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Abstract—A comparative analysis of the efficiency of various ways of organization of economic
agents is carried out, taking into account the structure and regulations of their interaction in
the models of the Cournot oligopoly. The Cournot oligopoly models in the form of a supply
chain are constructed and analytically investigated, taking into account the green effect and
concern for fairness. For symmetric models of the Cournot oligopoly with different ways of
organization of economic agents, the respective structures of social and individual preferences
are analytically obtained. A numerical study of the Cournot oligopoly models in various forms
with asymmetrical agents has been carried out, and the corresponding structures of social and
individual preferences have been obtained.
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1. INTRODUCTION

1.1. Problem of the Inefficiency of Equilibria

A problem of the inefficiency of equilibria plays an important role in the game theoretic modeling
of social-economic systems. A detailed analysis of the problem is presented in [1, 6, 15, 22, 28]. The
outcome of rational behavior by selfish players can be inferior to a centrally designed or voluntarily
cooperative outcome. An important question is: by how much? To answer this question a specific
payoff function is introduced. It is defined on the set of outcomes of the game, and numerically
expresses “social good” of an outcome. Two main payoff functions are utilitarian and egalitarian
functions, defined as the sum of the players’ payoffs and the minimum player payoff, respectively.
Introducing a payoff function enables us to quantify the inefficiency of equilibria, and in particular
to deem certain outcomes of a game optimal or approximately optimal. All of these measures are
defined as the ratio between the payoff function value of an equilibrium of the game and that of an
optimal outcome. It is supposed that all payoff functions are positive, and the ratio is also positive.

The price of anarchy, the most popular measure of the inefficiency of equilibria, resolves the
issue of multiple equilibria by adopting a worst-case approach. The price of anarchy of a game
is defined as the ratio between the worst payoff function value of an equilibrium of the game and
that of an optimal outcome [27]. If the price of anarchy is close to 1 then all equilibria are good
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approximations of an optimal outcome, and a profit from the centralized planning (that can be
expensive or even not implemented) is small [1].

However, the problem of inefficiency of equilibria should be formulated in a more general form.
First, we should compare not only the payoffs corresponding to the basic ways of organization of
economic agents (competition, cooperation, hierarchy) but also the payoffs with consideration of
different additional effects (information structure of the agents’ interaction). Second, it is necessary
to not only the values of social welfare but also the payoffs of separate economic agents. An outcome
generated by a specific way of organization that is the most effective fir the whole society is not
obligatory the same for each agent. For example, the leader’s payoff in a hierarchical game can
exceed a share of a player under a symmetrical allocation of the cooperative payoff.

Basic ways of organization of the interaction of economic agents are their selfish behavior (com-
petition), hierarchy and cooperation. Competing agents choose their actions simultaneously and
independently, and the solution of the respective game in normal form is a Nash equilibrium. A hi-
erarchical organization allows for two variants. In the first variant the leader chooses and reports
to one or several other players (followers) her action, and they choose the best response. Then we
have a Stackelberg game, and its solution is a Stackelberg equilibrium. In the second variant the
leader chooses and reports to the followers her strategy as a function of their expectable actions,
and they choose the best response to this strategy. Then we have an inverse Stackelberg game,
and its solution is found on the base of the guaranteed result principle. At last, in the case of
cooperation all players unite and jointly maximize the summary payoff function by all control vari-
ables. Then a respective game is reduced to an optimization problem, and its cooperative solution
is Pareto-optimal [3, 10, 24, 26].

When accounting a structure of interaction of the economic agents a concept of supply chain
management takes an important place [14]. A supply chain is an ordered set of economic agents
that provides production of a good and its transfer from a manufacturer to a consumer. It is
natural to model the respective interaction of agents in a supply chain as a Stackelberg game [5].
In the simplest case the game includes a manufacturer and a seller, in a more general case other
value-adding mediators are considered. Performance and evaluation of efficiency of supply chains
are described in [7]. In a marketing context similar models are considered in [16]. Ivanov and
Dolgui [13] propose a concept of intertwined supply chains. This model considers connections (and
feedback) between several supply chains. The authors pay the most attention to the issues of
stability and viability of supply chains.

A very interesting stream of research in the recent years in this domain is green supply chains
[35, 36, 23, 2, 11, 17, 33]. Here the elements of a supply chain make some efforts to mitigate a neg-
ative environmental impact of the production and logistics. It is assumed that such an activity
increases a demand to the green products from environmentally responsible consumers. The re-
spective reviews are presented in [4, 32, 29, 8, 12]. Note that the agents in a supply chain can invest
their resources not only in environmental protection but also to the innovative potential or social
utility of their production that also increases the demand.

That approach is developed by a concept of fairness concern [9, 31]. It is well known that a
postulate of economic rationality which is a base of the game theory does not describe completely
all behavioral incentives. Thus, there are some attempts to consider in game theoretic models some
additional effects. The fairness concern means that if an agent regards a payoff allocation to be
unfair then he can abandon business relationships [25]. To avoid it a leader’s payoff function in a
Stackelberg game is extended by a penalty for essential difference between payoffs of the leader and
the followers. The fairness concern changes essentially the players’ strategies [18, 19]. Sharma and
Jain [30] investigate the fairness concerned behavior in a dyadic supply chain with one manufacturer
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and one retailer, wherein the manufacturer puts efforts for improving the product’s greening level
and sells it to the customers through the retailer.

1.2. Concept, Contribution and Structure of the Paper

This paper attempts to compare an efficiency of the different ways of organization of economic
agents (selfish behavior, hierarchy, cooperation) with consideration of additional features of the
structure and rules of their interaction. These features are supply chains, green effect and fairness
concern. The comparison of efficiency is made from the point of view of both social welfare and
separate agents. For a quantitative evaluation of the comparative efficiency we calculate ratios of
summary or individual payoffs corresponding to the different types of organization. In symmetrical
models which can be investigated analytically these indicators are equivalent. For models with
asymmetrical agents these two cases are analyzed numerically. The comparison implies structures
of social and private preferences (coincident or not).

A convenient tractable model for the mentioned comparative analysis is the Cournot oligopoly
[20] that describes the competition of manufacturers by their output volumes of a homogeneous
good. A general theory of oligopoly is exposed in [34]. A game theoretic analysis of the Cournot
oligopoly is presented in [21]. In this paper we consider the models of Cournot oligopoly with
constant and scale-dependent costs. The paper makes the following contribution:

— we build and analytically investigate new models of the Cournot oligopoly in the form of
supply chain, with green effect and fairness concern;

— for symmetrical models of the Cournot oligopoly and different ways of organization of eco-
nomic agents we receive analytically coincident structures of social and individual preferences;

— we conduct a numerical simulation of the models of Cournot oligopoly in different forms with
asymmetrical agents, and receive the respective structures of social and individual preferences.

The rest of the paper is organized as follows. In Chapter 2 we build and analytically investigate
symmetrical models of the Cournot oligopoly in different forms with two types of costs. In Chapter 3
we conduct an analytical comparison of the efficiency of the ways of organization of economic agents
in the built models. In Chapter 4 we present the results of numerical simulation for asymmetrical
models and the respective structures of social and individual preferences. Conclusive remarks are
made in Chapter 5.

2. MODELS AND THEIR ANALYTICAL INVESTIGATION

2.1. A Basic Model of the Cournot Oligopoly

2.1.1. A selfish behavior of economic agents. In this case a model of the Cournot oligopoly de-
scribes a competition of n economic agents (manufacturers, firms and so on) producing a homo-

geneous good. Denote xi – an output volume of the ith agent, x = (x1, . . . , xn), x =
n∑

i=1
xi. The

model includes two main elements: an inverse demand function and a cost function. The inverse
demand function Q(x) is the same for each agent and has the form Q(x) = a− x, where a is a
maximally feasible total output volume. A value Q(x) shows a price for a unit of the good. The
cost function Ci(xi) is considered in two forms. For constant costs Ci(xi) = cixi a parameter ci
shows a cost for production of a unit of the good. For scale-dependent costs Ci(xi) = cixi − dix

2
i a

parameter di reflects that a cost for production of a unit of the good decreases when the number
of units increases. In general, a payoff (profit) of the ith agent is equal to ui(x) = Q(x)xi − Ci(xi).
Then for constant costs the model is

ui(x) = (a− ci − x)xi → max, xi � 0, i = 1, . . . , n. (2.1)
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and for scale-dependent costs

udi (x) = (a− ci − x)xi − dix
2
i → max, xi � 0, i = 1, . . . , n. (2.2)

Each of the models (2.1) and (2.2) defines a game of n agents in normal form. Its solution is a
Nash equilibrium. For an analytical investigation of the models of Cournot oligopoly we accept

Proposition 2.1. ci = c, di = d, i = 1, . . . , n.

This assumption generates symmetrical games

ui(x) = (a− c− x)xi → max, xi � 0, i = 1, . . . , n, (2.3)

udi (x) = (a− c− x)xi − dx2i → max, xi � 0, i = 1, . . . , n, (2.4)

and their solution are found in an explicit form. Suppose for convenience that a > c > 0. Solving
a system of equations ∂ui

∂xi
= 0, i = 1, . . . , n, we receive for the model (2.3)

xNE
i = xNE =

a− c

n+ 1
, i = 1, . . . , n. (2.5)

As ∂2ui

∂x2
i
= −2 < 0, |H| =

∣∣∣∣∣ −2 −1
−1 −2

∣∣∣∣∣ = 3 > 0 then the formula (2.5) really determines a Nash equi-

librium in the game (2.3). Each agent’s payoff is equal to

uNE =
(a− c)2

(n+ 1)2
, i = 1, . . . , n. (2.6)

For the model (2.4) we receive similarly

xNE
d =

a− c

n+ 1 + 2d
, uNE

d =
(1 + d)(a − c)2

(n + 1 + 2d)2
.

2.1.2. Cooperative behavior of economic agents. In this case the economic agents of an oligopoly
unite (for example, in a cartel) and jointly maximize a total payoff (a utilitarian social welfare

function) u(x) =
n∑

i=1
ui(x) by all control variables xi, i = 1, . . . , n. Then the model (2.3) takes the

form
u(x) = (a− c− x)x → max, xi � 0, i = 1, . . . , n, (2.7)

and the model (2.4) takes the form

ud(x) = (a− c− x)x− d
n∑

j=1

x2j → max, xi � 0, i = 1, . . . , n. (2.8)

The symmetrical cooperative solution of the model (2.7) has the form

xC =
a− c

2n
; xC =

a− c

2
, and uC =

(a− c)2

4n
; uC =

(a− c)2

4
.

For the model (2.8) we receive similarly

xCd =
a− c

2(n + d)
; xCd =

n(a− c)

2(n + d)
uCd =

(a− c)2

4(n + d)
; uCd =

n(a− c)2

4(n + d)
.

2.1.3. Presence of a leader firm. Suppose that agent (firm) 1 is a leader. She chooses and reports
to other agents her output volume x1. Given x1 the other agents (followers) find a Nash equilibrium
in their game in normal form. We consider that equilibrium as a best response to the strategy x1.
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Then in fact the firm 1 chooses her strategy x1 that maximizes her payoff on the set of Nash
equilibria in the game of other agents. The respective outcomes form a set of Stackelberg equilibria
ST1 in the Cournot oligopoly with leadership of the first firm. Using the first order condition
∂ui
∂xi

= 0, i = 1, . . . , n, we receive

2xi +
n∑

j=2(j �=i)

xj = a− c− x1, i = 2, . . . , n,

and

xi = x, i = 2, . . . , n,

2x+ (n− 2)x = a− c− x1,

xNE(x1) =
a− c− x1

n
;

u1(x1, x
NE
−1 (x1)) =

1

n
(a− c− x1)x1;

∂u1
∂x1

=
1

n
(a− c− 2x1) = 0;

xST1
1 =

a− c

2
; xST1

i =
a− c

2n
, i = 2, . . . , n; xST1 =

(2n − 1)(a− c)

2n
;

uST1
1 =

(a− c)2

4n
; uST1

i =
(a− c)2

4n2
, i = 2, . . . , n; uST1 =

(2n− 1)(a − c)2

4n2
.

For the model with scale-dependent costs we receive similarly

xST1
1d =

a− c

2(1 + d)
; xST1

id =
(1 + 2d)(a − c)

2(1 + d)(2d + n)
, i = 2, . . . , n; xST1

d =
(2n − 1 + d(1 + n))(a− c)

2(1 + d)(2d + n)
;

uST1
1d =

(a− c)2(2d2 + 4d− dn+ 1))

4(1 + d)2(2d+ n))
; uST1

id =
(a− c)2(2d + 1)2

4(1 + d)(2d + n)2
, i = 2, . . . , n;

uST1
d =

(a− c)2(4d3n+ 8d2 + 8d2n− dn2 + 9dn + 6d+ 2n+ 1)

4(1 + d)2(2d + n)2
.

2.2. The Cournot Oligopoly with Consideration of Green Effect

2.2.1. A selfish behavior of economic agents. A green effect in the model of Cournot oligopoly
means that the agents assign additional resources to make the production environmentally friendly.

Denote the respective greening efforts of the ith agent by gi, g = (g1, . . . , gn), g =
n∑

i=1
gi. Denote

also α — a coefficient characterizing increase in demand due to green effect, βi — a coefficient
characterizing a greening cost of the ith agent. Then the model (2.1) takes the form

uGi (x, g) = (a− ci − x+ αg)xi − βig
2
i → max, xi � 0, gi � 0, i = 1, . . . , n.

For analytical investigation we consider a symmetrical model using an additional

Proposition 2.2. α = βi = 1, i = 1, . . . , n.

Then
uGi (x, g) = (a− c− x+ g)xi − g2i → max, xi � 0, gi � 0, i = 1, . . . , n. (2.9)

Theorem 2.1. In the model (2.9) equilibrium strategies of the agents have the form

xGNE =
2(a− c)

n+ 2
, gGNE =

a− c

n+ 2
,
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and each agent’s payoff is equal to

uGNE =
3(a− c)2

(n+ 2)2
.

The proof of the Theorem 2.1 is given in Appendix A.

Theorem 2.2. In the model of Cournot oligopoly with scale-dependent costs and green effect

uGid(x, g) = (a− c− x+ g)xi − dx2i − g2i → max, xi � 0, gi � 0, i = 1, . . . , n.

equilibrium strategies of the agents and the respective payoffs have the form

xGNE
d =

2(a− c)

n+ 2 + 4d
, gGNE

d =
a− c

n+ 2 + 4d
, uGNE

d =
(3 + 4d)(a − c)2

(n+ 2 + 4d)2
.

The proof is similar to the proof of Theorem 2.1.

2.2.2. Cooperative behavior of the economic agents. When agents cooperate and there are a
green effect and constant costs the model takes the form

uGC
i (x, g) = (a− c− x+ g)xi −

n∑
j=1

g2j → max, xi � 0, gi � 0, i = 1, . . . , n, (2.10)

and for scale-dependent costs

uGC
id (x, g) = (a− c− x+ g)xi − d

n∑
j=1

x2j −
n∑

j=1

g2j → max, xi � 0, gi � 0, i = 1, . . . , n. (2.11)

Theorem 2.3. In the model (2.10) optimal cooperative strategies of the agents and their total
payoff are equal respectively to

xGC =

⎧⎨⎩
2(a − c)

n(4− n)
, n < 4,

0, otherwise;
gGC =

⎧⎨⎩
a− c

4− n
, n < 4,

0, otherwise;
uGC =

⎧⎪⎨⎪⎩
(a− c)2

n(4− n)
, n < 4,

0, otherwise.

Theorem 2.4. In the model (2.11) optimal cooperative strategies of the agents and their total
payoff are equal respectively to

xGC
d =

2(a− c)n)

n(4− n) + 4d)
, gGC

d =
(a− c)n

n(4− n) + 4d
, uGC

d =
(a− c)2(4d+ 4n− 4dn − n2)

(n(4− n) + 4d)2

when n � 2 + 2
√
1 + d.

The proof of the Theorem 2.4 is similar to the proof of Theorem 2.3. If then green production is
not profitable.

2.2.3. Presence of a leader firm. Suppose that agent (firm) 1 is a leader. The information struc-
ture of the game is the same as in the Section 2.1.3, and all firms equally care for a green effect.
Each of agents except the leader solves the problem

uk(x, g) =

⎛⎝a− c− x1 + g1 −
n∑

j=2

xj +
n∑

j=2

gj

⎞⎠xk − g2k → max, k = 2, . . . , n.

The first order conditions ∂uk
∂xk

= ∂uk
∂gk

= 0, k = 2, . . . , n give

g =
a− c− x1 + g1

n+ 1
; x =

2(a− c− x1 + g1)

n+ 1
.
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A substitution of the found values in u1 gives

u1(x1, g1) =
1

n
(a− c− x1 + g1)x1 − g21 .

The first order conditions ∂u1
∂x1

= ∂u1
∂g1

= 0 give

gST1G
1 =

a− c

3
; gST1G

i =
2(a− c)

3(n + 1)
;

xST1G
1 =

2(a− c)

3
; xST1G

i =
4(a − c)

3(n + 1)
, i = 2, . . . , n.

At last, an immediate substitution gives

uST1G
1 =

8(a− c)2

9(n + 1)
; uST1G

i =
16(a− c)2

9(n + 1)2
, i = 2, . . . , n;

uST1G =
8(3n − 1)(a− c)2

9(n+ 1)2
.

We omit a case of the scale-dependent costs as too cumbersome.

2.3. The Cournot Oligopoly with Green Effect in a Supply Chain

Consider the Cournot oligopoly in the form of a supply chain (Fig. 1).

1 → 2 → . . . → n →

Fig. 1. The Cournot oligopoly in the form of a supply chain.

A connection between agents in the linear structure of a supply chain is provided by the green
effect for each agent. The green effect’s action is one-way and the stronger the closer are situated
the respective agents. We receive the model

ui(x, g) =

⎛⎝a− ci − x+
n∑

j=2

αi−jgj

⎞⎠xi − βig
2
i → max, xi � 0, gi � 0, i = 1, . . . , n. (2.12)

Accept again Propositions 2.1 and 2.2 for an arbitrary α > 0 and n = 2. Then for constant costs
the model (2.12) takes the form

uSG1 (x, g) = (a− c− x1 − x2 + g1)x1 − g21 → max, x1 � 0, g1 � 0, (2.13)

uSG2 (x, g) = (a− c− x1 − x2 + g2)x2 − g22 → max, x2 � 0, g2 � 0, (2.14)

and for scale-dependent costs

uSG1d (x, g) = (a− c− x1 − x2 + g1)x1 − dx21 − g21 → max, x1 � 0, g1 � 0, (2.15)

uSG2d (x, g) = (a− c− x1 − x2 + αg1 + g2) x2 − dx22 − g22 → max, x2 � 0, g2 � 0. (2.16)

Theorem 2.5. In the model (2.13)–(2.14) equilibrium strategies of the agents and their payoffs
have the form

xSCNE
1 =

2(a− c)

5 + 2α
; xSCNE

2 =
2(a− c)(1 + α)

5 + 2α
;

gSCNE
1 =

(a− c)

5 + 2α
; gSCNE

2 =
(a− c)(1 + α)

5 + 2α
;

uSCNE
1 =

3(a− c)2

(5 + 2α)2
; uSCNE

2 =
3(a− c)2(1 + α)2

(5 + 2α)2
.
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Theorem 2.6. In the model (2.13)–(2.14) equilibrium strategies of the agents and their payoffs
have the form

xSCNE
1d =

2(a− c)(1 + 4d)

16d2 + 24d+ 5 + 2α
; xSCNE

2d =
2(a− c)(1 + 4d+ α)

16d2 + 24d+ 5 + 2α
;

gSCNE
1d =

(a− c)(1 + 4d)

16d2 + 24d+ 5 + 2α
; gSCNE

2d =
(a− c)(1 + 4d+ α)

16d2 + 24d+ 5 + 2α
;

uSCNE
1d =

(3 + 16d+ 16d2)(1 + 4d)(a − c)2

(16d2 + 24d + 5 + 2α)2
;

uSCNE
2d =

(3(1 + α) + 4d(4− α+ 4d))(a − c)2(1 + 4d+ α)2

(16d2 + 24d + 5 + 2α)2
.

The proofs of the Theorems 2.5 and 2.6 are similar to the previous proofs.

2.4. A Hierarchical Control in the Cournot Oligopoly for Achievement of the Green Effect

2.4.1. A basic hierarchical model. Suppose now that an agent external to the Cournot oligopoly
is interested to provide the green effect. Call this agent a Principal (P). To provide the green effect
the Principal appoints obligatory costs of increasing the environmental features of the products gi,
i = 1, . . . , n. Suppose that the Principal is also interested in maximization of the total payoff of
all agents (social welfare). The agents’ control variables are still output volumes xi, i = 1, . . . , n.
The relations between the Principal and other agents are presented in Fig. 2. For constant costs

Fig. 2. A hierarchical control system providing the green effect

the model takes the form

U(g, x) = u(x, g) → max, gi � 0, i = 1, . . . , n; (2.17)

uSTi (g, x) = (a− c− x+ g)xi − g2i → max, xi � 0, i = 1, . . . , n. (2.18)

A Stackelberg game (2.17)–(2.18) has the following information structure. The Principal makes
the first move: she chooses and reports to other agents the values of norms gi, i = 1, . . . , n. Given
the values, all other agents simultaneously and independently choose the values of their control
variables xi, i = 1, . . . , n. We suppose that the agents’ best response to a Principal’s strategy is a
Nash equilibrium in their game in normal form. Therefore in fact the Principal chooses a strategy
that maximizes her payoff on a set of Nash equilibria. The resulting outcome is a Stackelberg
equilibrium in the game (2.17)–(2.18).

Theorem 2.7. Stackelberg equilibrium strategies and the respective payoffs of the players in the
game (2.17)–(2.18) have the form

gST =
n(a− c)

2n + 1
; xST =

(n + 1)(a − c)

2n+ 1
; uST =

(a− c)2

2n+ 1
.

The proof of the Theorem 2.7 is given in Appendix A.
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For constant costs the function (2.18) takes the form

uSTid (g, x) = (a− c− x+ g)xi − dx2i − g2i → max, xi � 0, i = 1, . . . , n. (2.19)

Theorem 2.8. The proof of the Theorem 2.8 is similar to the proof of the Theorem 2.7.

gSd T =
n(1 + d)(a− c)

2n + 1 + d(4(d + n+ 1)− n2)
; xSdT =

(n+ 1 + 2d)(a − c)

2n+ 1 + d(4(d + n+ 1)− n2)
;

uSdT =
(4d3 + 8d2 + 4dn + 5d+ 2n + 1 + 4d2n− dn2 − d2n2)(a− c)2

(2n + 1 + d(4(d + n+ 1)− n2))2
.

The proof of the Theorem 2.8 is similar to the proof of the Theorem 2.7.

2.4.2. The Principal’s fairness concern. Suppose additionally the Principal’s fairness concern in
the model (2.17)–(2.18). Let’s limit ourselves by the case n = 2. If u1 ≈ u2, then the fairness con-
cern is senseless. Therefore, suppose without loss of generality that u1 � u2. Then the Principal’s
payoff function takes the form

U(g, x) = u(g, x) − δ(u1(g, x) − u2(g, x)), (2.20)

where δ ∈ (0, 1) is a parameter of fairness concern.

Theorem 2.9. In the model (2.18), (2.20) for n = 2 and δ <
√

41
81 a Stackelberg equilibrium has

the form

gSTFC
1 =

2(1 + δ)(a − c)

5− 9δ2
; gSTFC

2 =
2(1− δ)(a − c)

5− 9δ2
; x1 = x2 = xSTFC =

3(1− δ)2(a− c)2

(5− 9δ2)2
,

and the respective agents’ payoffs are equal to

uSTFC
1 =

(1 + δ)2(5− 18δ + δ2)(a− c)2

(5− 9δ2)2
; uSTFC

2 =
(1− δ)2(5− 18δ + δ2)(a− c)2

(5− 9δ2)2
.

If δ �
√

41
81 then the Principal’s optimal strategies are g1 = g2 = 0, then u1 = u2 and a fairness

concern is not required. The proofs of the Theorems 2.1, 2.3 and 2.9 are presented in Appendix A.
The solutions of all considered models are shown in Table 1. As in symmetrical models u = nu, we
present only the agents’ payoffs u.

3. COMPARATIVE ANALYSIS OF THE SOLUTIONS OF SYMMETRICAL MODELS

To compare an efficiency of the different ways of organization of economic agents in symmetrical
models it is natural to use an indicator

uA

uB
, (3.1)

where uA,uB are payoffs of the agents for the ways of organization A and B respectively. For
example, A is a selfish behavior of independent agents, B is the same behavior with green effect.
If A is a selfish behavior of independent agents, and B is their cooperation then the indicator (3.1)
for symmetrical models shows the price of anarchy.

The values of (3.1) for considered models are collected in Tables 1 and 2. If it is possible then
the results of comparison of the value (3.1) with 1, otherwise we conducted a numerical simulation
in dependency of the parameters.
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Table 1. Comparative analysis of efficiency in the symmetrical models with constant costs

C G GC ST

NE
4n

(n+ 1)2
< 1

(n+ 2)2

3(n+ 1)2
< 1

n(4− n)

(n+ 1)2
< 1, n < 4

+∞, otherwise;

4n3

(n+ 1)2(2n− 1)
> 1

C
(n+ 2)2

12n

< 1, n � 7

> 1, n > 7;

4− n

4
< 1, n < 4

+∞, otherwise;

n2

2n− 1
> 1

G
3n(4− n)

(n+ 2)2
< 1, n < 4,

+∞, otherwise;

4n3

(n+ 1)2(2n− 1)
> 1

GC
12n3

(n+ 2)2(2n− 1)
> 1, n < 4,

0, otherwise;

Table 2. Comparative analysis of efficiency in the symmetrical models with scale-dependent costs

Cd Gd GCd

NEd
4(n+ d)(1 + d)

(n+ 1 + 2d)2
< 1

(n+ 2 + 4d)2(1 + d)

(3 + 4d)(n+ 1 + 2d)2
< 1

(4n− n2 + 4d)(1 + d)

(n+ 1 + 2d)2
, n < 2 + 2

√
1 + d

+∞, otherwise;

Cd
(n+ 2 + 4d)2

4(3 + 4d)(n+ d)
< 1

4n− n2 + 4d

4(n+ d)
, n < 2 + 2

√
1 + d

+∞, otherwise;

Gd

(4n− n2 + 4d)(3 + 4d)

(n+ 2 + 4d)2
, n < 2 + 2

√
1 + d,

+∞, otherwise;

Immediate calculations based on the presented data imply the following main conclusions.

Theorem 3.1. For constant costs and different number of agents the preference table is the fol-
lowing:

n = 2, 3 n = 4, 5, 6, 7 n > 7

Independent
players

GC �G�C �NE�ST C �G�NE�ST �GC C �NE�ST �G�GC

Leader ST �GC �C �G�NE ST �C �G�NE�GC ST �C�NE�G�GC

Social welfare GC �G�C �NE�ST C �G�NE�ST �GC C �NE�ST �G�GC

and for scale-dependent costs

n = 2, 3 n = 4, 5, 6, 7 n > 7

Independent players G � C � NE � ST C � G � NE � ST C � NE � ST � G

Leader ST � C � G � NE ST � C � G � NE ST � C � NE � G

Social welfare G � C � NE � ST C � G � NE � ST C � NE � ST � G

Thus, for the considered models with constant costs and a small number of agents (less than four)
the most profitable way of their organization from the point of view of social welfare is the agents’
cooperation with constraints on the green effect. Then a pure cooperation, an independent green
effect, a selfish behavior, and a leadership of an agents are situated sequentially.

For n > 4 it is not profitable for the agents to provide the green effect.

If there is a leader agent then her payoff differs from other payoffs. A hierarchy is the most
profitable way for an agent that becomes a leader.
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Theorem 3.2. In the models with scale-dependent costs for n < 4 and d > 1
24

uGC
d � uGC

d � uGC
d � uGC

d , or GCd � Cd � Gd � NEd � ST1d.

Thus, a preference structure does not depend on the payoff function.

Theorem 3.3. C � Cd, i.e. cooperation of agents in a model with constant costs is more profitable
that on the model with scale-dependent costs.

4. MODELS WITH ASYMMETRICAL AGENTS

All previous results relate to the case of symmetrical agents that produce the same good sold
by the same price and having the same costs. It is a strong simplification that is justifiable in some
situations. But how will change the preference systems for separate agents and the whole society
if the agents are asymmetrical?

4.1. Basic Model of the Cournot Oligopoly with Asymmetrical Agents

Building of the model is described in Section 2.1.1. Consider several formulations.

4.1.1. A selfish behavior of economic agents. For constant costs we receive the model

ui(x) = (a− ci − x)xi → max, xi � 0, i = 1, . . . , n, (4.1)

and for scale-dependent costs

udi (x) = (a− ci − x)xi − dx2i → max, xi � 0, i = 1, . . . , n. (4.2)

Find a Nash equilibrium in these games.

The first order conditions ∂ui
∂xi

= 0 give for the model (4.1)

xNE
i =

a+
∑
j �=i

cj − nc

n+ 1
, i = 1, . . . , n. (4.3)

As ∂2ui

∂x2
i
= −2 < 0, |H| =

∣∣∣∣∣ −2 −1
−1 −2

∣∣∣∣∣ = 3 > 0 the formula (4.3) really determines a Nash equilibrium

in the game (4.1). Each agent’s payoff is equal to

uNE
i =

(
a+

∑
j �=i

cj − nc

)2

(n+ 1)2
, i = 1, . . . , n.

For the model (4.2) we receive similarly

xNE
id =

a− ci −
n∑

j=1

a−cj
1+2dj

1+
n∑

j=1

1
1+2dj

1 + 2di
.

Remark 1. Note that even in a relatively simple model of the Cournot oligopoly with symmetrical
agents we can find an explicit form of solution but it is cumbersome enough. That’s why from here
onwards the results of an analytical investigation will be described as follows.

1) We find a value x =
n∑

i=1
xi in an explicit form. It also has quite cumbersome but still tractable

form.

2) We show a dependency xi(x). It is supposed that given x we can calculate xi.
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3) Given xi and x we can calculate ui and u =
n∑

i=1
ui.

Apply this sequence of actions to the current problem formulation. An analytical investigation
gives

xNE
d =

n∑
i=1

xNE
id =

n∑
j=1

a−cj
1+2dj

1 +
n∑

j=1

1
1+2dj

due to which we can find the dependency

xNE
id (xNE

d ) =
a− ci − xNE

d

1 + 2di
.

4.1.2. Cooperation of asymmetrical economic agents. The model (2.3) takes the form

u(x) =
n∑

i=1

(a− ci − x)xi = a
n∑

i=1

xi −
n∑

i=1

cixi −
(

n∑
i=1

xi

)2

→ max, xi � 0, i = 1, . . . , n, (4.4)

and the model (2.4) takes the form

ud(x) =
n∑

i=1

(a− ci − x)xi − d
n∑

i=1

x2i = a
n∑

i=1

xi −
n∑

i=1

cixi −
(

n∑
i=1

xi

)2

− d
n∑

i=1

x2i → max,

xi � 0, i = 1, . . . , n.

(4.5)

The cooperative solution of (4.4) has the form

xC =
a− ck

2
,

where k is an index of the agent with a minimal production cost. Then we find

xCi =

⎧⎨⎩
a− ck

2
, i = k,

0, i �= k.

For the model (4.5) we receive similarly

xCd =

a
n∑

j=1

1
dj

−
n∑

j=1

cj
dj

2

(
1 +

n∑
j=1

1
dj

)

due to which we find the dependency

xCid(x
C
d ) =

a− ci − xCd
2di

.

4.1.3. Presence of a leader firm in the model with asymmetrical players. Assume that agent 1 is

a leader. Find a Stackelberg equilibrium. The first order conditions ∂ui
∂xi

= 0, i = 2, . . . , n,

xSTi =

a− c1n+
n∑

j=2
cj

2
,

n∑
i=2

xSTi =

(n− 1)a−
n∑

j=2
cj − xST1 (n− 1)

n
,
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due to which we find the dependency

xSTi>2

(
n∑

i=2

xSTi

)
= a− ci − xST1 −

n∑
i=2

xSTi .

For the model with scale-dependent costs we receive similarly

xST1d =

a− c1 − c1
n∑

j=2

1
1+2dj

+
n∑

j=2

cj
1+2dj

2 + 2d1 + (2d1 − 1)
n∑

j=2

1
1+2dj

,
n∑

j=2

xSTid =

a
n∑

j=2

1
1+2dj

−
n∑

j=2

cj
1+2dj

− xST1d
n∑

j=2

1
1+2dj

1 +
n∑

j=2

1
1+2dj

,

due to which we find the dependency

xSTi>2,d

(
n∑

i=2

xSTi

)
=

a− ci − x1 −
n∑

i=2
xST1d

1 + 2di
.

4.2. The Cournot Oligopoly with Green Effect

4.2.1. A selfish behavior of asymmetrical agents. Find a Stackelberg equilibrium in the Cournot
oligopoly model with green effect and asymmetrical agents. Denote as earlier α — a coefficient
characterizing increase in demand due to green effect, βi — a coefficient characterizing a greening
cost of the ith agent. Then the model (2.1) takes the form

uGi (x, g) = (a− ci − x+ αg)xi − βig
2
i → max, xi � 0, gi � 0, i = 1, . . . , n.

First, find a Nash equilibrium. In the case of green effect the analytical results are described as
follows.

1) We find a value x =
n∑

i=1
xi or some other value that can serve as a base for calculation of the

value enumerated below. The value is also cumbersome enough but still tractable.

2) Then we present a dependency xi(x). It is supposed that given x we can calculate xi using
this dependency.

3) Then we find the dependencies gi(xi) and, probably, g =
n∑

i=1
gi.

4) Given xi, x, gi and g, we can calculate ui and u =
n∑

i=1
ui.

Theorem 4.1. Instead of x it is sufficient to find a value

z =
n∑

i=1

(
α2

2βi
− 1

)
xGNE
i =

n∑
i=1

(
α2

2βi
− 1

)
(a− ci)

1−
n∑

i=1

(
α2

2βi
− 1

) ,

and to reveal a dependency

xGNE
i (z) = a− ci + z, gGNE

i =
xGNE
i

2βi
.

Theorem 4.2. In the model of Cournot oligopoly with scale-dependent costs and green effect

uGid(x, g) = (a− ci − x+ g)xi − dx2i − βig
2
i → max, xi � 0, gi � 0, i = 1, . . . , n
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we have:

z =
n∑

i=1

(
α2

2βi
− 1

)
xGNE
id =

n∑
i=1

(
α2

2βi
− 1

)
a−ci
1+2di

1−
n∑

i=1

(
α2

2βi
−1

)
1+2di

,

and can reveal a dependency

xGNE
id (z) =

a− ci + z

1 + 2di
, gGNE

id =
αxGNE

id

2βi
.

The proof of this Theorem is presented in Appendix D.

4.2.2. Cooperative of economic agents. In the case of cooperation the model with green effect
and constant costs has the form

uGC(x, g) = a
n∑

i=1

xi −
n∑

i=1

cixi −
(

n∑
i=1

xi

)2

+ α
n∑

i=1

gi

n∑
i=1

xi −
n∑

i=1

βjg
2
j → max,

xi � 0, gi � 0, i = 1, . . . , n,

(4.6)

and for scale-dependent costs — the form

uGC
d (x, g) = a

n∑
i=1

xi −
n∑

i=1

cixi −
(

n∑
i=1

xi

)2

+ α
n∑

i=1

gi

n∑
i=1

xi −
n∑

i=1

βjg
2
j −

n∑
i=1

djx
2
j → max,

xi � 0, gi � 0, i = 1, . . . , n.

(4.7)

Theorem 4.3. In the model (4.6) we have

xGC =
a− ck

2− α2

2

n∑
j=1

1
βj

,

where k is an index of the agent with a minimal production cost. Then we find

xGC
i =

⎧⎪⎪⎨⎪⎪⎩
a− ck

2− α2

2

n∑
j=1

1
βj

, i = k,

0, i �= k,

gGC
i =

αxGC

2βi
.

Theorem 4.4. In the model (4.7) we have

xGC
d =

n∑
j=1

a−cj
dj

2

(
1 +

n∑
j=1

1
dj

− α2

4

n∑
i=1

1
dj

n∑
i=1

1
βj

) ,

and can reveal a dependency

xGC
id (xGC

d ) =
a− ci − 2xGC

d +

α2xGC
d

n∑
j=1

1
βj

2

2di
, gGC

id =
αxdGC

2βi
.

The proof of the Theorem 4.4 is similar to the proof of the Theorem 4.3.
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4.2.3. The Cournot oligopoly with green effect in a supply chain. Consider the Cournot oligo-
poly in the form of a supply chain

ui(x, g) =
(
a− ci − x+

∑
j�i

αi−jgj
)
xi − βig

2
i → max, xi � 0, gi � 0, i = 1, . . . , n. (4.8)

For an analytical investigation take n = 2. Then for constant costs the model (4.8) takes the form

uSC1 (x, g) = (a− c1 − x1 − x2 + g1)x1 − β1g
2
1 → max, x1 � 0, g1 � 0, (4.9)

uSC2 (x, g) = (a− c2 − x1 − x2 + αg1 + g2)x2 − β2g
2
2 → max, x2 � 0, g2 � 0, (4.10)

and for scale-dependent costs

uSC1d (x, g) = (a− c1 − x1 − x2 + g1)x1 − β1g
2
1 − d1x

2
1 → max, x1 � 0, g1 � 0, (4.11)

uSC2d (x, g) = (a− c2 − x1 − x2 + αg1 + g2)x2 − β2g
2
2 − d2x

2
2 → max, x2 � 0, g2 � 0. (4.12)

Theorem 4.5. In the model (4.9)–(4.10) equilibrium strategies of the agents have the form

xSCNE
1 =

a− c2 +
( 1
2β2

− 2
)
(a− c1)(

1− 1
2β1

)− ( 1
2β2

− 2
)( 1

2β1
− 2

) ; xSCNE
2 (xSCNE

1 ) = a− c1 + xSCNE
1

(
1

2β1
− 2

)
;

gSCNE
i =

xSCNE
i

2βi
.

Theorem 4.6. In the model (4.11)–(4.12) equilibrium strategies of the agents have the form

xSCNE
1d =

a− c2 +
(

1
2β2

− 2− 2d2
)
(a− c1)(

1− 1
2β1

)
−

(
1

2β2
− 2− 2d2

) (
1

2β1
− 2− 2d1

) ;
xSCNE
2d (xSCNE

1d ) = a− c1 + xSCNE
1d

(
1

2β1
− 2− 2d1

)
;

gSCNE
id =

xSCNE
id

2βi
.

The proofs of the Theorems 4.5 and 4.6 are similar to the previous proofs.

4.3. Hierarchical Control in the Cournot Oligopoly Providing the Green Effect

4.3.1. Basic hierarchical model. The model has the same information structure as in Sec-
tion 2.4.1. For constant costs the model takes the form

U(g, x) = u(x, g) → max, gi � 0, i = 1, . . . , n; (4.13)

uSTi (g, x) = (a− ci − x+ αg)xi − βig
2
i → max, xi � 0, i = 1, . . . , n, (4.14)

or
uSTid (g, x) = (a− ci − x+ αg)xi − βig

2
i − dix

2
i → max, xi � 0, i = 1, . . . , n. (4.15)

Theorem 4.7. Stackelberg equilibrium strategies of the agents in the game (4.13)–(4.14) have the
form

gST =

α

(
an−

n∑
i=1

ci

)
n∑

i=1

1
βi

(n+ 1)2 − nα2
n∑

i=1

1
βi

; gSTi =

α

(
an−

n∑
i=1

ci + nαgST

βi(n+ 1)2
,

xST =

an−
n∑

i=1
ci + nαgST

n+ 1
; xSTi = a− ci − xST + αgST .

The proof of the Theorem 4.7 is given in Appendix D.
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Theorem 4.8. Stackelberg equilibrium strategies of the agents in the game (4.13), (4.15) have the
form

gSTd =

α
n∑

i=1

1
βi

(
a

n∑
i=1

1+di
(1+2di)2

−
n∑

i=1

ci(1+di)
(1+2di)2

+
n∑

i=1

1
1+2di

n∑
i=1

cidi
(1+2di)2

−
n∑

i=1

ci
1+2di

n∑
i=1

di
(1+2di)2

)
(
1 +

n∑
i=1

1
1+2di

)2

− α2
n∑

i=1

1
βi

n∑
i=1

1+di
(1+2di)2

;

gSTid =
α

βi

(
1 +

n∑
i=1

1
1+2di

)2

×
(
a

n∑
i=1

1 + di
(1 + 2di)2

−
n∑

i=1

ci(1 + di)

(1 + 2di)2
+

n∑
i=1

1

1 + 2di

n∑
i=1

cidi
(1 + 2di)2

−
n∑

i=1

ci
1 + 2di

n∑
i=1

di
(1 + 2di)2

+ αgSTd

n∑
i=1

1 + di
(1 + 2di)2

)
,

xSTd =

a
n∑

i=1

1
1+2di

−
n∑

i=1

ci
1+2di

+ αgSTd

n∑
i=1

1
1+2di

1 +
n∑

i=1

1
1+2di

; xSTid =
a− ci − xSTd + αgSTd

1 + 2di
.

The proof of the Theorem 4.8 is similar to the proof of the Theorem 4.7.

4.3.2. The Principal’s fairness concern. Suppose additionally the Principal’s fairness concern in
the model (4.13)–(4.14) . Let’s limit ourselves by the case n = 2. If u1 ≈ u2, then the fairness con-
cern is senseless. Therefore, suppose without loss of generality that u1 � u2. Then the Principal’s
payoff function takes the form

U(g, x) = u(g, x) − δ(u1(g, x) − u2(g, x)), (4.16)

where δ ∈ (0, 1) is a parameter of fairness concern.

Theorem 4.9. In the model (4.14), (4.16) for n = 2 a Stackelberg equilibrium has the form

gSTFC
1 =

2a− (1− 3δ)c1 − (1 + 3δ)c2
9(1−δ)β1

α − 2α
(
(1−δ)β1

(1+δ)β2
+ 1

) ; gSTFC
2 (gSTFC

1 ) =
(1− δ)β1
(1 + δ)β2

gSTFC
1 ;

xSTFC
i =

a− 2ci + c3−i + α(gSTFC
1 + gSTFC

2 )

3
,

The proof of Theorem 4.9 is given in Appendix D.

5. NUMERICAL SIMULATION

Consider an example of production of eatable disposable tableware, say, waffle glasses. The cases
of constant and scale-dependent costs are grounded by purchase of raw materials with constant price
or with a wholesale price that decreases when the purchase volume increases.

For numerical investigation of the model we took 27 agents with non-repeatable ratios of the
parameters ci, di and βi. A value of each parameter can be characterized as small, medium or
big. Thus, we receive 33 = 27 possible combinations. However, when the number of agents is big,
a green production is not profitable and may be omitted. Also, an influence of the parameter βi
may be ignored. So, it is sufficient to combine only two values, and we receive 32 = 9 cases. For
investigation of the green effect we differentiated additionally the cases with two and three agents.

The results for nine agents are presented in Appendix C and give the following conclusions.

A production of waffle glasses is not profitable for both strong and weak agents.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024



208 GORBANEVA, OUGOLNITSKY

The preferences of any agent (not a leader) with any combination of input values for constant
costs are:

NE � ST � C,

and for scale-dependent costs are
Cd � NEd � STd.

So, for the case of scale-dependent costs the preferences are the same as in the model with
symmetrical agents. For the case of constant costs only the conclusion about profitability of coop-
eration does not hold. It can be explained as follows. In the case of asymmetrical agents only the
agents having a minimal cost receive a payoff. Other agents produce nothing and receive nothing.
In the case of symmetrical agents all prices are equal, and cooperative payoffs of all agents are
greater than for other ways of organization.

Preferences of the society for constant costs are:

C � NE � ST,

and for scale-dependent costs are
Cd � NEd � STd.

So, the results are the same as for the model with symmetrical agents.

Preferences of the leader are:
ST � NE � C,

that are the same as for the model with symmetrical agents.

The results of numerical investigations for two agents (strong and weak) are presented in Ap-
pendix D.

Preferences of the strong agent for constant costs are:

GNE � GC � ST � C � SCST � NE � STFC � SCNE.

and for scale-dependent costs are

GNEd � GCd � Cd � STd � ST1d � NEd � SCNEd � SCSTd.

Preferences of the weak agent for constant costs are:

GNE � STFC � NE � ST � SCST � C � CNE � SCNE.

and for scale-dependent costs are

SCSTd � GNEd � NEd � ST1d � GCd � Cd � CNEd � GCd.

Preferences of the whole society for constant costs are:

GNE � (C = GC) � (NE ∼ SCST ) � ST � STFC � SCNE.

and for scale-dependent costs are

GNEd � (Cd = GCd) � NEd � STd � SCNEd � SCSTd,

So, for the whole society and for each agent it is profitable to produce an eatable tableware.

The results of numerical investigations for three agents are also presented in Appendix D.
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The preferences of any agent (not a leader) for constant costs are:

GNE � SCST � NE � C � ST

and for scale-dependent costs are

SCSTd � GNEd � Cd � NEd � STd � GCd.

For small di and big and medium ci (an agent has small cost but big profit) in the green
production it is not profitable for the agents to create coalitions:

GNEd � GCd,

but for other combinations in the green production coalitions are profitable:

GCd � Cd.

Preferences of the whole society for constant costs are

GNE � C � NE � ST

and for scale-dependent costs are

SCSTd � GCd � NEd � STd.

Preferences of the leader for constant costs are:

ST � GC � C � NE

and for scale-dependent costs are

GCd � NEd � SCSTd.

A situation when cooperation is less profitable for the whole society than other ways of organi-
zation must be commented. A greater degree of the environmental friendly production (a greater
value of the parameter gi) is more profitable for the whole society. However, for separate agents
this high degree is not profitable, and they refuse to produce at all that impacts the summary
payoff function. The less agents are in a society, the more essential is the behavior of each agent.

6. CONCLUSION

A problem of comparative analysis of the ways of organization of economic (and other active)
agents seems to be very important. Really, if a decision is profitable for the whole society (and for
the respective centralized control body) but not profitable for separate agents who are responsible
for its implementation then the decision will not be implemented. The respective examples are well
known.

Meanwhile, the received results show that the preference systems for the whole society and for
separate agents not always coincide. There are also many nuances concerned with a difference
between leaders and followers, strong and weak economic agents, with consideration of additional
issues of the structure, environmental and innovative expenses, social responsibility of business,
arguments of justice in payoffs allocation.

The presented results are rather an empirical material because it is still difficult to make some
conclusions about a comparative efficiency in a general form. Nevertheless, for any specific case in
the frame of a corresponding models the results seem to be useful for analysis and decision support.
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APPENDIX A

Proof of Theorem 2.1.

∂uGi
∂xi

= a− c− 2xi −
∑
j �=i

xj +
n∑

i=1

gj = 0, i = 1, . . . , n;

∂uGi
∂gi

= xi − 2gi = 0, i = 1, . . . , n;

xi = 2gi, i = 1, . . . , n;

a− c− 4gi − 2
∑
j �=i

gj +
n∑

j=1

gj = 0; a− c− 3gi −
∑
j �=i

gj = 0;

3gi +
∑
j �=i

gj = a− c, i = 1, . . . , n;

gi = g, i = 1, . . . , n; 3g + (n− 1)g = a− c;

g =
a− c

n+ 2
, x =

2(a− c)

n+ 2

the value u is found by an immediate substitution.

Proof of Theorem 2.3.

∂u

∂xi
= −x+ a− c− x+ g = a− c+ g − 2x = 0, i = 1, . . . , n;

∂u

∂gi
= x− 2gi = 0, i = 1, . . . , n;

gi = g, xi = x, i = 1, . . . , n; x = nx, g = ng,

x = 2g; a− c+ ng − 4g = 0;

g =

⎧⎨⎩
a− c

4− n
, n < 4,

0, otherwise.

If g = 0 then x = xC is an optimal solution of the cooperative problem without “green” effect.
Then

x =

⎧⎪⎨⎪⎩
2(a− c)

n(4− n)
, n < 4,

xC , otherwise,

u =

⎧⎪⎨⎪⎩
(a− c)2

4− n
, n < 4,

uC , otherwise,

Proof of Theorem 2.7. A best response of the agents to the Principal’s strategy (g1, . . . , gn),
or a Nash equilibrium in the game of agents, is determined by solution of the system

∂uSTi
∂xi

= a− c− 2xi −
∑
j �=i

xj + g = 0, i = 1, . . . , n;

and then

2xi +
∑
j �=i

xj = a− c+ g, i = 1, . . . , n;

xi = xST , i = 1, . . . , n;

xST =
a− c+ g

n+ 1
; xST =

n(a− c+ g)

n+ 1
.
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A substitution of the found best response in the Principal’s payoff function gives

u(g, xST ) = (a− c− xST + g)xST −
n∑

i=1

g2i

=

(
a− c+ g − n(a− c+ g)

n+ 1

)
n(a− c+ g)

n+ 1
−

n∑
i=1

g2i =
n(a− c+ g)2

(n + 1)2
−

n∑
i=1

g2i .

Then

∂u

∂gi
=

2n(a− c+ g)

(n + 1)2
− 2gi = 0, i = 1, . . . , n;

gi = gST , i = 1, . . . , n; gST = ngST ;

n(a− c+ ngST )− (n+ 1)2gST = 0;

gST =
n(a− c)

2n+ 1

and we find xST = (n+1)(a−c)
2n+1 , uST = (a−c)2

2n+1 .

Proof of Theorem 2.9. The best response of the agents is still determined by the expression
(when n = 2)

xSTFC =
a− c+ g

3
; xSTFC =

2(a− c+ g)

3
.

xST =
a− c+ g

n+ 1
; xST =

n(a− c+ g)

n+ 1
.

The Principal’s payoff function is

UFC(g, x) = (a− c+ g − x)x− δ(u1 − u2)− g21 − g22 .

Notice that

u1(g, x
STFC)− u2(g, x

STFC) = Q(g, xSTFC)(xSTFC − xSTFC)− g21 + g22 = g22 − g21 .

Then a substitution of xSTFC in UFC gives

UFC(g, xSTFC) =

(
a− c+ g − 2

3
(a− c+ g)

)
2

3
(a− c+ g)− δ(g22 − g21)− g21 − g22

=
2

9
(a− c+ g)2 − (1− δ)g21 − (1 + δ)g22 .

Then we solve the system of equations

∂UFC

∂g1
=

4

9
(a− c+ g)− 2(1 − δ)g1 = 0,

∂UFC

∂g2
=

4

9
(a− c+ g)− 2(1 + δ)g2 = 0,

and

g1 =
2(1 + δ)(a − c)

5− 9δ2
, g2 =

2(1− δ)(a − c)

5− 9δ2
.
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These are positive when δ <
√
5
3 . The pair (gSTFC

1 , gSTFC
2 ) really maximizes UFC under

the conditions ∂2UFC

∂g21
= 4

9 − 2(1− δ) < 0, or δ < 7
9 and |H| =

∣∣∣∣∣
4
9 − 2(1 − δ) 4

9
4
9

4
9 − 2(1 + δ)

∣∣∣∣∣ > 0,

or δ <
√

41
81 . A comparison of the three received inequalities gives the final condition δ <

√
41
81 .

Immediate calculations give

x1 = x2 = xSTFC =
3(1− δ2)(a− c)

(5− 9δ2)2
;

uSTFC
1 =

(1 + δ)2(5− 18δ + δ2)(a− c)2

(5− 9δ2)2
, uSTFC

2 =
(1− δ)2(5− 18δ + δ2)(a− c)2

(5− 9δ2)2
.

APPENDIX B

Proof of Theorem 4.1.

∂uGi
∂xi

= −xi + a− ci −
n∑

j=1

xj + α
n∑

i=1

gj = 0, i = 1, . . . , n;

∂uGi
∂gi

= αxi − 2βigi = 0, i = 1, . . . , n.

From the latter expression

gi =
αxi
2βi

, i = 1, . . . , n;

A substitution of the received dependency into the first equality gives

xi = a− ci +
n∑

j=1

(
α2

2βj
− 1

)
xj, i = 1, . . . , n.

Multiply both sides of the equality by the expression in brackets:(
α2

2βi
− 1

)
xi =

(
α2

2βi
− 1

)
(a− ci) +

(
α2

2βi
− 1

)
n∑

j=1

(
α2

2βj
− 1

)
xj.

The summation of the received equality by i gives

n∑
i=1

(
α2

2βi
− 1

)
xi =

n∑
i=1

(
α2

2βi
− 1

)
(a− ci) +

n∑
i=1

(
α2

2βi
− 1

)
n∑

j=1

(
α2

2βj
− 1

)
xj .

Now calculate
n∑

i=1

(
α2

2βi
− 1

)
xi:

n∑
i=1

(
α2

2βi
− 1

)
xGNE
i =

n∑
i=1

(
α2

2βi
− 1

)
(a− ci)

1−
n∑

i=1

(
α2

2βi
− 1

) .

Proof of Theorem 4.3.

∂u

∂xi
= −2x+ a− ci + αg = 0, i = 1, . . . , n;

∂u

∂gi
= αx− 2βigi = 0, i = 1, . . . , n.
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From the latter relation

gi =

α
n∑

i=1
xi

2βi
, i = 1, . . . , n;

A substitution of the received dependency into the first equality gives

n∑
i=1

xi =
a− ci

2− α2

2

n∑
j=1

1
βj

, i = 1, . . . , n.

A substitution of the received result into the objective function of the cooperative problem shows
that it is increases when ci decreases, and then

n∑
i=1

xi =
a− ck

2− α2

2

n∑
j=1

1
βj

,

where k is an index of the agent with a minimal ck. Then

xk =
a− ck

2− α2

2

n∑
j=1

1
βj

,

xi �=k = 0.

Proof of Theorem 4.7. A best response of the agents to the Principal’s strategy (g1, . . . , gn), or
a Nash equilibrium in the game of agents, is determined by the solution of the system

∂uSTi
∂xi

= a− ci − xi −
n∑

j=1

xj + αg,

and

xi = a− ci −
n∑

j=1

xj + α
n∑

j=1

gj .

Sum both sides of the inequality:

n∑
i=1

xi = na−
n∑

i=1

ci − n
n∑

j=1

xj + αn
n∑

j=1

gj .

The calculation of
n∑

i=1
xi gives:

n∑
i=1

xi =

na−
n∑

i=1
ci + αn

n∑
j=1

gj

1 + n
.

A substitution of the received sum into the expression for xi gives

xSTi =
a− (1 + n)ci + nαg

n+ 1
.
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A substitution of the found best response into the Principal’s payoff function gives

u(g, xST ) =

na2 − a
n∑

i=1
ci + αan

n∑
j=1

gj

1 + n

−

n∑
i=1

(
cia− (1− n)c2i + ci

n∑
i=1

ci + αci
n∑

j=1
gj

)
1 + n

+ α
n∑

i=1

gj

⎛⎜⎜⎜⎝
na−

n∑
i=1

ci + αn
n∑

j=1
gj

1 + n

⎞⎟⎟⎟⎠

−

⎛⎜⎜⎜⎝
na−

n∑
i=1

ci + αn
n∑

j=1
gj

1 + n

⎞⎟⎟⎟⎠
2

− 2
n∑

i=1

βig
2
i .

Then

∂u

∂gi
=

aαn

1 + n
−

α
n∑

i=1
ci

1 + n
+ α

na−
n∑

i=1
ci + αn

n∑
i=1

gj

1 + n
+ α2

n
n∑

i=1
gj

1 + n

− 2nα

(n+ 1)2

⎛⎝na−
n∑

i=1

ci + αn
n∑

j=1

gj

⎞⎠− 2βigi = 0, i = 1, . . . , n;

and

gSTi =

α

(
na−

n∑
i=1

ci + αn
n∑

j=1
gj

)
βi(n+ 1)2

,

and the summation by all indices gives

n∑
i=1

gSTi =

α

(
na−

n∑
i=1

ci

)
n∑

i=1

1
βi

(n+ 1)2 − nα2
n∑

i=1

1
βi

,

Proof of Theorem 4.9. The best response of the agents is still determined by the expression
(when n = 2)

xSTFC
1 =

a− 2c1 + c2 + αg

3
; xSTFC

2 =
a− 2c2 + c1 + αg

3
.

The Principal’s payoff function is

UFC(g, x) = (1− δ)(a − c1 − x1 − x2 + αg)x1 − (1− δ)β1g
2
1

+(1 + δ)(a − c2 − x1 − x2 + αg)x2 − (1 + δ)β2g
2
2 .

A substitution of xSTFC into UFC gives

UFC(g, xSTFC) =
1− δ

9
(a− 2c1 + c2 + αg)2 − (1− δ)β1g

2
1

+
1 + δ

9
(a− 2c2 + c1 + αg)2 − (1 + δ)β2g

2
2 .
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The first order conditions determine the system

∂UFC

∂g1
=

2α(1 − δ)

9
(a− 2c1 + c2 + αg)x2 − 2(1 − δ)β1g1

+
2α(1 + δ)

9
(a− 2c2 + c1 + αg)x2 = 0,

g2 =
(1− δ)β1
(1 + δ)β2

g1

and

gSTFC
1 = gSTFC

2 =
2a− (1− 3δ)c1 − (1 + 3δ)c2
9(1−δ)β1

α − 2α
(
(1−δ)β1

(1+δ)β2
+ 1

) ,

and all other values are found by substitution of the found ones.

APPENDIX C

Table C.1. Solution of the Cournot oligopoly with nine asymmetrical agents (when a=3000)

no. ci di uNE uNE
d uC uC

d uST uST
d

1 1 1 129 000 598 000 25 000 000 1 690 000 936 000 451 000

2 1 3 129 000 220 000 0 565 000 34 700 193 000

3 1 5 129 000 133 000 0 339 000 34 700 117 000

4 3 1 127 000 596 000 0 1 690 000 33 900 523 000

5 3 3 127 000 219 000 0 565 000 33 900 192 000

6 3 5 127 000 133 000 0 339 000 33 900 117 000

7 5 1 126 000 595 000 0 1 690 000 33 200 522 000

8 5 3 126 000 218 000 0 565 000 33 200 192 000

9 5 5 126 000 133 000 0 339 000 33 200 116 000

Total 1 146 000 2 845 000 25 000 000 7 782 000 1 206 700 2 423 000

APPENDIX D

Table D.1. Solution of the Cournot oligopoly with two asymmetrical agents (when a = 10), c1 = 1, d1 = 1,
β1 = 100, c2 = 5, d2 = 1, β2 = 100

x1 u1 g1 x2 u2 g2 x u g

NE 4.33 18.8 – 0.33 0.11 – 4.66 18.91 –

NEd 2.07 8.54 – 0.73 1.08 – 2.8 9.62 –

C 4.5 20.2 – 0 0 – 4.5 20.2 –

Cd 2.17 9.8 – 0.17 0.4 – 2.34 10.2 –

ST (leader 1) 6.5 21.1 – 0.75 0.6 – 7.25 21.7 –

ST (leader 2) 0.5 0.125 – 4.25 18.1 – 4.75 18.225 –

STd (leader 3) 2.38 8.53 – 0.654 0.855 – 3.034 9.38 –

GNE 6.51 75 0.0325 2.51 18.9 0.0125 9.02 93.8 0.0451

GNEd 2.58 19.8 0.0125 1.25 6.27 0.00625 3.84 26.1 0.0192

GC 4.51 20.3 0.226 0 0 0 4.51 20.3 0.226

GCd 2.17 0.0117 9.8 0.171 0.0117 0.4 2.34 10.2 0.0234

SCNE 0.00563 0.000028 0.0000316 0 0 0 0.00563 0.000028 0.0000316

SCNEd 0.0146 0.000428 0 0 0 0 0.0146 0.000428 0

STFC 4.34 18.8 0.0156 0.34 0.0938 0 4.69 18.8938 0.0156

STd 0 0 0 29.8 1.52 1580 29.8 1.52 1580

STd 0 0 0 0 0 0 0 0 0
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Table D.2. Solution of the Cournot oligopoly with three asymmetrical agents and small cost coefficients
and c1 = 1, d1 = 1, c2 = 3, d2 = 1, c3 = 5, d3 = 1 without consideration of the “green” effect (when
a = 100)

x1 u1 x2 u2 x3 u3 x u

NE 26.2 689 24.2 588 22.2 495 72.8 1770

NEd 16.8 567 16.2 523 15.5 480 48.5 1570

C 49.5 2450 0 0 0 0 49.5 2450

Cd 13.1 650 12.1 588 11.1 528 36.4 1770

ST (leader i = 1) 52.5 919 15.5 240 13.5 182 81.5 1341

ST (leader i = 2) 18.2 330 48.5 784 14.2 201 80.8 1310

ST (leader i = 3) 18.8 355 16.8 283 44.5 660 80.2 1300

STd (leader i = 1) 21.6 562 15.2 462 14.5 423 51.4 1450

Table D.3. Solution of the Cournot oligopoly with three asymmetrical agents and medium cost coefficients
and c1 = 1, d1 = 3, c2 = 3, d2 = 3, c3 = 5, d3 = 3 (when a = 100)

x1 u1 x2 u2 x3 u3 x u

NE 26.2 689 24.2 588 22.2 495 72.8 1770

NEd 9.99 399 9.7 376 9.41 355 29.1 1130

C 49.5 2450 0 0 0 0 49.5 2450

Cd 8.42 417 8.08 392 7.75 368 24.2 1180

ST (leader i = 1) 52.5 919 15.5 240 13.5 182 81.5 1341

ST (leader i = 2) 18.2 330 48.5 784 14.2 201 80.8 1310

ST (leader i = 3) 18.8 355 16.8 283 44.5 660 80.2 1300

STd (leader i = 1) 10.6 399 9.63 371 9.35 349 29.6 1120

Table D.4. Solution of the Cournot oligopoly with three asymmetrical agents and big cost coefficients
and c1 = 1, d1 = 5, c2 = 3, d2 = 5, c3 = 5, d3 = 50

x1 u1 x2 u2 x3 u3 x u

NE 26.2 689 24.2 588 22.2 495 72.8 1770

NEd 7.11 303 6.93 288 6.75 273 20.8 864

C 49.5 2450 0 0 0 0 49.5 2450

Cd 6.26 310 6.06 294 5.86 278 18.2 882

ST (leader i = 1) 52.5 919 15.5 240 13.5 182 81.5 1341

ST (leader i = 2) 18.2 330 48.5 784 14.2 201 80.8 1310

ST (leader i = 3) 18.8 355 16.8 283 44.5 660 80.2 1300

STd (leader i = 1) 7.3 303 6.91 287 6.73 272 20.9 862

Table D.5. Solution of the Cournot oligopoly with three asymmetrical agents (when a = 100) and n = 3,
c1 = 1, d1 = 1, β1 = 100, c2 = 3, d2 = 1, β2 = 100, c3 = 5, d3 = 5, β3 = 100

x1 u1 g1 x2 u2 g2 x3 u3 g3 x u g

GNE 35.1 5730 0.176 33.1 5340 0.166 31.1 4960 0.156 99.3 16400 0.497

GNEd 20.2 2370 0.102 19.6 2270 0.0979 18.9 2170 0.0945 58.7 6810 0.294

GC 49.7 2460 0.249 0 0 0 0 0 0 49.7 2460 0.249

GCdE 13.2 653 0.183 12.2 591 0.183 11.2 531 0.183 36.6 1720 0.549

SCST 26.4 693 0.183 24.4 591 0.183 22.2 498 0.183 73.2 1782 0.549

SCSTd 0 0 0 24.8 649 2.66 25 722 2.43 49.8 1371 5.09
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Table D.6. Solution of the GNE Cournot oligopoly with three asymmetrical agents (when a = 100) and
n = 3, c1 = 1, d1 = 1, c2 = 3, d2 = 1, c3 = 5, d3 = 5 and different coefficients βi

x1 u1 g1 x2 u2 g2 x3 u3 g3 x u g

βi = 100 35.1 5730 0.176 33.1 5340 0.166 31.1 4960 0.156 99.3 16 400 0.497

βi = 1 51 10600 25.5 49 10 100 24.5 47 9620 23.5 147 30 300 73.5

βi = 0.08 57.9 13 100 36.2 55.9 12 600 34.9 53.9 12 100 33.7 168 37 800 105
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