
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2024, Vol. 85, No. 2, pp. 219–231.
c© The Author(s), 2024 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2024.
Russian Text c© The Author(s), 2023, published in Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2023, Vol. 15, No. 3,
pp. 21–40.

MATHEMATICAL GAME THEORY AND APPLICATIONS

A Coalitional Differential Game of Vaccine Producers

S. M. Ndiaye∗,a and E. M. Parilina∗,b
∗St. Petersburg State University, St. Petersburg, Russia
e-mail: amamounepourtoi@gmail.com, be.parilina@spbu.ru

Received April 9, 2023

Revised August 10, 2023

Accepted September 1, 2023
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ing partial cooperation, of vaccine producers. Various versions of players’ cooperation (partial
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1. INTRODUCTION

Modeling competition and cooperation between firms producing homogeneous goods has been
an actual problem for many years and remains such a problem up to these days. In particular,
during a disease epidemic, vaccine producing companies are actively developing new vaccines and
putting them on the market, competing with each other on price. The feature of the competition
of such firms is in their small number, therefore, when modeling their interaction on the market, it
is possible to consider various cooperation scenarios, which is difficult to do with a large number
of firms. Also, such a competition is characterized by a slow price change, i.e., the price has the
so-called “memory effect,” i.e., it responds with a delay to changes in demand. This paper attempts
to propose an economic model of competition between vaccine manufacturers, which is an effective
tool in the fighting against many diseases [1].

In the classical theory of cooperative games, it is assumed that one large or grand coalition
is formed and the players maximize the payoff of this coalition [2–4], but in real life, firms can
form several coalitions existing simultaneously, i.e., various coalition structures can be formed [5].
Players or firms can choose whether to be members of a coalition or to act independently. Coalition
structures consisting of several coalitions are observed during the formation of political parties,
cooperation in the market of goods and services, where large coalitions cannot be formed for
different reasons [6–8], including the ban on monopoly associations in the market.

This paper proposes a differential game of competition between several firms when price dynam-
ics are determined in a special way. Various coalition structures that can be formed in a three-person
game are studied, as well as their stability [6–8]. A stable coalition structure is understood as one
in which it is unprofitable for any player to deviate from her coalition, i.e., join another existing
coalition or become an individual player [5–6]. The work deals with differential Nash equilibria for
a given coalition structure, in which each coalition behaves as one player, maximizing its payoff.
Necessary conditions for the Nash equilibria in open-loop strategies are obtained. The work does
not assume the redistribution of payoffs between players within the coalition, i.e., a game with
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non-transferable utilities is considered. The existence of stable coalition structures in games with
transferable utilities, when the Shapley vector or ES solution is considered as a solution, is studied
in the papers [5–6]. The existence of stable coalition structures with respect to some cooperative
solutions is considered in [9–11]. The paper [12] studies a coalition structure consisting of one large
coalition and several singleton coalitions. Our work examines all possible coalition structures for a
three-person game, using a numerical example to show theoretical results on the Nash equilibrium
firms’ production quantities, the existence of a stable structure, and which structure is preferable
for consumers.

The work has the following structure. Section 2 presents a game-theoretic model. Section 3
formulates the main theoretical results on Nash equilibria in games under different coalition struc-
tures. The definition of a stable coalition structure is given in Section 4. A numerical example is
presented in Section 5. Section 6 contains the conclusion to the work.

2. MODEL

We consider a model of a market consisting of firms manufacturing vaccine (or other production
firms) that produce vaccines to fight the same disease, i.e., their vaccines can substitute each other.
Denote by N = {1, 2, . . . , n} a set of firms, each of which has production of qi(·): [0,+∞) −→ R

+

[13]. The total production Qi of firm i over the entire time interval [0,+∞) is equal to

Qi =

+∞∫
0

qi(t) dt.

Suppose that the initial vaccine price is given as p(0) = p0, and at any time t the price satisfies
a differential equation:

ṗ(t) = s

(
a− b

n∑
i=1

qi(t)− p(t)

)
, p(0) = p0, (1)

where a and b are positive constants, while a > c and a− bQ � 0, s > 0 is the parameter of price
sensitivity to changes. Price dynamics (1) takes into account that a market price does not adapt
immediately to market changes. A rate of change in a market price is determined by the difference
between the current price and the price formed by a linear demand function, multiplied by the
given constant s. Constant s shows market sensitivity to price changes. Firms are also assumed to
have a quadratic function of production costs:

C(qi) = ciqi +
1

2
qi

2,

where ci is a positive constant for any i ∈ N .

The profit of firm i is determined by the functional

Ji(q1, . . . , qn) =

+∞∫
0

e−rt
(
p(t)qi(t)− ciqi(t)− 1

2
q2i (t)

)
dt, (2)

where r > 0 is a discount rate, the same for all players.

The differential game is defined by a set of players N , the players’ payoff functions (2), and
dynamics equation (1), while player i ∈ N maximizes function (2) by choosing strategies qi(t).
Denote the total output by Q(t) =

∑n
i=1 qi(t) [13].

As a solution, we will consider the Nash equilibrium in program strategies (open-loop strategies).
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Definition 1. Nash equilibrium is a set of strategies q = (q1, q2, . . . , qn) such that

Ji(q
∗
i , q

∗
−i) � Ji(qi, q

∗
−i),

for any qi � 0 and for any player i ∈ N .

In the next section, we consider a modification of a noncooperative differential game, assuming
that players can cooperate, i.e., form coalitions of any sizes, thereby creating coalition partitions or
structures of a set of players N . We make several assumptions about players’ behavior in coalition
structures:

1) If coalition structure π = {B1, . . . , Bm} is formed, consisting of m nonempty subsets of a set
of players such that Bi ∩ Bj = ∅ for any i �= j , and ∪m

k=1Bk = N , then players belonging to the
same coalition maximize the total profit of this coalition.

2) Coalitions B1, . . . , Bm compete in the market, i.e., in the noncooperative setting, the opti-
mality principle is the Nash equilibrium in a game of m players.

3) Players’ payoffs are nontransferable, i.e., any player in a coalition receives its payoff according
to the payoff function given by formula (2).

3. CASE OF THREE-PERSON GAME WITH DIFFERENT COALITION STRUCTURES

In this section, we formulate the necessary conditions of the Nash equilibria for the differential
game described in the previous section and given coalition structures. The results are shown for a
case of a three-person game, but if desired, they can be generalized to the case of a finite number
of players. With a large number of players, the number of coalition structures determined by the
Bell number in a recurrent way, is so large that it is not possible to provide conditions for the Nash
equilibrium in a general case. For example, for five players the number of coalition structures is 52,
for seven players it is equal to 877, and for ten players it equals 115 975.

3.1. Noncooperative game

Theorem 1. In a three-person differential game defined by the players’ payoff functions (2),
dynamics equation (1), and coalition structure {{i}, {j}, {k}}, if the Nash equilibrium in admissible
open-loop strategies exists, then it satisfies the system:

qi(t) =
w1 + w3 + 3sbB1B2

w1 + w3

(
p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
− ((ci + cj + ck + a)s + r(ci + cj + ck))b

b(3r + 4s) + r + s

+
a(r + s)

b(3r + 4s) + r + s

)
e−w1t +

sbB2B3

w3
+

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
− ci,

qj(t) =
w1 + w3 + 3sbB1B2

w1 + w3

(
p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
− ((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s

+
a(r + s)

b(3r + 4s) + r + s

)
e−w1t +

sbB2B4

w3
+

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
− cj ,

qk(t) =
w1 + w3 + 3sbB1B2

w1 + w3

(
p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s

−((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
+

a(r + s)

b(3r + 4s) + r + s

)
e−w1t

+
sbB2(B3 −B4)

w3
+

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
+

−sb
ci + cj + ck − 3a

b(3r + 4s) + r + s
− ck,
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where

w1 =
−2sb+ r −√

Δ

2
,

Δ = (4b2 + 16b + 4)s2 + (8rb+ 4s)s+ r2,

w3 = bs+ s+ r,

B1 = b

(
r +

4

3
s

)
+

r + s

3
,

B2 = − 1

b(3r + 4s) + r + s
,

B3 = ((−3ci + cj + ck + a)s− r(2ci − cj − ck))b+ (r + s)(a− ci),

B4 = ((ci − 3cj + ck + a)s− r(ci − 2cj + ck))b+ (r + s)(a− cj).

The expression of the Nash equilibrium price is given in the theorem proof.

Proof. Under coalition structure {{i}, {j}, {k}}, each firm individually maximizes its profit by
choosing production. To find the Nash equilibrium in open-loop strategies, we use the Pontryagin
maximum principle. The Hamiltonian of player i ∈ N has the form:

Hi(q, p, λi) = pqi − ciqi − 1

2
qi

2 + s(a− bQ− p)λi, (3)

where λi is an adjoint variable.

Maximizing Hamiltonian Hi by production qi, we obtain the equation:

p− ci − qi − sbλi = 0,

from where we express qi:

qi = p− sbλi − ci. (4)

The system of differential equations with respect to λi, i ∈ N , and p is written as follows:

λ̇i = rλi − ∂Hi

∂p
= −p+ (r + s+ sb)λi + ci, i ∈ N,

ṗ = −(snb+ s)p+ s2b2
∑
i∈N

λi + sb
∑
i∈N

ci + sa.

We write down the system of n+ 1 = 4 differential equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ṗ = −(3sb+ s)p+ s2b2(λi + λj + λk) + sb(ci + cj + ck) + sa,

λ̇i = −p+ (sb+ r + s)λi + ci,

λ̇j = −p+ (sb+ r + s)λj + cj ,

λ̇k = −p+ (sb+ r + s)λk + ck.

Then rewrite this system of differential equations in a matrix form:⎛⎜⎜⎜⎝
ṗ

λ̇i

λ̇j

λ̇k

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−3sb− s s2b2 s2b2 s2b2

−1 r + s+ sb 0 0
−1 0 r + s+ sb 0
−1 0 0 r + s+ sb

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

p
λi

λj

λk

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
sa+ sb(ci + cj + ck)

ci
cj
ck

⎞⎟⎟⎟⎠ .
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We find a solution to this system, i.e., λi, λj , λk and p, and to do this, we write a characteristic
equation corresponding to the matrix of the system of differential equations. Characteristic equation∣∣∣∣∣∣∣∣∣

−3sb− s− w s2b2 s2b2 s2b2

−1 r + s+ sb− w 0 0
−1 0 r + s+ sb− w 0
−1 0 0 r + s+ sb− w

∣∣∣∣∣∣∣∣∣ = 0

has three roots w1, w2 and w3, which are written as

w1,2 =
−2sb+ r ±√

Δ

2
,

w3 = bs+ s+ r,

where

Δ = (4b2 + 16b+ 4)s2 + (8rb+ 4s)s+ r2.

Solutions λi, λj, λk and p can be written as follows:

λi(t) = − 3B1B2

w1 + w3
A3e

−w1t − 3B1B2

w3 − w2
A4e

w2t +A2e
w3t − B2B3

w3
,

λj(t) = − 3B1B2

w1 + w3
A3e

−w1t − 3B1B2

w3 − w2
A4e

w2t +A1e
w3t − B2B4

w3
,

λk(t) = B5B6

(
λi + λj −A1e

w3t +A2e
w3t

)
+B5

(
B7 + (B8 + 4bB9 +B9)s− (3b+ 1)r2 + (3bB9 −B9)r

)
A3e

−w1t

+B5

(
B7 + (B8 − 4bB9 −B9)s − (3b+ 1)r2 − (3bB9 +B9)r

)
A4e

w2t − ci + cj + ck − 3a

(s(4b+ 1) + r(3b+ 1))
,

p(t) = A4e
w2t +A3e

−w1t +
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
,

where

B1 = b(r +
4

3
s) +

r + s

3
,

B2 = − 1

b(3r + 4s) + r + s
,

B3 = ((−3ci + cj + ck + a)s− r(2ci − cj − ck))b+ (r + s)(a− ci),

B4 = ((ci − 3cj + ck + a)s− r(ci − 2cj + ck))b+ (r + s)(a− cj),

B5 = − 1

2s2b2(s(4b+ 1) + r(3b+ 1))
,

B6 = s3(8b3 + 2b2) + rs2(6b3 + 2b2),

B7 = −s2(16b2 + 12b+ 2),

B8 = −r(12b2 + 14b+ 3),

B9 =
√
4s2b2 + 8brs+ 16bs2 + r2 + 4rs+ 4s2,

and A1, A2, A3, and A4 are constants determined from the initial and limit conditions: p(0) = p0
and limt→∞ e−rtλi(t) = 0, limt→∞ e−rtλj(t) = 0, and limt→∞ e−rtλk(t) = 0.
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From condition limt→∞ e−rtλi(t) = 0 it follows that A2 = 0 and A4 = 0, and from condition
limt to∞ e−rtλj(t) = 0 it follows that A1 = 0 and A4 = 0, then

λi(t) = − 3B1B2

w1 + w3
A3e

−w1t − B2B3

w3
,

λj(t) = − 3B1B2

w1 + w3
A3e

−w1t − B2B4

w3
,

λk(t) = B10A3e
−w1t − B2B5B6(B3 +B4)

w3
− ci + cj + ck − 3a

(s(4b+ 1) + r(3b+ 1))
,

where

B10 = −6B1B2B5B6

w1 + w3
+B5B7 +B5B8s+B5B9s(4b+ 1)−B5r

2(3b+ 1) +B5B9r(3b+ 1),

then p can be written as:

p(t) = A3e
−w1t +

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
.

Given the initial condition p(0) = p0, we find the constant

A3 =
p0(b(3r + 4s) + r + s)− ((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
.

Thus, after transformations, we get:

p(t) = −((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

+
p0(b(3r + 4s) + r + s) + a(r + s)

b(3r + 4s) + r + s
e−w1t

+
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
,

λi(t) = − 3B1B2

w1 + w3

p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

+
3B1B2

w1 + w3

((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

+
a(r + s)

b(3r + 4s) + r + s
e−w1t − B2B3

w3
,

λj(t) = − 3B1B2

w1 + w3

p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

+
((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

+
a(r + s)

b(3r + 4s) + r + s
e−w1t − B2B4

w3
,

λk(t) = B10
p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

−B10
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
e−w1t

− B2B5B6(B3 −B4)

w3
− ci + cj + ck − 3a

(s(4b+ 1) + r(3b+ 1))
.
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By replacing λi and p with their expressions in equation (4), we get:

qi(t) =
w1 +w3 + 3sbB1B2

w1 + w3

(
p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t +

a(r + s)

b(3r + 4s) + r + s
e−w1t

−((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

)
+

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
+

sbB2B3

w3
− ci,

qj(t) =
w1 +w3 + 3sbB1B2

w1 + w3

(
p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

−((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t +

a(r + s)

b(3r + 4s) + r + s
e−w1t

)
+

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
+

sbB2B4

w3
− cj ,

qk(t) = (1− sbB10)

(
p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

−((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t +

a(r + s)

b(3r + 4s) + r + s
e−w1t

)
+

sbB2(B3 −B4)

w3
+

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
+

− sb
ci + cj + ck − 3a

b(3r + 4s) + r + s
− ck,

where

1− sbB10 =
w1 + w3 + 3sbB1B2

w1 + w3
.

The proof is completed.

3.2. Cooperative Game Version

In this section, we consider the differential game described above, when all players from set N
are united into one coalition, i.e., in a three-person game, the coalition structure is {{i, j, k}}. Thus,
this version of the game corresponds to full cooperation.

Theorem 2. In a differential game with players’ payoff functions (2) with given price dynam-
ics (1), when coalition structure {{1, 2, 3}} is formed, if the Nash equilibrium in open-loop strategies
exists, then the player’s equilibrium strategy i = 1, 2, 3 satisfies the conditions:

qi =
s+ r − w2

3
A1e

w2t +

(
3a−

3∑
j=1

cj

)
(6bs + s+ r) +

⎛⎜⎝ 3∑
j=1
j �=i

cj − 2ci

⎞⎟⎠ (3br + 6sb+ r + s)

3(3br + 6bs+ r + s)
,

where

w2 =
r −√

12brs + 24bs2 + r2 + 4rs+ 4s2

2
,

A1 =
(3br + 6sb+ r + s)(3p0 − ci − cj − ck)

(3br + 6sb+ r + s)(3bs+ s+ r − w2)

− (3a− ci − cj − ck)(3bs + s+ r)

(3br + 6sb+ r + s)(3bs + s+ r − w2)
.
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Proof. We use the Pontryagin maximum principle. The Hamiltonian of coalition {i, j, k}, acting
as a single player and maximizing the sum of players’ profits, has the form:

Hi,j,k = p(qi + qj + qk)− (ciqi + cjqj + ckqk)−
(
1

2
qi

2 +
1

2
qj

2 +
1

2
qj

2
)

+ λi,j,ks(a− b(qi + qj + qk)− p),

where λi,j,k is an adjoint variable defined for coalition {i, j, k}. For simplicity, we introduce notation:
λi,j,k = λ.

Maximizing Hamiltonian Hi,j,k with respect to productions qi, qj, and qk, we obtain the following
system of equations:

p− ci − qi − sbλ = 0,

p− cj − qj − sbλ = 0,

p− ck − qk − sbλ = 0,

from where we find qi, qj, and qk:

qi = p− sbλ− ci, i = 1, 2, 3.

The system of differential equations for λ and p is written as follows:

λ̇ = rλ− ∂Hi,j,k

∂p
= −3p+ (r + s+ 3sb)λ+ ci + cj + ck,

ṗ = −(3sb+ s)p+ 3s2b2λ+ sb(ci + cj + ck) + sa.

We rewrite the last system and get:{
ṗ = −(3sb+ s)p+ 3s2b2λ+ sb(ci + cj + ck) + sa,

λ̇ = −3p+ (r + s+ 3sb)λ+ ci + cj + ck.

We write this system of differential equations in a matrix form as(
ṗ

λ̇

)
=

(
−3sb− s 3s2b2n

−3 r + s+ 3sb

)(
p
λ

)
+

(
sa+ sb(ci + cj + ck)

ci + cj + ck

)
.

We find a solution of this system, i.e., λ and p, and to do this, we write the characteristic equation
corresponding to the matrix of the system of differential equations, which has the form:∣∣∣∣∣−3sb− s− w 3s2b2n

−3 r + s+ 3sb− w

∣∣∣∣∣ = −w2 + rw + (3sb+ s)(s + r) + 3s2b = 0.

The characteristic equation has two roots:

w1,2 =
r ±√

Δ

2
,

where

Δ = r2 + 12sbr + 24bs2 + 4s2 + 4sr.

Obviously, w1 > w2, and moreover, w1 > 0, w2 < 0.
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We obtain the solution of the system of differential equations:

λ(t) = A2e
w1t +A1e

w2t +
3a− ci − cj − ck
3br + 6bs+ r + s

,

p(t) =
(
bs+

s+ r − w1

3

)
A2e

w1t +
(
bs+

s+ r −w1

3

)
A1e

w2t

+
(3a− ci − cj − ck)(3bs + s+ r)

9br + 18bs + 3r + 3s
+

ci + cj + ck
3

,

where A1 and A2 are constants determined from the initial and limit conditions: p(0) = p0 and
limx→∞ e−rtλ(t) = 0. From condition limx→∞ e−rtλ(t) = 0 it follows that A2 = 0, then the solution
can be written as:

λ(t) = A1e
w2t +

3a− ci − cj − ck
3br + 6bs + r + s

,

p(t) =
3bs + s+ r − w2

3
A1e

w2t +
(3a− ci − cj − ck)(3bs + s+ r)

9br + 18bs + 3r + 3s
+

ci + cj + ck
3

.

Given the initial condition p(0) = p0, we find constant A1:

A1 =
3p0(3br + 6bs+ s+ r)− (3a− ci − cj − ck)(3bs + s+ r)

(3br + 6bs+ s+ r)(3bs+ s+ r − w2)

− (3br + 6bs+ s+ r)(ci + cj + ck)

(3br + 6bs+ s+ r)(3bs+ s+ r − w2)
.

Substituting A1 into the solution, we get:

p(t) =
3bs + s+ r − w2

3
A1e

w2t +
(3a− ci − cj − ck)(3bs + s+ r)

9br + 18bs + 3r + 3s
+

ci + cj + ck
3

,

λ(t) = A1e
w2t +

3a− ci − cj − ck
3br + 6bs + r + s

.

Substituting λ into the expressions for equilibrium productions, we obtain

qi =
s+ r −w2

3
A1e

w2t +
(3a−∑3

�=1 c�)(6bs + s+ r)

3(3br + 6bs + r + s)

+
(cj + ck − 2ci)(3br + 6sb+ r + s)

3(3br + 6bs+ r + s)
,

where i �= j, i �= k, j �= k, i, j, k ∈ {1, 2, 3}. The proof is complete.

3.3. Case of Partial Cooperation

In this section, we consider the case when the formed coalition partition consists of two coalitions,
there exist three such structures: {{i, j}, {k}}, {{i, k}, {j}}, and {{j, k}, {i}}. Taking into account
the complexity of formulating the theorem defining the Nash equilibrium explicitly in such a game
of two coalitions competing with each other, we present the formulation of the theorem for coalition
structure {{i, j}, {k}} and obtain the Nash equilibrium conditions with this structure.

Theorem 3. For coalition structure {{i, j}, {k}}, in a differential game with players’ payoff
functions (2) and given price dynamics (1), if there exists the Nash equilibrium in admissible open-
loop strategies, then it is defined as follows:

qi = p− ci − sbλij,

qj = p− cj − sbλij,

qk = p− ck − sbλk,

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024



228 NDIAYE, PARILINA

where p, λij , and λk are the solutions to the system of differential equations:

ṗ = −(3bs+ s)p+ 2s2b2λij + s2b2λk + sb(ci + cj + ck) + sa,

λ̇ij = −2p+ (r + s+ 2sb)λij + ci + cj ,

λ̇k = −p+ (r + s+ sb)λk + ck

with initial and limit conditions: p(0) = p0, limt→∞ e−rtλij(t) = 0 and limt→∞ e−rtλk(t) = 0.

Proof. In coalition {i, j}, firms maximize the coalition’s total profit by choosing productions qi
and qj. We use the Pontryagin maximum principle. The Hamiltonians for coalitions {i, j} and {k}
are

Hij(qi, qj, qk, λij , p) = p(qi + qj)− ciqi − cjqj − 1

2
(q2i + q2j ) + s(a− bQ− p)λij ,

Hk(qi, qj , qk, λk, p) = pqk − ckqk − 1

2
q2k + s(a− bQ− p)λk,

where λij and λk are the adjoint variables for coalitions {i, j} and {k} respectively.

Maximizing Hamiltonian Hij with respect to productions qi and qj, as well as Hk with respect
to production qk, we obtain the following system of equations:

p− ci − qi − sbλij = 0,

p− cj − qj − sbλij = 0,

p− ck − qk − sbλk = 0,

whose solution is

qi = p− ci − sbλij, (5)

qj = p− cj − sbλij, (6)

qk = p− ck − sbλk. (7)

We write down the system of differential equations with respect to λij, λk, and p:

ṗ = −(3bs+ s)p+ 2s2b2λij + s2b2λk + sb(ci + cj + ck) + sa,

λ̇ij = −2p+ (r + s+ 2sb)λij + ci + cj ,

λ̇k = −p+ (r + s+ sb)λk + ck.

Let us rewrite this system in a matrix form as⎛⎜⎝ ṗ

λ̇ij

λ̇k

⎞⎟⎠ =

⎛⎜⎝−3sb− s 2s2b2 s2b2

−2 r + s+ 2sb 0
−1 0 sb+ r + s

⎞⎟⎠
⎛⎜⎝ p
λij

λk

⎞⎟⎠+

⎛⎜⎝sa+ sb(ci + cj + ck)
ci + cj
ck

⎞⎟⎠ .

We find λij, λk, and p, for this we write the characteristic equation, which looks like:∣∣∣∣∣∣∣
−3sb− s− w 2s2b2 s2b2

−2 r + s+ 2sb− w 0
−1 0 sb+ r + s− w

∣∣∣∣∣∣∣
= −(3sb+ s+ w)(w2 − (2r + 3sb+ 2s)w + (r + 2sb+ s)(r + sb+ s))

+ s2b2(5r + 6sb+ 5s− 5w) = 0.
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It is difficult to write down the solution of this characteristic equation in a general case in an
explicit form. Using, for example, the Matlab software, one can find the unique admissible solution
of this equation and express the solutions of a system of differential equations through this and
other parameters of the system. When solving a system of differential equations, we use the initial
and limit conditions: p(0) = p0, limt→∞ e−rtλij(t) = 0 and limt→∞ e−rtλk(t) = 0. After finding
solutions, we substitute λij, λk, and p into expressions (5), (6), and (7), and obtain the Nash
equilibrium strategies.

Remark 1. Conditions for Nash equilibrium in the case of coalition structures {{i, k}, {j}} and
{{j, k}, {i}} can be found similar to Theorem 3. Solution of a system of differential equations from
the proof of Theorem 3 was found using the Matlab program that is presented in Section 5, which
considers a numerical example.

4. STABILITY OF COALITION STRUCTURES

In our model, the coalition structure is given exogenously, i.e., the players do not participate
“actively” in forming a coalition structure. But even if the structure is given, the problem of its
stability arises. By stability, it is natural to understand a stable structure at which no firm would
prefer to leave its coalition in order to join another one, or become an individual player. Although
firms in a coalition choose strategies that maximize the total coalition’s profits, they can compare
their own profits in these coalitions to decide which coalition is more preferable for them [5].

We give a definition of a stable coalition structure based on the Nash equilibrium principle, i.e.,
on the fact that it is nonprofitable for any player to individually deviate from a stable structure,
i.e., to move to other coalitions or become an individual player.

Definition 2. Coalition structure π = {B1, . . . , Bm} is said to be stable in a game with nontrans-
ferable payoffs if the following inequality holds for any player i ∈ N :

Jπ
i � Jπ′

i for all Bj ∈ π ∪ ∅, Bj �= B(i).

Here Jπ
i and Jπ′

i are the payoffs of player i in a game with given coalition structure π and π′

respectively, where π′ = {B(i)\{i}, Bj ∪{i}, π−B(i)∪Bj
}, B(i) is a coalition from structure π which

player i belongs to.

5. NUMERICAL EXAMPLE

To illustrate the theoretical results obtained in the previous sections, we consider a differential
game described above between three firms from set N = {i, j, k}. It is assumed that firms can form
any coalition structure: {{i, j, k}} (cooperative version), {{i}, {j}, {k}} (noncooperative version),
{{i, j}, {k}}, {{i, k}, {j}} and {{j, k}, {i}} (partially cooperative version).

We use the following parameters for numerical simulations:

p0 ci cj ck b r s a n

0.5 0.4 0.2 0.3 0.2 0.3 0.5 0.7 3

Applying Theorems 4.3.1, 4.3.2, and 4.3.3, we find equilibrium price p(t) and strategies qi(t),
qj(t), and qk(t) for all coalition structures. The result in graph form is shown in figure.

The profits of firms i, j, and k are calculated by substituting equilibrium p(t), qi(t), qj(t), and
qk(t) from Theorems 4.3.1, 4.3.2, and 4.3.3 into the firms’ payoff functions (2). The firms’ payoffs
are given in Table 1.

The analysis of the obtained results shows (see Table 1) that for all firms coalition structure
{{i, j, k}} is preferable, since the payoffs of all firms are greater with this coalition structure than
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Equilibrium prices and firms’ productions for various coalition structures.

with any other one. Obviously, this coalition structure is stable in accordance with Definition 2,
since it is unprofitable for any player to deviate from this coalition structure, i.e., to become an
individual player.

The analysis of equilibrium prices with various coalition structures shows that the lowest price
is formed under full competition, i.e., with coalition structure {{i}, {j}, {k}}. It means that this
structure is the most preferable for consumers, followed by structures {{j, k}, {i}}, {{i, j}, {k}},
{{i, k}, {j}}, {{i, j, k}} in order of increasing price. As expected, {{i, j, k}} coalition structure
or full cooperation is the least preferred scenario for consumers. Table 2 shows price limits with
different coalition structures. Of course, it is more profitable for firms to have coalition structure
{{i, j, k}}, if we talk about firm profits, and consumers prefer competition, i.e., coalition structure
{{i}, {j}, {k}}, when the lowest price is formed for them on the market.

Table 1. Firms’ payoffs under various coalition structures

Ji Jj Jk
{{i}, {j}, {k}} 0.0346 0.1952 0.0993

{{i, j, k}} 0.0600 0.2593 0.1430

{{i, j}, {k}} 0.0460 0.2273 0.1237

{{i, k}, {j}} 0.0557 0.2473 0.1344

{{j, k}, {i}} 0.0467 0.2178 0.1123

Table 2. Equilibrium price limits p̄ = lim
t→∞ p(t) for various coalition structures

{{i}, {j}, {k}} {{i, j, k}} {{i, j}, {k}} {{i, k}, {j}} {{j, k}, {i}}
p̄ 0.5609 0.6384 0.6081 0.6222 0.5941
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6. CONCLUSION

This paper proposes a model of competition in the market of manufacturers of vaccines or other
products, when the product price has the property of the so-called “memory,” i.e., it is dynamically
formed not only by demand, but also by the previous price value. The model is represented by
a differential game of infinite duration, where the players’ strategies are production volumes. It
is assumed that players-firms can form any coalitions, i.e., not only a grand coalition, but also
coalitions of smaller sizes. In this paper, the Nash equilibrium is found in a game with a given
coalition structure. The chapter considers the case of nontransferable utilities, i.e., players cannot
redistribute payoffs in cooperation. A numerical example demonstrates theoretical results and
analyzes the stability of coalition structures. Finally, we draw conclusions about which structures
are preferable for consumers and firms.
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