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Abstract—The paper is devoted to the application of the plausible reasoning principles to
symbolic machine learning. It seems for us that the applications are essential and necessary to
improve the efficiency of ML algorithms. Many such algorithms produce and use rules in the
form of implication. The generation of these rules with respect to the object classes is discussed.
Our classification rules are specific. Their premise part, called good closed tests (GCTs), should
cover as many objects as possible. One of the algorithms of GCTs generation called NIAGARA
is presented. The algorithm is revisited and new procedures based on plausible reasoning are
proposed. Their correctness is proved in propositions. We use the following rules: implication,
interdiction, inductive rules of extending current sets of goal-oriented objects, rules of pruning
the domain of searching solution. They allow to rise the effectiveness of algorithms.
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1. INTRODUCTION

In the paper, we propose a new, more efficient version of the algorithm NIAGARA that has been
proposed in [13] for generating maximally redundant good tests (GMRTs) introduced in [12]. The
increase in the efficiency of the algorithm is based on the introduction of several new implicative
rules of plausible reasoning, which make it possible to use directly the known properties of the
target objects generated in the algorithm. The rules of plausible reasoning play a huge role in the
design of data mining algorithms. In turn, the rules of plausible reasoning are generated using
machine learning methods.

The rules of plausible reasoning are productive in solving the following problems: forming con-
texts for the problem being solved, pruning the search space for solutions, forming descriptions of
objects, identifying essential elements in data processing, extracting relationships between elements
in the field of finding solutions, interpreting the results obtained, and more. From this point of
view, it is legitimate to consider the rules of plausible reasoning as a system element in the tasks
of constructing data mining algorithms.

The paper is organized as follows. Section 2 gives a short introduction to plausible reasoning.
We discuss only such rules, which are applied in our new version of NIAGARA. Section 3 gives
definitions of GMRTs, Section 4 discusses applying the plausible reasoning rules in the algorithm
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PLAUSIBLE REASONING IN AN ALGORITHM 315

NIAGARA-2 for GMRTs generation and gives a running example. Finally, at the end of the paper,
we discuss some related works.

2. PLAUSIBLE REASONING RULES

In the paper, we consider the plausible reasoning rules presented as if-then logical assertions.
We divide these rules into the following categories:

— INSTANCES or relationships between objects or facts really observed;

— RULES OF THE 1ST TYPE or logical assertions based on the regular relationships between
objects (or/and their properties);

— RULES OF THE 2ND TYPE or plausible reasoning rules with the help of which rules of the
first type are applied, modified, and mined from data.

A description of these rules and the information of their application are given in [13].

2.1. Rules of the 1st Type Used in the Algorithm NIAGARA-2

2.1.1. Implication.

The implication rule is a classical logical rule. It has a form like x, y, z → w, the left and right
parts of which are called an antecedent (premise) and a consequent (conclusion), respectively. If
all values in a premise are true, then the conclusion is true.

2.1.2. Interdiction or forbidden rule.

The interdiction is a type of implication rule. It can be regarded as an expression like x, y, z →
false (never). One can present the interdiction via a number of implication, e.g. x, y → not z;
x, z → not y; y, z → not x.

2.2. Rules of the 2nd Type Used in the Algorithm NIAGARA-2

Suppose, that y is a set of attribute values, which are observed simultaneously. Let p,
antecedent(p) and consequent(p) be an implication, its antecedent and consequent, respectively.
Then we can see the following applications of implication and interdiction.

2.2.1. Implication application.

If antecedent(p) ⊆ y, then y is extendable by consequent(p): y ← y ∪ consequent(p). This
application uses modus ponens: if X, then Y ; X; hence Y .

2.2.2. Interdiction application.

Assume, that p is z → not k. If antecedent(p) ⊆ y, then k is the forbidden value for all
extensions of y. This application uses modus ponendo tollens: either X or Y ; X; hence not Y ;
either X or Y ; Y ; hence not X. X and Y are called alternatives.

Later we use these rules to extend elements of initial input set of GMRTs.

3. GOOD TEST ANALYSIS

Let us recall main definitions of Good tests analysis [12–14].

Suppose, that R and S are a multi-valued table [6] and a set of object indices, respectively.
Then R(k) and S(k) are called as the set of k-object descriptions and the set of k-object indices,
respectively, where k∈K is a class of objects, e.g. “positive” (+) or “negative” (−), in a particular
case.

Let FM be R \ R(k), i.e. the set of object descriptions different from a k class. Denote by U
and T the set of attributes and the set of attribute values (or “values,” for simplicity), respectively.
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Each value appears at least in one object description (object, for short) from R. Denote by n and
dom(Atr) the total number of object indices and the domain of an attribute Atr ∈ U .

A Galois connection [15] from attribute values to object indices is given with a function s(·),
which takes t, a subset of the set T of disjoint attribute values, and returns a subset of object
indices. We assume, that attribute values are from a nominal scale [6].

We call t ⊆ T , s(t) 6= ∅, a diagnostic test for R(k) iff t 6⊂ d, ∀d ∈ FM . To be a diagnostic test t
means, that the condition s(t) ⊆ S(k) and an implication rule p ≪ if t, then k≫, are satisfied.
Obviously, t is an antecedent(p), where p is a rule of the 1st type.

Denote by DT (k) a set of all diagnostic tests {t | ∀t for R(k)}. If there are t, d∈DT (k), one
and only one of the following conditions is satisfied: s(t) ⊂ s(d), s(d) ⊃ s(t) and s(t) ∼ s(d), where
sim stands for the incompatibility relation.

Then a non-empty test t is called a good test for a R(k) iff s(t) ⊆ S(k) and simultaneously
(∀g){s(t) ∪ g}, g ∈ S(k) \ s(t) is not a test for R(k).

A set t ⊆ T of values is called maximally redundant (closed) if for any implication rule Y → z
in R we have (Y ⊆ t)→ (z ⊂ t).

A Galois connection T → S is given as s(B) = {i | i∈S,B ⊆ ti, where ti is the ith object des-
cription}. Another Galois connection S → T is given as t(s) = {intersection of all ti | ti ⊆ T, i ∈ s}.

There are two closure operators [6] generalization of(t) = t′′ = t(s(t)) and generalization of
(s) = s′′ = s(t(s)). A set t is closed if t(s(t)) = t and s is closed if s(t(s) = s.

The interconnection between good tests analysis and FCA has been elucidated in [14]. Moreover,
in the paper it is shown that maximally redundant good test are very popular classifiers, e.g. please,
see interconnections with other symbolic classifiers like JSM-hyposeses [4, 11].

4. ALGORITHM NIAGARA-2 FOR GOOD TESTS GENERATION
WITH PLAUSIBLE REASONING

4.1. An Idea of the Algorithm

NIAGaRa-2 is a batch algorithm for inferring all GMRTs for a set of positive (or negative)
objects. It is a new variant of a NIAGARA algorithm described in [13]. For this goal the sequence
S0 ⊆ . . . ⊆ Sq ⊆ Sq+1 ⊆ . . . ⊆ Sq+m, where Sq is the set of all subsets of S(+) of cardinality
equal q, is inferred. The generalization rule is applied to each element (sq, t(sq)), beginning with two
initial sets R(+) = {t1, t2, . . . , ti, . . . , tnt} and S(+) = {1, 2, . . . , i, . . . , nt}, where nt is the number
of positive objects.

The procedure DEBUT forms the extensions of elements of the initial set S(+) = {1, 2, . . . ,
i, j, . . . , nt} and returns the set {s12, s13, . . . , sij, . . .}, where sij = {i, j}, 1 < i < j < nt.

If sij = i, j, such that (sij, t(sij)) is not a test for R(+), then it is saved in the set Q of forbidden
pairs of objects. If sij = i, j, such that (sij , t(sij)) is a test for R(+), then it is generalized (closed)
and the result s = generalization of(sij) is inserted in S(test).

When DEBUT is over, it is necessary to check whether an element s of S(test) corresponds to a
GMRT for R(+) or not. For this goal, the following rule is used: if some object j, for j = 1, . . . , nt,
belongs to one and only one element s of S(test), then s cannot be extended and, consequently,
s corresponds to a GMRT and it is deleted from S(test) and inserted into STGOOD.

S(test) is the partially ordered set containing all s = {i1, i2, . . . , iq}, q = 1, 2, . . . , nt, satisfying
the condition that (s, t(s)) is a test for R(+) but not a good one. STGOOD is the partially
ordered set containing all s = {i1, i2, . . . , iq}, q = 1, 2, . . . , nt, satisfying the condition that (s, t(s))
is a GMRT for a given set of positive examples. For every s in S(test), the set ext(s) of all possible
extensions of s, which correspond to tests for R(+), is formed.
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The procedure SELECT (s) returns the set select(s) of objects that are admissible to produce
the extensions of s corresponding to tests.

Context(s) is defined as the set of object indices which can be currently used for extending
s ⊆ S(+): context(s) = {{∪s∗}|Prefix(s∗) = Prefix(s), s ≺ s∗}, where Prefix(s) is the first in-
dex in s and ≺ is the symbol of the lexicographical order.

Introducing the function context(s) allows the decomposition of the algorithm into indepen-
dent processes. The set V (s) is determined as the set of object indices, which must be deleted
from context(s) to avoid duplicate generation. CAND(s) = context(s) \ V (s), where V (s) = {∪s∗,
s ⊆ s∗, s∗ ∈ {S(test) \ s ∪ STGOOD}}.

The set V (s) is the union of all the set in {S(test)\s∪STGOOD} containing s, hence, s is in the
intersection of these sets. If we want an extension of s not to be included in any element of {S(test)\
s∪STGOOD}, we must use, for extending s, the object indices not appearing simultaneously with s
in the set V (s).

Select(s) is determined as the set of object indices admissible for extending s (for this goal
the set Q of forbidden pairs of indices is used): select(s) = {i, i ∈ CAND(s) : (∀j)(j ∈ s), i, j /∈
{STGOOD ∨Q}}.

Note that the following plausible rules are applied in NIAGARA-2:

— forbidden rules;

— rule of extending sets with cutting the searching spaces not containing any solution;

— the implicative rules (based on the known properties of good tests as formal concepts).

4.2. Pseudo-code of NIAGARA-2 Algorithm

In the section, the pseudocode of NIAGARA-2 is given. Under formation of STGOOD, a set s
of indices is stored in STGOOD if and only if it is not included in any collection of this set. In a
pseudocode we write gnrOf instead of generalization of for short.

Main Algorithm of NIAGARA-2

Input: R(+), R(−), nt, S(+) = {1, . . . , nt}.

Output: TGOOD

1. DEBUT;

2. while S(test)6= ∅ do

3. SELECT(s);

4. EXTENSION(s);

5. ANALYSIS OF EXTENSION(s);

6. while STGOOD do

7. TGOOD← {t(s)| s ∈ STGOOD};

8. STGOOD\s;

In comparison with the previous algorithm version [13] there are the following improvements:

— in Algorithm SELECT(s), the new function “determining context(s)” substitutes the previous
function determining context; context(s) has been defined above;

— in Procedure ANALYSIS OF EXTENSION(), the operation of deleting from S(text) not-
extendable sets and transferring them to STGOOD is proposed, see, please, line numbers 7–12.

Main improvements are presented in Corollary 3 in the next subsection. The positive impact of
the improvements is measured in the subsection with the example discussion.
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Procedure DEBUT()
Input: R(+), R(−), nt, S(+) = {1, . . . , nt}.
Output: S(test)— the set of collections of objects to be extended; Q — the set of forbidden pairs

of objects, STGOOD.

1. STGOOD, Q, S(test)← ∅;
2. for i ∈ {1, . . . , nt} do
3. sum(i)← 0;

4. for i ∈ {S[1], . . . , S[nt]} do
5. for j ∈ {S[i+ 1], . . . , S[nt]} do
6. if to be test(t{i, j}) = false then

7. Q← Q ∪ {i, j}
8. else

9. s′′ ← gnrOf({i, j});
10. foreach i in s′′ do

11. sum(i)← sum(i) + 1;

12. insert s′′ into S(test) under lexic. order;

13. foreach i in 1, nt do

14. if sum(i) = 1 then

15. find s : i ∈ s, s ∈ S(test);

16. insert s into STGOOD under lexic. order;

17. delete s from S(test);

18. nts← {∪s | s ∈ S(test)};

Algorithm SELECT(s)
Input: s, nts,Q, S(test), STGOOD.

Output: the set select(s) of objects for possible extension s.

1. Determining context(s);

2. if context(s) = ∅ then
3. select(s)← ∅
4. else

5. V (s) = {∪s′, s ⊆ s′, s′ ∈ {S(test) \ s ∪ STGOOD}};
6. if V (s) = ∅ then
7. CAND(s)← context(s);

8. else

9. CAND(s)← context(s) \ V (s);

10. if CAND(s) = ∅ then
11. select(s)← ∅;
12. else

13. select(s) = {i ∈ CAND(s) | (∀j)(j ∈ s), {i, j} /∈ {STGOOD ∨Q}};

Procedure EXTENSION(s)
Input: s, select(s), S(test), STGOOD.
Output: ext(s) — the set of all extensions s′ of s such that t(s′) is a test.

1. ext(s) = ∅;
2. while select(s) 6= ∅ do
3. foreach j in select(s) do
4. snew ← s ∪ j
5. if to be test(t(snew))=false then

6. eliminate snew ;
7. else

8. snew ← gnrOf(snew);
9. insert snew into ext(s) under lexic. order;
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Procedure ANALYSIS OF EXTENSION()
Input: ext(s), S(test), STGOOD.
Output: the modified sets S(test) and STGOOD.

1. if ext(s) = ∅ then
2. if s ⊂ s∗, s∗ ∈ S(test) then
3. transfer s∗ from S(test) to STGOOD under lexic. order;
4. delete s;

5. else

6. transfer s from S(test) to STGOOD under lexic. order;

7. if ||ext(s)|| = 1 then

8. s = snew, snew ∈ ext(s);
9. if s 6⊂ s∗, s∗ ∈ S(test) then

10. transfer s from S(test) to STGOOD under lexic. order;
11. else

12. transfer s∗ from S(test) to STGOOD under lexic. order;
13. delete s;

14. else

15. foreach snew in ext(s) do
16. insert snew into S(test) under lexic. order;
17. delete s;

4.3. Main Features of NIAGARA and NIAGARA-2 Algorithms

Our algorithm is based on generation only closed sets. Let a set X be not a closed one and
c(X) = s(t(X)) be its closure. Consider two possibilities: c(X) = X and X ⊂ c(X). In the first
case, X is closed and it is to be extended. In the second case, X is not closed.

Statement 1. If X ⊂ c(X), then t(c(X)) ⊂ t(X) but t(X) ⊂ t(c(X)) → t(X) = t(c(X)).

Corollary 1. If t(X) = t(c(X)), then c(X) can substitute X ∈ S(test) and X can be deleted from
S(test) without loss of any solution.

Statement 2. If an object index is included in one and only one set in S(test) then this set
cannot be extended.

Corollary 2. If an object index is included in one and only one set in S(test) then this set is a
good test.

The following proposition underpins a new reasoning rule increasing the effectiveness of
NIAGARA-2 algorithm in comparison with the previous version.

Statement 3. If a closed set X of object indices contains a non-extendable subset Y , then X is
also non-extendable.

Corollary 3. If a set X of object indices is a closed one and a test and it contains a non-
extendable subset, then X is a good test.

We call Corollaries 1, 2 and 3 as Reasoning rules 1,2 and 3, respectively. Although the first and
second propositions (and corollaries) are new, the appropriate rules have been already used in the
NIAGARA.

The 3rd rule makes it possible to avoid extending sets containing a non-extendable subset. This
rule, with logical point of view, is a new forbidden rule. With pattern lattice view, this rule means
that if a pattern is non-extendable then all elements of its principal filter in the pattern lattice are
also non-extendable (forbidden).

Figure gives an example of working Corollary 1. Green color and solid lines means the closed
sets and links between them (see line diagram in [8]). Black color and dashed lines means the
non-closed sets and links to theirs closures. These sets must to be deleted with substituting them
by their closures.
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An illustration of using Proposition 1 and Corollary 1.

We can delete from consideration sets {1,2}, {1,7}, and {1,14} because t({1,2}) = t({1,2,12,14},
t({1, 7}) = t({1, 4, 7}), and t({1, 14}) = t({1, 2, 12, 14}) and, consequently, extending not-closed sets
will give the same result as extending their closed supersets. Table 1 illustrates the preference
of applying Boolean representing the sets of object indices. Data in Table 1 is in accordance
with figure.

Table 1. An Example of the Boolean representation of sets

1 2 4 5 7 12 14 Closed? To delete?

1 1 1 1 1 1
2 1 1 0 1
3 1 1 1 1
4 1 1 1
6 1 1 0 1
7 1 1 1
8 1 1 0 1

5. PERFORMANCE EVALUATION

5.1. Running Example

The data to be processed is given in [13]. Now we give the results of applying the algorithm
NIAGARA-2 on the set of initial data. Input : S = {1,2, . . . ,14}; T = {A1, . . . , A26}; STGOOD= ∅;
S(test) = ∅;Q = ∅. Output : after implementation of the procedure DEBUT we have the same sets
S(test), Q, and STGOOD as in Tables 21, 22, and 23 from [13], respectively. Table 2 presents the
extensions of the elements of S(test). The difference between this table and the appropriate table
from [13] is discussed in the next section. The results from NIAGARA and NIAGARA-2 are the
same, see, please Table 26 in [13].

5.2. Comparison of NIAGARA and NIAGARA-2 Performance

We perform the running example with NIAGARA and NIAGARA-2 to discover all the GMRTs.
The advantages of NIAGARA-2 are determined by two main optimizations: the context function
and the new reasoning rule 3 based on Proposition 3. To compare the algorithms, we calculate the
following measures of the whole process of GMRTs generation:

1) the general number of objects involved in the contexts (Conts);

2) the general number of objects included in the sets CAND(s) for all extended collections of
objects (SCand);
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Table 2. The Extensions of the Elements of S(test)

S Context(s) CAND(s) Select(s) Ext(s) Delete s ∈ S(test) STGOOD

1,4 5,7,12 5,12 12 ∅ 1 1,4,7
1,4,7
1,5 12 ∅ ∅ ∅ 1 1,5,12
1,5,12
1,12 ∅ ∅ ∅ ∅ 1
2,3,4 7,8.10 7,8,10 7,8 2,3,4,7 1 2,3,4,7
2,7 8, 10 8 8 2,7,8 1 2,7,8
2,8 10 ∅ ∅ ∅ 1
2,10 ∅ ∅ ∅ ∅ 1 2,10
3,7 8,10,11,12 8,10,11 8,11 ∅ 1 3,7,12
3,7,12
3,8 10,11 10,11 10,11 ∅ 1 3,8
3,10 11 11 11 ∅ 1 3,10
3,11 ∅ ∅ ∅ 1 3,11
4,6,8,11 12 ∅ ∅ ∅ 1 4,6,8,11
4,6,11 12 ∅ ∅ ∅ 1
4,7 8,11,12 8,11,12 8,11,12 4,7,12 1 4,7,12
4,8 11,12 11,12 11 4,8,11 1
4,11 12 12 ∅ ∅ 1
4,12 ∅ ∅ ∅ ∅ 1
7,8 11,12 11,12 11 7,8,11 1 7,8,11
7,11 12 12 ∅ ∅ 1
7,12 ∅ ∅ ∅ ∅ 1
8,10 11 11 ∅ ∅ 1 8,10
8,11 ∅ ∅ ∅ ∅ 1

3) the general number of objects included in the sets Select(s) for all extended collections of
objects (SSelect);

4) the number of objects’ collections to be extended (SExt).

The result of comparison is presented in Table 3.

Table 3. Comparison of NIAGARA and NIAGARA-2

Algorithm Conts SCand SSelect SExt

NIAGARA 59 55 16 25

NIAGARA-2 29 22 14 20

The Const and SCand values are decreased almost at 50% and 40%, respectively. The SSelect
value of new algorithm version is not drastically differ from the previous one. SExt is decreased
because of GMRTs, which are transferred from S(test) to STGOOD based on the new reasoning rule
(the appropriate extensions are omitted). These GMRTS have the following numbers in Table 26
from [13]: 8, 10, 12.

6. RELATED WORKS

Our prime interest is the methods by which the main problem of algorithms is solved: how to
avoid repetitive generation of the same concept or how to test the uniqueness of the generated
concept. With respect to this problem, some methods are summarized in [3, 10]. There are surveys
of closed sets applications in papers [16].
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The significance of using contexts is shown by some refined argument in [5]. Also, we can note
that the idea of using decision trees (classification structure) for an organization principle of mining
ontology from texts is proposed in [9].

Reasoning rules are widely used in all the algorithms dealing with generating frequent closed
itemsets. For example, the rule analogous Rule 1 in NIAGARA-2 is supported by Lemma 3 in [17].
However, Reasoning Rules 2 and 3 are original and used only to generate GMRTs.

In many algorithms, an inductive rule is applied based on a level wise manner of extending the
attributes’ sets, attributes’ values sets or objects (indices of objects) such that sets of the size q
are built from the sets of the size q − 1 of the previous level. Each set can be built if and only
if, there are all its proper subsets at the previous level. In algorithms, the different properties of
sets are checked. If a collection does not possess a required property, then it can be deleted from
consideration. It strongly reduces the number of sets of all the following levels to be built.

The Level-wise manner of generating itemsets is used for extracting association rules from
data. Algorithm AIS for mining association is introduced in [1]. The new algorithms the Apriori,
AprioriTid, and AprioriHybrid are improved versions of the first algorithm for mining association
rules.

A lattice-theoretic foundation for the task of mining associations based on the formal concept
analysis has been done in [18]. It has been showed that the set of frequent concepts uniquely
determines all the frequent itemsets. The lattice of frequent concepts can also be used to obtain a
rule of generating sets from which all associations can be derived.

There are two strategies to generate concepts with batch algorithms: descending or top-down
and ascending or bottom-up. However, it is important whether the leading process consists directly
in generating all subsets of objects (extents of concepts) or all subsets of attributes (intents of
concepts). Bordat’s algorithm [2] uses a top-down strategy for inferring concepts in “breadth first”
manner. The leading process of this algorithm is generating the subsets of objects of a given context
with diminishing more and more their power. In Ganter’s NextClosure algorithm [7], the leading
process is the building of lexically ordered attribute subsets.

We can conclude that each algorithm generating itemsets underlying the formation of logical
rules (implication, association rules, functional dependencies, formal concepts and many others)
uses the plausible reasoning rules in one manner or another and this fact gives the right to assert
that the algorithms in question can be considered as models of human thought processes.

CONCLUSION

We analyzed the application of plausible reasoning in NIAGARA and NIAGARA-2 for a GMRTs
generation. Moreover, some new procedures based on plausible reasoning help us to make the
algorithm NIAGARA-2 be more efficient. The algorithm time performance is improved thanks
to the following new procedures: extending current sets of goal-oriented objects (with the use of
implication, based on the properties of closed good tests, interdictions, rules of extension) and
pruning a searching space. Their correctness is presented.

The future works include providing experiments to show the effectiveness of the optimizations
proposed.
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