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Abstract—This paper reports of theoretical and computational results related to an original
concept of consensus clustering involving what we call the projective distance between parti-
tions. This distance is defined as the squared difference between a partition incidence matrix
and its image over the orthogonal projection in the linear space spanning the other partition
incidence matrix. It appears, provided that the ensemble clustering is of a sufficient size, ag-
glomerate clustering with the semi-average within-cluster similarity criterion effectively solves
the problem of consensus partition and, moreover, of the number of clusters in it.
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1. INTRODUCTION

Methods for consensus partitioning are relevant to the network research, as pointed out by
Lancichinetti and Fortunato [8] and Liu et al. [9]. The goal of this paper is to present and
justify a self-adjusting method for finding a consensus partition over a partition ensemble. The
method is, basically, conventional locally optimal agglomeration of clusters over the consensus
matrix supplemented with several traits. The traits include: (i) shifting the similarity values to
a zero sum; (ii) the semi-average within-cluster criterion; (iii) zeroing the diagonal similarities at
each agglomeration step. The semi-average clustering criterion appears to implement the concept of
consensus partitioning using what we call the projective distance between partitions. This distance
is defined as the squared difference between a partition incidence matrix and its image over the
orthogonal projection in the linear space spanning the other partition’s incidence matrix [11, 12].
The experimental part is based on a novel synthetic generator of partition ensembles. The generator
involves a “mutation” probability which controls both the diversity of generated partitions and their
relation to a ground truth partition. Methods for maximizing within-cluster summary criterion,
including most popular modularity clustering method [14] and algorithm Louvain [2], are used as
a benchmark.

2. CONSENSUS MATRIX AND ITS SHIFTING

Given a number of partitions R1, R2, . . . , RM on a set of N objects I, a consensus partition
is conventionally defined over what is referred to as consensus matrix, that is an N ×N matrix
A = (aij) whose (i, j)th entry aij is defined as the number of those partitions Rm (m = 1, 2, . . . ,M )
in which both i and j belong in the same part (i, j ∈ I). Any partition R on I can be one-by-one
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SELF-ADJUSTED CONSENSUS CLUSTERING 263

Table 1. Data of five partitions over six ob-
jects represented by columns of cluster labels

Table 2. Consensus matrix for partitions
in Table 1

# R1 R2 R3 R4 R5

1 1 1 2 3 3
2 1 1 1 3 2
3 1 2 1 2 2
4 2 2 2 2 3
5 2 2 2 1 1
6 2 3 2 1 1

# 1 2 3 4 5 6

1 5 3 1 2 1 1
2 3 5 3 0 0 0
3 1 3 5 2 1 0
4 2 0 2 5 3 2
5 1 0 1 3 5 4
6 1 0 0 2 4 5

Table 3. Consensus matrix (on the left), random interactions matrix, in the middle, and
modularity shifted consensus matrix (on the right), for the partitions in Table 1

# 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 5 3 1 2 1 1 2.22 1.88 2.05 2.39 2.39 2.05 2.78 1.12 –1.05 –0.39 –1.39 –1.05
2 3 5 3 0 0 0 1.88 1.59 1.74 2.03 2.03 1.74 1.12 3.41 1.26 –2.03 –2.03 –1.74
3 1 3 5 2 1 0 2.05 1.74 1.89 2.21 2.21 1.89 –1.05 1.26 3.11 –0.21 –1.21 –1.89
4 2 0 2 5 3 2 2.39 2.03 2.21 2.58 2.58 2.20 –0.39 –2.03 –0.21 2.42 0.42 –0.21
5 1 0 1 3 5 4 2.39 2.03 2.21 2.58 2.58 2.21 –1.39 –2.03 –1.21 0.42 2.42 1.79
6 1 0 0 2 4 5 2.05 1.74 1.89 2.21 2.21 1.89 –1.05 –1.74 –1.89 –0.21 1.79 3.11

Table 4. Scale shifted consensus matrix for the partitions in Table 1

1 2 3 4 5 6

1 1.96 –0.04 –2.04 –1.04 –2.04 –2.04
2 –0.04 1.96 –0.04 –3.04 –3.04 –3.04
3 –2.04 –0.04 1.96 –1.04 –2.04 –3.04
4 –1.04 –3.04 –1.04 1.96 –0.04 –1.04
5 –2.04 –3.04 –2.04 –0.04 1.96 0.96
6 –2.04 –3.04 –3.04 –1.04 0.96 1.96

represented by its binary N ×N adjacency matrix r = (rij) such that rij = 1 if both i and j belong
to the same part in R, and rij = 0, otherwise. It is well-known that A = Σmrm where rm is the
adjacency matrix for Rm (m = 1, 2, . . . ,M).

The consensus values express the extent of similarity between objects in I according to the
partitions Rm (m = 1, 2, . . . ,M). The most similar are those objects i, j, that belong to the same
part in all the partitions. Consensus value aij = M for them. In contrast, most dissimilar are
objects which are never in the same part; aij = 0 for them. All elements of matrix A are not
negative. For the goals of partitioning, it should be beneficial to shift them so that the average
value of A becomes zero. There are two shifting transformations of the similarities described in the
literature, modularity shift [ ] and scale shift [ ], defined as follows:

• Modularity shift. This is based on the concept of random interactions between objects. Let
the summary similarities ai. = Σjaij and a.j = Σiaij express the respective “charge” of row i and
column j. Then the random interaction between items i and j is proportional to the product
of the charges, ai.a.j, and can be expressed as the ratio ai.a.j/a.. where is the total “charge”
a.. = Σja.j = Σiai., to be rated in the same units as the charges. Modularity shift cleans the
similarities from the random interactions:

aij ⇐ aij − ai.a.j/a... (1)

It is not difficult to prove that the total sum of the modularity shifted similarities aij is equal to
zero, so that the average similarity after the modularity shifting is 0 as well.
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264 MIRKIN, PARINOV

• Scale shift. This transformation is a simple shift of the origin of the scale of measurement of the

similarities aij into the point of the average similarity value, which is a =

∑

i,j aij

N2
=

∑

i ai.
N2

=

∑

j a.j

N2

aij ⇐ aij − a. (2)

Of course, the total sum of the scale shifted similarities aij is equal to zero too, and the average
similarity after the scale shifting is 0 as well.

Example. Consider a set of 6 objects I = {1, 2, 3, 4, 5, 6} and five partitions of this set presented
in Table 1.

Table 2 presents consensus matrix over the data in Table 1.

This matrix together with the matrix of random interactions and that of the modular transfor-
mation is presented in Table 3.

To obtain scale shifted matrix, one needs to subtract the average similarity, 3.04, at this dataset,
from all the consensus matrix entries (see in Table 4).

One can notice that the modularity shifting leaves much more entries positive than the scale
shifting. In the right subtable in Table 3, one can see two rows with three positive entries each,
the 2d and the 5th rows. In contrast, the number of positive entries in the scale shifted matrix of
Table 4 is extremely limited: only one outside the main diagonal! This is important because only
positive entries can force entities to merge in a cluster, as we will see further on.

3. PARTITIONING CRITERIA

Out of several clustering criteria to occur in the literature, we consider two based on within-
cluster similarities. That is, the consensus matrix entries, aij , are considered as similarities between
i and j. One criterion is just the sum of within cluster similarities. That is, for any partition
R = {R1, R2, . . . , RK} of I in K parts (clusters) the within-cluster Rk (k = 1, 2, . . . ,K) similarity
is scored with the sum of similarities aij over all pairs (i, j) of objects from Rk, so that the total
within-cluster similarity is expressed as

f(R) =
K
∑

k=1

∑

i,j∈Rk

aij , (3)

which should be made as high as possible. It is obvious that at non-negative aij , this criterion
leads to a trivial solution: the maximum of within-cluster sum is reached at the universal cluster
embracing all the N objects. This is why preliminarily transforming the similarities with either
modularity shifting or scale shifting are beneficial for the goal of partitioning. In fact, the popular
modularity clustering criterion [14, 3] is but the summary within-cluster similarity criterion (3)
after the modularity shift [11].

Another criterion under consideration is the semi-average within-cluster similarity [11]:

g(R) =
K
∑

k=1

1

Nk

∑

i,j∈Rk

aij , (4)

which is very similar to criterion (3), except that the within-cluster sums here are regularized by
dividing them over the cluster size. This criterion emerges in the context of approximate clustering
including the additive clustering [11]. This criterion does not necessarily lead to the universal
cluster at non-negative similarities; however, it is beneficial to apply it after preliminarily shifting
the similarities, as we will see later in the text. We employ this criterion as the most appropriate
choice for consensus clustering, as we will see later.
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4. AGGLOMERATE ALGORITHMS

There are several types of algorithms customarily applied for obtaining suboptimal solutions:
agglomeration of smaller clusters into larger ones, division of larger clusters into smaller ones,
obtaining clusters one by one, exchange between clusters by objects. Of them, we concentrate
here only on agglomeration, because we are going to demonstrate that a version of agglomerate
algorithm for the criterion (4) is effective indeed for the goal of consensus clustering.

The classical agglomerate algorithm with respect the summary criterion in (3) can be formulated
as follows:

Algorithm AgSu:

1. Initialization. Take singleton clusters as the initial partition to consist of N singletons
{1}, {2}, . . . , {N}. Define the similarity matrix between them, B = (bij), to be equal to A = (aij),
meaning that similarity bij between singletons {i} and {j} is equal to aij.

2. General step. Given a partition S = {S1, S2, . . . , Sm} of I andm×mmatrix B = (bst) of sum-
mary similarity values between clusters (s, t = 1, 2, . . . ,m), find the maximum bs∗t∗ = maxs 6=t bst.
If bs∗t∗ > 0, merge clusters Ss∗ and St∗ into a union, Ss∗ ⇐ Ss∗ ∪ St∗ with a follow-up recomputa-
tion of the summary similarity by adding row t∗ to row s∗: bs∗t ⇐ bs∗t + bt∗t for all t = 1, 2, . . . ,m,
after which the same applies to columns: bss∗ ⇐ bss∗ + bst∗ for all s = 1, 2, . . . ,m. Then row and
column t∗ is removed from matrix B, and m is decreased by 1. If bs∗t∗ < 0, stop. If m < 3, stop.

This algorithm is locally optimal: at each merger, taking the maximum of bst maximizes the
value of criterion (3): the difference between its values after and before the merger is equal to 2bst.

A similar algorithm can be formulated for the semi-average criterion (4). The only thing that
needs to be formulated before is the level of criterion change at merging two clusters. Let us
consider a current partition S = {S1, S2, . . . , Sm} and the result of merging clusters Ss and St

in it, S(s, t) = {S1, . . . , Ss−1, Ss ∪ St, . . . , Sm}. The difference between g(S(s, t)) and g(S) can be
expressed as

∆g(s, t) = g(S(s, t)) − g(S) =
2bst −Ntbss/Ns −Nsbtt/Nt

Ns +Nt

, (5)

where bst, bss, btt are elements of the matrix B of summary similarities between/within clus-
ters. This formula can be proved with elementary transformations of elements of the difference
g(S(s, t)) − g(S).

• Algorithm AgSa:

1. Initialization. Take singleton clusters as the initial partition to consist of N singletons
{1}, {2}, . . . , {N}. Define the similarity matrix between them, B = (bij), to be equal to A = (aij),
meaning that similarity bij between singletons {i} and {j} is equal to aij.

2. General step. Given a partition S = {S1, S2, . . . , Sm} of I and m×m matrix B = (bst)
of summary similarity values between clusters (s, t = 1, 2, . . . ,m), find the maximum ∆g(s∗, t∗) =
maxs 6=t∆g(s, t), see (5). If ∆g(s∗, t∗) > 0, merge clusters Ss∗ and St∗ into a union, Ss∗ ⇐ Ss∗ ∪ St∗

with a follow-up recomputation of the summary similarity by adding row t∗ to row s∗: bs∗t ⇐
bs∗t + bt∗t for all t = 1, 2, . . . ,m, after which the same applies to columns: bss∗ ⇐ bss∗ + bst∗ for all
s = 1, 2, . . . ,m. Then row and column t∗ are removed from matrix B, and m is decreased by 1.
If ∆g(s∗, t∗) < 0, stop. If m < 3, stop as well.

The formulations of AgSu and AgSa algorithms have that advantage that at similarities after
the modular shifting or scale shifting, the number of clusters is determined in both AgSu and AgSa
automatically: the computation stops at that m at which all the non-diagonal elements of B are
negative in AgSu, or ∆g(s, t) < 0 for s 6= t. At this, no cluster merger can further increase the
value of criterion (3) or (4), respectively.
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As is well known, the agglomeration algorithms are time-consuming because at each agglom-
eration step they look for a minimum among all the elements in B, which is of the order of N2,
especially at the beginning. Efforts at decreasing the computation went in the direction of finding
and using properties of clustering criteria to allow using results of the previous iterations [13]. Then
paper [2] came up with a revolutionary idea of dropping off the need in comprehensively searching
through all the pairs of similarities. The authors used the summary modularity criterion (3) to
formulate and substantiate experimentally a general idea they dubbed as Louvain algorithm: let
us take one element, s, in pair (s, t) to be random, so that the maximum of bst is determined
only by enumeration of t, which is of the order of N , not N2. Of course, this idea can be used
with any criterion, not just the modularity based. Thus, we utilize two versions of the Louvain
algorithm. We formulate here a general version which can be used with any criterion c(R) to be
maximized over all partitions R = {R1, R2, . . . , RK}. Assume that one can easily compute the
difference ∆c(s, t) = c(S(s, t)) − c(S).

General algorithm Louvain GAL.

1. Specify the N -part singleton partition R = {{1}, {2}, . . . , {N}} as the starting partition.

2. At any given partition R = {R1, R2, . . . , RK}, run a loop over arbitrary ordering of clusters
1, 2, . . . ,K.

Within this loop,

2.1. At any given s, find t∗ maximizing the difference ∆c(s, t) over all t = 1, 2, . . . K.

2.2. Merge clusters Rs and Rt∗ together and change R for partition R(s, t∗); decrease K by 1.

2.3. Check stop condition: either all ∆g(s, t) < 0 for s 6= t or K < 3. If true, stop. If not, return
to the loop.

2.4. If the loop is finished, go to 2 with the current R.

There is one additional operation, which is to be performed before running any of the agglomerate
algorithms:

ZD: Zeroing diagonal elements of the similarity matrix.

This is done by making every diagonal element of the current cluster-to-cluster similarity ma-
trix B equal to zero.

We tested whether it is beneficial to execute ZD before every agglomerate step, not only in the
beginning. It appears, that is beneficial only at AgSa agglomeration algorithm, out of all the tech-
niques considered above. Thus, further on, we consider AgSa involving ZD at every agglomeration,
whereas all the other options involve ZD only in the beginning.

5. EXPERIMENTAL COMPUTATIONS

Surprisingly, the business of experiments with consensus clustering algorithms is based on rather
shaky foundations. Typically, a dataset is taken, and a clustering algorithm applies many times
at various parameter settings to generate a clustering ensemble, that is a set of partitions to
be used for finding a consensus clustering. Therefore, the issue of consensus clustering here is
combined with specifics of the clustering algorithms and datasets. This generates issues related
to the “quality” of clustering ensembles, their diversity, their representativeness, etc. [4, 15, 1].
In our view, the issue of consensus clustering should be relieved from issues related to producing
clustering ensembles and, more so, issues related to quality of clustering algorithms producing those
ensembles. In other words, the experimental setting for a consensus clustering algorithm should
straightforwardly generate clustering ensembles so that their diversity and representativeness are
easily controllable.

We propose here such a setting. First, our synthetic data generator produces a “ground truth”
partition of an entity set. To do so, we specify three parameters: the size of the entity set N , the
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Table 5. Parameters of the experiments: N number of objects, K number
of clusters, M ensemble size, m minimum cluster size, p mutation probability

N K M m p Data shift Algorithm

1000 4 10 2 0.8 Modularity Agglomeration
3000 9 40 Scale Louvain

15

number of parts in the partition, K, and their minimum size, m. This latter parameter is useful
when applying clustering algorithms whose parameters are based on probabilities. To decently
estimate these parameters, one may need at least m elements. Then we put mK elements in
different parts (adding to them m-element portions); the other N −mK elements are assigned
with either of K cluster labels randomly. This can be done with a randi(K,T ) procedure, which
assigns each of T = N −Km elements with either of K different integer labels.

After the ground truth partition S is generated, we generate an ensemble of partitions R1, R2,
. . . , RM to represent it. To this end, we specify a probability, p, 0 < p < 1, of “mutation”. To
generate R1, we reassign 100p% of the entities to any randomly chosen cluster. Other partitions
are generated similarly. By increasing p, one increases the diversity of the ensemble. The fact that
such an ensemble is representative for the ground truth partition follows from the construction.

Some may find our mutation mechanism overly simplistic. For example, all the partitions gen-
erated with this have the same number of clusters as the ground truth. Indeed, one can propose
more complex mutation schemas to involve, for example, random mergers and splits of the ground
truth clusters. Let us, however, point to good properties of our data generator. First, we can build
rather diverse partitions indeed by increasing the mutation probability p. Second, by decreasing
the number of partitions in our ensembles, we can create really difficult situations for consensus
clustering algorithms, say, by making the number of them less than the number of parts in the
ground truth partition, M < K.

In the follow-up computations we used two values for the number of objects N , N = 1000 and
N = 3000, three values for the number of clusters K, K = 4, K = 9, and K = 15, and two values
for the size of partition ensemble, M , M = 40 and M = 10. These are summarized in Table 5, in
which algorithms under consideration are listed also.

The quality of the results is scored by two characteristics: the number of clusters obtained and
ARI (Adjusted Rand index), an index of similarity between the ground truth partition and that
obtained by an algorithm [6].

ARI is based on the number of pairs of objects that are consistent in partitions under comparison,
that is, either belong to a same cluster, or to different clusters, in both partitions:

ARI (A,B) =

(

N

2

)

∗
KA
∑

s=1

KB
∑

t=1

(

nst

2

)

−
KA
∑

s=1

(

as
2

)

KB
∑

t=1

(

bt
2

)

1

2

(

N

2

)





KA
∑

s=1

(

as
2

)

+
KB
∑

t=1

(

bt
2

)



−
KA
∑

s=1

(

as
2

)

KB
∑

t=1

(

bt
2

)

. (6)

In (6), A and B are two partitions of the entity set with KA and KB parts, respectively; as and
bt are cardinalities of parts in A and B, respectively; nst – frequencies in the joint AB distribution;
(n
2

)

is a binomial term equal to n(n− 1)/2.

The closer the value of ARI to unity, the more similar are the partitions; ARI = 1.0 shows that
A = B. If one of the partitions consists of just one part, the set I itself, then ARI = 0. ARI can
be negative as well, which may happen rather rarely, as, say, at specially defined “dual” pairs of
partitions [7].
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Table 6. Consensus clustering results at N = 1000, M = 40

Summary criterion Semi-average criterion

Louvain Agglomeration Louvain Agglomeration

Gen Mod SShift Mod SShift Mod SShift Mod SShift

4
ARI 0.84/0.09 0.88/0.03 0.89/0.03 0.90/0.01 0.98/0.01 0.98/0.01 0.99/0.0 0.99/0.0

# 3.8/0.44 4/0 4/0 4/0 8.6/1.1 9/1.4 4/0 4/0

9
ARI 0.44/0.03 0.43/0.04 0.45/0.01 0.50/0.03 0.99/0.0 0.99/0.00 1.0/0.0 1.0/0.0

# 4.2/0.45 4.2/0.45 4/0 4.8/0.45 11.6/1.5 11.8/1.3 9/0 9/0

15
ARI 0.29/0.01 0.28/0.01 0.33/0.02 0.34/0.01 0.99/0.0 0.99/0.0 1/0 1/0

# 4/0 4/0 4.8/0.45 5/0 17.4/0.5 17.6/0.89 15/0 15/0

Table 7. Consensus clustering results at N = 3000, M = 40

Summary criterion Semi-average criterion

Louvain Agglomeration Louvain Agglomeration

Gen Mod SShift Mod SShift Mod SShift Mod SShift

4
ARI 0.88/0.01 0.87/0.01 0.88/0.01 0.88/0.01 0.98/0.00 0.98/0.00 0.99/0.0 0.99/0.0

# 4/0 4/0 4/0 4/0 12.2/1.1 13/1 4/0 4/0

9
ARI 0.40/0.02 0.40/0.03 0.43/0.05 0.41/0.02 0.99/0.0 0.99/0.00 1.0/0.0 1.0/0.0

# 4.2/0.45 3.8/0.45 4.2/0.45 4/0 14.6/0.55 13.8/0.45 9/0 9/0

15
ARI 0.26/0.01 0.27/0.01 0.29/0.02 0.28/0.02 1.0/0.0 0.99/0.0 1/0 1/0

# 4/0 4/0 4.4/0.55 4.4/0.55 19.4/1.1 19.8/1.3 15/0 15/0

Table 8. Consensus clustering results at N = 1000, M = 10

Summary criterion Semi-average criterion

Louvain Agglomeration Louvain Agglomeration

Gen Mod SShift Mod SShift Mod SShift Mod SShift

4
ARI 0.44/0.02 0.43/0.02 0.41/0.03 0.40/0.02 0.70/0.02 0.70/0.02 0.67/0.03 0.66/0.03

# 3/0 4/0 4/0 3.2/0.45 13.8/0.84 14/1 4/0 4/0

9
ARI 0.18/0.02 0.16/0.01 0.21/0.05 0.21/0.02 0.73/0.01 0.79/0.01 0.73/0.01 0.74/0.01

# 3/0 4/1 3/0 3.8/0.84 20.2/1.1 20.0/1.2 9/0 9/0

15
ARI 0.12/0.01 0.11/0.01 0.14/0.01 0.13/0.01 0.81/0.01 0.81/0.01 0.76/0.03 0.76/0.03

# 3/0 4/0.71 3.4/0.55 4.2/0.45 26.2/1.9 26.2/1.3 14.2/0.84 14.4/0.55

Table 9. Consensus clustering results at N = 3000, M = 10

Summary criterion Semi-average criterion

Louvain Agglomeration Louvain Agglomeration

Gen Mod SShift Mod SShift Mod SShift Mod SShift

4
ARI 0.39/0.03 0.40/0.01 0.41/0.01 0.40/0.02 0.71/0.01 0.71/0.01 0.69/0.01 0.68/0.01

# 3/0 3/0 3/0 3.2/0.45 12.2/3.63 13.4/2.88 4/0 4/0

9
ARI 0.16/0.01 0.16/0.02 0.17/0.01 0.17/0.02 0.79/0.01 0.79/0.01 0.72/0.01 0.72/0.01

# 3/0 3.6/0.55 3/0 3.6/0.55 23.4/0.89 23.6/0.89 9/0 9/0

15
ARI 0.10/0.01 0.10/0.01 0.10/0.01 0.11/0.01 0.83/0.01 0.83/0.01 0.77/0.01 0.77/0.01

# 3/0 4.4/0.89 3.4/0.55 4.6/0.55 30.0/1.9 31.6/2.7 15/0 15/0

Upon generation of a partition ensemble and computing the corresponding consensus matrix, it
was processes with either of 8 processing options depending on the matrix transformation option
(modularity shifting or scale shift), the criterion utilized (summary or semi-average), and the
algorithm used (agglomeration or Louvain). The results are presented in Tables 6, 7, 8, and 9,
depending on the sizes of data, N , and partition ensembles, M .
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These tables clearly show the following:

1. The results at 1000 and 3000 objects almost coincide, which means that the number of objects
under consideration has little effect at the consensus solutions.

2. In contrast to expectations, the results at two different normalizations, the modular one
and the scale shift, are much similar, so that the question of which one to use gets irrelevant in
consensus clustering.

3. The cluster recovery is always better with the semi-average criterion rather than with the
summary one. The larger the number of clusters, the greater the difference.

4. The greater the size of the ensemble, the better: the data recovery results at M = 10 are
considerably worse that at M = 40. Especially devastating is the effect at the summary criterion
at which the cluster recovery level is kept, on average, at ARI equal to 0.4 at K = 4, 0.2 at K = 9,
and 0.1 at K = 15.

5. At M = 40, Agglomeration at the semi-average criterion leads to perfect results at K = 9, 15,
and almost perfect results at K = 4. The Louvain algorithm at the semi-average criterion reaches
almost as good results in cluster recovery. However, it fails with respect to the number of clusters.
In contrast, at M = 10, the Louvain algorithm always wins at cluster recovery, although still
overestimating the number of clusters.

6. There is a method among those under consideration, that always recovers the number of
clusters correctly: the Agglomeration for the Semi-average criterion. This works even when the
ARI decreases to the order of 0.7. The only case at which this might fail, however slightly, is the
case of K = 15, M = 10, that is, M < K, at a smaller number of objects (N = 1000, but not at
N = 3000).

6. DISCUSSION

Some of the empirical results above can be explained by theoretical considerations involving the
general concept of consensus clustering based on indexes of distance between partitions. Given an
index d(R,S) scoring dissimilarity between any partitions R and S of I, one can define the concept
of consensus partition as follows. Given an ensemble of partitions R1, R2, . . . , RM of I, a consensus
partition is any partition R of I which minimizes the summary distance D (R) =

∑M
m=1 d(Rm, R).

Usually, distance d(Rm, R) is defined as the mismatch, or Mirkin’s, distance between corresponding
N ×N binary matrices rm and r whose elements rm(i, j) or r(i, j) are 1 if i and j are in the same
part of Rm or R, respectively; otherwise, they are 0. Mirkin’s distance is the number of inconsistent
pairs (i, j) such that i and j are in a same part of one of the partitions while i and j belong to
different parts in the other partition [10]. Obviously, that is half of the L1 distance between
partitions’ binary matrices. It is not difficult to prove that the consensus partition with Mirkin’s
distance is that one maximizing the summary criterion

F (R) =
K
∑

k=1

∑

i,j∈Rk

(

aij −
M

2

)

, (7)

where aij are elements of the consensus matrix for ensemble R1, R2, . . . , RM .

Indeed,

D (R) =
M
∑

m=1

d(Rm, R) =
M
∑

m=1

N
∑

i,j=1

|rm (i, j) − r (i, j) |/2 =
N
∑

i,j=1

M
∑

m=1

|rm (i, j) − r (i, j)| /2.
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It is not difficult to see that the internal sum is

M
∑

m=1

|rm (i, j) − r (i, j)| =
M
∑

m=1

|rm (i, j) − r (i, j)|2

=
M
∑

m=1

(rm (i, j) + r (i, j) − 2r (i, j) rm (i, j)) = aij +Mr (i, j) − 2aijr (i, j) ,

since
∑M

m=1 rm (i, j) = aij. These manipulations are correct because values of items r(i, j) and
rm(i, j) here are zero or one, so that the quadratic operation leaves them invariant.

By leaving aside the first item, aij , which is constant here, and multiplying the remainder
by −1/2, one can see that the problem of minimization of D(R) is equivalent to the problem of
maximization of F (R) in (7) indeed.

One can see that criterion (7) indeed is the within-cluster summary criterion (3) with the prelim-
inarily shifting similarities by M/2. Unfortunately, there is a shortcoming of thus defined consensus
partition: it fails the so-called Muchnik’s test [11]. The test requires to check, for any partition
T = {T1, T2, . . . , TK} on I, whether the T is a consensus partition for the ensemble of its K di-
chotomous representations T k = {Tk, I − Tk} (k = 1, 2, . . . ,K). If yes, the distance passes the test;
if not, the distance fails the test.

Let us see whether Mirkin’s distance consensus satisfies the test. Take a partition T =
{T1, T2, . . . , T7} with K = 7 parts, so that K/2 = 3.5. Consider consensus matrix aij entries in
this case. Assume, first, that i and j belong to the same part of T . Then they must belong to the
same part in every Tm because each part of T is contained in either part of Tm. That means aij = 7
for such i and j. Consider now that i belongs, say, to T1, and j to another part, say T2. Then i
and j belong to different parts in both T 1 and T 2. However, they belong to the same part I − T3

in T 3 because I − T3 contains both T1 and T2. Similarly, these i and j belong to the same part
in Tm for every other m = 4, 5, 6, 7. Thus, aij = 5 for these i and j. Therefore, all entries in the
consensus matrix here are either 5 or 7, both being greater than K/2 = 3.5. Thus, it is beneficial
to maximize the criterion (7) by collecting all the entities in the universal partition {I} consisting
of the only part, I itself, but not the partition T . Therefore, Muchnik’s test is failed indeed.

There exists another distance measure, which we refer to as a projective distance [12, 11]. Con-
sider a nominal feature over an entity set I represented by partition S = {Sl}, and another nominal
feature represented by partition R = {Rk}. Let us define an N × L dummy matrix Y correspond-
ing to partition S, the partition incidence matrix, by assigning each category Sl in S with a binary
variable yl, a dummy, which is just a 1/0 N -dimensional vector whose elements yil = 1 if i ∈ Sl and
yil = 0, otherwise (l = 1, . . . , L). Similarly define an N ×K incidence matrix X whose columns xk
are 0/1-vectors corresponding to categories Sk of S. The projective distance is defined as the sum-
mary quadratic difference between Y and its orthogonal projection onto the linear space spanning
columns of X [12, 11]. Using symbol ‖ ‖2 for denoting the sum of squares (the squared norm), the
projective distance between R and S is defined by the formula δ(X,Y ) = ‖Y − PXY ‖2 where PX

is the orthogonal projector PX = X(XTX)−1XT to the linear space spanning the columns of X.
Note that this distance measure is asymmetrical. An exact meaning of distance δ(X,Y ) is analyzed
in [11, p. 319]. Here we are going to focus on the summary distance △ (R) =

∑M
m=1 δ(X,Y m) to be

minimized with respect to unknown partition R represented by matrix X, to obtain a projective
distance consensus clustering. Matrices Ym represent here partitions Rm of the given partition
ensemble.

It appears this problem is equivalent to the problem of maximization of the semi-average cri-
terion g(R) in (4). To prove this, consider the incidence matrices X and Ym of partitions R
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and Rm, respectively. These binary matrices mark by 1 the belongingness of objects (rows) to clus-
ters. Let us denote the total number of clusters in all the ensemble partitions (m = 1, 2, . . . ,M )
by L and form N × L matrix Y = (Y1Y2 . . . YM) consisting of all the L columns in these matrices.
The columns of Y correspond to all the clusters in partitions R1, R2, . . . , RM . Then the criterion
△ (R) =

∑M
m=1 δ(X,Y m) can be reformulated as ∆(X) = ‖Y − PXY ‖2, or equivalently, as ∆(X) =

Tr((Y − PXY )(Y − PXY )T ) where Tr denotes the trace of a square matrix, that is, the sum
of its diagonal elements. By opening the parentheses in the latter expression, we have ∆(Y ) =
Tr(Y Y T − PXY Y T − Y Y TPX + PXY Y TPX) = Tr(Y Y T − PXY Y T ). Indeed, the operation Tr
is commutative, so that Tr(PXY Y T ) = Tr(Y Y TPX) and Tr(PXY Y TPX) = Tr(PXPXY Y T ) =
Tr(PXY Y T ). The last equation follows from the fact that PXPX = PX , which is easy to prove
directly. Notice now that matrix Y Y T is equal to the consensus matrix A. Obviously, aii = L for
all i ∈ I, so that Tr(Y Y T ) = NL. On the other hand, the (i, i)th diagonal element of matrix PXA
equals to the sum of products pijaij where pij is either 0, if i and j are in different clusters, or 1/Nk

if both i and j belong to the same cluster Sk. This completes the proof.

Now we can prove that the consensus partition defined using the projective distance does pass
the Muchnik’s test. Consider again a partition T = {T1, T2, . . . , TK} on I and the ensemble of
its K dichotomous representations T k = {Tk, I − Tk} (k = 1, 2, . . . ,K). The consensus matrix A
here consists of aij = K, if both i and j belong to some Tk (k = 1, 2, . . . ,K), or aij = K − 2, if
i and j belong to different parts of T . Consider the semi-average criterion (4) for a partition
R = {R1, R2, . . . , Rm}. Denote the average similarity within Rk by ak. Then the value of (4) is
obviously equal to the sum of Nkak where Nk is the number of objects in Rk. The maximum
value of ak in this case is K, and it is reached when Rk is part of a part of T because in this
case all the within-cluster values aij = K. If, in contrast, Rk intersects several parts of T , some
within-cluster aij values will be equal to K − 2, so that ak < K. This proves that the maximum
value of criterion (4) in the case under consideration is NK (as the sum of all NkK values), and
it is reached at any R either coinciding with T or being T ’s more granular version obtained by
dividing some of its parts.

The proven facts can be considered a substantiation of the reported results: the semi-average
criterion (4) embodies a good concept of consensus clustering using the projective distance between
partitions, whereas the summary criterion (3) relates to a poor concept of consensus clustering using
the Mirkin’s distance. This is why the criterion (4) in our experiments is overwhelmingly superior
to the criterion (3).

We are yet to explain two other empirically observed facts:

1. Why so much different data transformations, as the modularity shift and scale shift, lead to
very similar consensus clustering results?

2. Why the heuristic of constant zeroing of the diagonal entries is so much efficient in determining
the right number of clusters with the semi-average criterion?

It should be noted that the visible “contradiction” between the high ARI values and wrong
numbers of clusters (see Louvain results for the semi-average criterion in Tables 6 and 7 above)
can be easily explained by the insensitivity of ARI index to superfluous small clusters. Take, for
example, a partition R of a 1000-strong set in two equal-sized parts. Make 20 singleton clusters
out of one of the parts and denote thus obtained partition of I in 22 clusters by S. The ARI index
between R and S is 0.96, not that far from unity.

7. CONCLUSION

The main goal of this paper is to bring forth a semi-average consensus clustering criterion (4)
modified with the constant zeroing of the main diagonal heuristic as that which should be used
for consensus clustering to recover both the hidden partition and the number of clusters in it.
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We point out that this criterion emerges as that of consensus clustering with a specially designed
dissimilarity between partitions score system, the projective distance. Unlike the conventionally
used mismatch or Mirkin’s distance between partitions (see, for example, in [5]), the projective
distance is shown to pass a natural validity test (the Muchnik’s test). In the reported experiments,
the agglomerative clustering with criterion (4) shows a very strong tendency to reconstruct both
the hidden partition and the number of clusters in it. We compare the performance of this method
with that by a most popular clustering method, the modularity clustering. Unfortunately, the
modularity clustering appears to perform less than satisfactory and should not be applied as a
consensus clustering tool. Another contribution of this paper is a novel design of computational
experiments with consensus clustering methods. Instead of conventional approaches developing
partition ensembles as those mediated by datasets and clustering methods applied, we propose a
simple probabilistic mutation mechanism to generate a representative partition ensemble, diversity
of which is controlled by the value of mutation probability. We do not include real-world datasets
such as those in the celebrated UC Irvine Machine Learning repository in our experiments, because
there is no direct evidence that features in these datasets do relate to the ground truth partitions.
Future work should involve explanation of the oddities observed, developing more realistic mutation
mechanisms, and adaptation of the approach to big data sets. An interesting direction can be FCA-
related approaches [16].
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