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Abstract—This paper proposes a novel method for recognizing a set of signals with linearly and
nonlinearly included parameters from a given ensemble of signals under essential a priori un-
certainty. Due to this uncertainty, well-known statistical methods become inapplicable. Signals
may be present in an additive mixture containing an observation noise and a singular interfer-
ence; the distribution law of the noise is unknown, and only its correlation matrix is specified.
The novel method is invariant to this interference, does not require traditional state-space ex-
pansion, and ensures the decomposition and parallelization of the computational procedure.
The signals and interference are represented using conventional linear spectral decompositions
with unknown coefficients and given basis functions. Random and methodological errors, as
well as the resulting computational effect, are analyzed. An illustrative example is provided.
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1. INTRODUCTION

In the publications [1–3], a method was developed for solving several applied problems under
essential a priori uncertainty (e.g., masking and estimation of information processes for stationary
and dynamic objects) based on observations containing a useful signal, some noise with an unknown
distribution law (but with a given correlation matrix), and a parametric singular interference. By
assumption, both the signal and the interference can be represented as a finite-dimensional linear
combination of given basis functions with unknown spectral coefficients. The algorithms proposed
in [1–3] are based on the idea of generalized invariant-unbiased estimation (GIUE) without state
space expansion. This idea allows estimating any linear functionals (over the signal) without
determining spectral coefficients in linear combinations of both the signal and the interference.

In this paper, GIUE is adopted for a more complex challenge, namely, recognizing a set of signals
from a given ensemble using various information-measuring systems. Recognition means solving
several problems related to the estimation, detection, discrimination, and resolution of signals
(with linear or nonlinear parameters) under a priori uncertainty of various levels; for example,
see [4–11]. Such problems arise in location, navigation, communication, radio reconnaissance, radio
astronomy, telemetry, technical and medical diagnosis, information security, and many other fields.
When probabilistic models are legitimate, these problems can be solved within known statistical
methods (minimax, Bayesian, maximum likelihood, etc.).
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SIGNAL RECOGNITION WITHOUT STATE SPACE EXPANSION 161

There exists a wide range of signal recognition problems for which the traditional probabilistic
approach [4–11] is difficult to implement, especially in the class of real-time information-measuring
systems operating under essential a priori uncertainty, with minimum available statistical data.
For estimation problems with such restrictions, the least squares (LS) method is often used; it
involves the known correlation matrix of observation errors only and yields, by the well-known
Gauss–Markov theorem, the best linear estimate [12, 13]. A classical approach to recognition
for the above systems can be the extended least squares (XLS) method. This method is based
on state space expansion and jointly estimates all parameters of signals and singular interference
present in an input observation. As is known [12–15], for problems with nonlinearity and state-
space expansion, XLS leads in practice to iterative procedures (i.e., requires sufficiently good initial
conditions) and the well-known effect of “smearing accuracy.” This effect is most pronounced in
multidimensional recognition problems with ill-conditioned matrices. In addition, such an extension
causes a significant increase in computing cost (and consequently, a decrease in computational
speed).

In [1–3], a self-compensating parallel procedure was developed for the GIUE of linear functionals.
Being an alternative to XLS, it gives optimal estimation algorithms for the parameters of a single
signal under essential a priori uncertainty. This decomposition-based procedure requires no state
space expansion, ensures the self-compensation of a singular interference without determining its
spectral coefficients, and allows parallel computing. A significant computational effect is shown.

In this paper, GIUE is further developed to solve much more complex problems of recognizing
a set of signals with minimum available statistical data on their observation noise. Here, the term
“self-compensation” is given a broader interpretation since each signal in the observation equation
is treated as an interference for another signal of the same equation. A novel signal recognition
method is proposed for the nonlinear case. This method retains all the advantages of GIUE,
does not require iterative procedures, and implements the principle of parallel computing with
multichannel data processing [16–19]. In the statistical sense, the method involves no distribution
laws but only information about the mean and correlation matrix of the observation noise. This
feature is characteristic of the algorithms based on LS and XLS.

This paper uses no stochastic signals (e.g., Markovian ones), which are typical for the theory
of linear and nonlinear filtering with its large amount of reliable statistical information. In many
cases, stochastic filtering leads to current estimation algorithms with poor convergence and (or) long
transients, therefore being inappropriate for the class of information-measuring systems considered
below.

2. MODELS, CONSTRAINTS, AND CRITERIA. STATEMENT OF THE RECOGNITION
PROBLEM WITH ESSENTIAL A PRIORI UNCERTAINTY

Consider the problem of recognizing signals from a given ensemble based on their observations
in the form of the additive mixture

h(t) =
K∑
i=1

qisi(t,Ai, ζi) + θ(t,B) + ξ(t),

K � 1, Ai ∈ ℘i ⊂ R
Mi , ζi ∈ Ji ⊂ R

Li ,

(1)

with the following notations: t ∈ [0, T ] is continuous time; K specifies the number of possible
signals in the ensemble; θ(t,B) is a singular interference; ξ(t) is an observation noise; qi is the
parameter characterizing the presence (qi = 0) or absence (qi = 1) of the signal si(t,Ai, ζi) in
the mixture; Ai and B are the vector spectral coefficients of the linear decomposition of the
signal and interference, respectively, in given systems of basis functions; finally, ζi is the signal’s
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162 BULYCHEV

vector parameter that nonlinearly enters its basis functions. (Generally speaking, this parameter
is unknown and will be called the basis parameter as well.)

For K = 1, we have the recognition problem for a single signal; if the mixture (1) with K > 1
contains only one signal, then the discrimination problem arises naturally; under an arbitrary
number of signals in (1), the matter concerns the resolution problem. This model includes the
following particular cases: qi = 0 ∀i = 1,K (all signals of the ensemble are absent) and qi = 1
∀i = 1,K (all signals of the ensemble are present). Also, model (1) covers other signal recognition
problems; for example, see [7, pp. 10–12]).

Assume that the sets ℘i and Ji are bounded and convex. The coordinates of the basis vector ζi
can be physical quantities, such as pulse duration, signal period, time delay, carrier frequency or
Doppler frequency, some parameters of the modulating function, etc.

For example, equation (1) can be given the following physical interpretation. Let K targets
be possibly located in the field of view of a radar station. For the radiated sounding signal s(t),
at the receiving point we have the sum of reflected signals q1a1s(t− τ1) + q2a2s(t− τ2) + . . .+
qKaKs(t− τK), where τi = 2Ri/c, i ∈ {1, . . . ,K}, is the delay of the received signal with respect
to the sounding one, Ri is the range to target i, and c is the speed of light. Hence, in this
example, Ai = [ai] and ζi = [τi] are the amplitude and delay of the signal, respectively (the linear
and nonlinear parameters, respectively). Note that θ(t,B) can be the resulting interference, e.g.,
due to the side lobes of the receiving antenna pattern, the influence of the underlying surface, and
natural or artificial spatially distributed interferences.

Suppose that an appropriate numerical grid of multidimensional (vector) nodes ζ(di) can be
defined on the set Ji. (Here, di ∈ {1, . . . ,Di} indicates the node number, Di is the grid volume for
the parameter ζi, and ζ(di) is the value of the parameter ζi at node di.) Appropriateness means that
the grid is sufficient for the discrete representation of ζi with required accuracy on the entire set Ji

(in the sense of resolution). To simplify the mathematical constructs and expressions below, let us

introduce the vectors q =
[
qi, i = 1,K

]T
, d =

[
di, i = 1,K

]T
and ζ =

[
ζTi , i = 1,K

]T
as well as

the single multidimensional node ζ(d) =
[
ζT(di), i = 1,K

]T
.

For arbitrary values of Ai, ζi, and B, we use the linear finite-dimensional combinations

si(t,Ai, ζi) = AT
i Ψi(t, ζi) (2)

(the signal model) and

θ(t,B) = BTΩ(t) (3)

(the interference model), where Ai =
[
aim,m = 1,Mi

]T
and B =

[
bj , j = 1, J

]T
are the unknown

vector spectral coefficients of the linear decompositions of the signal and interference, respectively,

and Ψi(t, ζi) =
[
ψim(t, ζi),m = 1,Mi

]T
and Ω(t) =

[
ωj(t), j = 1, J

]T
are given basis functions of

the signal and interference, respectively.

Consider the discrete-time vector observation equation (on the grid of nodes {t1, . . . , tN})

H =
K∑
i=1

qiSi +Θ+Ξ, (4)

where

H =
[
hn, n = 1, N

]T
, Si =

[
sin(Ai, ζi), n = 1, N

]T
,

Θ =
[
θn(B), n = 1, N

]T
, Ξ =

[
ξn, n = 1, N

]T
,

hn = h(tn), sin(Ai, ζi) = si(tn,Ai, ζi), θn(B) = θ(tn,B), ξn = ξ(tn).
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SIGNAL RECOGNITION WITHOUT STATE SPACE EXPANSION 163

This equation is widespread in practice.

Assume that the noise Ξ is described by zero mean and the corresponding correlation matrix KΞ.
No other probabilistic characteristics of Ξ are required.

For arbitrary values of Ai, ζi, and B, we have

Si = ΨiAi, (5)

Θ = ΩB, (6)

where Ψi =
[
ψimn(ζi), n = 1, N, m = 1,Mi

]
and Ω =

[
ωjn, n = 1, N, j = 1, J

]
are the basis ma-

trices of the signal Si and interference Θ, respectively, ψimn(ζi) = ψim(tn, ζi), and ωjn = ωj(tn).

Suppose also that the extended functional basis {Ψ1(t, ζ1), . . . ,ΨK(t, ζK),Ω(t)} is linearly in-
dependent on the grid {t1, . . . , tN} for any ζ1 ∈ J1, ζ2 ∈ J2, . . . , ζK ∈ JK (by analogy with [1–3]).

In the most general case, the problem of signal recognition involves detecting optimally each
signal si(t,Ai, ζi) from a given ensemble (i.e., obtaining an estimate q∗i for the parameter qi)
and finding estimates A∗

i and ζ∗i for Ai and ζi, respectively. In such conditions (multi-alternative
solutions), a family of hypotheses Γl, l ∈ {1, . . . , L}, where L = 2K � 2, is introduced to characterize
all possible alternatives (the presence or absence of ensemble signals in the observation (1)). In the
sequel, Γ0 ∈ {Γ1, . . . ,ΓL} is a true hypothesis.

Let the case qi = 0 ∀i = 1,K correspond to the hypothesis Γ1 whereas the case qi = 1 ∀i = 1,K
to the hypothesis ΓL.

To each hypothesis Γl we assign the model observation

Hl =
Kl∑
i=1

Sil +Θ+Ξ, l ∈ {1, . . . , L}, Sil ∈ {S1, . . . ,SK}, (7)

where Sil = ΨilAil (see (5)) and Kl is the number of ensemble signals in the mixture by the
hypothesis Γl.

In view of (7), the recognition problem is solved by minimizing the quadratic criterion

χxls(ζl,Wl) for the extended vector of spectral coefficients Wl =
[
AT

1l,A
T
2l, . . . ,A

T
Kll

,BT
]T

using

XLS:

(l∗, ζl∗ ,Wl∗) = arg min
l,ζl,Wl

χxls(ζl,Wl) = arg min
l,ζl,Wl

[
Δxls(ζl,Wl)

]T (
KΞ

)−1
Δxls(ζl,Wl), (8)

where Δxls(ζl,Wl) = H−Hxls(ζl,Wl) and minimization with respect to the nonlinear parameter ζl
is performed at the nodes ζ(d) of the numerical grid.

The criterion (8) ensures minimization considering the residuals Δxls(ζl,Wl) and the weight

matrix
(
KΞ

)−1
. Note that ζl∗ and Wl∗ mean the estimates of ζl and Wl, respectively, within the

optimal hypothesis Γl∗ , l
∗ ∈ {1, . . . , L}.

Obviously, this problem has a rather high dimension; in the case of ill-conditioned matrices,
the estimation errors may significantly exceed the methodological error and devalue the optimal
processing results of observations (see an illustrative example in Section 6 below). In addition, the
criterion (8) provides no possibility of parallelizing the computational procedure.

The drawbacks of XLS can be appreciably overcome by using a modified GIUE procedure ori-
ented to signal recognition. For this purpose, for a fixed number k, we write the observation (7) in
two forms:

Hl =

{
Skl +Xkl +Ξ, k ∈ {1, . . . ,Kl}
Θ+Xl +Ξ,

(9)
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where Skl = Skl(Akl, ζkl), Xl = Xl(Al, ζl), Al =
[
AT

1l,A
T
2l, . . . ,A

T
Kll

]T
, ζl =

[
ζTil , i = 1,Kl

]T
,

Xkl =
Kl∑
i=1
i �=k

Sil +Θ, and Xl =
Kl∑
i=1

Sil.

The first form allows treating Xkl as a component interfering with the estimation of the useful
signal Skl. The second form allows treating Xl as a component interfering with the estimation of
the interference Θ.

Next, we need the optimal linear estimation matrices PS
kl =

[
pSkrnl, r = 1, N, n = 1, N

]
, PA

kl =[
pAkmnl,m = 1,Mkl, n = 1, N

]
, PΘ

l =
[
pΘrnl, r = 1, N, n = 1, N

]
, and PB

l =
[
pBjnl, j = 1, J , n = 1, N

]
to obtain optimal estimates (based on GIUE for fixed numbers l and ζk) for the signal Skl and its
spectral coefficient vector Akl as well as for the interference Θ and its spectral coefficient vector B:

S∗
kl = PS

klHl, A∗
kl = PA

klHl, k = 1,Kl, Θ∗
l = PΘ

l Hl, B∗
l = PB

l Hl.

Within the hypothesis Γl, the matrices PS
kl, P

A
kl, P

Θ
l , and PB

l must ensure the following equal-
ities: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

HS
kl = PS

klHl = PS
klSkl +PS

klXkl +PS
klΞ = Skl +ΞS

kl, k = 1,Kl

HA
kl = PA

klHl = PA
klSkl +PA

klXkl +PA
klΞ = Akl +ΞA

kl, k = 1,Kl

HΘ
l = PΘ

l Hl = PΘ
l Θ+PΘ

l Xl +PΘ
l Ξ = Θ+ΞΘ

l

HB
l = PB

l Hl = PB
l Θ+PB

l Xl +PB
l Ξ = B+ΞB

l ,

(10)

where ΞS
kl = PS

klΞ and ΞΘ
l = PΘ

l Ξ are the noises with zero means M{ΞS
kl} = M{PS

klΞ} =

PS
klM{Ξ} = [0]N×1, M{ΞA

kl} = M{PA
klΞ} = PA

klM{Ξ} = [0]Mkl×1, M{ΞΘ
l } = M{PΘ

l Ξ} =

PΘ
l M{Ξ} = [0]N×1, M{ΞB

l } = M{PB
l Ξ} = PB

l M{Ξ} = [0]J×1. (In these expressions, M{·}
stands for the mathematical expectation and 0 is a zero column vector of an appropriate dimension
specified by subscripts in square brackets.)

In addition, the correlation matrices KΞS
kl , K

ΞA
kl , KΞΘ

l , and KΞB
l of the random vectors ΞS

kl,
ΞA

kl, Ξ
Θ
l , and ΞB

l , respectively, must ensure the minimum conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SpKΞS
kl −→ min

PS
kl

, k = 1,Kl

SpKΞA
kl −→ min

PA
kl

, k = 1,Kl

SpKΞΘ
l −→ min

PΘ
l

SpKΞB
l −→ min

PB
l

,

(11)

where Sp is the matrix trace operator.

Formula (10) reflects two properties: unbiasedness with respect to the parameters of useful
signals and singular interference, i.e.,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

PS
klSkl = Skl, k = 1,Kl

PA
klSkl = Akl, k = 1,Kl

PΘ
l Θ = Θ

PB
l Θ = B,

(12)
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and invariance with respect to the interfering components Xkl and Xl, i.e.,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

PS
klXkl = [0]N×1, k = 1,Kl

PA
klXkl = [0]Mkl×1, k = 1,Kl

PΘ
l Xl = [0]N×1

PB
l Xl = [0]J×1.

(13)

Applying the matrices PS
kl, P

A
kl, P

Θ
kl , and PB

kl directly to the observation (1) yields the set of
optimal estimates for all parameters of the signal recognition problem under fixed numbers l and ζl:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
kl = PS

klH =
Kl∑
i=1

qiP
S
klSi +PS

klΘ+ΞS
kl, k = 1,Kl

A∗
kl = PA

klH =
Kl∑
i=1

qiP
A
klSi +PA

klΘ+ΞA
kl, k = 1,Kl

Θ∗
l = PΘ

l H =
Kl∑
i=1

qiP
Θ
l Si +PΘ

l Θ+ΞΘ
l

B∗
l = PB

l H =
Kl∑
i=1

qiP
B
l Si +PB

l Θ+ΞB
l .

(14)

In contrast to XLS, the GIUE-based estimates (14) of the signal and interference parameters are
formed separately, which allows for parallel computing; moreover, due to the invariance conditions,
the dimensions of the inverted matrices can be appreciably reduced (by analogy with [1–3]). This
feature is well demonstrated in the illustrative example below.

In view of (12)–(14), for the true hypothesis Γ0 with number l0 ∈ {1, . . . , L}, we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S∗
kl0 = PS

kl0H = qkSk +ΞS
kl0 , k = 1,Kl0

A∗
kl0 = PA

kl0H = qkAk +ΞA
kl0 , k = 1,Kl0

Θ∗
l0 = PΘ

l0H = Θ+ΞΘ
l0

B∗
l0 = PB

l0H = B+ΞB
l0 .

(15)

If Γl does not match the true hypothesis Γ0, then conditions (12) and (13) are violated, causing
the residual

Δgiue(l, ζl) = H−Hgiue(S∗
l ,Θ

∗
l ) = H−

Kl∑
i=1

S∗
il −Θ∗

l ,

where S∗
l =

[
(S∗

il)
T, i = 1,Kl

]T
, S∗

il = S∗
il(ζl), and Θ∗

l = Θ∗
l (ζl). In this case, the recognition prob-

lem within GIUE is solved by minimizing the quadratic criterion

(l∗, ζl∗) = argmin
l,ζl

χgiue(l, ζl) = argmin
l,ζl

[
Δgiue(l, ζl)

]T (
KΞ

)−1
(Δgiue)(l, ζl); (16)

the resulting estimates of the signal and singular interference parameters are given by S∗
l∗ = S∗

l=l∗ ,

A∗
l∗ = A∗

l=l∗, Θ
∗
l∗ = Θ∗

l=l∗ , and B∗
l∗ = B∗

l=l∗ , where A∗
l =

[
(A∗

kl)
T, k = 1,Kl

]T
.
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166 BULYCHEV

In (16), minimization with respect to the nonlinear parameter is performed simultaneously at
all nodes ζl of the numerical grid by parallel computing.

Formulas (1)–(16) fully specify all the models, constraints, and criteria necessary to develop the
novel signal resolution method under essential a priori uncertainty and compare this method with
XLS. It is required to do the following: construct the matrices PS

kl, P
A
kl, P

Θ
kl , and PB

kl for fixed
l and d; using these matrices and the adopted optimality criterion, solve the optimal recognition
problem of signals in decomposed form (with linear and nonlinear parameters) without traditional
state space expansion under minimum a priori statistical information (the matrix KΞ only), ensure
the self-compensation of the singular interference and the parallel processing of observations; derive
formulas for the random and methodological errors of the resulting estimates; compare the novel
method with XLS in terms of computational efficiency; demonstrate the possibility of its comparison
with known statistical signal recognition methods; finally, give an illustrative example confirming
the advantages of the novel method over XLS.

In the general case, it is unknown which ensemble signals appear in the observation (1), and
the value of the nonlinear parameter ζi is also unknown for each of these signals si(t,Ai, ζi). In
this case, solving the recognition problem leads to complex iterative procedures with the need to
choose sufficiently good initial approximations. In practice, the complexity described above can
be circumvented using a parallel algorithm that tests all possible hypotheses for the presence of
signals and interference in (4) and examines all nodes for each hypothesis. This approach will be
applied below to eliminate the nonlinearity and related difficulties. Such an idea was successfully
employed in [20, 21] to solve several applied control problems.

3. CONSTRUCTING THE OPTIMAL LINEAR SELF-COMPENSATION–DECOMPOSITION
ESTIMATION MATRICES

First, let the exact value of the parameter ζ be known and the mixture (1) contain all K signals
of the ensemble, i.e., q1 = q2 = . . . = qK = 1. (In this case, the subscript l can be omitted.) Then
the recognition problem can be solved in the class of linear estimates in the form of K parallel
computation algorithms

A∗
k = PA

k H, k = 1,K, (17)

where A∗
k denotes the estimate of the vector Ak and PA

k =
[
pAkmn,m = 1,Mk, n = 1, N

]
is the

matrix of unknown optimal estimation weights.

The correlation matrix of estimation errors based on (17) is given by

KA
k = PA

k KΞ
(
PA

k

)T
, k = 1,K. (18)

The optimality criterion to find PA
k is minimizing the trace of the matrix SpKA

k (see (11)). In
addition, the supplementary conditions (12) (unbiasedness) and (13) (invariance) must hold.

To obtain the matrix PA
k , we transform (9) to

H = Sk +Xk +Ξ, (19)

where Xk =
[
xkn, n = 1, N

]T
, Xk = YkCk,

Yk =
[
Ψ1

... . . .
...Ψk−1

...Ψk+1
... . . .

...ΨK
...Ω

]
is a matrix of dimensions N × (Mk + J) and

Ck =
[
AT

1

... . . .
...AT

k−1

...AT
k+1

... . . .
...AT

K

...BT
]T

is a vector of dimensions (Mk + J)× 1, Mk = M1+ . . .+
Mk−1 +Mk+1 + . . .+MK .
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SIGNAL RECOGNITION WITHOUT STATE SPACE EXPANSION 167

For the case under consideration, due to (12), (13), and (19), the unbiasedness and invariance
conditions can be written as

PA
k Ψk − [E]Mk×Mk

= [0]Mk×Mk
, (20)

PA
k Yk = [0]Mk×(Mk+J), (21)

where [0]Mk×Mk
and [E]Mk×Mk

mean zero and identity matrices, respectively, and [·]Mk×Mk
indi-

cates the dimensions of a matrix in square brackets. (This notation is used throughout the paper.)

For the further presentation, we need the vector PA
km = [pApmn, n = 1, N ]T, containing all ele-

ments of the mth row of the matrix PA
k . It allows finding the scalar estimate a∗km of the coefficient

akm under fixed numbers k and m. Obviously, (PA
km)TSk = akm (unbiasedness) and (PA

km)TXk = 0
(invariance). By analogy with (20) and (21), we therefore have

(PA
km)TΨk −ET

km = [0]1×Mk
, (22)

YT
k P

A
km = [0](Mk+J)×1, (23)

where Ekm denotes a column vector whose components are all zero except the mth one.

Theorem. The optimal estimation vector PA
km of the spectral coefficient akm that minimizes the

quadratic criterion (PA
km)TKΞPA

km subject to the unbiasedness (22) and invariance (23) conditions
is given by

PA
km = ΛkVk(Ψ

T
kΛkVk)

−1Ekm. (24)

This result is proved in the Appendix.

The scalar estimate a∗km of the coefficient is calculated as

a∗km = HTPA
km = HTΛkVk(Ψ

T
kΛkVk)

−1Ekm. (25)

In view of (24), passing from the scalar coefficient akm to the vector Ak yields the optimal
estimation matrix

PA
k =

[
ΛkVk(Ψ

T
kΛkVk)

−1
]T

, k = 1,K. (26)

Substituting (26) into (17), we find the desired estimates

A∗
k = PA

k H =
[
ΛkVk(Ψ

T
kΛkVk)

−1]TH, k = 1,K. (27)

In turn, the optimal estimation matrix of the signals Skl is given by

PS
k = ΨkP

A
k (28)

whereas the optimal estimate by

S∗
k = ΨkA

∗
k = Ψk

[
ΛkVk(Ψ

T
kΛkVk)

−1]TH, k = 1,K. (29)

The estimates (27) and (29) are optimal in the sense of their unbiasedness, efficiency (minimum
variance), and invariance with respect to the resulting singular interference.

In addition to the matrices PA
k and PS

k , in several signal recognition problems it is necessary to
construct the optimal estimation matrices PB and PΘ for the interference parameters under the
unbiasedness and invariance conditions (by analogy with (22) and (23)). In this case, the matrices

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024



168 BULYCHEV

YΘ
k and CΘ

k are constructed instead of Ykl and Ckl to obtain the estimates B∗ and Θ∗ while
treating all useful signals as interference components. The formulas for the matrices PB and PΘ,
as well as those for the estimates B∗ and Θ∗, are written by analogy with (26)–(29).

For signal recognition problems with possible hypotheses Γl and the nonlinear parameter γ, we
construct a family of optimal estimation matrices for all values l and nodes ζ(d) : PA

k(d), P
S
k(d),

PB
(d), and PΘ

(d).

The estimation matrices presented in this section are necessary and sufficient for solving a wide
range of problems related to signal recognition under essential a priori uncertainty. The next
section considers the most common recognition problems: estimation (the signals present in the
observation are known, and it is required to estimate their parameters only); detection (it is required
to determine whether a useful signal is present in the observation); discrimination (only one signal
from a given ensemble is present in the observation, and it is required to identify this signal);
resolution (some signals from the ensemble may be present in the observation, and it is required
to identify them). In addition, the problems of signal detection, discrimination, and resolution can
be accompanied by the estimation of the parameters of signals and interference.

4. ALGORITHMS FOR SOLVING BASIC SIGNAL RECOGNITION PROBLEMS
UNDER UNCERTAINTY

Algorithm for estimating signals with known nonlinear parameters (1). Let the mixture (1)
contain all ensemble signals, i.e., q1 = q2 = . . . = qK = 1. It is required to estimate all coefficientsAk

and the signals Sk without determining the coefficient B of the interference Θ, i.e., without state
space expansion. The hypotheses are not used in this problem, so we omit the subscript l.

Step 1.1. Construct the matrices PA
k of the weight coefficients.

Step 1.2 . Find the estimates A∗
k = PA

k H of the vector coefficients Ak, k = 1,K.

Step 1.3. Construct the matrices PS
k = ΨkP

A
k , k = 1,K.

Step 1.4. Find the estimates S∗
k = PS

kH of the signals Sk, k = 1,K.

Algorithm for estimating signals and interference with unknown nonlinear parameters (2). Let
the mixture (1) contain all ensemble signals, i.e., q1 = q2 = . . . = qK = 1. It is required to estimate
all coefficients Ak and ζk, the signals Sk, as well as the coefficient B and the interference Θ. The
hypotheses are not used in this problem, so we omit the subscript l.

Step 2.1. Construct the matrices PA
k(d), P

S
k(d), P

B
(d), and PΘ

(d) for all nodes ζ(d).

Step 2.2. Find the partial estimates A∗
k(d), S

∗
k(d), B

∗
(d), and Θ∗

(d) for all nodes ζ(d).

Step 2.3. Calculate the residuals

Δgiue(d) = H−
K∑
i=1

S∗
i(d) −Θ∗

(d)

for all nodes ζ(d).

Step 2.4. Find the estimate d∗ of d in the form

d∗ = argmin
d

χgiue(d) = argmin
d

[
Δgiue(d)

]T (
KΞ

)−1
Δgiue(d).

Step 2.5. Find the resulting estimates A∗
kd∗ , S∗

k(d∗), ζ
∗
k(d∗), B

∗
(d∗), and Θ∗

(d∗).

Algorithm for jointly detecting and estimating with known nonlinear parameters (3). In this case,
K = 1, L = 2, and consequently, H = qS+Θ+Ξ. Depending on the value of the coefficient q, two
hypotheses are therefore possible: Γ1 if q = 0 and Γ2 if q = 1. It is required to obtain an estimate
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l∗ ∈ {0, 1} for the parameter l ∈ {0, 1} and construct the estimates A∗
l∗ , S

∗
l∗ , B

∗
l∗ , and Θ∗

l∗ . In this
case, the subscript k in formulas (26)–(29) can be omitted.

Step 3.1. Construct the matrices PA
l=1, P

A
l=2 and PS

l=1, P
S
l=2 for Γ1 and Γ2, respectively.

Step 3.2. Find the estimates A∗
l=1, S

∗
l=1 (for the signal S = [0]N×1 and the hypothesis Γ1) and

A∗
l=2, S

∗
l=2 (for the signal S �= [0]N×1 and the hypothesis Γ2).

Step 3.3. Construct the matrices PB
l=1, P

Θ
l=1 and PB

l=2, P
Θ
l=2 for Γ1 and Γ2, respectively.

Step 3.4. Find the estimates B∗
l=1, Θ

∗
l=1, B

∗
l=2, and Θ∗

l=2.

Step 3.5. Calculate the residuals

Δgiue(l) = H− S∗
l −Θ∗

l

and select the best hypothesis in terms of the adopted optimality criterion:

l∗ = argmin
l

χgiue(l) = argmin
l

[
Δgiue(l)

]T
(KΞ)−1Δgiue(l), l∗ ∈ {0, 1}.

Step 3.6. Find the resulting estimates A∗
l∗ , S

∗
l∗ , B

∗
l∗ , and Θ∗

l∗ .

Algorithm for jointly discriminating and estimating the parameters of signals and interference
with unknown nonlinear parameters (4). In this case, K is arbitrary, L = K, and H = Sl +Θ+Ξ,
l ∈ {1, . . . , L}. It is required to establish which signal from the given ensemble {S1, . . . ,SL} appears
in the observation, i.e., obtain the estimate l∗ ∈ {1, . . . , L} of the parameter l, as well as construct
the estimates A∗

l∗ , S
∗
l∗ , B

∗
l∗ , and Θ∗

l∗ . In this case, the subscript k can be omitted.

Step 4.1. Construct the matrices PA
l(d), P

S
l(d), P

B
l(d), and PΘ

l(d) for all Γl and nodes ζ(d).

Step 4.2. Find the partial estimates A∗
l(d), S

∗
l(d), B

∗
l(d), and Θ∗

l(d) for all Γl and nodes ζ(d).

Step 4.3. Calculate the residuals

Δgiue(l,d) = H− S∗
l(d) −Θ∗

l(d)

for all Γl and nodes ζ(d).

Step 4.4. Select the best hypothesis in terms of the adopted optimality criterion:

(l∗,d∗) = argmin
l,d

χgiue(l,d) = argmin
l,d

[
Δgiue(l,d)

]T (
KΞ

)−1
Δgiue(l,d).

Step 4.5. Find the resulting estimates A∗
l∗(d∗), S

∗
l∗(d∗), B

∗
l∗(d∗), and Θ∗

l∗(d∗) for the hypothesis
Γl∗ and node ζ(d∗).

Algorithm for jointly recognizing and estimating the parameters of signals and interference with
unknown nonlinear parameters (5). Here, we have the general case (4). In this case, K is arbitrary
and L = 2K � 2. It is required to establish which signals from the given ensemble {S1, . . . ,SL}
appear in the observation, estimate their linear and nonlinear parameters as well as the interference
parameters. In this case, the hypotheses Γl are used, where l ∈ {1, . . . , 2K}.

Step 5.1. Construct the matrices PA
kl(d), P

S
kl(d), P

B
l(d), and PΘ

l(d) for all Γl, k = 1,Kl, and
nodes ζ(d).

Step 5.2. Find the partial estimates A∗
kl(d), S

∗
kl(d), B

∗
l(d), and Θ∗

l(d) for all Γl, k = 1,Kl, and
nodes ζ(d).

Step 5.3. Calculate the residuals

Δgiue(l,d) = H−
Kl∑
k=l

S∗
kl(d) −Θ∗

(d)

for all Γl and nodes ζ(d).
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Step 5.4. Select the best hypothesis in terms of the adopted optimality criterion:

(l∗,d∗) = argmin
l,d

χgiue(l,d) = argmin
l,d

[
Δgiue(l,d)

]T (
KΞ

)−1
Δgiue(l,d).

Step 5.5. Find the resulting estimates A∗
kl∗(d∗), S

∗
kl∗(d∗) (where k = 1,Kl), B

∗
l∗(d∗), and Θ∗

l∗(d∗)
for the hypothesis Γl∗ and node ζ(d∗).

Note. The optimality criteria used in these algorithms ensure the minimum mutual influence of
neighbor ensemble signals, the self-compensation of the singular interference, and noise smoothing
(potentially comparable to the capabilities of XLS).

The algorithms only illustrate some possibilities of the developed method. Signal recognition
under uncertainty may have other problem statements considering the peculiarities of the pur-
pose and application of information-measuring systems at hand. Obviously, the proposed method
can be combined with traditional probabilistic approaches depending on the conditions of system
operation.

The need to process observations for multiple hypotheses naturally leads to organizing 2L chan-
nels of parallel computations while considering all nodes of the numerical grid for the nonlinear
parameters of useful signals. The proposed method seems very promising for modern real-time
information-measuring systems.

5. SIGNAL RESOLUTION ANALYSIS

Due to the linearity of the proposed method, the correlation matrices of estimation errors are
significantly simpler to find. Considering (18) and (26), for the hypothesis Γl∗ and node ζ(d∗), we
express the correlation matrix of the estimate as follows:

KA
kl∗(d∗) = PA

kl∗(d∗)K
Ξ
(
PA

kl∗(d∗)

)T
, k = 1,Ki∗ , (30)

where PA
kl∗(d∗) =

[
Λkl∗(d∗)Vk∗(d∗)

(
ΨT

k∗(d∗)Λk∗(d∗)Vk∗(d∗)

)−1
]T

.

In each particular case, the expression (30) allows assessing the potential capabilities of the
method considering system requirements. By analogy with (30), we write mathematical formulas
for the correlation matrices KS

kl∗(d∗), K
B
l∗(d∗), and KΘ

l∗(d∗), characterizing estimation accuracies for
signal samples, their spectral coefficients, and even the singular interference. For example, when
estimating the scalar coordinates akm of the vector Ak and the samples skn of the signal Sk, the
variances of the errors are given by(

σA
kml∗(d∗)

)2
=

(
PA

kml∗(d∗)

)T
KΞPA

kml∗(d∗), m = 1,Mkl∗ ,(
σS
kml∗(d∗)

)2
=

(
PS

kml∗(d∗)

)T
KΞPS

kml∗(d∗), n = 1, N.

To assess the characteristics of signal detection, discrimination, and resolution, as well as the
possibility of comparing the novel and well-known methods, it suffices to specify the most ap-
propriate distribution law of observation noise (in current observation conditions; as a rule, the
Gaussian law) and, if necessary, some a priori probabilities (e.g., the appearance of useful signals
in the observation) and the values of risks from incorrect decisions. As a result, the characteristics
of the method can be investigated within known statistical approaches [4–10]: the corresponding
likelihood functions are constructed and used to find the most important linear functionals for a
particular problem (e.g., the probabilities of false alarm, correct detection, etc.).
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Applying the constructed matrices PA
kl(d), P

S
kl(d), P

B
l(d), and PΘ

l(d) directly to (4), we obtain a

set of transformed observation equations with the new noises ΞA
kl(d) = PA

kl(d)Ξ, ΞS
kl(d) = PS

kl(d)Ξ,

ΞB
kl(d) = PB

kl(d)Ξ, and ΞΘ
kl(d) = PΘ

kl(d)Ξ. Note that these equations preserve additivity.

Consequently, given the distribution law of the original noiseΞ, it is easy to write the distribution
laws of the new noises and calculate the values of the functionals of interest. This approach serves
to compare the novel method with XLS and well-known statistical approaches to signal recognition.

According to the expressions (27) and (29), the novel method requires inverting the matrix Φkl

of dimensions (Mkl + J)× (Mkl + J) and the matrix ΨT
klΛklVkl of dimensions Mkl ×Mkl.

For a fixed number k, XLS requires inverting a matrix of the higher dimensions (M1l +M2l +
. . . +MKl

+ J)× (M1l +M2l + . . .+MKl
+ J).

Obviously, if the inverted matrices are ill-conditioned, the novel method may turn out rather
efficient in the computational sense.

Let the model observation equation have the form

Hl = (Skl +ΔSkl) + (Xkl +ΔXkl) +Ξ,

where ΔSkl and ΔXkl are addends for the signal and interference describing the tails of the func-
tional series.

In this case, the estimate a∗kml (calculated without the additional terms) is given by

a∗kml = (PA
kml)

THl = (PA
kml)

T(Skl +ΔSkl) + (PA
kml)

T(Xkl +ΔXkl) + (PA
kml)

TΞ.

Accordingly, the true value akml can be represented as

akml = (PA
kml +ΔPA

kml)
T(Skl +ΔSkl) + (PA

kml +ΔPA
kml)

T(Xkl +ΔXkl),

where ΔPA
kml is an addend for the weight column describing the tails.

Denoting by M{·} mathematical expectation, we define the mean of the methodological error
as

Δakml = M{akml − a∗kml} = (ΔPA
kml)

T(Skl +ΔSkl) + (ΔPA
kml)

T(Xkl +ΔXkl), (31)

where M{Ξ} = [0]N×1.

Formulas (31) and (30) can be used together to select the necessary parameters of the novel
method that minimize the resulting estimation error in each particular case.

By analogy with [1–3], necessary and sufficient conditions for the existence of a unique solution
of the estimation problem require nondegeneracy and some restrictions on the ranks of several
matrices. In practice, these conditions are satisfied by rationally choosing the functional bases and
the number of degrees of freedom in the signal and singular interference models as well as by setting
appropriate observation conditions. All these issues are related to the planning of computational
experiments and will not be considered below since they require separate studies in each particular
case.

To assess the computational efficiency of the novel method, it suffices to use the results of [2],
where the possibility of implementing the GIUE procedure based on distributed data processing
was demonstrated. The time to obtain the desired estimates can be an indicator of the compu-
tational efficiency of the method. This time is determined by the performance of the distributed
environment, the total number of operations required to implement the method, and the program-
ming technique. According to [2], since the GIUE procedure requires no state space expansion,
the estimation methods implemented on its basis can provide a significant gain in computational
efficiency. In [2], the potential gain was quantified for a particular example.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024



172 BULYCHEV

6. AN ILLUSTRATIVE EXAMPLE

This artificially chosen example is simple enough and, at the same time, clearly demonstrates
the achievable computational effect of the novel method in comparison with XLS. (Note that only
the estimation algorithm (1) will be considered below.) For this purpose, we use appropriate initial
data leading to the parameter estimation problem of signals with ill-conditioned matrices.

Let K = 2 and H = S1 + S2 + Θ + Ξ, where A1 = [a11, a12, a13, a14]
T, Θ1(t) = [1, t2, t3, t5]T,

M1 = 4, S1 = AT
1 Θ1, A2 = [a21, a22, a23]

T, Θ2(t) = [t, t4, t6]T, M2 = 3, S2 = AT
2 Θ2, B = [b1, b2]

T,

Ω(t) = [ω1(t), ω2(t)]
T, J = 2, Ψ1 =

⎡⎢⎢⎢⎢⎣
1 t21 t31 t51

1 t22 t32 t52
...

...
...

...
1 t2N t3N t5N

⎤⎥⎥⎥⎥⎦, Ψ2 =

⎡⎢⎢⎢⎢⎣
1 t41 t61

1 t42 t62
...

...
...

1 t4N t6N

⎤⎥⎥⎥⎥⎦, Ω =

⎡⎢⎢⎢⎢⎣
ω1(t1) ω2(t1)

ω1(t2) ω1(t2)
...

...
ω1(tN ) ω2(tN )

⎤⎥⎥⎥⎥⎦,
X1 = Y1C1, X2 = Y2C2, Y1 = [Ψ2

...Ω] is a matrix of dimensions N × 5, Y2 = [Ψ1
...Ω] is a matrix

of dimensions N × 6, C1 = [a21, a22, a23, b1, b2]
T, and C2 = [a11, a12, a13, a14, b1, b2]

T.

In the observation equation, a11 = 103, a12 = 50, a13 = 10, a14 = 3, a21 = −2× 103, a22 = −2,

a23 = 1, KΞ = diag
[
σ2
n, n = 1, N

]
, σ2

n = σ2 = 4× 10−2, tt+1 − tn = 0.5, and N = 300.

The quality of estimation is measured by the relative value δakm = 102 |a∗km − akm| / |ā∗km|
(in percentage), where ā∗km = max {a∗km, |akm|} . Let the singular interference be a linear com-
bination of two basis functions:

θ(t, b1, b2) = b1ω1(t) + b2ω2(t) = b1 sin(α1t) + b2 exp(α2t),

where α1 and α2 are arbitrary numbers.

The interference parameters are chosen randomly here: their values are not essential since this
method ensures the full self-compensation of the interference under any parameter values.

All calculations were carried out to an accuracy of 15 digits by averaging the results of one
thousand experiments. The novel method yielded the following estimates for the coordinates of the
vectors δA1 =

[
δa1m,m = 1, 4

]T
and δA2 =

[
δa2m,m = 1, 3

]T
:

δa11 = 1.585, δa12 = 0.621, δa13 = 0.082, δa14 = 1.967 × 10−5,

δa21 = 1.643 × 10−4, δa22 = 1.409 × 10−7, δa23 = 2.756 × 10−11.

In turn, the corresponding XLS-based estimates were

δa11 = 43.053, δa12 = 24.902, δa13 = 2.686, δa14 = 0.138,

δa21 = 2.968 × 10−3, δa22 = 2.906 × 10−6, δa23 = 3.846 × 10−10.

Obviously, there is a significant gain in accuracy and the XLS-based estimates (under the current
data) turn out to be of little use.

According to the comparative analysis, the novel method also significantly reduces the compu-
tational error of estimation, which is due to decomposition and the reduced dimension of the com-
putational procedure. In the course of calculations using the Euclidean norm, we determined the
condition numbers (ν1 and ν2) of the inverted matrices ΨT

1Λ1V1 and ΨT
2Λ2V2 as well as the con-

dition number ν of the corresponding combined matrix in XLS. The results were ν1 = 5.283×1015,
ν2 = 1.276 × 1014, and ν = 4.537 × 1026.

Besides, the number of addition and multiplication operations required to implement XLS and
the novel method was calculated. The relative computational gain was 1.35 times, which also
confirms the efficiency of the novel method.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024



SIGNAL RECOGNITION WITHOUT STATE SPACE EXPANSION 173

During the numerical experiments, the correlation matrices KA
1 and KA

2 were also calculated
(by analogy with (30)). To shorten the expressions, we provide only the diagonal elements of these
matrices:(

σA
11

)2
= 0.031,

(
σA
12

)2
= 3.631 × 10−6,

(
σA
13

)2
= 2.306 × 10−9,

(
σA
14

)2
= 0,(

σA
21

)2
= 2.287 × 10−5,

(
σA
22

)2
= 0,

(
σA
23

)2
= 0.

For XLS, they were as follows:(
σA
11

)2
= 0.755,

(
σA
12

)2
= 7.002 × 10−4,(

σA
13

)2
= 1.236 × 10−6,

(
σA
14

)2
= 4.781 × 10−14,(

σA
21

)2
= 0.073 × 10−6,

(
σA
22

)2
= 5.096 × 10−10,

(
σA
23

)2
= 0.

Since both methods under comparison are linear and optimal, the variance of estimation errors
should not differ (when neglecting computational errors): the methods inherit the same potential
estimation accuracy. However, according to the calculation results, the variance estimates for the
novel method are considerably smaller than those for XLS. The reasons have been discussed above;
moreover, the computational errors for the given formulas significantly depend on the dimensions
of the inverted ill-conditioned matrices.

7. CONCLUSIONS

The novel method can be effectively combined with orthogonal decomposition algorithms [13]
and algorithms for solving ill-posed problems [22, 23]. With the possibility of decomposition and
parallelization of computational procedures, this method gives a more efficient solution for an entire
range of applied problems related to parallel processing of measurements in various fields. The signal
resolution algorithms under singular interferences developed above are easy to implement in special
computers of real-time information-measuring systems.

Compact analytical formulas of the novel method have been derived. For a particular applied
problem, they can be used to preselect the appropriate models of signals and interferences as well
as their parameter values to achieve the method’s potential capabilities. This method belongs to
the linear class, so all procedures reduce to elementary mathematical operations over vectors and
matrices. Moreover, it can be combined with traditional approaches to solving applied problems
related to optimal and quasi-optimal processing of measurements.

The results of this paper can also be applied to the class of dynamical systems with measurable
output. For this purpose, it is necessary to use the well-known combined method of reference
integral curves and generalized invariant-unbiased estimation [3, 24, 25]. With a pre-built family
of reference curves or surfaces of a required volume, the state and output of such systems can also
be represented as a finite linear envelope of a given functional basis.

In future publications on this topic, it is reasonable to investigate in detail the efficiency of the
method under constraints imposed on the signal and singular interference models.

APPENDIX

We optimally estimate the coefficient akm using the method of Lagrange multipliers by optimiz-
ing the function

F (PA
km,γkm,ηkm) =

(
PA

km

)T
KΞPA

km + γT
kmYT

k P
A
km +

[(
PA

km

)T
Ψk −ET

km

]
ηkm, (A.1)
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where γkm =
[
γkmn, n = 1,Mk + J

]T
and ηkm =

[
ηkmn, n = 1,Mk

]T
are the vector Lagrange mul-

tipliers corresponding to the unbiasedness (22) and invariance (23) conditions.

Differentiating the function (A.1) with respect to all arguments yields the system of linear
algebraic equations

∂ F/∂PA
km = 2KΞPA

km +Ykγkm +Ψkηkm = [0]n×1,

∂ F/∂ γkm = YT
k P

A
km = [0](Mk+J)×1,

∂ F/∂ ηkm = ΨT
kP

A
km −Ekm = [0]Mk×1.

Let us introduce the matrices

Vk =
(
KΞ

)−1
Ψk, Vk =

(
KΞ

)−1
Yk,

Φk = ΨT
kVk, Φk = YT

k Vk,

Zk = YT
k Vk, Zk = ΨT

kVk.

With these notations, the weight column vector—the solution of the system of equations above—is
given by

PA
km = 2−1

(
Vkηkm −Vkγkm

)
. (A.2)

We multiply the left- and right-hand sides of (A.2) on the left by the matrix YT
k . In view of the

invariance condition (23), after trivial transformations, it follows that

γkm = Φ
−1
k Zkζkm. (A.3)

Similarly, multiplying (A.2) by the matrix ΨT
k and considering the unbiasedness condition (22)

yield

ηkm = 2Φk

(
Ekm + 2−1Zkγkm

)
. (A.4)

Resolving (A.3) and (A.4) for γkm and ηkm, we obtain

γkm = 2Φ
−1
k Zk

(
[E]Mk×Mk

−Φ−1
k ZkΦ

−1
k Zk

)−1
Φ−1

k Ekm, (A.5)

ηkm = 2
(
[E]Mk×Mk

−Φ−1
k ZkΦ

−1
k Zk

)−1
Φ−1

k Ekm. (A.6)

Substituting (A.5) and (A.6) into (A.2) gives

PA
km =

(
Vk −VkΦ

−1
k Zk

) (
[E]Mk×Mk

−Φ−1
k ZkΦ

−1
k Zk

)−1
Φ−1

k Ekm. (A.7)

Finally, denoting Λk = [E]N×N −VkΦ
−1
k YT

k , we write the expression (A.7) in the compact
form (24). The proof of this theorem is complete.
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