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Abstract—The paper considers a game theory approach to calculating the centrality value of
the vertices in a directed graph, based on the number of vertex occurrences in fixed length
paths. It is proposed to define vertex centrality as a solution of a cooperative game, where
the characteristic function is given as the number of simple paths of fixed length in subgraphs
corresponding to coalitions. The concept of integral centrality is introduced as the value of a
definite integral of the payoff function. It is shown that this centrality measure satisfies the
Boldi-Vigna axioms.
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1. INTRODUCTION

When solving a large number of applied problems, it is necessary to analyse the network de-
scribing the system under consideration. In this case, the network is represented as a graph. There
is a wide range of methods to study the structural properties of a graph; one of the key methods
is to calculate the centrality value of the graph vertices. Centrality allows to identify the most
significant vertices, to estimate how well they are located in the graph, how they influence the
processes occurring in the network.

There are several approaches to calculating the centrality of vertices in a graph. The simplest in
terms of calculation is degree centrality [1], which generally shows how many neighbours a vertex
has. When analyzing directed graphs, the numbers of incoming and outgoing connections (in-
degree centrality and out-degree centrality) [2] can be taken into account. Historically, one of the
first approaches is betweenness centrality [3, 4]. This measure of centrality is based on calculating
the number of shortest paths connecting all pairs of vertices in the graph. The centrality of a
vertex in this case is determined by the number of paths passing through the considered vertex.
Another common method is closeness centrality [5–7], where the most central vertex is closest to
other vertices in the network.

In recent years, game-theoretic centrality measures [8–14] that consider groups of vertices as
coalitions of players have become increasingly widespread. Such an approach allows us to take into
account the group influence of vertices on the system.

This paper presents a game-theoretic approach to computing the centrality value of vertices of a
directed graph based on the number of occurrences of a vertex in directed paths of different lengths,
including cycles.
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246 KHITRAYA, MAZALOV

2. MYERSON VALUE AS A CENTRALITY MEASURE IN DIRECTED GRAPHS

Let us define a cooperative game Γ = 〈N, v〉 on the directed graph G = (N,E), where N is the
set of vertices and E is the set of edges. In this game, N is the set of players on which there
is a characteristic function v(K), K ⊂ N , equal to the number of simple paths of fixed length
k = 1, 2, . . . in the subgraph generated by the set of players K. As shown in [11], a cooperative
game solution in Shapley–Myerson form [12] can be used to rank vertices in an undirected graph.
A similar approach can be applied to directed graphs.

Theorem 1. The Myerson value for a player i ∈ N in a cooperative game on a directed graph G,
where the characteristic function v(K) is defined as the number of directed simple paths of fixed
length k in the subgraph generated by the set K ⊂ N , can be found by the formula

Xi =
nk(i)

k + 1
, (1)

where nk(i) is the number of simple paths of length k passing through vertex i.

The proof of this theorem for directed graphs is similar to the proof for undirected graphs. We
will give it here. To prove the statement it is enough to prove the fulfilment of two axioms [12].

Proof. Axiom 1. If S is a connected component of the graph G and v(S) is the payoff
of the S coalition, then

|S|∑
i=1

Xi = v(S).

For simplicity, assume that the graph G is connected. In this particular case v(N) is the number
of paths (directed) of length k in graph G. Let us renumber all paths l ∈ {1, 2, . . . , v(N)}. We
define δl(i) as follows. Let’s assume δl(i) = 1 if vertex i is in path l and 0, otherwise.

Then
n∑

i=1

Xi =
1

k + 1

n∑
i=1

nk(i) =
1

k + 1

n∑
i=1

v(N)∑
l=1

δl(i) =
1

k + 1

v(N)∑
l=1

n∑
i=1

δl(i).

Each path consists of k + 1 different vertices (i1, . . . , ik+1). Hence
n∑

i=1
δl(i) = k + 1. Therefore,

n∑
i=1

Xi =
1

k + 1

v(N)∑
l=1

n∑
i=1

δl(i) = v(N).

Thus, Axiom 1 is true. Let us proceed to Axiom 2.

Axiom 2. For any pair of players i, j ∈ N the payoff changes by the same amount when adding
or removing an edge in the graph G.

Let, for example, ij ∈ E(G). Let us remove this edge (in this case it’s a directed edge). Then all
paths of length k that previously passed through edge ij will be subtracted when counting paths
simultaneously from nk(i) and nk(j) in the new graph G− ij. Hence,

Xi(G)−Xi(G − ij) = Xj(G)−Xj(G− ij).

Thus Axiom 2 is also true, which proves the theorem.

3. EXAMPLES OF CALCULATING THE MYERSON VALUE FOR DIRECTED GRAPHS

As can be seen from Theorem 1, the Myerson value is defined in terms of the number of simple
paths of a given length. The problem of computing the number of simple paths through a vertex
is non-trivial. Here we show how to compute this number for paths of lengths 2 and 3. We restrict
ourselves to directed graphs without bidirectional edges. For the calculations we need the adjacency
matrix and its degrees 2 and 3.
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Statement 1. Let A be the adjacency matrix of the directed graph G, and A2 be its square. Then
the number of appearances of vertex i in simple paths of length 2 n2(i) can be calculated by the
formula

n2(i) =
n∑

k=1

(
a
(2)
ik + a

(2)
ki

)
+

n∑
k=1

n∑
j=1

akiaij .

The first expression corresponds to the number of all simple paths of length 2 starting or ending
at the considered vertex i. The second expression considers paths in which vertex i lies in the
middle of the path.

Statement 2. Let A be the adjacency matrix of the directed graph G, and A2, A3 be the square and
cube of the matrix A. Then the number of occurrences of vertex i in simple paths of length 3 n3(i)
can be calculated by the formula

n3(i) =
n∑

k=1
k �=i

(
a
(3)
ik + a

(3)
ki

)
+

n∑
k=1

aki

n∑
j=1
j �=k

a
(2)
ij +

n∑
k=1

a
(2)
ki

n∑
j=1
j �=k

aij .

Here the first term corresponds to the number of all simple paths of length 3 starting or ending
at vertex i. The second term takes into account paths in which vertex i lies in the second position
in the path, and the third takes into account paths in which vertex i lies in the third position in
the path.

Example 1. Let us illustrate this formula on the example of a directed graph G1 of 6 vertices
(Fig. 1) with the adjacency matrix A:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 0 1 1 0 0
1 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us write out, for example, paths of length d = 3 passing through vertex 3. There are 8 such
paths in total:

3654 3612

1365 5361

6132 6134 6532 6534

The first line lists the paths starting at vertex 3. The second line lists paths with vertex 3 in
the second place, and the third line lists vertex 3 in the third place. There are no other paths with
vertex 3.

Fig. 1. Graph G1.
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Now let’s calculate the square and cube of the adjacency matrix.

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1
0 0 0 0 0 0
1 0 0 0 1 0
0 0 0 0 0 0
0 1 0 1 0 1
0 1 2 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
0 0 0 0 0 0
0 1 2 1 0 0
0 0 0 0 0 0
1 0 0 0 1 0
0 2 0 2 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the formula from statement 2 we find

n3(3) =
6∑

k=1
k �=3

(
a
(3)
3k + a

(3)
k3

)
+

6∑
k=1

ak3

6∑
j=1
j �=k

a
(2)
3j +

6∑
k=1

a
(2)
k3

6∑
j=1
j �=k

a3j

=
(
a
(3)
32 + a

(3)
34

)
+

(
a13a

(2)
35 + a53a

(2)
31

)
+

(
a
(2)
63 a32 + a

(2)
63 a34

)
= 2 + 2 + 4 = 8.

This coincides with the number of simple paths of length 3 passing through vertex 3.

4. INTEGRAL CENTRALITY

Above we considered on a directed graph G = (N,E), |N | = n, a cooperative game of n persons
Γ = 〈N, v(K)〉, where the characteristic function v(K) was defined as the number of directed paths
of fixed length d passing through the considered vertex in the subgraph generated by the coali-
tion K. By varying the path length d, the characteristic function can be defined more generally as
a polynomial:

v(K) =
∑
i∈K

n−1∑
d=1

nd(i)r
d, r ∈ [0, 1],

where nd(i) is the number of simple paths of length d passing through vertex i.

The value of r can be determined by analogy with Jackson’s approach [15], where players receive r
for creating a direct link, a coalition receives r2 for creating a path of length 2, and so on. Here,
the players forming the link get r for making a pair in paths of length 1, r2 for making a triple in
paths of length 2, etc.

Similarly to Section 2, it can be shown (see also [13]) that the distribution of coalition payoffs
among players according to the Myerson value is of the form:

Xi(r) =
n1(i)

2
r +

n2(i)

3
r2 + · · ·+ nn−1(i)

n
rn−1 =

n−1∑
d=1

nd(i)

d+ 1
rd.

By choosing a particular value of r, the value of the payoff function Xi(r) for all players can be
obtained. To eliminate the step of choosing the value of r, the values of the definite integral of the
function defining the payoff function over the variable r on the segment [0, 1] can be used in the
ranking. The payoff functions are polynomial functions, which makes it easy to write expressions
for determining centrality:

Ii =

1∫
0

Xi(r)dr =

1∫
0

n−1∑
d=1

nd(i)

d+ 1
rd dr =

n−1∑
d=1

nd(i)

(d+ 1)2
. (2)

Definition 1. The value Ii =
1∫
0
Xi(r)dr =

n−1∑
d=1

nd(i)
(d+1)2

, where Xi(r) is the function specifying the

payoff in the cooperative game Γ on the graph, is called the integral centrality of vertex i.
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Fig. 2. Math-Net network graph fragment.

Example 2. As an example, consider a fragment of the Math-Net citation graph (Fig. 2). In this
case, the presence of an oriented edge ij means that author i refers to the work of author j.

Let us find the integral centrality of the vertices of this graph. We denote by nk the vector of
the occurrences number of the graph vertices in paths of length k.

n1 = (8, 5, 3, 3, 2, 4, 2, 3, 3, 3) ,

n2 = (7, 9, 4, 4, 1, 3, 4, 3, 2, 2) ,

n3 = (4, 6, 3, 3, 0, 0, 5, 2, 1, 0) ,

n4 = (1, 1, 1, 1, 0, 0, 1, 0, 0, 0) ,

all other nk, k � 5 are zero.

Then the values of integral centrality according to the definition are:

I =
n1

4
+

n2

9
+

n3

16
+

n4

25
= (3.067, 2.665, 1.421, 1.421, 0.611, 1.333, 1.296, 1.208, 1.034, 0.972).

As a result, vertex 1 has the highest centrality, vertex 2 is also important.

Let us calculate the integral centrality of vertices for the cycle and the complete graph. Obvi-
ously, due to symmetry, the centrality of all vertices in this case is the same and it is enough to
calculate the centrality of one of them.

For all vertices of the p−cycle the payoff is defined by the function:

X(r) =
p−1∑
d=1

nd

d+ 1
rd =

p−1∑
d=1

d+ 1

d+ 1
rd =

p−1∑
d=1

rd.

Then the value of integral centrality is written as follows:

Ip =

1∫
0

X(r)dr =

1∫
0

p−1∑
d=1

rddr =
p−1∑
d=1

1

d+ 1
.

For the vertices of k−cliques the formula is valid

nd(k) = (d+ 1)!

(
k − 1

d

)
.

Indeed, in a path of length d: l = (i1, . . . , id+1) a vertex i can be at the first, second,. . . , d+1th
place. The remaining d of k − 1 vertices can be chosen in

Ad
k−1 =

(
k − 1

d

)
× d!
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ways. Consequently,

X(r) =
k−1∑
d=1

nd(k)

d+ 1
rd =

k−1∑
d=1

d!

(
k − 1

d

)
rd,

and then the integral centrality is

Ik =

1∫
0

X(r)dr =

1∫
0

k−1∑
d=1

d!

(
k − 1

d

)
rddr =

1

k

k−1∑
d=1

d!

(
k

d+ 1

)
=

k−1∑
d=1

(k − 1)!

(d+ 1)(k − d− 1)!
.

5. CENTRALITY AXIOMS

The paper Boldi–Vigna [16] describes a system of centrality axioms based on checking the
change of the centrality measure when studying cliques and directed cycles. The following should
be checked: whether all vertices of an k−clique have the same centrality measure; whether all
vertices of a directed p−cycle have the same centrality measure; whether vertices of an k−clique
are more important than vertices of a directed p−cycle. Let us give the formulations of the axioms
as they are presented in [16, 17].

A1 (Size Axiom). Consider the graph Sk,p (Fig. 3) consisting of two components: a k−clique
and a p−cycle. A centrality measure satisfies the size axiom if for each k there exists a number Pk,
such that for all p � Pk in the graph Sk,p, the centrality of a vertex in a p−cycle is strictly greater
than the centrality of a vertex in a k−clique, and for each p there exists a number Kp, such that
for all k � Kp, the centrality of a vertex in a k−clique is strictly greater than the centrality of a
vertex in a p−cycle.

Fig. 3. Graph Sk,p.

A2 (Density Axiom). Consider the graph Dk,p (Fig. 4) consisting of a k−clique and a p−cycle
(k, p � 3) connected by a bidirectional bridge x ←→ y, where x is a vertex of the clique and y is a
vertex of the cycle. A centrality measure satisfies the density axiom if for k = p the centrality of x
is strictly greater than the centrality of y.

Fig. 4. Graph Dk,p.
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A3 (Score-Monotonicity Axiom). A centrality measure satisfies the score-monotonicity axiom if
for every graph G and every pair of nodes x and y such that x → y does not belong to the set of
edges EG of graph G, if we add to G such an edge, then the centrality of y will increase.

Let us add to this system the axiom of connectivity.

A4 (Connectivity Axiom). A centrality measure satisfies the connectivity axiom if for any
graph G and any two connectivity components G1 and G2 of graph G, and for every pair of vertices
x ∈ G1 and y ∈ G2, the centrality of all vertices in G2 does not decrease if an edge x → y is added.

Let us prove that these axioms hold for the integral centrality measure.

A1 To prove this axiom it suffices to show that the centrality of the vertices of both p−cycle
and k−clique increases unboundedly with increasing p and k. In the previous section it was shown
that for all vertices of a p−cycle the integral centrality is defined by a function:

Icp =
p−1∑
d=1

1

d+ 1
.

The centrality value of the vertices of the p−cycle can be estimated as Ip = Sp − 1, where Sp is
the sum of the first p terms of the harmonic series. L.Euler obtained an asymptotic expression for
the sum of the first n terms of the harmonic series:

Sp = ln p+ γ + εp,

where γ = 0.5772 . . . – Euler–Mascheroni constant [18], εp – error, εp → 0, p → ∞. Then Icp → ∞,
p → ∞.

For k−clique vertices we have the formula

Iqk =
k−1∑
d=1

(k − 1)!

(d+ 1)(k − d− 1)!
.

It is easy to see that Iqk � Ick, whence follows the unbounded growth of Iqk , when k → ∞.

A2. It was noted above that for k = p Iqk(x) � Ick(y) i.e., centrality of vertex x in the clique is
greater than the centrality of vertex y in the cycle. Thus, for any d, the number of directed paths
of length d in the clique nq

d(x) is greater than the number of directed paths of length d in the
cycle nc

d(y). Let us connect vertex x of the clique to vertex y in the cycle by a bidirectional bridge
x ←→ y. Then the number of paths of any length d in both the clique and the cycle increases by
the same value. Therefore, the integral centrality of vertex x will still be greater than the centrality
of vertex y. The validity of axiom A2 is proved.

A3. Axiom A3 is obviously true, because after adding the edge x → y, the vertex y will occur
in paths ending in it, which will increase the centrality value.

A4. Axiom A4 is true because after adding an edge x → y, the number of directed paths passing
through vertices from the graph G2 can only increase.

Theorem 2. For integral centrality (2) the axioms A1, A2, A3, A4 are fulfilled.

It is worth noting that according to [16] the axioms A1, A2, A3 are valid without any reservations
only for harmonic centrality [19].

6. COMPUTATION OF VERTEX CENTRALITY IN DIRECTED GRAPHS WITH CYCLES

In the proposed approach for determining the centrality of vertices in a graph, the main problem
is to compute the number of simple paths (without cycles) of fixed length passing through a given
vertex. In [11], a modification of Myerson’s value is given for the case when cycles are also considered
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Fig. 5. Graph G2.

in addition to simple paths. In this case it is possible to obtain quite simple expressions for this
characteristic using the elements of the adjacency matrix of the considered graph. For ranking in
this case the values si(k)

k+1 is used, where si(k) is the number of appearances of vertex i in paths of
length k. Also in [11] proofs of theorems on the number of appearances of vertices in paths of fixed
length, including cycles, in undirected graphs are given. Further investigation showed that the
similar formula is also valid for the number of occurrences of a vertex in paths in directed graphs.

Theorem 3. Let Ad be the adjacency matrix of a directed graph G raised to the power d. Then
the number of appearances of vertex i in paths of fixed length d (including cycles) nd(i) can be
calculated as

nd(i) =
n∑

k=1

(
a
(d)
ik + a

(d)
ki

)
+

d−1∑
l=1

⎡⎣ n∑
k=1

a
(l)
ki ×

n∑
j=1

a
(d−l)
ij

⎤⎦. (3)

Proof. The first sum takes into account the occurrences of vertex i at the beginning and end of

paths of length d. The values a
(d)
ik and a

(d)
ki – the elements of the Ad matrix – correspond to the

number of paths of length d starting in vertex i and ending in it. The second sum allows to take

into account the occurrences of the considered vertex in the middle of paths of length d: a
(l)
ki is an

element of the matrix Al, equal to the number of paths of length l ending in vertex i; a
(d−l)
ij is an

element of the matrix Ad−l, describing the number of paths of length d− l starting in the same
vertex. By adding their products for all admissible l, we obtain the number of occurrences of
vertex i in the middle of paths of fixed length d.

Example 3. Let us illustrate the above formula on the example of a directed graph G2 of 6 ver-
tices (Fig. 5) with the adjacency matrix A:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us write out the paths of length d = 3. There are 25 such paths in total:

1212 2121 3456 4521 5212 6121
1234 2123 3452 4561 5612 6123
1452 2345 4523 5214 6345
1456 2145 4563 5614 6145
1214 5234

5634
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Vertex 2 occurs in paths of length 3 21 times. Let us calculate the number of occurrences of
vertex 2 by formula 3:

n3(2) =
6∑

k=1

(
a
(3)
2k + a

(3)
k2

)
+

2∑
l=1

⎡⎣ 6∑
k=1

ak2
(l) ×

6∑
j=1

a
(3−l)
2j

⎤⎦.
The computations require the square and cube of the adjacency matrix.

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0
0 1 0 2 0 0
0 0 0 0 1 0
0 1 0 0 0 1
2 0 2 0 0 0
0 1 0 2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 2 0 1
1 0 1 0 2 0
0 1 0 0 0 1
2 0 2 0 0 0
0 2 0 4 0 0
1 0 1 0 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

n3(2) = (2 + 2 + 1 + 1 + 2 + 1) +

⎡⎣ 6∑
k=1

ak2 ×
6∑

j=1

a
(2)
2j +

6∑
k=1

a
(2)
k2 ×

6∑
j=1

a2j

⎤⎦
= 9 + [2× 3 + 3× 2] = 9 + 6 + 6 = 21.

For directed acyclic graphs, i.e., directed graphs without directed cycles but allowing parallel
paths, the number of occurrences of a vertex in paths of fixed length coincides with the number of
simple paths passing through this vertex. Therefore, the value obtained with the help of formula (3)
can be used to find the Myerson value in a directed graph by formula (1).

In the case of an arbitrary directed graph, we will define the vertex centrality in the following
form

Xi(r) =
n1(i)

2
r +

n2(i)

3
r2 + · · ·+ nn−1(i)

n
rn−1 =

n−1∑
d=1

nd(i)

d+ 1
rd.

The payoff X obviously satisfies the first Myerson axiom [12] (by the way of constructing the
payoff and specifying the characteristic function), but it does not satisfy the second axiom (fairness
axiom), which states that both players i and j must equally gain or lose benefits when creating or
removing the link ij. This condition is not fulfilled due to the inclusion of cycles in the consideration.
In general, it is possible that paths of the form . . . ijijijiji . . . may appear, which leads to a different
number of appearances of vertices i and j depending on the parity of the path length.

Let us illustrate it by means of a counterexample. For this purpose, let us return to the graph G2

(Example 3). Let’s remove the connection 1–4 from this graph (Fig. 6).

Fig. 6. Graph G2 − 14.
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Fig. 7. Plots of the payoff functions.

Let’s write down the payoffs of players 1 and 4 before removing the link (X1, X4) and afterwards
(X ′

1, X ′
4).

X1 =
4

2
r +

10

3
r2 +

21

4
r3 +

42

5
r4 +

82

6
r5

X4 =
3

2
r +

8

3
r2 +

18

4
r3 +

36

5
r4 +

70

6
r5

X ′
1 =

3

2
r +

7

3
r2 +

13

4
r3 +

22

5
r4 +

37

6
r5

X ′
4 =

2

2
r +

5

3
r2 +

11

4
r3 +

19

5
r4 +

34

6
r5

Starting from the summand corresponding to the number of occurrences of vertices in paths
of length 3, the differences in the substractions X1 −X ′

1, X4 −X ′
4 appears, which violates the

condition of Myerson’s axiom.

X1 −X ′
1 =

1

2
r +

3

3
r2 +

8

4
r3 +

20

5
r4 +

45

6
r5

X4 −X ′
4 =

1

2
r +

3

3
r2 +

7

4
r3 +

17

5
r4 +

36

6
r5

By choosing a particular value of r, the value of the payoff function Xi(r) for all players can
be obtained. These values can then be used to rank the vertices of the graph, which allows us to
introduce another approach to calculating centrality.

Figure 7 shows the plots of the payoff functions for the players in the graph G2. Let us choose
the value r = 1

2 , then the payoff:

X = (3.44, 3.44, 2.09, 2.79, 2.79, 2.09) .

It can be seen that with this approach, vertices 1 and 2 still have the highest centrality values,
while vertices 3, 6 have the lowest centrality.

For Example 3, we can write the vector I of integral centrality of the vertices of the graph G2:

I(G2) = (7.38, 7.38, 4.17, 6.14, 6.14, 4.17) .

The order of the vertices in the ranking is preserved.
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7. CENTRALITY OF GRAPH VERTICES BASED ON TOURNAMENT MATRIX

In [20], a two-stage procedure for ranking the vertices of a graph was proposed, where, at the
first stage, the vertices are ranked based on the absolute potentials of the nodes of an electric
circuit when current is supplied to all nodes in sequence. At the second stage, a tournament table
is constructed and the final ranking is carried out based on the sum of previously found ranks, by
analogy with the Borda rule [21].

In this case, the tournament table can be constructed for the values of nd(i) for different d. Let’s
compile a tournament table of the vertices of the graph G2 (Table 1). Assessing centrality based
on the total number of occurrences of a vertex in paths of various lengths allows us to conclude
that vertices 1 and 2 are the most important. Vertices 3 and 6 have the lowest centrality.

Table 1. Tournament table of graph G2

d
Vertex

1 2 3 4 5

∑
1 4 10 21 42 82 159
2 4 10 21 42 82 159
3 3 6 11 22 43 85
4 3 8 18 36 70 135
5 3 8 18 36 70 135
6 3 6 11 22 43 85

Let us compare these results with the values of degree centrality. Table 2 shows the values of
the incoming and outgoing links number in the graph. The highest centrality is also possessed by
vertices 1 and 2; when analysing the least centrality vertices, different interpretations are possible
depending on the applied problem to be solved. If the directionality of edges is not taken into
account, the ranks for degree centrality will coincide with the ranks of vertices of order 2. If the
direction is taken into account, vertices 5 and 6 get the same ranks in terms of degree centrality,
however, in terms of the involvement of vertices in creating paths in the graph, vertex 5 is considered
more important.

Table 2. Estimation of degree centrality for G2

Vertex in-degree out-degree

1 2 2
2 2 2
3 2 1
4 2 1
5 1 2
6 1 2

8. TRANSPORT GRAPH OF PETROZAVODSK CITY

The paper [22] describes the construction of an undirected graph of the transport network of
Petrozavodsk. This graph can be considered as directed graph if we take into account the direction
of motor transport movement on the road sections corresponding to the edges of the graph. It
consists of 1530 vertices and 3781 edges. The values in the graph adjacency matrix are equal to
the inverse of the lengths of road segments between the corresponding pairs of vertices.

Let us calculate the number of simple paths of length 3 passing through the vertices of the
graph, according to Statement 2. Figure 8 shows a heat map of n3 values.
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Fig. 8. Heat map of n3 values for vertices in the transport network graph of Petrozavodsk.

Fig. 9. Heat map of integral centrality values of the Petrozavodsk transport network graph vertices.

Next we compute the integral centrality values of the vertices. Since calculating the number of
occurrences of a vertex in the paths requires raising the adjacency matrix to power d, to simplify
the computation in graphs with a large number of vertices, we can restrict ourselves to considering
paths of length less than n− 1 to estimate centrality. Figure 9 shows a heat map of the vertices of
the transport graph for which the integral centrality values have been computed for path lengths
up to d = 100.
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The larger centrality value in the figure corresponds to nodes of larger size and darker colouring.
The ranking results correlate with those obtained earlier in [22], where ranking was performed using
the PageRank method [23] and the modified Myerson method [11].

9. CONCLUSION

In this paper we propose a number of approaches to computing centrality values of vertices of
directed graphs based on the number of occurrences of a vertex in paths of fixed length. It is
shown how the Myerson value in a cooperative game, where the characteristic function is defined
in terms of the number of simple paths of fixed length in a subgraph generated by a coalition, can
be computed for vertices of a directed graph. Formulas are given for finding the number of simple
paths of length 2 and 3 through the adjacency matrix. Also, the centrality of a vertex can be found
as a solution to a cooperative game where the characteristic function is given in a more general
form for different path lengths. We propose to introduce the notion of integral centrality as the
value of a certain integral of the payoff function. It is shown that this measure of centrality satisfies
the Boldi–Vigna axioms.

In addition, the computation of centrality of vertices of a directed graph with cycles is described.

The proposed approach is tested on the graph of the transport network of Petrozavodsk.
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