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Abstract—Genetic Algorithms (GAs) are known for their efficiency in solving combinatorial
optimization problems, thanks to their ability to explore diverse solution spaces, handle vari-
ous representations, exploit parallelism, preserve good solutions, adapt to changing dynamics,
handle combinatorial diversity, and provide heuristic search. However, limitations such as pre-
mature convergence, lack of problem-specific knowledge, and randomness of crossover and mu-
tation operators make GAs generally inefficient in finding an optimal solution. To address these
limitations, this paper proposes a new metaheuristic algorithm called the Genetic Engineering
Algorithm (GEA) that draws inspiration from genetic engineering concepts. GEA redesigns the
traditional GA while incorporating new search methods to isolate, purify, insert, and express
new genes based on existing ones, leading to the emergence of desired traits and the production
of specific chromosomes based on the selected genes. Comparative evaluations against state-
of-the-art algorithms on benchmark instances demonstrate the superior performance of GEA,
showcasing its potential as an innovative and efficient solution for combinatorial optimization
problems.
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optimization
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1. INTRODUCTION

Combinatorial optimization problems belonging to the class of NP-hard ones pose significant
challenges in various domains, requiring efficient algorithms to find optimal or near-optimal so-
lutions. Genetic Algorithms (GAs) [1] have emerged as a popular choice due to their ability to
explore diverse solution spaces, adapt to changing dynamics, and provide heuristic search. How-
ever, the limitations of GAs, including computational complexity, premature convergence, lack of
problem-specific knowledge, and the need for parameter tuning, motivate the search for innovative
approaches to enhance their efficiency [2]. These drawbacks encourage our attempts to redesign GA
using the genetic engineering concept to be highly efficient for solving combinatorial optimization
problems.

According to the literature on metaheuristic algorithms, GAs stand as the earliest population-
based algorithms prioritizing the discovery of satisfactory solutions within a reasonable computa-
tional timeframe, rather than exclusively pursuing optimality [3]. While the field boasts an array of
novel metaheuristic algorithms [4-18], it is worth noting that the literature on GAs is exceptionally
rich, featuring numerous research contributions that introduce various GA variants equipped with
advanced genetic programming and engineering techniques [19-27]. For instance, Gero and Kaza-
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kov [28] conducted a study focusing on the identification of useful genetic material while minimizing
the presence of harmful genetic components, leading to the proposition of a novel GA. Kameya
and Prayoonsri [29] introduced a GA-based approach grounded in pattern recognition to identify
essential patterns within favorable chromosomes and protect them from undesirable crossovers.
Ding et al. [30] delved into the integration of a back-propagation (BP) neural network with GA.
Liang et al. [31] proposed a suite of adaptive elitist-population strategies that found application
within the GA framework.

Additionally, Dasgupta et al. [32] integrated a load-balancing strategy for cloud computing
with GAs. Elsayed et al. [33] enhanced GAs with a novel multi-parent crossover operator. Peng
and Li [34] put forth an improved DV-Hop algorithm based on GAs, while Askarzadeh [35] ex-
plored memory-based GAs. Reddy et al. [36] developed a hybrid GA infused with fuzzy logic, and
Fathollahi-Fard et al. [37] proposed a hybrid of GA with other innovative metaheuristics. Fur-
thermore, Fathollahi-Fard et al. [38] devised a revised non-dominated sorting genetic algorithm
by introducing novel search operators. Last but not least, Kolaee et al. [39] introduced a local
search-based non-dominated sorting genetic algorithm tailored to solving routing problems within
the tourism industry. However, none of the studies reviewed thus far have proposed the introduc-
tion of new search operators grounded in a diverse array of methods aimed at isolating, purifying,
inserting, and expressing new genes within existing GA chromosomes, as we have undertaken in
this study.

Recently, a wide range of population-based algorithms has been proposed to address challeng-
ing optimization problems. Examples include Cuckoo Search (CS) [4], Whale Optimization Al-
gorithm (WOA) [5], Sine Cosine Algorithm (SCA) [6], Harris Hawks Optimization (HHO) [7],
Squirrel Search Algorithm (SSA) [8], Red Deer Algorithm (RDA) [9], Sparrow Search Algorithm
(SSA) [10], Capuchin Search Algorithm [11], Aquila Optimizer (AO) [12], Chameleon Swarm
Algorithm (CSA) [13], Aptenodytes Forsteri Optimization (AFO) [14], Dung Beetle Optimizer
(DBO) [15], Beluga Whale Optimization (BWO) [16], and others. However, it is essential to note
that the “No Free Lunch” theorem [17] suggests that no metaheuristic algorithm can outperform
others for all optimization problems. Hence, there is a constant demand for the development of new
metaheuristic algorithms that exhibit improved performance across different problem domains [18].

In this paper, we propose a new metaheuristic algorithm, the Genetic Engineering Algorithm
(GEA), inspired by genetic engineering concepts. Genetic engineering encompasses a diverse range
of methods used to isolate, purify, insert, and express new genes based on existing ones, resulting
in the emergence of desired traits and the production of specific chromosomes based on the selected
genes. By drawing parallels from this field, we aim to redefine the optimization process and
overcome the limitations inherent in traditional GAs. The techniques used in GEA enable more
precise manipulation of the optimization process, leveraging problem-specific insights and reducing
randomness in mutation and crossover operations. By introducing the concept of gene manipulation
within the population, GEA aims to enhance the exploration and exploitation of the solution space,
leading to improved convergence and solution quality. To evaluate the effectiveness of GEA, we
conduct extensive experiments on a set of benchmark instances and compare its performance against
state-of-the-art metaheuristic algorithms. The results demonstrate the superior performance of
GEA in terms of convergence speed, solution quality, and robustness. This signifies the potential
of GEA as a novel and efficient approach for solving combinatorial optimization problems.

The rest of the paper is organized as follows: Section 2 presents the main inspiration of our GEA
based on the genetic engineering concept. Section 3 studies the design and implementation details
of the proposed GEA based on genetic engineering operators. Section 4 presents the experimental
setup and discusses the comparative results with other algorithms. Finally, Section 5 concludes the
paper, by emphasizing the significance of GEA as an innovative solution for efficient combinatorial
optimization problems and outlining potential directions for future research.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 3 2024



276 MAJID SOHRABI et al.

2. INSPIRATION

Genetic engineering (GE) has transitioned from speculative fascination to a groundbreaking
reality with wide-ranging applications. This methodology exhibits significant potential in disease
treatment, exemplified by cancer immunotherapy [19], and the utilization of CRISPR technology
to eliminate the HIV virus from infected cell genomes, offering prospects for a cure [20]. It extends
to the realm of human genetics, impacting characteristics in newborns [21], and holds promise
in agriculture for producing high-yield crops [22]. For instance, the development of Golden Rice,
engineered to combat vitamin A deficiency and prevent blindness worldwide, underscores GE’s
potential [23].

Dominant chromosomes wield a pivotal influence on genetics, shaping specific trait expressions.
Through meticulous manipulation, scientists can surpass or enhance genetic characteristics for
desired outcomes. Precision in specifying dominant chromosomes related to plant yield, for instance,
has led to high-yield species addressing global challenges such as climate change, pollution, and
food shortages [24].

Directed mutations entail precise DNA alterations in organisms to induce advantageous changes.
Researchers can introduce specific mutations in genes to promote beneficial traits or suppress harm-
ful ones. This approach finds applications in medicine, agriculture, and environmental conservation.
By directing mutations in disease-causing genes, scientists are developing innovative treatments for
genetic disorders like cystic fibrosis and muscular dystrophy. Achieving this involves two critical
steps: identifying crucial genes for enhancing traits and carefully manipulating non-informative
genes to achieve desired outcomes [23].

Desired genes possess specific qualities or capabilities that scientists aim to introduce into an
organism. These genes enhance crop resistance in agriculture, contributing to sustainable farming
and increased food production. In medicine, they hold the key to curing genetic disorders [25].
Targeting desirable genes through mutation takes genetic engineering to a new level of precision.
Techniques like CRISPR-Cas9 [26] enable precise gene editing, allowing correction of mutations
responsible for diseases like sickle cell anemia or Huntington’s disease, offering hope to millions [24].

Gene injection, another innovative approach, delivers therapeutic genes directly into the body to
treat or prevent diseases. This method holds promise for conditions like cancer and cardiovascular
disorders. By injecting genes producing therapeutic proteins, scientists can enhance natural defense
mechanisms, stimulate tissue regeneration, or target cancer cells. Gene injection therapy represents
a powerful tool in personalized medicine [25].

In conclusion, genetic engineering is a groundbreaking reality with diverse applications in
medicine, agriculture, and environmental conservation. Through dominant chromosomes, directed
mutations, and desired gene identification, scientists shape genetics for high-yield crops and disease
treatment. Techniques like precise gene editing and gene injection therapy enable unprecedented
precision and customization. As genetic engineering advances, it promises to revolutionize various
domains, ushering in an era of personalized medicine and sustainability. Building on these GE
techniques, this paper proposes a novel metaheuristic algorithm, GEA.

3. PROPOSED GEA

While the GA [1] is a well-established evolutionary algorithm that commonly employs classi-
cal mutation and crossover operators, this study proposes a novel approach by incorporating GE
techniques. The overall flowchart for the proposed GEA is shown in Fig. 1. One can skip any
operator from Crossover to Gene Injection to customize the algorithm for different purposes and
check the performance of the method with partial operators. The GEA similar to other meta-
heuristics starts with an initial population that is the counterpart of this method. This algorithm
encompasses a diverse range of methods used to isolate, purify, insert, and express specific genes
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Fig. 1. Flowchart for the proposed GEA.

within a host organism, ultimately leading to the emergence of desired traits and the production
of specific chromosomes based on the selected genes. The flowchart of the proposed GEA is shown
in Fig. 1.

After generating the initial population, all individuals will be evaluated based on the specific
fitness function. It is worth noting that each problem is defined by a specific and unique fitness
function to present a solution in combinatorial optimization. We can classify different integer pro-
gramming problems such as vehicle routing optimization, flow-shop scheduling problems, knapsack
problems, and facility location planning as combinatorial optimization problems [18]. The chro-
mosome definition or the solution presentation in each type of combinatorial optimization problem
is different. For example, the chromosome in routing optimization is defined as the sequence of
visits [2]. In flow-shop scheduling problems, the chromosome is considered as the sequence of a set
of jobs on machines [18]. In addition, the solution definition in facility location planning and knap-
sack problems is defined by 0-1 or binary variables [3]. In our GEA, the examples for explaining
the search operators are based on a binary chromosome where each gene may be zero or one. In
this new metaheuristic algorithm, in addition to mutation and crossover operators, we have three
genetic engineering operators as three scenarios explained as follows:

3.1. Senario 1

Finding Dominant Chromosome for Crossover (most repeated genes): The first scenario of GEA
focuses on identifying the dominant chromosome by considering a percentage, denoted as p%, of
the best individuals in the population. The value of p is initially defined by the user and can be
optimized based on the specific problem at hand. A chromosome is deemed dominant if it possesses
the highest number of repeated genes among the best p% of individuals. The process of identify-
ing the dominant genes and constructing the dominant chromosome is outlined by Equations (1)
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Fig. 2. Finding dominant genes from p% population.

and (2). To provide clarity on this operation, Fig. 2 illustrates an example of finding the dominant
chromosome from the elite population. Additionally, the pseudocode for this operation is presented
in Algorithm 1.

RM; = {Ej]\/ilgenej} , (1)
DC = max(RM). (2)

Where M, RM, and DC represent the number of individuals in p% of the population, repetition
matrix, and dominant chromosome respectively.

3.2. Senario 2

Directed Mutation: The second scenario in GEA focuses on improving the effectiveness of the
mutation operator, which is essential for preventing the algorithm from getting trapped in local
optima. In traditional GAs, random mutation is often used, which can be a drawback. To address
this limitation, the mutation operator in GEA is targeted and modified to enhance the efficiency
of the genetic algorithm. In this scenario, specific methods are proposed to direct the mutation
process, rather than relying on random selection. One such method involves the detection of
desired genes, which enables the algorithm to focus on genes that are known to contribute to
desired traits or outcomes. By targeting the mutation process and removing the randomness
associated with traditional mutation, the performance of the genetic algorithm can be significantly
improved. To provide an illustration of the directed mutation operator, Fig. 3 presents an example
that demonstrates how the process works. This targeted mutation approach allows the algorithm to
prioritize specific genes and introduce beneficial changes in a controlled manner. By doing so, GEA
can overcome the limitations of random mutation and enhance its ability to explore the solution
space effectively.

] 1 it M;; desired
flw) = { 0  otherwise. (3)

e Desired Gene: The first step for applying this operator is to find the most repeated genes
out of p% of the best chromosomes which are considered desired genes. The goal here is to
consider fixed genes because these genes are considered the most informative elements for
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Fig. 3. Directed mutation by fixing informative genes.

generating the elite part of the population. So, their existence in the solution will help the
population to stay in the elite part, and by the slight change, they may move towards the
global optimum in the near future. This step will generate a pattern matrix with nxm. where
n is the number of populations in the elite part of the whole population (best p%), and m
is the number of genes inside a chromosome which is known as the number of the variables
in the problem. This pattern matrix consists of binary elements, in which 1 represents the
specific chromosome that is desired and should be fixed, and 0 represents uninformative genes
for which mutation is allowed to be applied. Equation (3) represents how the pattern matrix
will be generated. If the number of repetitions reaches a specific threshold then the gene will
be desired. The threshold will be specified by the user from the beginning and the parameter
can be optimized based on different problems and purposes.

e Mutation Targeting Desirable Genes: After generating the pattern for p% chromosomes with
the highest fitness values, a candidate by the roulette wheel will be selected, the mutation
applies only on uninformative genes which represent zero in their corresponding pattern matrix.
By applying targeting mutation we hope to search the solution space in the proper manner to
find the global optimum. The engineered mutation will be repeated to the number of overall
mutations only on uninformative genes to invest in the elite part of the population for faster
convergence.

3.3. Senario 3

Gene Injection: The third scenario in GEA focuses on the importance of considering the entire
population, including the individuals with the worst fitness values. While the first two scenarios

Repetition Rate —— 85% \ 70% | 65% \ 80% y 60%

Dominant Gene —— 1 ‘ 0 | 1 ‘ 0 ‘ 0
Selected Chromosome for Gene Injection _ 0 ‘ 1 | 1 ‘ 1 ‘ 1
Final Chromosome ~ —— 1 \ 1 ‘ 1 \ 0 \ 1

Fig.4. Injecting informative genes to wort individuals of the population.
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primarily focus on the elite part of the population, it is essential to recognize that even the worst
solutions can contribute to the overall improvement of the algorithm. In optimization algorithms,
the worst individuals should not be overlooked, as they also possess the potential for beneficial
changes. In this scenario, we aim to invest in the worst individuals and employ an engineering
approach to enhance their performance. By making slight changes to the worst individuals, they
have the opportunity to move towards the global optimum and eventually become part of the elite
solutions in subsequent iterations of the algorithm.

To accomplish this, a patterns matrix is constructed for the elite part of the population. Then,
individuals from the non-elite part of the population (representing 1 — p%) are selected. Based
on the pattern matrix, genes from the chromosome with the highest repetition are injected into
the selected chromosome. This gene injection operator facilitates the transfer of beneficial genetic
information from the dominant chromosome to other individuals in the population, enabling them
to improve and contribute to the overall optimization process. Figure 4 provides an example
that illustrates how this proposed gene injection operator works. It demonstrates the process of
transferring genetic information to enhance the selected chromosome. The dominant chromosome,
as coded in Algorithm 1, is necessary for the implementation of this gene injection operator.

By incorporating this third scenario into the GEA, we can harness the potential of even the
worst solutions in driving the algorithm toward the global optimum. This approach allows for a
more comprehensive exploration of the solution space and facilitates the improvement of the entire
population over successive iterations.

Algorithm 1. Dominant Chromosome

Data: Pop, Prob. Info.
Result: DominantGene, Mask, MaskInverted

while i less than chromosome length do
while j less than No. of Pop. do
| Genes < [Genes, Pop;(i)]
end
while there is element in Genes do
temp < sum(Genes == Genes(1))
if size DominantGene == (0 then
DominantGene < Genes(1)
DominantGeneCounter < temp
else
if temp ; DominantGeneCounter then
DominantGene < Genes(1)
DominantGeneCounter <— temp
else
| DominantGene < [DominantGene, Genes(1)]
end

end
end

end
Mask < zeros(1, size(chromosome))
while i less than chromosome length do
if (DominantGeneCount > threshold) and (threshold not ) then
| Mask(i) + 1
end
end
MaskInverted < notMask
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Table 1. Report of the algorithms results based on criteria of the Best=B, Worst=W, Mean=M,
and Standard deviation=Std. (The best values in each criterion and test instance are highlighted

in bold.)

Test instance F1 F2 F3 F4 F5 F6
gﬁﬁiif ffogéthsige 8x3 10x3 14x4 20x4 25x5 30x5
B 257.3492 | 268.1687 | 301.6661 | 317.6503 | 326.5457 | 308.8542
aA W 9291.6624 | 269.0742 | 316.0882 | 351.2298 | 363.0131 | 343.9097
M 260.7805 | 268.7120 | 305.8615 | 333.5178 | 338.1742 | 321.1532
Std 10.8507 | 0.4675 | 5.4002 | 12.3733 | 11.3976 | 11.5798
B 257.3492 | 268.1687 | 301.6661 | 319.3303 | 319.5602 | 307.1991
CGEAL LW 257.3492 | 269.0742 | 318.8057 | 342.2278 | 359.0854 | 370.7047
M 257.3492 | 268.2593 | 304.7409 | 324.0378 | 330.8722 | 328.0479
Std 5.99E-14 | 0.2863 | 54787 | 6.8149 | 10.8851 | 21.2861
B 257.3492 | 268.1687 | 301.6661 | 317.1235 | 321.5556 | 302.5377
A | W 257.3492 | 269.0742 | 306.3834 | 353.7992 | 359.0854 | 322.7266
M 257.3492 | 268.3498 | 302.8296 | 327.4803 | 333.1713 | 311.4745
Std 5.99E-14 | 0.3817 | 1.6555 | 12.1645 | 13.4915 | 7.3910
B 257.3492 | 268.1687 | 301.6661 | 317.6503 | 319.0169 | 308.8834
GEAs W 257.3492 | 269.0742 | 306.3834 | 331.8416 | 331.3571 | 346.2497
M 257.3492 | 268.4404 | 302.3684 | 323.3476 | 326.245 | 323.5826
Std 5.99E-14 | 0.4373 | 1.58597 | 5.45505 | 4.1059 | 13.7657
B 257.3492 | 268.1687 | 301.6661 | 317.6503 | 317.7347 | 304.4598
cpA W 257.3492 | 268.1687 | 301.6661 | 331.8416 | 331.4877 | 343.6004
M 257.3492 | 268.1687 | 301.6661 | 321.4611 | 323.1822 | 313.4242
Std 5.99E-14 | 5.99E-14 | 0 47726 | 6.0097 | 11.8294

4. EXPERIMENTAL RESULTS

Here, we present a comprehensive evaluation of the GEA and demonstrate its efficacy in solving
combinatorial optimization problems, particularly in the context of a standard vehicle routing
optimization problem. This problem involves determining optimal routes for a fleet of vehicles to
visit a set of demand points while minimizing transportation costs. To evaluate the performance of
GEA, we compare it not only against the traditional GA but also against three variations of GEA,
namely GEA1, GEA2, and GEA3, each utilizing a specific scenario as explained earlier. In GEA,
the main loop uses all the operators in sequence in each iteration.

For our evaluation, we select six well-established instances from the literature, as referenced
by [18] and [9], to benchmark the algorithms. To ensure consistency, we set the maximum number
of iterations to 1000 and the population size to 100 for all algorithms. The crossover and mutation
percentages are uniformly set to 0.8 and 0.1, respectively, across all algorithms. Moreover, in the
case of GEA, the percentages of scenarios considered are 0.5, 0.5, and 0.2 for the first, second, and
third scenarios, respectively.

To gauge the performance of the algorithms, we conduct 10 independent runs of each algorithm
on every test instance. Subsequently, we report the best, worst, average, and standard deviation
of the solutions obtained by each algorithm in Table 1. These results enable us to analyze the
robustness of the applied metaheuristic algorithms. Furthermore, Fig. 5 illustrates the convergence
rate of each algorithm towards its best performance, providing a visual representation of their
effectiveness. To complement our analysis, we perform statistical analyses using a 0.95 confidence
level, employing normalized standard deviations across all algorithms. The interval plot in Fig. 6
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Fig. 5. Convergence rate of the metaheuristic algorithms in all the benchmarked instances.

showcases the results of these statistical analyses, shedding light on the comparative performance
and reliability of the algorithms.

Based on the results presented in Table 1, our findings indicate that GEA, when utilizing all
scenarios, outperforms the other algorithms. In most instances, this algorithm consistently discovers
near-optimal solutions superior to those obtained by GA and the other GEA variants. Among the
GEA variations, GEA2 stands out as the most successful, confirming the strength of the second
scenario in exploring better near-optimal solutions. Figure 5 demonstrates that all algorithms
exhibit an acceptable convergence rate across the test instances, with similar solution quality.
However, the statistical analyses from Fig. 6 conclusively support the highest accuracy of our GEA
compared to the other algorithms.

In conclusion, our comprehensive evaluation showcases the effectiveness of the GEA in solving
combinatorial optimization problems, specifically the vehicle routing optimization problem. The
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results presented in Table 1 and Figs. 5 and 6 highlight the superior performance and accuracy of
GEA, particularly when incorporating all scenarios. These findings provide compelling evidence for
the potential of GEA as a robust and reliable metaheuristic algorithm for addressing optimization
challenges.

5. CONCLUSION AND FUTURE WORK

This study presented a comprehensive evaluation of the GEA and its effectiveness in solving
combinatorial optimization problems, focusing on the vehicle routing optimization problem. The
results obtained through benchmarking against the traditional GA and different variations of GEA
demonstrated the superiority of GEA, particularly when incorporating all scenarios. GEA consis-
tently outperformed other algorithms, yielding better near-optimal solutions in most instances.

The findings of this study contribute to the growing body of research on metaheuristic algo-
rithms and their applications in optimization problems. The success of GEA in addressing the
vehicle routing optimization problem showcases its potential in real-world scenarios where efficient
transportation routing is critical. These results provide valuable insights into the efficacy of genetic
engineering techniques based on our three scenarios for the development of GEA in solving com-
binatorial optimization problems and highlight the importance of considering different scenarios in
the algorithm design.

Moving forward, several areas for future research can be identified. Firstly, further investiga-
tion can be conducted to explore the impact of different parameter settings on the performance
of GEA and its variations. Fine-tuning the algorithm’s parameters may enhance its effectiveness
and lead to even better solutions. Extending the evaluation to other optimization problems and
comparing GEA against state-of-the-art algorithms would provide a broader perspective on its per-
formance and competitiveness. Moreover, integrating GEA with other optimization techniques or
hybridizing it with machine learning approaches could further enhance its capabilities. Combin-
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ing the strengths of genetic engineering algorithms with other intelligent algorithms may lead to
novel hybrid approaches with improved optimization performance. Lastly, conducting experiments
on larger problem instances and assessing the scalability and efficiency of GEA would be benefi-
cial [40]. Scaling up the problem size would provide insights into the algorithm’s performance when
dealing with more complex and larger-scale optimization challenges [41].
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