTref − ϑT
a (t) = ϑb (t) θx (t) , bref = ϑb (t) θr (t) . (A.18)

where θ (t) =
[

θx (t) θr (t)
]T

.

Each equation from (A.18) is multiplied by ∆ (t). Equations (A.17) are substituted into the
obtained result to have equation (4.6):

Y (t) =M (t) θ (t) + d (t, T ) ,

Y (t) : =
[

∆(t) aTref − za (t) ∆ (t) bref
]T

,

M (t) : = zb (t) ,

d (t, T ) : = −
[

εT1 (t, T )La + εT1 (t, T )Lbθr (t) εT1 (t, T )Lbθr (t)
]T

,

(A.19)

where Y (t) ∈Rn+1, M (t) ∈R, d (t, T ) ∈Rn+1.

Owing to (A.19), the solution of (4.7a) is written as

Υ (t) =

t∫

t+
0

e

τ∫

t

kdτ

M (τ) θ (τ) dτ +

t∫

t+
0

e

τ∫

t

kdτ

d (τ, T ) dτ ± Ω (t) θ (t) = Ω (t) θ (t) + w (t) , (A.20)

where

w (t) = Υ (t)− Ω (t) θ (t) .

Equation (A.20) completes the proof of the fact that equation (4.8) can be obtained via procedure
(4.1)–(4.7).

In order to prove statement (a), the regressor Ω (t) is represented as:

Ω (t) = Ω1 (t) + Ω2 (t) ,

Ω̇1 (t) = −k (Ω1 (t)−∆(t)ϑb (t)) , Ω1

(

t+0

)

= 0,

Ω̇2 (t) = −k
(

Ω2 (t)− εT1 (t, T )Lb

)

, Ω2

(

t+0

)

= 0.

(A.21)

As k > 0 and the perturbation ε1 (t, T ) is bounded, then Ω2 (t) is bounded, moreover, for all
t > t+0 the following holds

|Ω2 (t)| 6 Ω2max (T ) , (A.22)

and there exists a limit limT→0Ω2max (T ) = 0 for the upper bound as, following (A.15)–(A.19), the
value of ε1 (t, T ) can be arbitrarily reduced by reduction of T .

The next aim is to analyze Ω1 (t). The solution of the first differential equation from (A.21) is

written for all t∈
[

t+i + Ts, t
+
i+1

)

as

Ω1 (t) = φ
(

t, t+i + Ts

)

Ω1

(

t+i + Ts

)

+

t∫

t+i +Ts

φ (t, τ )∆ (τ)ϑb (τ)dτ, (A.23)

where φ (t, τ) = e
−

t∫

τ

kdτ

.
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The upper bound is required for the signal Ω1 (t) over the time range under consideration. To
this end, we need bounds for ∆ (t), and, in its turn, the ones for ϕ (t).

As, according to the premises of the proposition, ϕn ∈PE for Ts < T , then ϕn ∈FE
over

[

t+i , t
+
i + Ts

]

(this fact can be validated by substitution of t = t+i into (1.2)). Then for all

t∈
[

t+i + Ts, t
+
i+1

)

the following lower bound holds for the regressor ϕ (t)

ϕ (t) =

t∫

t+i

e−σ(τ−t+i )ϕn (τ)ϕ
T
n (τ) dτ

>

t+i +Ts∫

t+i

e−σ(τ−t+i )ϕn (τ)ϕ
T
n (τ) dτ

> e−σ(t+i+1
−t+i )

t+i +Ts∫

t+i

ϕn (τ)ϕ
T
n (τ) dτ > αe−σ(t+i+1

−t+i )In+1.

(A.24)

On the other hand, as ‖ϕn (t)‖2 6 ϕmax
n , then there exists an upper bound

ϕ (t) 6 ϕmax
n

t∫

t+i

e−σ(τ−t+i )dτ 6 ϕmax
n

1− e−σ(t−t+i )

σ
6 σ−1ϕmax

n , (A.25)

and, therefore, for all t∈
[

t+i + Ts, t
+
i+1

)

it holds that ∆UB > ∆(t) > ∆LB > 0.

Taking into consideration that, following Assumptions 1 and 2, bmax > |b (t)| > bmin > 0, and
ϑb (t) is the approximation of first order of b (t), then the following holds for the multiplication
∆ (t)ϑb (t)

∀t∈
[

t+i +Ts, t
+
i+1

)

∆UBbmax > |∆(t)ϑb (t)| > ∆LBbmin > 0. (A.26)

Having applied (A.21) and (A.26) and considered that 0 6 φ (t, τ) 6 1, the following estimates
hold for Ω1 (t)

∀t∈
[

t+0 , t
+
0 + Ts

]

Ω1 (t) ≡ 0,

∀i > 1 ∀t∈
[

t+i +Ts, t
+
i+1

]

Ω1

(

t+i +Ts

)

+
(

t+i+1 − t+i − Ts

)

∆UBbmax > Ω1 (t)

> φ
(

t+i+1, t
+
i +Ts

) (

Ω1

(

t+i +Ts

)

+
(

t+i+1 − t+i − Ts

)

∆LBbmin

)

> 0,

(A.27)

from which we have

∀t > t0+Ts Ω1max > Ω1 (t) > Ω1min > 0,

Ω1max = min
∀i>1

{

φ
(

t+i+1, t
+
i + Ts

) (

Ω1

(

t+i + Ts

)

+
(

t+i+1 − t+i − Ts

)

∆LBbmin

)}

,

Ω1min = max
∀i>1

{

Ω1

(

t+i + Ts

)

+
(

t+i+1 − t+i − Ts

)

∆UBbmax

}

.

(A.28)

Then, using (A.28) and (A.23), the bounds for the regressor Ω(t) are written

∀t > t0+Ts Ω1max +Ω2max (T ) > |Ω (t)| > Ω1min − Ω2max (T ) , (A.29)
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and, therefore, considering limT→0Ω2max (T ) = 0, there exists Tmin > 0 such that for all 0 < T <
Tmin and t > t0+Ts the following inequality holds

ΩUB > Ω (t) > ΩLB > 0, (A.30)

which was to be proved in statement (a).

In order to prove the statement (b), the disturbance w (t) is differentiated with (A.20) and (4.7)
at hand

ẇ (t) = Υ̇ (t)− Ω̇ (t) θ (t)− Ω (t) θ̇ (t)

= −k (Υ (t)− Y (t)) + k (Ω (t)−M (t)) θ (t)− Ω (t) θ̇ (t)

= −k (Υ (t)−M (t) θ (t)− d (t, T )) + k (Ω (t)−M (t)) θ (t)− Ω (t) θ̇ (t)

= −k (Υ (t)− Ω (t) θ (t))−Ω (t) θ̇ (t) + kd (t, T )

= −kw (t)− Ω (t) θ̇ (t) + kd (t, T ) , w
(

t+0

)

= 0n+1.

(A.31)

The solution of (A.31) is represented as:

w (t) = w1 (t) + w2 (t) ,

ẇ1 (t) = −kw1 (t)−Ω (t) θ̇ (t) , w1

(

t+0

)

= 0n+1,

ẇ2 (t) = −kw2 (t) + kd (t, T ) , w2

(

t+0

)

= 0n+1.

(A.32)

As for the first differential equation from (A.32), in Proposition 2 from [19] it is proved (up to
notation) that the following inequality holds

‖w1 (t)‖ 6 w1maxφ
(

t, t+0 + Ts

)

, (A.33)

when i 6 imax <∞.

As k > 0 and the disturbance d (t, T ) is bounded, then w2 (t) is also bounded, and consequently,
the following inequality holds

‖w2 (t)‖ 6 w2max (T ) , (A.34)

where the limit limT→0w2max (T ) = 0 holds, as the input of the second differential equation
from (A.32) depends only from the value of d (t, T ), which, in its turn, according to (A.15)–(A.19),
can be reduced arbitrarily by reduction of T . The combination of the inequalities (A.33) and (A.34)
in accordance with (A.32) completes the proof of proposition.

Proof of Theorem 1. Proof of theorem is similar to the above-given proof of Proposition 1.

Step 1. For all t > t+0 + Ts the solution of the differential equation (4.9) is written as

θ̃ (t) = φ
(

t, t+0 + Ts

)

θ̃
(

t+0 + Ts

)

+

t∫

t+
0
+Ts

φ (t, τ)
γ1w (τ)

Ω (τ)
dτ

−
t∫

t+
0
+Ts

φ (t, τ)
i∑

q=1

∆θ
qδ
(

τ − t+q

)

dτ,

(A.35)

where φ (t, τ) = e
−

t∫

τ

γ1dτ

.
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Then, following the proof of Theorem 1 from [19], if i 6 imax <∞, then the boundedness of the
parametric error (A.35) can be shown:

∥
∥
∥θ̃ (t)

∥
∥
∥ 6 βmaxe

− γ1
2 (t−t+

0
−T0) +

γ1w1max

ΩLB

t∫

t+
0
+Ts

φ (t, τ)φ
(

τ, t+0 + Ts

)

dτ

+
γ1w2max (T )

ΩLB

t∫

t+
0
+Ts

φ (t, τ ) dτ 6

(

βmax +
2w1max

ΩLB

)

e−
γ1
2 (t−t+

0
−T0) +

γ1w2max (T )

ΩLB
.

(A.36)

Step 2. The following quadratic form is introduced for all t > t+0 + Ts:

Veref = eTrefPeref +
4a20
γ1

e−
γ1
2 (t−t+

0
−Ts), H = blockdiag

{

P ,
4a20
γ1

}

,

λmin (H)
︸ ︷︷ ︸

λm

‖eref‖2 6 V (‖eref‖) 6 λmax (H)
︸ ︷︷ ︸

λM

‖eref‖2,

eref (t) =
[

eTref (t) e−
γ1
4 (t−t+

0
−Ts)

]T
.

(A.37)

Similar to proof of Proposition 1, the derivative of (A.37) is written as

V̇eref 6
[

−λmin (Q) + 2λmax (P ) bmax

(∥
∥
∥θ̃
∥
∥
∥+ K̇maxT

)

+ 2
]

‖eref‖2

+ λ2
max (P )ω2

rb
2
max

∥
∥
∥θ̃
∥
∥
∥

2
+ λ2

max (P ) b2maxω
2
rK̇2

maxT
2 − 2a20e

− γ1
2 (t−t+

0
−Ts).

(A.38)

As for all t > t+0 + Ts the parametric error θ̃ (t) meets the inequality (A.36), then, considering

∥
∥
∥θ̃ (t)

∥
∥
∥

2
6

(

βmax +
2w1max

ΩLB

)2

e−γ1(t−t+
0
−T0) +

(
γ1w2max (T )

ΩLB

)2

+ 2

(

βmax +
2w1max

ΩLB

)
γ1w2max (T )

ΩLB
e−

γ1
2 (t−t+

0
−T0)

6

(

βmax +
2w1max

ΩLB

)(

βmax +
2 (w1max + γ1w2max (T ))

ΩLB

)

e−
γ1
2 (t−t+

0
−T0) +

(
γ1w2max (T )

ΩLB

)2

= βmaxe
− γ1

2 (t−t+
0
−T0) +

(
γ1w2max (T )

ΩLB

)2

the upper bound of (A.38) is written as follows:

V̇eref 6

[

−λmin (Q) + 2 + 2λmax (P ) bmax

×
((

βmax +
2w1max

ΩLB

)

e−
γ1
2 (t−t+

0
−Ts) +

γ1w2max (T )

ΩLB
+ K̇maxT

)]

‖eref‖2

+ λ2
max (P )ω2

rb
2
maxβmaxe

− γ1
2 (t−t+

0
−Ts) + λ2

max (P )ω2
rb

2
max

(
γ1w2max (T )

ΩLB

)2

+ λ2
max (P )ω2

rb
2
maxK̇2

maxT
2 − 2a20e

− γ1
2 (t−t+

0
−Ts).

(A.39)
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There definitely exists a time instant teref > t+0 +Ts and constants T → 0, a0 >λmax(P )ωrbmaxβ
1
2
max

such that for all t > teref it holds that

−λmin (Q) + 2 + 2λmax (P ) bmax

((

βmax +
2w1max

ΩLB

)

e−
γ1
2

(
teref−t+

0
−Ts

)

+
γ1w2max (T )

ΩLB
+ K̇maxT

)

= −c1 < 0,

λ2
max (P )ω2

rb
2
maxβmax − 2a20 = −c2 < 0.

(A.40)

Then the upper bound for the derivative (A.39) for all t > teref is obtained as

V̇eref 6 −ηerefVeref + λ2
max (P )ω2

rb
2
max

(
γ1w2max (T )

ΩLB

)2

+ λ2
max (P )ω2

rb
2
maxK̇2

maxT
2, (A.41)

where ηeref = min
{

c1
λmax(P ) ,

c2γ1
4a2

0

}

.

The solution of the differential inequality (A.41) for all t > teref is written as

Veref (t) 6 e
−ηeref

(
t−teref

)

Veref

(

teref

)

+
1

ηeref

(

λ2
max (P )ω2

rb
2
max

(
γ1w2max (T )

ΩLB

)2

+ λ2
max (P ) b2maxω

2
rK̇2

maxT
2

)

,
(A.42)

which completes the proof of statement (ii) of theorem.

Step 3. Owing to (A.36) and (A.42), the error θ̃ (t) is bounded for all t > t+0 + Ts, and the
error eref (t) — for all t > teref . Then, to prove the statement (i), we need to show that θ̃ (t) is

bounded over
[

t+0 , t
+
0 + Ts

)

, and eref (t) is bounded over
[

t+0 , teref

)

.

In the conservative case, the inequality Ω (t) 6 ΩLB is satisfied over
[

t+0 , t
+
0 + Ts

)

, whence, owing

to ˙̃θ (t) = 0n+1, if Assumption 1 is met, it follows that the parametric error θ̃ (t) = θ̂
(

t+0

)

− θ (t) is

bounded over
[

t+0 , t
+
0 + Ts

)

and, as a consequence, for all t > t+0 .

Considering the time range
[

t+0 , teref

)

and taking into account the notation from (A.3), (A.18),

the error equation (3.1) is written in the following form:

ėref (t) =
(

Aref + enb (t)
(

θ̂x (t)− kx (t)
))

eref (t) + enb (t)
(

θ̂T (t)−KT (t)
)

ωr (t) ,

which, as it has been proved that θ̃ (t) is bounded for all t > t+0 and Assumptions 1 and 2 are met,
allows one, using Theorem 3.2 from [20], to make the conclusion that 1) eref (t) is bounded over
[

t+0 , teref

)

, 2) ξ (t) ∈L∞ for all t > t+0 .
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Abstract—The paper is devoted to the analysis of the feasibility domain of electric power sys-
tems. The problems of calculating feasible and marginal regimes of power systems, analyzing the
geometry of the feasibility domain, and generating samples in this region are considered. Par-
allels are drawn with the works of B.T. Polyak on the analysis of the image of a quadratic map,
modification of the Newton method and the development of methods for generating asymptoti-
cally uniform samples in areas with complex geometry. Particular attention is paid to Newton’s
method with the transversality condition (TENR), its application for constructing a boundary
oracle procedure and utilization for generating samples in the power system feasibility domain.

Keywords : admissible domain of power systems, power flow equations, quadratic mapping im-
age, Newton’s method, sampling
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1. INTRODUCTION

The development of theory, models and methods for calculating optimal and marginal oper-
ating regimes of the power system remains a challenging and relevant research topic due to the
widespread distribution of distributed renewable energy sources, changing patterns of electrical en-
ergy consumption and digital transformation in the energy sector. Control of modern power systems
requires fast and reliable methods for estimating static stability margins, which are characterized
by the distance to the boundary of the feasibility domain. In addition, the growing integration of
distributed renewable energy sources is prompting a reassessment of the criteria for optimal grid
operating regimes, which shifts frequently operated regimes closer to the boundary. The concept
of a feasibility domain for electric power system — a region in the multidimensional space of nodal
power injections (the right-hand side of power flow equations) such that this system of equations
has at least one real solution — bridges between various problems in energy sector.

Further in the introduction, we discuss the links between the analysis of feasible and marginal
operating regimes of a power system with the image of a quadratic mapping, D-partition, Newton’s
method and its modifications, as well as methods for generating asymptotically uniform samples
in areas with complex geometry.

1.1. Image of Quadratic Mapping

The steady-state operation regimes are described by power flow equations, reflecting fundamen-
tal Ohm’s and Kirchhoff’s laws they provide the relation between complex voltages and power at
the nodes of power system (1)–(2). These equations are quadratic with respect to variable V .
In papers [1, 2] B.T. Polyak proposed sufficient conditions for convexity of the image of quadratic
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Fig. 1. Convex region of feasible regimes from [4].

Fig. 2. Non-convex region of feasible regimes from [5].

mapping f : Rn → R
m at m = 2, 3, later in [3] a randomized approach for certifying convex-

ity/nonconvexity of the image of quadratic mapping was proposed.

Indeed, feasibility domain of power system has a pretty complicated geometry. Moreover, this
complexity holds regardless the number of nodes, one may observe complicated structure for the
systems of 3–5 nodes (“nodes” are typical called “buses” in power systems analysis). In 1 presents
the cross-section of the feasibility domain for 3 bus system. The area is convex, though it’s demon-
strated in [4] that it looses convexity for perturbed right-had side of power flow equation.

Examples of more exotic feasibility domains can be found in [5], one of cross-sections of this
type for 5-bus system is presented in Fig. 2.

Looking at Figs. 1–2, it is straightforward to recognize a complex internal structure of the fea-
sibility domain. Due to the nonlinearity of the system of power flow equations there are internal
bifurcation curves, such that crossing them corresponds to either a change in the number of solu-
tions or the disappearance of solutions, and therefore the admissible state of the system. These
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equations can have multiple isolated solutions, representing either a stable or unstable equilibrium
of a dynamic power system model. The presence of multiple solutions was previously ignored by
researchers; their efforts were mainly focused on identifying only one real solution rather than on
all isolated solutions. The work [6] is apparently the first to study the phenomenon of multiplicity
of solutions to the control system and propose a method for constructing all critical points of the
region of admissible modes. Critical points are understood as points of bifurcation curves, the
intersection of which changes the number of solutions to the system of power flow equations. Such
an analysis of the feasibility domain has much in common with D-decomposition method developed
in the works of B.T. Polyak [7, 8]. For linear dynamical system D-decomposition curve splits the
parameter space into regions with different numbers of stable roots of characteristic polynomial,
while bifurcation curve (or surface in higher dimensional spaces) separates the regions wit different
number of solutions to the power flow equations in thee feasibility domain.

1.2. The Role of Newton Method

Traditionally, Newton–Raphson method is applied for calculating steady state regimes. The
introduction of additional variables characterizing stability margins makes the system underdeter-
mined. In this case, the problem of calculating regimes appears in the context of B.T. Polyak’s
papers [9, 10].

One of the most promising methods for fast calculations of marginal regimes is Newton’s method
with the transversality condition (TENR, Transversality Enforced Newton–Raphson) [11], where,
in addition to an additional variables, the condition of degeneracy of the Jacobian matrix is added.

The TENR method is conceptually similar to, but mathematically different from, traditional
methods based on the standard Newton method. In TENR, the standard system of power flow
equations is complemented by the transversality condition. This constraint regularizes the initially
degenerate system at the marginal point and ensures the convergence of Newton’s method. In ad-
dition, TENR allows the steady state calculation to take into account any technical constraints,
which can be represented either as equalities or inequalities. From a computational point of view,
a key advantage of TENR is its simple form of writing transversality conditions, which does not
require explicit tracking and initialization of zero eigenvectors of the Jacobian. This simplification
results in a smaller system of nonlinear equations and also allows for easier initialization of the
algorithm.

The TENR method has a number of advantages: the algorithm is numerically stable in the
immediate vicinity of the boundary, as well as at the feasibility boundary; it weakly depends on
the starting point; decomposition of the Jacobian matrix by singular values has been implemented,
which allows us to analyze the sensitivity of the power system and identify the most “effective nodes”
for applying control actions. Based on TENR, it is possible to solve the problem of estimating the
transfer capability margins [12], as well as online assessment of voltage stability margins [13]. The
method has been tested on a number of IEEE benchmark systems as well as on a model of the
power system of the Russian Far East [14].

1.3. Sampling in Feasibility Domain

Knowledge about the feasibility domain geometry of power system and its boundaries allows us to
make fast estimation of the stability margins and to calculate optimal emergency control actions.
The challenge of ensuring reliable and secure real-time operation of power systems is increasing
as the current operating regime rapidly changes due to uncertainties associated with increased
renewable generation, less predictable demand and various unexpected circumstances. Therefore, to
avoid any undesirable system behavior or large-scale power outage, real-time evaluation of voltage
stability margins is required. Such an assessment is a challenging task that requires significant
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computational resources, mainly due to the constantly changing state of operation. Both during
the planning and operational stage, safe operation of the network requires voltage stability, which
is the ability of the power system to maintain acceptable voltage levels on all buses after exposure
to disturbances [15].

Modern power systems are more vulnerable in terms of stability because they operate close
to the boundary of the feasibility region. Voltage instability occurs in electrical networks when
the operating mode approaches the point of collapse or the point of saddle-node bifurcation, after
which the real solution to the steady-state equations vanishes or the number of solutions to the
system of steady-state equations changes. You can clarify your description of the feasibility domain
via sampling, i.e. generating parameters of feasible modes. Such parameter sets are also useful
for tuning machine learning algorithms. One of the directions of B.T. Polyak’s research was the
development of methods for generating asymptotically uniformly distributed samples in complex
domains [16, 17].

This paper provides a detailed description of the TENR method as the most effective tool for
calculating the marginal states of a power system, and also shows how to use TENR to build a
boundary oracle procedure to generate samples in the feasibility domain.

The paper is organized as follows: Section 2 presents the problem formulation. Section 3 de-
scribes the TENR method and discusses the strategy for choosing the optimal step size for its
implementation. Section 4 is devoted to the problem of generating samples in the feasibility do-
main of power system. Section 5 provides numerical examples illustrating the effectiveness of the
TENR method both for calculating marginal regimes (boundary points of the feasibility domain)
and for generating samples.

2. PROBLEM STATEMENT

Power system marginal states (marginal operating regimes) assessment is closely related to
the power flow analysis (so-called regime). A regime is a state of the power system that can be
characterized by quantitative indicators: power, voltage, current, phase angles of the EMF vectors,
and others. A regime can be categorized as transient or steady-state, depending on the rate of
their change. A steady-state is one in which the parameters remain constant over the considered
time interval or change relatively slowly [18]. Since a regime has quantitative characteristics, it
can be calculated and evaluated. The calculation of the steady-state regime (power flow analysis)
involves determining all parameters of the steady-state regime given the known system parameters
(circuit diagrams, line impedance, etc.) and some specified regime parameters [19]. The set of
equations based on the equivalent circuits of the power system, as well as Ohm’s and Kirchhoff’s
laws, constitutes the mathematical model of the steady-state regimes of power systems.

In the theory of electrical systems, there are numerous available mathematical models, each with
its advantages and disadvantages. In this work, the model used is the system of power balance equa-
tions presented in a rectangular form. The voltage is represented as a complex: V̂i = V r

i + jV m
i ∈ C.

Gij and Bij are the real and imaginary parts of the complex admittance Ŷij = Gij + jBij ∈ C. The
system consists of n buses, where N = {1, 2, . . . , n} is the set of buses excluding the balancing
(slack) bus S; the set of PQ buses (load buses) is denoted as L; and the set of PV buses (generator
buses) is denoted as G. For each i ∈ N , the values of the nodal active power injections can be
computed as follows [18, 20, 21]:

n∑

k=1

{

V r
i (GikV

r
k −BikV

m
k ) + V m

i (GikV
m
k +BikV

r
k )
}

= Pi(x)− λ(Pgen,i − Pload,i), (1)

where the vector x ∈ R
n is a set of variables (the magnitude of voltages and phase angles at the

buses for each bus in the system). Similarly, for each i ∈ L, one can write the equation for the
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nodal reactive power injections:

n∑

k=1

{

V m
i (GikV

r
k −BikV

m
k )− V r

i (GikV
m
k +BikV

r
k )
}

= Qi(x)− λ(Qgen,i −Qload,i). (2)

Subscripts “gen” and “load” denote the levels of generation and load at the buses, respectively.
The parameter λ is a coefficient used to “stress” the system, meaning that loads are gradually
increased. When λ = λmax, the system reaches its marginal state. Unlike the representation in
polar coordinates, the formulation in Cartesian coordinates requires an additional set of equations
to account for the voltage limitations at the PV buses. Thus, for each i ∈ G,

(V r
i )

2 + (V m
i )2 − |V̂i|2ref = 0, (3)

where |V̂i|ref is the reference voltage magnitude at the specific bus.

The standard system of power flow equations can be generally expressed as follows:

F(x, λ) = 0, (4)

where F represents k nonlinear equations, including both power balance equations (such as in
(1) and (2)) and various technological constraints presented as equalities. The parameter λ is the
loading coefficient that characterizes the system’s proximity to the steady-state equation solvability
boundary.

The finding of marginal states means to find such λmax that the solution of the system (4) exists
for all 0 6 λ 6 λmax but do not exist when λ > λmax.

From a mathematical perspective, finding of marginal states involves solving the system of
equations (4) under the condition that the Jacobian matrix is singular:

g(x) = det ∇xF(x, λ) = 0. (5)

It follows that, to find the marginal state (stability boundary), it is necessary to solve the
system of equations (4) together with the additional condition that accounts for the singularity of
the Jacobian matrix (5).

3. TRANSVERSALITY ENFORCED NEWTON–RAPHSON METHOD

To solve the system of power flow equations, numerical iterative methods must be employed,
which improve the approximation of the initial variables with each iteration. One of the most
common and accessible methods is the Newton–Raphson method.

It should be noted that the classical Newton–Raphson method has several drawbacks, including
convergence dependence on the chosen initial conditions and poor convergence in close proximity
to the stability boundary. The reason for this is the poor conditioning of the Jacobian matrix.
Therefore, the standard Newton method provides a consistently underestimated assessment of the
power system’s stability margin. If the numerical method remains stable at the feasibility boundary,
the distance to the marginal state can be determined more accurately.

There is a method that addresses these issues — the TENR method.

During the marginal state analysis, when λ reaches its maximum value λmax, the Jacobian matrix
of the power flow system becomes singular. Under these circumstances, the Newton method’s
computational step J−1F(x) increases, keeping the classical method numerically unstable. As a
result, the method may fail to converge or require too many iterations to achieve a result. In the
TENR method, an additional condition that accounts for the Jacobian matrix’s singularity at the
feasibility boundary is added to the base system of equations, with λ also treated as a variable.
Thus, the solution domains of the original and the augmented systems of equations coincide.
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Within the TENRmethod, the condition accounting for the Jacobian’s singularity at the stability
boundary is called the transversality condition g(x). Numerous possible variations of the condition
g(x) are available, as presented in [11]. The least computationally expensive approach is based on
singular value decomposition.

In general form, the system of equations for finding the limit modes can be written as follows:

F(x, λ) = 0,

g(x) = 0
(6)

The system (6) can be numerically solved using the standard Newton method. Undertaking a
linearization of equation utilizing the first-order Taylor series within the realms of x and λ results
in:

[

F
g

]

+

(

∇xF ∇λF
(∇xg)

⊤ 0

)[

∆x

∆λ

]

=

[

0
0

]

. (7)

In the TENR method, the so-called extended Jacobian matrix J (x, λ) is used in the calculations:

J (x, λ) =
(

∇xF ∇λF
(∇xg)

⊤ 0

)

. (8)

The increments of the unknowns ∆x and ∆λ are determined as follows:
[

∆x
∆λ

]

= −
(

∇xF ∇λF
(∇xg)

⊤ 0

)−1 [F
g

]

. (9)

Using the calculated increments of the variables, the values of the variables at the next step are
determined as follows:

N (x, λ) :=

[

x
λ

]

− α





(

∇xF ∇λF
(∇xg)

⊤ 0

)−1 [F
g

]

 . (10)

The parameter α determines the step size in the Newton method, which must be chosen to
be sufficiently small. The calculation is performed iteratively until the established convergence
criterion is reached:

‖N (κ)(x, λ)−N (κ−1)(x, λ)‖ 6 ǫ, κ = 1, 2, . . . , (11)

where κ is the iteration counter and ǫ is the desired calculation accuracy.

Newton–Raphson method has quadratic convergence if the initial design point is chosen in close
proximity to the actual solution. However, the Newton–Raphson method may diverge. To prevent
such situations, it is necessary to optimally select the Newton iteration step size. The methodology
for choosing the optimal step size is presented below.

3.1. Optimal Step-Size Strategy

The Newton–Raphson method is highly sensitive to the initial approximation. In some cases,
an improper choice of the initial guess can lead to a large number of iterations or the method
may fail to converge altogether. To ensure faster convergence and global convergence with any
reasonable initial approximation, the system of equations should be supplemented with a damping
coefficient α, as introduced in (10). One of the most efficient and computationally simple methods
is to adjust α at each iteration.
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Fig. 3. Optimal step size α(κ) selection for each iteration of the TENR method for IEEE test systems.

The original system of equations can be written in a compact form as:

H(z) =
{

F(x, λ) = 0

g(x) = 0.
(12)

The vector z represents the set of variables z = [x, λ]⊤. In the Cartesian formulation, the
equations considered in (4) are a set of quadratic equations, while the transversality condition
g(x) = 0 is a linear equation, especially when the transversality condition is expressed through the
singular value decomposition of the Jacobian. Therefore, for the point z(κ) and the vector ∆z(κ),
the system (12) can be approximated by a second-order Taylor expansion as

H(z(κ) +∆z(κ)) ≈ H(z(κ)) + [∇zH(z(κ))] ∆z(κ) +
1

2
(∆z(κ))⊤[∇zzH(z(κ))] ∆z(κ). (13)

Since all the equations in (4) are quadratic, and g(x) is linear, (13) holds exactly. The optimal
step size α(κ) in the direction of the vector ∆z(κ) is found by solving the following minimization
problem:

H(α) =
{

H(z(κ)) + α[∇zH(zκ)] ∆z(κ) +
α2

2
(∆z(κ))⊤[∇zzH(z(κ))] ∆z(κ)

}

, (14)

α(κ) = argmin
α

1

2
‖H(α)‖22. (15)

The optimization problem (15) can be solved explicitly by applying the first-order optimality
condition.

Figure 3 shows the values of α(κ) at each iteration of the TENR method for the IEEE test
systems consisting of 14, 30, 118, and 300 buses. These test cases include the standard problem of
determining the marginal state under initial conditions, where all bus voltage magnitudes are 1, and
the corresponding angles are 0. It can be observed that the initially proposed step size strategy leads
to small values of α. However, as the algorithm approaches the solution, the step size gradually
increases. This behaviour can be explained by the fact that, in the initial iterations, the first-
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order Taylor approximation of the equations in (12) poorly satisfies the equality. As the algorithm
progresses, this approximation becomes more accurate, leading to an increase in the step size α.

4. SAMPLING PARAMETERS OF FEASIBLE REGIMES

For regions with complicated geometry (non-convex, represented by nonlinear equations), which
certainly includes the region of feasible power system modes, a working method for obtaining
asymptotically uniform samples is based on the use of a version of the Monte Carlo method,
namely Markov Chain Monte Carlo (MCMC) [22]. One of the most famous and effective MCMC-
type algorithm is called Hit-and-Run (HR), originally proposed in [23], and later rediscovered and
analyzed in detail in [24]. Unfortunately, even for simple ill-posed domains (for example, level
sets of ill-conditioned functions), the HR method does not work, or at least is computationally
inefficient [25].

The variety of applications as well as drawbacks of existing random walk methods open up wide
scope for improvement of random walk algorithms. In particular, in the works of B.T. Polyak, it was
presented an attempt to use barrier functions (well known in the analysis of interior point methods
for convex optimization) and combine them with random walks based on Markov chains. As a
result the Barrier Monte Carlo method [26] was proposed, whose mixing properties in some cases
turned out to be preferable to the HR method. However, the complexity of each iteration remained

quite high (in particular, at each iteration it is required to calculate
(∇2F (x)

)−1/2
, where F (x) is

the barrier function for the region Q). Moreover, this approach cannot accelerate the convergence
of the distribution of the resulting points to a uniform one for areas similar to simplexes. Finally,
in [27] the idea of Billiard Walk was presented, and theorems on the asymptotic uniformity of
generated samples have been proved for the convex and non-convex cases. In contrast to the Ball
Walk method, where each subsequent point is selected uniformly random at the intersection of
the ball centered at the current point and the region under consideration, and the Hit-and-Run
method, where the next point is randomly selected uniformly on a random chord drawn through
the current point, the Billiard Walk method is based on a billiard trajectory of random length,
released from the current point in a random direction.

The Hit-and-Run method and its improved modification, the Billiard Walk method, provide a
useful tool for generating samples in the feasibility domain. The only requirement for a domain is
that it must have a boundary oracle procedure and, in the case of a Billiard Walk, a way to recover
the normal to the boundary.

Let us describe the application of the Hit-and-Run method and the boundary oracle procedure
necessary for its implementation for the power system feasibility domain. The generated samples
are located in the multidimensional space of nodal power injections Si = Pi + jQi, i = 1, . . . , n,
which includes active power Pi and reactive power Qi.

1. Choose initial regime S0, k = 0. It can be arbitrary feasible point or so-called flat start: Vi = 1,
Pi = 0, Qi = 0; i = 1, . . . , n.

2. Generate random direction dk, which is uniform random on the unit sphere in R2n. Compo-
nents of d correspond to increments of active and reactive powers in the righ-had side of the
equations (1)–(2).

3. Calculate marginal states in the directions dk and −dk as well as corresponding λ, λ via TENR
method.

4. Update k = k + 1 and specify the next sample as Sk = Sk−1 + td, where scalar t is uniform
random in [−λ, λ].

5. Save Sk and correspondng regime parameters. Go to Step 2.

For implementation of Billiard Walk algorithm eigenvector corresponding to zero eigenvalue of
the Jacobian should be used as a normal to the boundary.
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5. NUMERICAL EXPERIMENTS

Let’s illustrate the effectiveness of the TENR method and its modifications for stability margin
assessment and generating samples in the power system feasibility domain. Several power systems
models from the IEEE collection [28, 29], widely used in academic research, were chosen as examples.
The TENR method is integrated into the open-source software package PESOL [30].

5.1. Determination of Marginal States

The accuracy comparison of stability margin assessment was conducted between TENR and
three of the most common limit state estimation methods integrated into various software packages:
Continuation Power Flow (CPF), Power System Analysis Toolbox (PSAT), and MATPOWER. The
comparison results of the λ values, characterizing the stability margins, are presented in Table.

Comparison of the stability margin obtained using the TENR method
with analogues (without taking into account voltage constraints)

IEEE-scheme λTENR λCPF λPSAT λMAT

9 buses 1.486 1.486 1.481 1.483
14 buses 3.061 3.061 3.059 3.056
30 buses 1.958 1.957 1.959 1.838
57 buses 0.893 0.892 0.891 0.890
118 buses 2.188 2.187 2.187 2.184
300 buses 0.430 0.430 0.429 0.425

The comparison results between the TENR method and its direct competitors show that the
stability margin calculated using TENR is not lower than the values obtained using other methods in
all considered cases. For some cases, TENR indicated a slightly higher actual stability margin than
other methods. The main advantage of TENR is the calculation speed and scalability (calculation
of power systems with thousands of buses). A detailed comparison of the calculation speed of
TENR with its direct competitors is presented in [14].

5.2. Generation of Parameters for Marginal States

In this work, a five-bus scheme, shown in Fig. 4, is considered as an example. This system is a
modified example first presented in [31]: Bus 1 is the slack bus with voltage V̂1 = 1.0. The adopted
description in power engineering of complex voltage in polar form |V |ejδ is used here, where the

Fig. 4. 5-bus power system test case.
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Fig. 5. Cross-section of the feasible region by P2–P3 parameter plane with a fixed value Q3 = 2 p.u.

(80 feasible points).

Fig. 6. Cross-section of the feasible region by P2–P3 parameter plane with a fixed value Q3 = 2 p.u.

(200 feasible points).
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phase angle is presented following the magnitude in the form V ∠δ. The other buses in the system
are PV buses with a fixed voltage value of 1.0 (p.u.), except for Bus 3, which is a PQ bus with
a complex voltage value of V̂3 = |V3|ejδ3 . It is also assumed that synchronous compensators with
zero active power are installed at Buses 4 and 5. Consequently, the solution space is limited to the
parameters P2, P3, Q3.

Consider a cross-section of the feasibility region by the P2–P3 parameter plane, with the re-
maining parameters of the right-hand side of the power flow equations fixed as indicated above,
Q3 = 2. The results of generating 80 and 200 feasible regimes are shown in Figs. 5 and 6. The
dots correspond to the internal points of the feasible operating region, while the crosses represent
the limit operating regimes. The figures show that 200 generated feasible operating modes are
sufficient for solving practical optimization problems, and the limit modes fairly densely cover the
boundary of the permissible region.

6. CONSLUSION

This paper describes the main difficulties encountered in calculating the parameters of critical
regimes in power systems and presents the TENR method, which currently appears to be the most
effective method for marginal state assessment. Moreover, for the first time, the use of the TENR
method for constructing a boundary oracle procedure and generating points within the feasible
operating region has been presented and tested.

Surprisingly, the tasks of analyzing feasible and marginal states in power systems draw their
solutions from the works of B.T. Polyak. His results on the convexity of the image of quadratic
mappings, modifications of the Newton method, and detailed descriptions of random walk schemes
for generating points in regions with complex geometry have proven extremely useful for power
engineering. The authors do not doubt that researchers will discover many more such connections
and bridges in the future.
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Abstract—This paper is devoted to the problem of solving a system of nonlinear equations with
an arbitrary but continuous vector function on the left-hand side. By assumption, the values of
its components are the only a priori information available about this function. An approximate
solution of the system is determined using some iterative method with parameters, and the
qualitative properties of the method are assessed in terms of a quadratic residual functional.
We propose a self-learning (reinforcement) procedure based on auxiliary Monte Carlo (MC)
experiments, an exponential utility function, and a payoff function that implements Bellman’s
optimality principle. A theorem on the strict monotonic decrease of the residual functional is
proven.
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1. INTRODUCTION

The vast majority of applied problems lead to the need to solve nonlinear equations. Parame-
terized iterative methods are a classical tool yielding approximate solutions of nonlinear equations
under definite conditions [1–4]. These conditions are certain properties of the functions (convex-
ity, concavity, differentiability, etc.) included in the equations and interval sufficient parametric
conditions ensuring the convergence of the corresponding iterative method.

The increasing complexity of functions narrows the set of their classes where such properties can
be verified and the verification results can be used in suitable iterative methods. On the other hand,
interval conditions on the parameters of iterative methods significantly depend on the properties
of functions that are generally unverifiable.

To find a way out of this situation, the ideas of reinforcement learning can be applied to the
iterative computational process to determine the values of its parameters using statistical Monte
Carlo (MC) experiments and a game-theoretic mathematical model [5, 6]. The essence of this
branch of machine learning is to train an object (model, algorithm, etc.) by interacting not with
a “teacher” (supervised learning) but with an “environment,” using the trial-and-error method,
followed by rewards or penalties for its results.

This approach was employed in clustering and recognition problems, apparently because of
the ability to calculate the so-called feature characteristics in the form of “distances” between
objects. The distance matrix was adopted to arrange some “rewards” or “penalties” when tuning
the algorithm parameters. The algorithms considered were neural networks [7] and game-theoretic
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models implementing the principle of competition between neural network nodes [8]. In particular,
the advantage was given to the nodes with the minimum distance between objects at each step of
the algorithm.

Subsequently, reinforcement learning based on the automata models of interaction between
an object (agent) and an environment was simulated in game-theoretic terms (strategies, utility
functions, and payoffs) and was actively developed [9]. Many algorithms appeared, differing in
the models and amounts of a priori information about the environment, algorithms for choosing
strategies, and procedures for designing utility functions [10–13].

An important component of reinforcement learning procedures is MC experiments intended to
simulate agent’s strategies [14]. They are used to average a fixed number of current rewards with
their discounting. The resulting function depends on the state of the environment and the agent’s
strategy; it is taken as a utility function (an analog of the objective function in supervised learning
procedures) and is sequentially maximized during the learning process [15, 16] using Bellman’s
optimality principle [17] in combination with stochastic approximation [18].

This paper considers the problem of numerically solving a system of nonlinear equations us-
ing a parameterized iterative procedure whose convergence depends on the parameter values. To
determine these values, we develop a reinforcement learning procedure based on a game-theoretic
model.

The problem addressed below was actively discussed and shaped under the influence of Boris
Polyak. The author was fortunate to work and be friends with him for many years. The blessed
memory of Boris will always be the author’s compass in life.

2. PROBLEM STATEMENT

Consider the nonlinear equation

f(x) = 1, (f ,x,1) ∈ Rn. (1)

By assumption, the only a priori information available about the function f is the values of its
components fi(x

(k)), i = 1, n; k = 1, . . . .

We introduce the residual functional

J(x) = ‖f(x)− 1‖2 > 0. (2)

The absolute minimum of this functional is zero. In the general case, it is not unique, i.e., there

exists a finite set X = {x(1)
∗ , . . . ,x

(r)
∗ } of points at which the residual functional vanishes. In this

situation, any solution from the set X will be considered suitable.

An approximate solution of this equation is determined using an iterative Markov-type proce-
dure. In this procedure, the approximate solution x

(p+1) at step (p+1) is set equal to the value of
the operator B[x(p), a(p)] of the iterative procedure at step p, depending on the values of the com-
ponents of the function f(x(p)) and the parameter vector a(p) ∈ A ⊂ Rr that adjusts the qualitative
properties of the iterative process:

x
(p+1) = B[f(x(p)),a(p)]. (3)

Qualitative properties often include convergence, the rate of convergence, and accuracy. The condi-
tions for ensuring these properties are formulated in terms of the vector a and interval inequalities
depending on the properties of the operator B and those of the function f(x).

However, the function f(x) may have an arbitrary structure, making it impossible to postulate
or reveal its properties. As a result, these inequalities become analytically unverifiable.
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To find a way out of this situation, we utilize the ideas of reinforcement, which are actively used
in various implementations in modern machine learning procedures. In this case, reinforcement is
intended to determine, at each step of the iterative procedure, a suitable parameter vector a via
an appropriate self-learning procedure.

We propose a game-theoretic model to calculate the suitable parameters a of the iterative pro-
cedure (3). This model operates in the intervals between steps p and (p + 1) and simulates the
behavior of an agent, i.e., a strategy for varying the parameters a depending on the response quality
of an environment. The quality is characterized by a conditional payoff, a function that depends
on the values of the residual functional and its decrement.

3. STRUCTURE OF THE REINFORCEMENT PROCEDURE

Consider the original problem (1) and find its solution by minimizing the residual functional

J(x)⇒ min, x ∈ Rn. (4)

In some applications, it may be useful to transform problem (1). We introduce the new variables

zi =
1

1 + exp(−bixi)
, xi =

1

bi
ln

zi
1− zi

, i = 1, n.

Then problem (1) takes the form

J(z) = ‖Ψ(z)‖ ⇒ min, z ∈ Zn
+ = [0,1], Ψ(z) = f(z)− 1.

Problem (1) will be solved using the iterative procedure (3) under the assumption that the
parameters a are of interval type: a ∈ [a−,a+].

To determine the values of the components of the vector a in the procedure (3), we employ
the reinforcement technology, implementing it in the interval between steps p and (p + 1) of the
iterative procedure (3).

This technology is based on a game-theoretic model simulating the game of an agent with an
environment. The agent generates strategies (actions) that cause changes in the environment. The
magnitude of these changes is characterized by a utility function. The value of a payoff function
depends on the success of the agent’s strategy and its utility for the environment.

In the interval between the successive steps of the iterative procedure, a statistical simulation
is carried out via a given number M of MC experiments that simulate the agent’s strategies, i.e.,
the values of the components of the vector a(p,k), where k = 1,M .

As the agent’s actions, we will consider the vector

x
(p,k+1) = B[f(x(p,k)),a(p,k)], p = fix, k = 1,M. (5)

In this problem, the environment is the residual functional J(x |a). The MC-simulated actions
of the agent yield a sequence of M residuals,

J(x(p,1) |a(p,1)), . . . , J(x(p,M) |a(p,M)), (6)

and their decrements,

u(p,k)(a(p,k)) = J(x(p,k+1) |a(p,k))− J(x(p,k) |a(p,k−1)), k = 1,M. (7)

We introduce a utility function to characterize the response quality of the environment measured
by the decrement:

ϕ(u(p,k)(a(p,k))) = α exp[u(p,k)(a(p,k))]. (8)
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The quality of the agent’s strategies is assessed in terms of a payoff function that characterizes the
dependence of the agent’s payoff on its strategy. Choosing an appropriate payoff function seems to
be a creative task [2] involving some enumeration. Several general properties of this function can
be declared. It is a continuous and bounded function of the following form:

Q(a(p,k)) =

{

l(u(p,k)(a(p,k))) ϕ(u(p,k)(a(p,k))) 6 1

0 ϕ(u(p,k)(a(p,k))) > 1,
(9)

with the function

l(u(p,k)(a(p,k))) =

{

αϕ(u(p,k)(a(p,k))), 0 > u(p,k)(a(p,k)) > −U,

0, u(p,k)(a(p,k)) > 0,
(10)

where U is the limit of the decrement’s magnitude.

MC experiments yield a value set of the payoff functions. Following the concept of reinforcement
as applied to the iterative procedure (3), we determine the optimal value of the parameter a

(p+1)

by the rule
a
(p+1) = a

(p) + β arg max
16j6M

Q(a(p,kj)). (11)

If the agent chooses its strategy by the rule (11), in view of (9), we have

J(a(p+1)) < J(a(p)). (12)

Thus, the following result has been established for the properties of the residual sequence in the
iterative reinforcement procedure (8)–(11):

Theorem 1. Assume that:

a) The only a priori information available about the function f(x) in (1) is the values of its
components fi(x

(k)), i = 1, n.

b) The parameters of the iterative procedure a are chosen by the rule (12), (11), (9).

Then the iterative procedure (5) with reinforcement (8)–(11) generates a strictly monotonically
decreasing sequence of the residual functionals J(x) (4).

This theorem is not a convergence theorem for the iterative procedure in the mathematical sense
(convergence to one of the solutions). However, it is known that this solution corresponds to a zero
residual value. The theorem states that the sequence of residuals is strictly monotonically decreas-
ing. Since the calculation error is finite and can be specified, the final value of the parameters a

obtained when reaching this error can be taken as a solution.

4. CONCLUSIONS

This paper has been devoted to the problem of solving a system of nonlinear equations with
continuous functions on the left-hand sides. By assumption, the only a priori information available
about these functions is their values. To find solutions under such conditions, an iterative procedure
with parameters has been used: by tuning their values, it is possible to ensure the convergence of
the procedure in some sense.

It has been proposed to employ the ideas of reinforcement, which are being rather actively
developed in the theory and practice of machine learning. A self-learning procedure has been
designed in which a given number of MC experiments are carried out at each iteration step to
simulate the agent’s strategy (the values of the parameters of the iterative procedure). In this
procedure, the environment is the residual functional (5), and its response to the agent’s actions is
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the decrement (6). For an acceptable evolution of the iterative process, the decrement magnitude
must decrease. The decrement has been characterized by an exponential utility function so that
smaller decrement magnitudes correspond to larger values of the utility function. The agent’s
actions, i.e., the implemented parameters of the iterative procedure, have been assessed in terms
of a payoff function whose morphology considers both the state of the environment and the degree
of success of the agent’s actions.

It has been proven that, due to this self-learning procedure, the iterative reinforcement algorithm
generates a strictly monotonically decreasing sequence of residual functionals.
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