
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2024, Vol. 85, No. 2, pp. 177–189.
c© The Author(s), 2024 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2024.
Russian Text c© The Author(s), 2024, published in Avtomatika i Telemekhanika, 2024, No. 2, pp. 103–119.

OPTIMIZATION, SYSTEM ANALYSIS, AND OPERATIONS RESEARCH

Searching for a Sub-Optimal Solution

of the Dynamic Traveling Salesman Problem

Using the Monte Carlo Method

A. A. Galyaev∗,a and E. A. Ryabushev∗,b
∗Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

e-mail: agalaev@ipu.ru, blispandhaskell@gmail.com

Received October 5, 2023

Revised December 4, 2023

Accepted December 21, 2023

Abstract—The problem of drawing up a bypass plan for targets moving rectilinearly to one point
for simple movements of an interceptor (traveling salesman) is considered. A new criterion of
the problem is proposed based on the initial partition of the possible intercept area, as well
as an algorithm for finding a sub-optimal bypass plan based on the construction of a solution
search tree by the Monte Carlo method. A numerical implementation of the algorithm has been
developed, modeling has been carried out and the obtained plans for bypassing targets have
been statistically analyzed.

Keywords : moving targets traveling salesman problem, combinatorial optimization, interception
in simple motions, Monte Carlo algorithm

DOI: 10.31857/S0005117924020063

1. INTRODUCTION

This work is dedicated to the problem of defence of a specified point in space from the attack
of linearly moving targets. It is proposed to guard the point using an interceptor, which is capable
of freely moving in space and destroying the attacking targets. The selection of an optimal order
of interception of the approaching targets plays key role in this tusk. This problem has already
been discussed in [1], where concepts of danger, convenience, and difficulty of a target interception
were considered, and vector quality criteria for target interception plans were proposed. In [1], an
intelligent algorithm was constructed based on exhaustive search in the general case, capable of
efficiently finding interception plans for a single interceptor against up to twenty attacking targets.
In this work, a different algorithm is proposed, capable of finding a sub-optimal interception plan
that is able to operate with acceptable efficiency in the case of the attack of more than twenty
targets.

The well-known “Dynamic Traveling Salesman Problem” (DTSP) [2, 3] or Moving Targets
Traveling Salesman Problem (MTTSP) [4, 5] is conceptually close to the problem investigated
in this work. The DTSP generalizes the Traveling Salesman Problem (TSP), and in 1972, the
NP-completeness of the Hamiltonian Cycle problem was proven, implying the NP-completeness of
TSP and, consequently, DTSP [6]. At present, there are no efficient methods for exactly solving
DTSP, and the problem itself is in the early stages of research [7]. This suggests that in general,
constructing an exact interception plan can be quite challenging when dealing with a large number
of targets, hence it is reasonable to consider the question of quickly finding a sub-optimal solution.
Currently, there are approaches to constructing such DTSP solutions based on genetic algorithms,
which can be further explored, for instance, in [7], or local heuristic optimization [8].

177

178 GALYAEV, RYABUSHEV

One of the methods for finding sub-optimal solutions to discrete optimization problems is the
Monte Carlo Tree Search algorithm [9, 10]. This method gained wide recognition after its successful
application to the game of Go as part of the AlphaGo project [9], where Monte Carlo tree search
was used in conjunction with neural network learning. In addition to antagonistic games, this al-
gorithm in various variations has been applied to single-player games, which can be interpreted as
discrete optimization problems [10, 11]. Additionally, the Monte Carlo Tree Search algorithm pro-
vides a convenient basis for applying neural network approaches to discrete optimization problems.
Thus, neural network learning can be used to compute heuristic utility functions and to construct
probability distributions, based on which random continuations are generated. Therefore, the basic
tree search algorithm allows breaking down the original problem into simpler components that can
be solved by trained neural networks. A more detailed discussion of possible ways to combine
neural network approaches with Monte Carlo tree search can be found in [9, 12, 13]. In this work,
the fundamental ideas of the MCTS algorithm are applied to the problem of defence of a point
from the attack of moving targets. To achieve this, a simple motion model is used for the inter-
ceptor, as the distances between targets during movement are significantly larger compared to the
actual turning radius of the interceptor. Under these assumptions, considering maneuverability in
the target interception planning does not affect the structure of the optimal plan, allowing us to
transition from a discrete-continuous optimization problem to a discrete one. Another distinction
of the current work from well-known literature setups is the problem criterion, which is meaningful
for practical applications and whose optimal value is generally achievable on a set of plans, i.e., it
is not unique. Thus, the main proposition of this work lies in applying a new approach, initially
developed for solving game problems, to the problem of constructing a sub-optimal solution for a
variant of the dynamic traveling salesman problem with the defense of a guarded point against at-
tacking targets. The proposed approach allows obtaining such solutions in a manner not previously
used for these purposes and may serve as an alternative to more well-known approaches based on
genetic algorithms, which have been previously applied in similar problems.

2. MATHEMATICAL MODEL AND PROBLEM STATEMENT

The mathematical model and problem statement used in this work coincide with those proposed
in [1]. However, for the sake of completeness, we provide their description in this section.

2.1. Model of Target and Interceptor Motion

We assume that the interceptor needs to intercept n targets that move linearly in a single
plane with velocities in the range [vmin, vmax]. The protected point is located on the plane at the
origin, and the targets appear on the outer boundary of a circle with radius R within a layer of
thickness 2ΔR. The interceptor can move in simple motions at a speed v(t) < V , where V > vmax.

The initial positions of the targets are given by the position vectors r01, . . . , r
0
n, where r0i =

(x0i , y
0
i). We assume that the velocities of the targets v1, . . . ,vn are known, and their motion is

described by linear equations
ri(t) = r0i + vit. (1)

It is also assumed that the trajectories of all targets pass through the origin, and thus, the time of
arrival of a target i at the defended point is given by

ti(t) =
|ri(t)|
|vi| . (2)

The inverse of this time, termed the danger of the target, is denoted as

di(t) = t−1
i (t) =

|vi|
|ri(t)| . (3)

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

SEARCHING FOR A SUB-OPTIMAL SOLUTION 179

Thus, the initial tactical situation is determined by the initial positions of all targets together with
their velocity vectors, along with the initial position of the interceptor.

The motion of the interceptor is determined by the system of differential equations{
ẋa = v(t) sinψ(t)
ẏa = v(t) cosψ(t),

(4)

where ra = (xa, ya) represents the position of the interceptor, v(t) denotes the magnitude of its
velocity, and ψ(t) represents the control of its motion direction. The minimum time τi required for
the interceptor to intercept target i is determined from the quadratic equation

(ri − ra + viτ)
2 = V 2τ2, (5)

as its minimum positive root

τi(ra, ri,vi) =

√
(ri − ra)2(V 2 − vi

2) + ((ri − ra)vi)2 − (ri − ra)vi

V 2 − vi
2

. (6)

Thus, the target interception function is the solution to the target’s fastest interception problem.
This model is sufficient for finding the optimal plan for the interceptor moving in the class of
simple motions, as the principles of minimizing standstill and moving at maximum speed apply.
This was proven in [1] for optimizing the interception plan based on the number of missed targets
and interception time. In the present work, a different optimization criterion will be used, but the
model of the fastest interception of a single target will still be employed.

2.2. Interception Plan

The plan π for intercepting k targets is defined as an ordered list [π1, . . . , πk], where πi denotes
the number of the target intercepted at position i. The space of all interception plans for k targets
coincides with the set

Πk = [π1, . . . , πk] : ∀i = 1, . . . , k → πi ∈ 1, . . . , n, πi �= πj ←→ i �= j. (7)

For example, for a total of n = 2 targets, the plan spaces are defined as Π0 = {[]}, Π1 = {[1], [2]},
Π2 = {[1, 2], [2, 1]}. Finally, the space of all interception plans for n targets is given by the union

Π =
n⋃

k=0

Πk (8)

of all plans of finite length.

However, some plans from Π may be incorrect, as there may be targets that reach the defended
point before being intercepted. To formalize this idea, let’s introduce, for an arbitrary plan π =
[π1, . . . , πk], the time required for its execution:

T (π) =

⎧⎪⎨⎪⎩
0, k = 0;

τi(ra, ri,vi), k = 1;
t+ τi(ra, ri,vi), k > 2, t = T ([π1, . . . , πk−1]).

(9)

Now, following [1], the space of all valid plans can be defined as the set

ΠA = {π ∈ Π : ∀j ∈ 1, . . . , k : T ([π1, . . . , πj]) � tπj} (10)

of plans for which interception of the targets occurs before they reach the defended point.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

180 GALYAEV, RYABUSHEV

For further convenience, let’s introduce an additional definition. The tactical situation associated
with plan π refers to the positions of the interceptor ra and all targets ri; i = 1, . . . , n, i /∈ π, that
are not included in the plan π at the moment of its completion. It should be noted that for a plan
π = [π1, . . . , πk] with execution time tπ = T (π), the quantities comprising the tactical situation are
computed by the formulas {

ra = rπk
(tπ)

ri = ri(tπ), i = 1, . . . , n, i /∈ π.
(11)

This is because after the plan is completed, the position of the interceptor and the other targets is
determined by the location and time of arrival to the last target in π respectively.

2.3. Interception Plan Criterion

To formulate the optimization problem, it is necessary to define criteria for the quality of the
interception plans. For this purpose, we will define a vector loss function on the set of admissible
plans ΠA.

J [π] = (n1[π], n2[π], n3[π], n4[π]), (12)

where

n1[π] =
n∑

j=1

I(j /∈ π)

is the number of targets that reached the defended point at the end of the plan π (I – indicator of
a successful interception), and

n2[π] =
n∑

j=1

I
(
|rj(tπj)| ∈ [0, R/4]

)
,

n3[π] =
n∑

j=1

I
(
|rj(tπj)| ∈ (R/4, R/2]

)
,

n4[π] =
n∑

j=1

I
(
|rj(tπj)| ∈ (R/2, R]

)
are the numbers of targets that were intercepted in the distances from the defended point from 0
to R

4 , from
R
4 to R

2 , from
R
2 to R, respectively. Note that these distance ranges are parameters

of the problem and can be selected and refined for specific scenarios. Also, it should be noted
that comparing two interception plans according to this criterion is done according to the standard
lexicographic ordering.

Minimization of the losses according to this criterion is equivalent to interception of as many
targets as possible at the greatest possible distance from the defended point. Indeed, the more
targets have reached the defended point, the worse the outcome. When the number of missed
targets is the same, it is necessary to compare the number of targets intercepted near the defended
point, and the fewer, the better. Under other equal conditions, it is necessary to compare the
number of targets intercepted at medium and long distances from the defended point. Moreover,
it is reasonable to take the radius R of the area where targets appear as a characteristic scale of
the problem.

As for every admissible plan π ∈ ΠA it is true that

n = n1[π] + n2[π] + n3[π] + n4[π],

then the total number n is the upper bound for n1[π], . . . , n4[π]. Therefore, the loss function J [π]
can be interpreted as a description of a number in positional counting system with base n + 1,

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

SEARCHING FOR A SUB-OPTIMAL SOLUTION 181

which allows to introduce a numerical equivalent of the loss function:

Jn[π] = n1[π](n+ 1)3 + n2[π](n+ 1)2 + n3[π](n+ 1) + n4[π]. (13)

These two loss functions are equivalent, because J [π] < J [π′] ⇐⇒ Jn[π] < Jn[π
′]. We also introduce

the normalized loss function

Jq[π] =
n(n+ 1)3 + 1

n(n+ 1)3 − 1
− 2Jn[π]

n(n+ 1)3
, (14)

that relates plans with the best losses (0, 0, 0, n) to the estimate 1, and with the worst losses
(n, 0, 0, 0) – −1.

Now the optimization tusk can be formulated as the following: from the starting tactical situation
find the admissible interception plan π∗ with minimal possible loss function Jq[π]:{

r01, . . . , r
0
n

v0
1, . . . ,v

0
n

−→ π∗ ∈ ΠA : π∗ = argminJq[π]. (15)

Since finding the exact solution to this problem is quite challenging, it is reasonable to search for
the sub-optimal plans on which the loss function is to its optimal value.

3. MONTE CARLO ALGORITHM FOR CONSTRUCTING
A SUBOPTIMAL INTERCEPT PLAN

3.1. Fundamental Scheme of the Algorithm

To search for a sub-optimal plan, we propose a Monte Carlo tree search algorithm. Its main idea
is to construct a search tree through Monte Carlo simulations. A search tree, denoted as S = (W,E),
consists of sets of vertices W and edges E. Vertices w ∈ W are labeled with admissible interception
plans πw ∈ ΠA. A vertex w2 is connected to a vertex w1 by an edge if the plan πw2 extends the
plan πw1 by exactly one target:

(w1, w2) ∈ E ⇐⇒ πw1 = [π1, . . . , πk−1] ∧ πw2 = [π1, . . . , πk−1, πk]. (16)

For convenience, we call the vertex w0 ∈ W labeled with an empty plan [] as the root of the tree,
and the children of a vertex w ∈ W are those w′ ∈ W for which the plan πw′ extends πw. Note that
for any w ∈ W , there exists a unique path connecting w to the root. Thus, w ∈ W always lies on
the path from the root to any of its descendants.

The basic cycle of the algorithm consists of three steps:
1. Descending along the tree from its root w0 ∈ W to a vertex w ∈ W that has not yet been

visited by the algorithm.
2. Generating a random extension of the interception plan πw corresponding to the given vertex w.
3. Evaluating the generated extension using the quality function (14) and back-propagating the

result up to the root of the tree.
Furthermore, let pw denote the number of passes through vertex w ∈ W during tree descents, and
qw be the average estimate of random plans constructed for vertex w ∈ W and its descendants.
The value of pw increases by one with every pass through w ∈ W on a descent. Additionally, qw
is recalculated during the back-propagation of a random estimate from one of w’s descendants
back to the tree root. Therefore, the number of random estimates averaged to compute qw exactly
equals pw. For example, for the root of the tree, qw0 coincides with the average estimate of all
constructed random plans. Thus, each iteration of the basic cycle leads to:

1. Examination of one new vertex w1 ∈ W of the search tree, for which pw1 = 0 up to the
moment.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

182 GALYAEV, RYABUSHEV

2. Generation of a random extension of the interception plan πw1 corresponding to the given
vertex w1.

3. Recalculation of the quantities pw and qw for all vertices w ∈ W of the search tree located on
the path from the root w0 to w1.

The basic cycle is repeated until the computational limit allocated for solving the problem is
exhausted. Then, based on the accumulated statistics on pw and qw, the final interception plan
is constructed. Therefore, to fully describe the algorithm, it is necessary to specify the following
features:

1. The method of tree descent and the heuristics used to construct it.
2. The approach for generating a random extension of the plan πw for an arbitrary vertex w ∈ W

of the search tree.
3. The mechanism for extracting the resulting plan from the search tree based on the numbers

pw and qw.
These will be addressed in the following subsections.

3.2. Descent Method on a Search Tree Based on Utility Function

The descent along the search tree starts from the root w0 ∈ W and proceeds as follows.

1. If the current node w has not been visited before, i.e., if pw = 0, then the descent stops at w,
and the algorithm moves on to construct a random extension of the plan πw.

2. Otherwise, it is necessary to consider all adjacent nodes wi, i.e., those wi ∈ W such that
∃(w,wi) ∈ E, and move to one of them which maximizes the utility function

u(wi, w) = qwi + (θ(wi) + P (w,wi))

√
2pw

1 + pwi

. (17)

Here θ(wi) and P (w,wi) are two heuristics that determine the direction of descent together with
pw and qw. The function θ(w) evaluates the expected best continuation of the plan πw in the range
[−1; 1], and P (w,wi) is the probability that this continuation is achieved in the direction wi. For
an arbitrary vertex w ∈ W ,

pw = 1 +
∑
wi

pwi ,

where the sum is taken over all wi adjacent to w. Therefore, in equation (17), the term
√
2pw

1+pwi
,

with which θ(wi) and P (w,wi) enter u(wi, w), decreases as pwi increases. Thus, when descending
to a child wi with a large pwi , the high evaluation of qwi plays the main role. In turn, when pwi is
small, the average qwi should not play a role due to the small sample on which it is calculated. In
this case, θ(wi) and P (w,wi) in equation (17) gain more weight compared to the estimate qwi.

Instead of the (17), the following utility function can also be used:

u(wi, w) = qwi +

√
2 ln(pw)

pwi

,

where if pwi = 0 – an infinite utility is assigned to the vertex wi. This type of utility function
is called upper confidence bounds (UCB) and was first proposed in [14] for finding the optimal
strategy in the multi-armed bandit problem. The application of this utility function to the problem
of constructing a Monte Carlo tree search algorithm was discussed in [15]. However, for the task at
hand, the utility function in the form of (17) turned out to be more effective, as it was used in [9]
for playing Go, due to the presence of heuristic functions in it.

Now let’s move on to the specific functions θ(w) and P (w,wi) that were used in the algorithm’s
construction. To do this, let’s introduce the concept of refined estimate Ĵq[π] for an arbitrary plan π,

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

SEARCHING FOR A SUB-OPTIMAL SOLUTION 183

which we will understand as the estimate Jq[π] found based on the possible direct interception
points of targets at the end of the plan π (for targets included in the plan π, the points of their
interception by the plan π are taken into account in the calculation). Then the function θ(w) can
be represented in the following form:

θ(w) =

{
Ĵq[πw], pw > 0
Jq[πw], pw = 0.

(18)

For vertices w ∈ W with pw = 0, the regular estimate Jq[πw] is used as θ(w), while for all others,
the refined Ĵq[πw] is used. This saves computational resources when finding the utility function (17)
at vertices with small visit counts pw. In turn, to find P (w,wi), a unit-normalized distribution is
chosen:

P (w,wi) =
τ − τi + τ

n∑
i=1

(τ − τi + τ)
, (19)

where τ = max
i

τi, τ = min
i

τi, and τi is the duration of the direct interception of the ith target,

which can be performed immediately after executing the plan πw.

3.3. Construction of Random Extensions

To extend the plan πw at vertex w ∈ W , the algorithm uses the probability distribution:

P (i /∈ πw) =
di∑

i/∈πw

di
, (20)

for targets not included in the plan πw, where di represents the hazards introduced according to (3).
Then the plan πi is incrementally constructed by assigning one additional target according to this
probability distribution until all available interception targets are exhausted.

Another method for extending plans πw is traversing unvisited targets in decreasing order of
hazard. Although this extension method lacks a random element, due to the nature of this problem,
it proves to be optimal for constructing the algorithm.

3.4. Construction of the Final Interception plan by the Monte Carlo Algorithm

The final interception plan is constructed based on the resulting search tree after exhausting
the computation limit (constraints on the number of iterations or execution time). For this, the
algorithm additionally tracks the best estimate J∗

q among all random estimates generated during
repetitions of the basic cycle, and the interception plan πq corresponding to this estimate. After
completing the computations, the algorithm returns the found plan π∗

q as the answer.

This approach allows for several improvements to the fundamental algorithm outlined in Sec-
tion 3.1. Specifically, it becomes possible to check nodes w ∈ W in the search tree for suboptimality.
Thus, if for any w ∈ W the estimate Jq[πw] of the plan πw turns out to be worse than the best
achieved estimate Jq, it means that there is no optimal solution among the extensions of the
plan πw, and this search branch should be pruned. Therefore, during the descent along the tree,
such nodes should be marked as suboptimal. Also, a node w ∈ W should be marked as suboptimal
if all its direct descendants are already marked as suboptimal. If during the descent process a
vertex w ∈ W is identified as suboptimal according to the described principles, the descent process
moves up one vertex towards the root and then re-evaluates the descent direction, optimizing the
utility function (17) over the truncated set of options. The initial value of the estimate Jq is chosen
as the estimate of the plan πd, obtained by ordering targets by hazards from the most hazardous
to the least hazardous.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

184 GALYAEV, RYABUSHEV

The current optimal estimate J∗
q is also used to optimize the procedure for extending an arbitrary

plan π. Specifically, this extension continues until the current estimate reached on this extension
becomes worse than the optimal one. If this extension branch is found to be sub-optimal, the
extensions are terminated, and the minimum possible estimate −1 is propagated up to the root
of the search tree, significantly lowering the estimates of vertices for which the typical extension
turned out to be sub-optimal.

Finally, if two plans π1 and π2 differ only in the order of targets and coincide on the last target,
then the worse of the two is inherently sub-optimal, and the corresponding vertex should be removed
from the search tree.

Thus, the measures described above allow for pruning inherently sub-optimal branches of the
search tree, significantly enhancing the efficiency of the algorithm, as will be demonstrated with
specific examples in the following section.

4. ALGORITHM SIMULATION

Let’s compare the algorithm with full-depth depth-first search with branch-and-bound pruning.
To simulate the algorithm’s operation, we considered initial positions with randomly placed targets
within the framework of the problem statement from the second section.

For a problem with 10 attacking targets, both algorithms found the optimal plan, as shown in
Figs. 1 and 2. We also provide a summary in Table 1 regarding the quality of the constructed plans

Fig. 1. Initial position of targets and interceptor for the problem with 10 targets.

Fig. 2. Optimal interception plan constructed by exhaustive search and Monte Carlo algorithms.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

SEARCHING FOR A SUB-OPTIMAL SOLUTION 185

Table 1. Summary of algorithm performance for 10 targets

Algorithm type Quality estimate Work time

Exhaustive search (0, 2, 8, 0) 0,05 s

Monte Carlo (0, 2, 8, 0) 1 s

and the runtime. As seen, with a small number of targets, the exhaustive algorithm is significantly
faster. This is because the runtime of the tree search algorithm was set to one second regardless of
the problem size.

Fig. 3. Initial position of targets and interceptor for the problem with 15 targets.

Fig. 4. Optimal interception plan constructed by exhaustive search and tree search for 15 targets.

Now let’s consider an example with 15 targets, whose initial positions are shown in Fig. 3. In
this case, both algorithms also succeeded in finding the optimal plan, as shown in Fig. 4. However,
now the exhaustive algorithm outperformed the Monte Carlo algorithm by only half a second of
computational time, as indicated in Table 2.

Table 2. Summary of algorithm performance for 15 targets

Algorithm type Quality estimate Work time

Exhaustive search (0, 9, 3, 3) 0,48 s

MonteCarlo (0, 9, 3, 3) 1 s

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

186 GALYAEV, RYABUSHEV

Fig. 5. Initial position of 20 targets.

Fig. 6. Optimal interception plan constructed by exhaustive search for 20 targets.

Fig. 7. Interception plan constructed by the Monte Carlo algorithm for 20 targets.

For a problem with 20 targets, depicted in Fig. 5, the search algorithm constructed an intercep-
tion plan without skipping targets in the near zone, which, however, was sub-optimal. A comparison
of the two plans is provided in Figs. 6 and 7, and in Table 3, it’s noted that at this data size, the
tree search was four times faster than the exhaustive search.

Table 3. Summary of algorithm performance for 20 targets

Algorithm type Quality estimate Work time

Exhaustive search (0, 11, 7, 2) 4,07 s

Monte Carlo (0, 13, 5, 2) 1 s

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

SEARCHING FOR A SUB-OPTIMAL SOLUTION 187

Fig. 8. Initial position of 25 targets.

Fig. 9. Optimal interception plan constructed by exhaustive search for 25 targets.

Fig. 10. Interception plan constructed by the Monte Carlo algorithm for 25 targets. The red line shows the
trajectory of the missed target.

For the problem with 25 targets, the tree search was able to construct an interception plan with
the skipping of only one target. However, its runtime was much smaller compared to the exhaustive
search algorithm. The initial positions of targets for this problem are shown in Fig. 8, and the
constructed interception plans are provided in Figs. 9 and 10. The runtime of the algorithms and
the estimates of the obtained plans are listed in Table 4.

Table 4. Summary of algorithm performance for 25 targets

Algorithm type Quality estimate Work time

Exhaustive search (0, 15, 10, 0) 13,63 s

Monte Carlo (1, 19, 4, 1) 1 s

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

188 GALYAEV, RYABUSHEV

5. CONCLUSION

In this work, an algorithm based on Monte Carlo tree search for constructing a suboptimal in-
terception plan for defending a protected point against linearly moving targets has been proposed.
This method allows for efficiently generating acceptable solutions even for cases with a large number
of attacking targets, where exhaustive search algorithms may be too slow for practical applications.
However, there is still the possibility of using both algorithms simultaneously and making a choice
based on their results in real-time mode. The approach proposed in this work can also be directly
generalized to the case of defending a protected point by multiple interceptors against a significantly
larger number of attacking targets. Furthermore, the proposed solution method is not only suitable
for the problem considered in this paper but also for any other discrete optimization problem. The
discussed scheme can be optimized and improved in various ways for application to a wide range
of problems. A comprehensive analysis of the latest versions and applications of the Monte Carlo
tree search algorithm is provided in [16]. Thus, a wide range of possible applications of the scheme
described in this work for constructing approximate solutions in other discrete optimization prob-
lems is opened up. Another possible direction for further research on this topic is the application of
neural network approaches in conjunction with Monte Carlo tree search. Trained neural networks
can be used to compute heuristics θ and P , which are included in the utility function (17). The use
of neural networks in computing heuristics for the Monte Carlo tree search algorithm has already
proven to be extremely effective in building programs for playing Go [9]. Therefore, adopting such
an approach may be equally fruitful for solving the traveling salesman problem and other similar
discrete optimization problems, which could be the subject of further research on this issue.

FUNDING

The work was supported by the Russian Science Foundation, project no. 23-19-00134.

REFERENCES

1. Galyaev, A.A., Yakhno, V.P., Berlin, L.M., Lysenko, P.V., and Buzikov, M.E., Optimization of the
Interception Plan for Linearly Moving Targets, Autom. Remote Control , 2023, no. 10, pp. 18–36.

2. Sikharulidze, G.G., On a Generalization of the Traveling Salesman Problem. I, Autom. Remote Control ,
1971, no. 8. pp. 116–123.

3. Sikharulidze, G.G., On a Generalization of the Traveling Salesman Problem. II, Autom. Remote Control ,
1971, no. 10. pp. 142–147.

4. Picard, J.C. and Queyranne, M., The Time-Dependent Traveling Salesman Problem and Its Application
to the Tardiness Problem in One-Machine Scheduling, Oper. Res., 1978, vol. 26, no. 1. pp. 86–110.
https://doi.org/10.1287/opre.26.1.86

5. Helvig, C.S., Robins, G., and Zelikovsky, A., The Moving-Target Traveling Salesman Problem, J. Algo-
rithm. Comput. Technol., 2003, vol. 49, no. 1, pp. 153–174.
https://doi.org/10.1016/S0196-6774(03)00075-0

6. Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-
completeness , San Francisco, Calif.: W. H. Freeman & Co., 1979.

7. Li, C., Yang, M., and Kang, L., A New Approach to Solving Dynamic Traveling Salesman Problems, in
Simulated Evolution and Learning, Lecture Notes Comput. Sci., Wang, T.-D. et al., Eds., 2006, vol. 4247,
Berlin, Heidelber: Springer.

8. Archetti, C., Feillet, D., Mor, A., and Speranza, M.G., Dynamic Traveling Salesman Problem with
Stochastic Release Dates, Eur. J. Oper., 2020, vol. 280, no. 3, pp. 832–844, ISSN 0377-2217.

9. Silver, D., Huang, A., Maddison, C., et al., Mastering the Game of Go with Deep Neural Networks and
Tree Search, Nature, 28 January 2016, vol. 529, pp. 484–489. https://doi.org/10.1038/nature16961

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

SEARCHING FOR A SUB-OPTIMAL SOLUTION 189

10. Schadd, M.P.D., Winands, M.H.M., van den Herik, H.J., Chaslot, G.M.J.B., and Uiterwijk, J.W.H.M.,
Single-Player Monte-Carlo Tree Search, in Computers and Games, CG 2008, Lecture Notes in Computer
Science, vol. 5131, Berlin, Heidelberg: Springer.

11. Mattia Crippa, Pier Luca Lanzi, Fabio Marocchi, An Analysis of Single-Player Monte Carlo Tree Search
Performance in Sokoban, Expert Syst. Appl., 15 April 2022, vol. 192, pp. 2–3.

12. Cotarelo, A., Vicente, G., Edward Rolando, N., Cristian, G., Alberto, G., and Jerry, Ch., Improving
Monte Carlo Tree Search with Artificial Neural Networks without Heuristics, Appl. Sci., 2021, vol. 11,
no. 5, pp. 2056. https://doi.org/10.3390/app11052056

13. Marco, K., Beyond Games: A Systematic Review of Neural Monte Carlo Tree Search Applications,
arXiv:2303.08060. https://doi.org/10.48550

14. Auer, P., Cesa-Bianchi, N., and Fischer, P., Finite-time Analysis of the Multiarmed Bandit Problem,
Machine Learning, 2002, vol. 47, pp. 235–256. https://doi.org/10.1023/A:1013689704352

15. Kocsis, L. and Szepesvári, C., Bandit Based Monte-Carlo Planning, in: Machine Learning: ECML
2006, Lecture Notes Comput. Sci., vol. 4212, Fürnkranz, J., Scheffer, T., Spiliopoulou, M., Eds., Berlin,
Heidelberg: Springer.

16. Świechowski, M., Godlewski, K., Sawicki, B., et al., Monte Carlo Tree Search: A Review of Recent
Modifications and Applications, Artif. Intell. Rev., 2023, vol. 56, pp. 2497–2562.
https://doi.org/10.1007/s10462-022-10228-y

This paper was recommended for publication by A.A. Lazarev, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024

