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Abstract—The article is devoted to the development of an algorithm for the approximate solu-
tion of the time-optimal control problem for a system of ordinary differential equations, under
the condition of avoiding collisions with stationary obstacles and subject to the specified point-
wise constraints on the possible values of the control parameters. The main idea is to use a
modification of the algorithm for finding suboptimal paths using rapidly growing random trees
(RRT*). The most difficult part of this algorithm is to find the optimal trajectories for the
problems of transferring the system from one fixed position to another, close to it, without tak-
ing into account state constraints. This subproblem is proposed to be solved using the methods
of ellipsoidal calculus. This approach makes it possible to efficiently search suboptimal trajec-
tories both for linear systems with large state space dimension and for systems with nonlinear
dynamics. Algorithms for the linear and non-linear cases are sequentially analyzed in the paper,
and the corresponding examples of calculations are presented.
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1. INTRODUCTION

This paper considers the problem of transferring a controlled object from the initial position to
the given target set in the shortest possible time avoiding obstacles. Such type of problems arise
when controlling the autonomous (unmanned) motion on a plane or in space, when developing
algorithms for controlling robots or manipulators. As a rule, the exact solution of such a problem is
very hard in terms of computation due to the large dimension of the state variables vector, nonlinear
dynamics and complex structure of obstacles. Therefore, in recent decades, various approximate
methods [1, 2] have been actively developed, making it possible to construct suboptimal trajectories
in a short time (ideally, in a real time, which is necessary in many applications).

One of the classes of the mentioned methods is based on the use of “fast-growing” random graphs
or, in a particular case, trees. Such algorithms are generally referred to as PRM — Probabilistic
Roadmap (in the case of graphs with possible cycles) and RRT — Rapidly Exploring Random Tree
(in the case of trees). The main idea here is to construct a sequence of random points in the state
space and connect them into a graph. The number of such points N is assumed to be very large.
The initial position is contained among them. The edges of the desired graph must be constructed in
accordance with requirement of avoiding obstacles. Quite a lot of experience has been accumulated
in constructing such graphs with various properties currently. As a rule, these methods differ in the
heuristics used when randomly adding each new vertex to the graph, as well as when connecting
a new vertex with previously added ones using edges. So, in [3] various modifications of random
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graphs and random trees methods are considered. In particular, the completeness property is
analyzed, which means the fact that the probability of existence of a certain path on the graph
getting from the starting point to the target set tends to 1 as the number of vertices N tends to
infinity.

The next step is to add a criterion for the paths quality (for example, the length of the path or the
time of movement along it) to the algorithms for constructing random graphs. The corresponding
families of algorithms are denoted by PRM* and RRT*. In [3] for certain varieties of the RRT*
method the property of asymptotic optimality is proven: if there is an optimal trajectory, then
the probability that the quality functional value for the constructed suboptimal path on the graph
tends to its minimum value at N → ∞ is equal to 1. Thus, if the problem of transferring an object
from the initial position to the target set is solvable, then the RRT* method will give its suboptimal
solution, arbitrarily close to the optimal one, if the number N is big enough.

In [3] only the cases of the simplest motions along broken lines in state space are considered,
where the constraints associated with the motion along the trajectories of specific differential equa-
tions are not taken into account. Numerous later works have attempted to take this kind of
limitation into account. The resulting methods are usually called Kinodynamic RRT* (hereinafter
we will use the notation KRRT*). The key subproblem here is the problem of constructing an
optimal (or at least a suboptimal) trajectory of the differential equation for transferring an object
from point to point in a short period of time (locally). The quality of the resulting suboptimal
trajectories over a long period of time (globally) significantly depends on the method for solving
this subproblem.

One of the possible approaches to solving this subproblem of optimal control over a short period
of time is to use the Pontryagin’s maximum principle for the problem with state constraints [4, 5].
By using a modification of the RRT* method, in [6] an attempt was made to construct trajectories
that are solutions to a system of linear differential equations. Parts of such trajectories are obtained
as a result of solving auxiliary linear-quadratic optimal control subproblems with the functional
of a special, simplified form. A serious disadvantage of this approach is the impossibility to take
into account pointwise constraints on the control parameters, as well as to correctly generalize the
proposed approach to the case of nonlinear dynamics.

In [7] the modification of the RRT* method is proposed, in which parts of the desired path are
composed of the “primitive” trajectories of the considered nonlinear differential equations system.
Wherein the most complex part of the algorithm, which consists of constructing optimal trajectories
under pointwise constraints on the controls, is considered only for three specific examples.

By using the RRT* method, [8] proposes the method for constructing suboptimal trajectories
by using enumeration over a finite set of constant controls or through a random selection of such
controls. The proposed approach can be effective only in special cases, with small dimensions of
the control parameters vector.

Numerous works are also devoted to speeding up the operation of RRT* by changing the al-
gorithms of adding new vertices to graphs. For example, in [9] the approach is proposed related
to the construction of reachability sets estimates for the considered differential equations in small
neighborhoods of the random graph vertices. These estimates can be used to cut off new vertices
that will obviously be redundant, i.e. won’t allow the random graph to advance significantly to-
wards the target set. Unfortunately, the authors of the work did not propose a specific general
method for constructing such estimates, only the simplest examples were considered. Wherein the
problem of control synthesis on the graph edges, as in the above mentioned work [8], was solved in
a primitive way, by enumerating a finite set of control parameters.

Thus, one could argue that the development of the RRT* algorithm modifications taking into
account both nonlinear dynamics and the pointwise constraints on the controls, is a relevant and
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unsolved problem. This paper proposes one possible approach to solving this problem for a wide
class of systems. For this purpose, the RRT* method has been modified with the additional
use of ellipsoidal estimation algorithms [10, 11], which make it possible to effectively solve local
subproblems of transferring a system from point to point. The solution to such a subproblem
includes: 1) constructing a set of internal ellipsoidal estimates for the solvability set of the considered
control system; 2) calculation the feedback control that solves the subproblem and obtained by
“aiming” at the ellipsoidal estimates; 3) obtaining the desired open-loop control from the previously
constructed strategy.

2. THE CONTROL PROBLEM FOR A LINEAR SYSTEM

In the space R
n, n � 2, consider some compact set Ω. Let’s consider the motion of a controlled

object described by a system of linear differential equations

ẋ = Ax+Bu+ f, x ∈ Ω, t ∈ [0,+∞). (1)

Let us assume that the initial state x(0) = x0 ∈ Ω is fixed. Matrices A ∈ R
n×n, B ∈ R

n×m, as well
as the vector f ∈ R

n are assumed to be independent of t. The system contains control parameters
u ∈ R

m, the admissible values of which are subject to pointwise constraints: u ∈ P = E(p, P ). Here
E(p, P ) is an ellipsoid with center p ∈ R

m and configuration matrix P ∈ R
m×m, P = P T � 0:

E(p, P ) =

{
y ∈ R

m : 〈y, l〉 � 〈l, p〉+
√
〈l, P l〉, ∀l ∈ R

m
}
.

If P > 0, then the equivalent definition can be used:

E(p, P ) =
{
y ∈ R

m :
〈
(y − p, P−1(y − p))

〉
� 1

}
.

Let U denote the class of admissible open-loop controls, which contains all possible piecewise con-
tinuous functions u = u(t) ∈ P, t � 0. Let x(t, 0, x0)|u(·) denote the trajectory of (1) constructed
using some admissible control u(·), released at the initial time t0 = 0 from the starting position x0.
We will further consider only parts of the trajectories x(t, 0, x0)|u(·) contained in the Ω region.

Also in the Ω region we select a certain range of sets Mi, i = 1, . . . ,M , – obstacles that must
be taken into account when an object moves. Let’s assume that each of these sets is given by a set
of inequalities

Mi = {x ∈ Ω : ϕi,j(x) � 0, j = 1, . . . , si}, (2)

where continuous functions ϕi,j(x), as well as natural numbers si are given. It is assumed that the
positions of obstacles Mi do not change with time, i.e. the functions ϕi,j do not depend on t. Let’s
introduce the following notation:

Xfree = Ω \
(

M⋃
i=1

Mi

)
.

Suppose that x0 ∈ Xfree. Let’s also fix some compact set Xgoal ⊂ Xfree, with x0 /∈ Xgoal and
μ(Xgoal) > 0, where μ(Xgoal) is the Lebesgue measure of the set Xfree.

Now we can formulate the main control problems solved in this work:

1) It is necessary to find such u(·) ∈ U for which there exists t1 > 0 and such a trajectory
x(t, 0, x0)|u(·) of differential equation (1), for which

x(t1) ∈ Xgoal, x(τ) ∈ Xfree, ∀τ ∈ [0, t1].

2) Among the controls and corresponding trajectories found in the previous case, it is necessary
to find those for which the value t1 will be the smallest.

Note that the set Xfree is closed, which means that movement along the boundaries of obstacles
is allowed.
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3. THE ALGORITHM FOR CONSTRUCTING A RANDOM TREE

Let’s solve the control problems described above approximately using a modification of the
KRRT* algorithm. Below its general scheme is presented. The main goal of the algorithm is to
construct an oriented tree Γ = (V,E), where V is the set of vertices, E is the set of arcs. Each
vertex v ∈ V will be associated with the minimum found time of its reaching C(v) from the initial
point x0, which is the root of the tree. For each vertex v �= x0 let denote parent(v) as the vertex
for which (parent(v), v) ∈ E.

The algorithm is iterative, where i is the iteration number, and a fixed numberN is the maximum
number of iterations. At each step of the algorithm, auxiliary ellipsoidal estimates of the solvability
set E(w(t),Wk(t)), k = 1, . . . ,K must be constructed. The number of evaluations K is considered
fixed. Each estimate depends on the parameter vector lk ∈ R

n and is defined at t ∈ [T, 0], where
the number T < 0 is fixed. The choice of the parameter T < 0 here is due to the stationarity of the
system (1) and the convenience of fixing the zero final time instant. For the resulting control and
trajectory, a change of variable will then be made, and as a result, these functions will be defined
already for t � 0. Formulas for calculating ellipsoidal estimates will be given below. The following
algorithm uses two auxiliary sets of graph vertices V0 and V1.

Algorithm 1 Ellipsoidal KRRT*

1: V := {x0}, C(x0) := 0, E := ∅
2: form a set of vectors lk, lk ∈ Rn, ‖lk‖ = 1, k = 1, . . . ,K
3: for i = 1, . . . , N do
4: generate a random point x(i) ∈ Xfree

5: construct ellipsoidal estimates E(w(t),Wk(t)), k = 1, . . . ,K, t ∈ [T, 0]
6: form a set of vertices V0 = V ∩ (∪k ∪t E(w(t),Wk(t)) ∩ Bri(x

(i))
)

7: V1 := ∅
8: for vj ∈ V0 do
9: tmin,j := maxk max{t ∈ [T, 0] : vj ∈ E(w(t),Wk(t))}

10: k∗ := the corresponding ellipsoidal estimate number (the maximizer)
11: determine the optimal control function u∗(j, k∗, t), t ∈ [tmin,j , 0]
12: build the trajectory x∗(j, k∗, t), t ∈ [tmin,j , 0], x

∗(j, k∗, tmin,j) = vj
13: if x∗(j, k∗, t) ∈ Xfree, ∀t ∈ [tmin,j , 0] then
14: V1 := V1 ∪ {vj}
15: if V1 �= ∅ then
16: j∗ := argmin{C(vj)− tmin,j : vj ∈ V1}
17: V := V ∪ {x(i)}, E := E ∪ {(vj∗ , x(i))}
18: C(x(i)) := C(vj∗ )− tmin,j∗

19: for vj ∈ V1 do
20: if Δj = C(x(i))− tmin,j − C(vj) < 0 then
21: for each vertex v′ of the subtree with the root vj C(v′) := C(v′) + Δj

22: E := E \ {(parent(vj), vj)}
23: E := E ∪ {(x(i), vj)}

In the line 4, the coordinates of each new point x(i) are random, corresponding to a uniform
distribution on the set Ω. In the line 6 of the algorithm, vertices vj are selected according to the
following condition:

vj ∈
⎛⎝ K⋃

k=1

⋃
t∈[T,0]

E(w(t),Wk(t))

⎞⎠ ∩ Bri(x
(i)). (3)
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Here ri > 0 is a parameter that limits the enumeration of graph vertices and is responsible for
reducing the final complexity of calculations. It will be discussed in more details below.

When constructing the control and trajectory in the lines 11–12, the algorithm of “aiming”
at a specific ellipsoidal tube is used, which will be described below. Because of this fact the
final functions x∗(·) and u∗(·) depend on the number of the ellipsoidal estimate used. Function
x∗(j, k∗, t), t ∈ [tmin,j, 0], is a solution to the Cauchy problem for the system (1), after substituting
the control u∗(j, k∗, t), with the boundary condition x∗(j, k∗, tmin,j) = vj .

The instructions of the main algorithm in lines 19–23 correspond to the well-known (see [3])
rule from the description of the RRT* algorithm of “rewiring” the tree vertices. Thanks to these
actions, the original RRT* algorithm achieves the property of asymptotic optimality.

An additional condition for exiting the outer loop can be added to the above algorithm when the
target set is first reached, i.e. if at the iteration with number i the condition x(i) ∈ Xgoal is satisfied.
This condition is necessary when solving the first of the two main control problems described above.

Remark 1. The condition μ(Xgoal) > 0 is essential for the proposed algorithm. In the case
when the target set is a single point (Xgoal = {xgoal}), the algorithm can be modified by adding
instructions for constructing ellipsoidal estimates for the solvability set released from the target
point, and for subsequent actions, similar to the lines 6–18, by replacing x(i) with xgoal.

For simplicity of presentation, in the above algorithm’s scheme additional information associated
with the edges of the graph is not indicated. However, to solve the main control problems, it will be
necessary to additionally remember for each edge the open-loop control and the corresponding part
of the trajectory, which were calculated in lines 11–12 of the algorithm for the corresponding values
of the indices i, j. Moreover, in the graph rewiring procedure it is necessary to make an additional
replacement of the t variable in order to go through the previously constructed trajectory in the
opposite direction. In this case, it is important that the original system (1) is stationary.

After constructing the Γ tree, the main control problems formulated above can be solved:

— If ∃vj ∈ V , vj ∈ Xgoal, then the problem 1) is solvable.

— If the condition from the previous paragraph is satisfied, then the performance time estimate
can be found as follows:

t∗1 = min{C(vj) : vj ∈ V, vj ∈ Xgoal}. (4)

Let v∗ be the minimizer in (4).

— The optimal control u∗(t) can now be composed of parts associated with separate graph
edges. In this case, it is needed to move from the vertex v∗ to the root of the tree, along the arcs

(parent(v∗), v∗), (parent(parent(v∗)), parent(v∗)), . . . , (x0, . . .),

taking into account the reverse progression of time when combining parts of the function u∗(t).

4. THE ELLIPSOIDAL ESTIMATES AND THE CONTROL LAW

The main difference between the algorithm used in this work and the known versions of the
KRRT* algorithm is the use of internal estimates for solvability sets [12] of the system (1), released
from a randomly selected point x∗ ∈ Xfree (in the algorithm’s scheme such points are denoted
as x(i)).

For a fixed set X1 ⊂ Ω, for some t � t1 the solvability set W(t, t1,X1) of the system (1) consists
of all possible points x0 ∈ Ω, for each of which there exists a control function u(·) ∈ U for which
x(t1, t, x0)|u(·) ∈ X1. In this work, the solvability sets from the one-point target set with zero finite
time are of interest: W(t, 0, x∗), x∗ ∈ R

n. The task of constructing such sets even for a linear
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stationary system is nontrivial. One of the most effective approaches is the use of ellipsoidal
estimates for solvability sets: external or internal, depending on the specific problem being solved.
Here the main goal is to find the control function, and for that purpose it is convenient to use
internal estimates of the solvability sets.

For a given x∗ ∈ R
n, using the results from [10], we define a family of ellipsoidal estimates

E(w(t),W (t)), t � 0, defined by the following differential equations:{
ẇ(t) = Aw +Bp+ f

w(0) = x∗,
(5)

{
Ẇ (t) = AW (t) +W (t)AT −W 1/2(t)S(t)P1/2 −P1/2ST (t)W 1/2(t)

W (0) = On×n.
(6)

Here On×n is the zero matrix of size n× n, P = BPBT , and S(t) is an orthogonal matrix, contin-
uously depending on t, for which

S(t)P1/2l(t) = λ(t)P1/2l(0), S(0) = In×n, λ(t) =

√
〈l(t),Pl(t)〉
〈l(0),Pl(0)〉 . (7)

Here In×n is the identity matrix of size n× n. The choice of parameters S(t) and λ(t) is caused by
the requirement that the ellipsoidal estimate touches the solvability set in the direction specified
by the vector l(t).

Each ellipsoidal estimate depends on some curve l(t), which is the solution to the following
auxiliary Cauchy problem: {

l̇ = −AT l
l(0) = l∗

(8)

for an arbitrary vector l∗ ∈ R
n: ‖l∗‖ = 1. In order to emphasize such dependence, we will use

the notation E(w(t),W (t, l∗)). By searching through various values of l∗, different estimates can
be obtained (in the main algorithm, such vectors l∗ = lk for constructing different estimates are
formed in the line 2; wherein, Wk(t) = W (t, lk)). We will further assume that the vectors l∗ are
chosen in such a way that 〈l∗,Pl∗〉 �= 0, which is necessary for the correctness of the formulas (7).
The following statement is true (see [10]):

Theorem 1. For any t � 0

W(t, 0, x∗) =
⋃

{E(w(t),W (t, l∗)) : l∗ ∈ R
n, ‖l∗‖ = 1} .

In the line 6 of the main algorithm it is necessary to select those vertices of the graph that
satisfy the condition

vj ∈
⋃

k=1,...,K

⋃
t∈[T,0]

E(w(t),Wk(t)).

Using the definition of an ellipsoid, this condition can be rewritten as an auxiliary optimization
problem:

min
k=1,...,K

min
t∈[T,0]

max

{
〈vj − w(t), l〉 −

√
〈l,Wk(t)l〉 : l ∈ R

n, ‖l‖ = 1

}
� 0.

Now we can construct the feedback control that transfers the system’s trajectory (1) from the
position (t, x), t < 0, to the position (0, x∗). It can be found by “aiming” [12] at one of the
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constructed ellipsoids E(w(t),W (t)):

u∗(t, x) =

⎧⎪⎪⎨⎪⎪⎩
p− PBT l0(t)√

〈l0(t),Pl0(t)〉
, BT l0(t) �= 0

E(p, P ) otherwise,

(9)

where l0(t) is the maximizer in the half-distance expression

h+(t, x) = max

{〈
l, e−tA(x− w(t))

〉
−
√〈

l, e−tAW (t)e−tAT l
〉∣∣∣ ‖l‖ � 1

}
.

For x /∈ int E(w(t),W (t)) the vector l0(t) can be found in the same way as

l0(t) = 2λ(W (t) + λE)−1(x− w(t)), E = eA
T teAt,

where λ is the only non-negative root of the equation〈
(W (t) + λE)−1(x− w(t)),W (t)(W (t) + λE)−1(x− w(t))

〉
= 1.

If x ∈ int E(w(t),W (t)), then l0(t) = 0.

Note that in the main algorithm (lines 9–11) if the next point x(i) does not coincide with
any of the previously constructed graph vertices vj (the probability of this event is equal
to 1), then the value tmin,j < 0 for each corresponding value j should be chosen such that
vj ∈ ∂E(w(tmin,j),Wk∗(tmin,j)). I.e. at the initial time instant the point lies on the boundary
of the ellipsoid. The used method of extreme aiming at an ellipsoid has the property (see [12]
for more details) that the trajectory of the system, starting at the boundary of the ellipsoid, will
remain on it until the final moment of time. Thus, the case when the point x lies on the boundary
of the ellipsoid E(w(t),W (t)) for any t � 0 is especially important in this work. For that case

x = w(t) +
W (t)s√〈s,W (t)s〉 , s = W−1(t)(x− w(t))‖W−1(t)(x− w(t))‖−1.

The corresponding value of the vector l0(t) = etA
T
s can be found without solving the above men-

tioned auxiliary optimization problem or equation for λ.

Let’s summarize the properties of the constructed feedback control in the following statement

Theorem 2. Let for some values j, k there is a vertex vj ∈ E(w(tmin,j),Wk(tmin,j)). Consider the
Cauchy problem for the differential inclusion ẋ ∈ Ax+Bu∗(t, x) + f , x(tmin,j) = vj , t ∈ [tmin,j, 0].
This problem has solutions, and for any such solution x(t) = x(t, tmin,j, vj)|u∗(·) the condition
x(0) = x∗ is satisfied.

In the main algorithm, for each new random point x∗ = x(i), it is necessary to construct internal
ellipsoidal estimates for solvability sets and, using them, determine those previously constructed
vertices of the graph Γ that can be connected to the new vertex (line 6 of the algorithm). Let
ellipsoidal estimates E(w(t),Wk(t)), k = 1, . . . ,K, t ∈ [T, 0] be constructed for the target point x∗.
At this iteration of the algorithm, only those vertices vj ∈ V should be processed for which the
condition (3) is satisfied. This formula uses an auxiliary parameter (see [7])

ri = min

{
γ

(
ln(κ)

κ

)1/n

, η

}
, γ > (2(1 + 1/n))1/n

(
μ(Xfree)

ζn

)1/n

, (10)
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where ζn is the volume of the unit sphere in R
n, μ(Xfree) is the Lebesgue measure of the set Xfree,

κ = |V | – the total number of previously added (before the ith iteration) graph vertices. A constant
η > 0 can be taken arbitrary; this value is responsible for reducing the complexity of calculations on
the first steps of the algorithm (for small κ). If we additionally assume that the following condition
is satisfied

∃δ > 0 : Bδ(x
∗) ⊆

⋃
t∈[T,0]

K⋃
k=1

E(w(t),Wk(t)),

then, according to [3], with the above mentioned choice of ri, the presented algorithm has the
property of asymptotic optimality.

For each vertex vj selected according to (3), the absolute minimum time value tmin,j of transition
from vj to point x(i) can be determined, as well as the number of the corresponding ellipsoidal
estimate k∗: vj ∈ E(w(tmin,j),Wk∗(tmin,j)). Further it is necessary to define the control function.
The formula (9) cannot be used directly in the main algorithm, since we need open-loop control
(line 11 of the algorithm), instead of the feedback strategy. The transition from the closed-loop
control to the open-loop one can always be accomplished by solving the auxiliary Cauchy problem

⎧⎨⎩ẋ(t) ∈ Ax(t) +Bu∗(t, x) + f

x(tmin,j) = vj,
u∗(t, x) =

⎧⎪⎪⎨⎪⎪⎩
p− PBT l0(t)√〈l0(t),Pl0(t)〉 , BT l0(t) �= 0

E(p, P ) otherwise,

(11)

and subsequent selection of a single-valued selector from the set-valued mapping u∗(t, x∗(t)). Here
x∗(t) is the solution to the problem (11), l0(t) depends on x.

For each constructed trajectory x∗(t), t ∈ [tmin,j, 0], the following condition must then be checked
(line 13 of the algorithm): x∗(t) ∈ Xfree, ∀t ∈ [tmin,j , 0]. According to (2) it is enough to check the
inequality

min
t∈[tmin,j ,0]

min
i=1,...,M

max
r=1,...,si

ϕi,r(x(t)) � 0.

If this condition is not satisfied, then the trajectory will be rejected by the algorithm. Otherwise it
can be used to construct an edge connecting the new vertex x∗ = x(i) of the graph Γ with the old
vertex vj. If several suitable vertices vj are found for different j, then the one (with the number j∗)
for which the value tmin,j is maximum will be selected.

Remark 2. According to (6), the ellipsoids’ configuration matrices W (t) do not depend on the
specific point x∗ from which it is necessary to construct solvability sets at each iteration of the
algorithm. Thus, matrices W (t), t ∈ [T, 0], for different values of l∗ can be calculated in advance,
before the start of calculations in the main loop of the algorithm. Similarly, from (5) it is clear
that for the centers of ellipsoids the following relation is valid:

w(t) = w̃(t) + w∗(t), w̃(t) =

t∫
0

eA(t−τ)(Bp+ f)dτ, w∗(t) = eAtx∗,

which means that the function w̃(t) can be calculated in advance. Inside the main cycle of the
algorithm only the functions w∗(t) need to calculated and summed up with w̃(t). This makes
calculations easier.

Remark 3. When implementing the Ellipsoidal KRRT* algorithm for a specific system (1), it is
important to select the most appropriate value for the parameter T < 0. If it turns out that the
absolute value of T is too small, then this will lead to the creation of an artificial limitation in
the formation of new random tree branches, and therefore the finally found trajectory may be far
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from optimal. If the absolute value of T is too large, then this can lead to additional, unnecessary
calculations of ellipsoidal estimates, which will negatively affect the algorithm’s speed. To select
the most appropriate value of the parameter T , a series of experiments can be carried out followed
by analysis of the realized values tmin,j.

5. EXAMPLE (LINEAR DYNAMICS)

Let’s consider an example of a suboptimal trajectory constructing, and also compare the obtained
results with the ones obtained with the help of the algorithm discussed in [6]. Let x ∈ R

2 and the
system’s dynamics (1) is given by the following parameters:

A =

(
8 2
2 8

)
, B =

(
4 1
1 4

)
, f =

(
1
1

)
.

The following constraints are imposed on the control parameters: u ∈ P = E(p, P ), where

p =

(
2
2

)
, P =

(
16 4
4 16

)
.

Note that these constraints are taken into account in both algorithms. In (10) we put η = 4.
Let’s define the auxiliary matrix R = I2×2, necessary for calculating the functional in the algorithm
from [6]. We fix T = −2. This choice is due to the values of tmin,j obtained by the Ellipsoidal
KRRT* for different values of T in a series of experiments:

Test number

1 2 3 4 5

T tavg tmin tavg tmin tavg tmin tavg tmin tavg tmin

−0.1 −0.05 −0.1 −0.06 −0.1 −0.05 −0.1 −0.05 −0.1 −0.05 −0.1

−0.5 −0.11 −0.46 −0.13 −0.49 −0.13 −0.47 −0.12 −0.49 −0.13 −0.46

−1 −0.11 −0.46 −0.14 −0.65 −0.15 −0.81 −0.14 −0.95 −0.13 −0.71

−2 −0.11 −0.46 −0.14 −0.65 −0.15 −1.17 −0.15 −0.97 −0.14 −0.71

−5 −0.14 −0.46 −0.16 −0.66 −0.22 −1.18 −0.18 −1.01 −0.16 −0.71

Here tavg =
∑|V |

j=1 tmin,j/|V |, tmin = min
j

tmin,j. It can be seen that the values tmin < −2 hasn’t

been found in the experiments, and therefore there is no point in taking the value T < −2. The
value −2 is taken with a small margin relative to the smallest of tmin.

Figures 1 and 2 below demonstrate the results of the Ellipsoidal KRRT* and the KRRT* al-
gorithms, respectively, which were obtained as follows: the KRRT* algorithm (from [6]) used as
random points the same sequence of points Samples = {x(i)}Ni=1, N = 2728, which had been re-
quired by the Ellipsoidal KRRT* algorithm to construct the tree Γ1 = (V1, E1) : |V1| = 500.

Note that the KRRT* algorithm in this case built the tree Γ2 = (V2, E2) : |V2| = 469. The
decrease in the number of vertices is due to the fact that some of the trial edges were rejected due
to the control constraints violations or due to the state constraints. Also note that in Fig. 1 the
suboptimal trajectory passes through the shaded area, which the KRRT* algorithm could not find.

For the given target set

Xgoal = {x ∈ R
2 : 9.5 < x1 < 11.5, 10.5 < x2 < 12.5}

the following values of the functionals were obtained:

t∗1 = min {C(v) : v ∈ V1, v ∈ Xgoal} = 0.26, t∗2 = min {C(v) : v ∈ V2, v ∈ Xgoal} = 0.47.
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Fig. 1. Ellipsoidal KRRT*.

Fig. 2. KRRT*.
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6. NONLINEAR DYNAMICS

Let’s apply now the method described above for constructing a suboptimal trajectory of a linear
system to solve similar problems in the case of nonlinear dynamics. Consider the following system
of ordinary differential equations:

ẋ = f(x) + g(x)u, x ∈ Ω, t ∈ [0,+∞). (12)

As before, we assume that the initial state x(0) = x0 ∈ Ω is fixed, u ∈ P = E(p, P ) ⊂ R
m. The

functions f(x) and g(x) are assumed to be twice continuously differentiable for x ∈ Ω.

The Ellipsoidal KRRT* algorithm, which solves the control problems formulated above, remains
similar in form. We only note the differences associated with nonlinear dynamics.

To construct estimates for solvability sets of a nonlinear system in the neighborhood of each
new vertex x(i) of the graph Γ, we use the linearization of the equations (12). Let fs(x) – be the
sth component of the vector f(x), gs(x) – be the sth row of the matrix g(x), s = 1, . . . , n, pr – be
the rth component of vector p, r = 1, . . . ,m. Then

ẋs = fs(x) + gs(x)u = fs(x
(i)) +

〈
∂fs
∂x

(x(i)), x− x(i)
〉
+ gs(x

(i))u

+
m∑
r=1

〈
∂gsr
∂x

(x(i)), (x − x(i))

〉
pr +

1

2

m∑
r=1

〈
x− x(i), Qg,(sr)(ζsr)(x− x(i))

〉
pr

+
m∑
r=1

〈
∂gsr
∂x

(ηsr), (x− x(i))

〉
(ur − pr) +

1

2

〈
x− x(i), Qf,(s)(ξs)(x− x(i))

〉
,

where Qg,(sr)(ζsr) is a matrix of second derivatives of the function gsr(x), calculated at some point
ζsr ∈ Bri(x

(i)), Qf,(s)(ξs) is a matrix of second derivatives of the function fs(x), calculated at point
ξs ∈ Bri(x

(i)). The radius of the ball Bri(x
(i)) is still determined from the formulas (10). Also

some points ηsr ∈ Bri(x
(i)) are used here. Note that the ball Bri(x

(i)) (see (3)) is used here as the
admissible range of the variable x variation. This allows to estimate the linearization error:∣∣∣∣∣12

m∑
r=1

〈
x− x(i), Qg,(sr)(ζsr)(x− x(i))

〉
pr +

m∑
r=1

〈
∂gsr
∂x

(ηsr), (x − x(i))

〉
(ur − pr)

+
1

2

〈
x− x(i), Qf,(s)(ξs)(x− x(i))

〉∣∣∣∣ � Rs,

Rs = Rs(x
(i)) =

r2i
2

m∑
r=1

max
{
λmax(Q

g,(sr)(ζ)) : ζ ∈ Bri(x
(i))

}
|pr|

+
r2i
2
max

{
λmax(Q

f,(s)(ξ)) : ξ ∈ Bri(x
(i))

}

+ ri

m∑
r=1

max

{∥∥∥∥∂gsr∂x
(η)

∥∥∥∥ : η ∈ Bri(x
(i))

}
max {|ur − pr| : u ∈ P} . (13)

Here λmax(Q) is the eigenvalue of maximum modulus of the symmetric matrix Q. As a result, the
linearized system can be written in the following form:

ẋ = A(x(i))x+B(x(i))u+ h(x(i)) + v, x ∈ Bri(x
(i)), (14)
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where

A(x(i)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
∂f1
∂x

(x(i)) +
m∑
r=1

∂g1r
∂x

(x(i))pr

)T

· · ·(
∂fn
∂x

(x(i)) +
m∑
r=1

∂gnr
∂x

(x(i))pr

)T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, B(x(i)) =

⎛⎜⎝ g1(x
(i))

· · ·
gn(x

(i))

⎞⎟⎠ ,

h(x(i)) =

⎛⎜⎜⎜⎜⎜⎜⎝
f1(x

(i))−
〈
∂f1
∂x

(x(i)), x(i)
〉
−

m∑
r=1

〈
∂g1r
∂x

(x(i)), x(i)
〉
pr

· · ·
fn(x

(i))−
〈
∂fn
∂x

(x(i)), x(i)
〉
−

m∑
r=1

〈
∂gnr
∂x

(x(i)), x(i)
〉
pr

⎞⎟⎟⎟⎟⎟⎟⎠ .

We will further interpret the linearization error v as the uncertainty v(t), on the possible values of
which the pointwise constraints are imposed:

v(t) ∈ Bρ(x(i))(0), ρ(x(i)) =
√
R2

1(x
(i)) + . . . +R2

n(x
(i)). (15)

For any control u(·)∈U and any measurable bounded function v(t) satisfying the constraint
from (15) denote x(t, 0, x0)|u(·),v(·) to be the corresponding trajectory of system (14) released from
the initial position x0 at the 0 moment of time. Note that any trajectory x(t, 0, x0)|u(·) of the
system (12) is also a trajectory of (14) for some admissible noise v(·), unless x(τ, 0, x0)|u(·) ∈
Bri(x

(i)), ∀τ ∈ [t, 0]. The converse statement is not true.

Remark 4. Since during the execution of the Ellipsoidal KRRT* algorithm it is necessary to
repeatedly linearize the system (12) in the neighborhood of each successive point x(i), then to
speed up the calculations it makes sense to estimate the linearization error more roughly, namely
in the formula (13) replace the maximum taken over Bri(x

(i)) with the maximum taken over the
set Ω. Then it will be enough to count the restrictions only once.

Due to the existence of the linearization errors, it is necessary to modify the formulas for calcu-
lating ellipsoidal estimates for solvability sets, that were used above for the case of linear dynamics.
To do this, the results from [11] can be used. Namely, now the ellipsoids E(w(t),W (t)), t � 0, are
given by the following equations:{

ẇ(t) = A(x(i))w +B(x(i))p+ h(x(i))

w(0) = x(i),
(16)⎧⎪⎨⎪⎩ Ẇ = AW +WAT −W 1/2SP1/2 −P1/2STW 1/2 + π(t)W +

ρ2(x(i))

π(t)
In×n

W (0) = ε2i In×n.

(17)

Here W = W (t), A = A(x(i)), B = B(x(i)), P = BPBT , S = S(t) is an orthogonal matrix for which

SP1/2l(t) = λ(t)P1/2l(0), S(0) = In×n, λ(t) =

√
〈l(t),Pl(t)〉
〈l(0),Pl(0)〉 , π(t) =

ρ(x(i))‖l(t)‖√〈l(t),W (t)l(t)〉 .

As in the case of linear dynamics, each ellipsoidal estimate depends on some curve l(t), which is the
solution to the Cauchy problem (8) for an arbitrary l∗ ∈ R

n: |l∗‖ = 1. The functions S(t) and π(t)
depend continuously on t.
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Note that due to the uncertainty v(t), the problem of transferring the system’s trajectory (14)
exactly to the point x(i) can no longer be talked about. Consider a certain small neighborhood of
this point of radius εi > 0. Now the system’s trajectory should be transferred into this neighborhood
despite the uncertainty v(·). Of course, the inequality εi < ri must be valid.

Some (or even all) of the ellipsoidal estimates calculated using the formulas (16), (17) may
degenerate at some point of time t = t̃ < 0. I.e. it may turn out that W (t̃) �> 0. In this case the
process of calculating such an estimate should be stopped, and it should be taken into account in
the main algorithm that this estimate is valid only for t ∈ [t̃, 0] and not on the entire interval [T, 0].

The corresponding feedback control that transfers trajectories of the system (14) from the state
(t, x), t < 0, to the εi-neighborhood of the point x(i) at the time instant t = 0, can be found by
“aiming” at one of the constructed ellipsoids E(w(t),W (t)) similarly to (9). The main properties
of such a feedback control are indicated in the following statement

Theorem 3. Let for some indices j, k there exist a vertex vj ∈ E(w(tmin,j),Wk(tmin,j)), and
Wk(t) > 0, ∀t ∈ [tmin,j, 0]. Consider the Cauchy problem for the differential inclusion ẋ∈A(x(i))x+
B(x(i))u∗(t, x) + h(x(i)) + v(t), x(tmin,j) = vj , t ∈ [tmin,j, 0]. For any admissible noise v(·) (i.e., any
measurable function satisfying constraints (15)), there exists a solution to the specified Cauchy prob-
lem x(t) = x(t, tmin,j, vj)|u∗(·),v(·) such that x(0) ∈ Bεi(x

(i)). In particular, among the trajectories
constructed in this way there is also the function x∗(t), which is the solution to the Cauchy problem
for the differential inclusion ẋ ∈ f(x) + g(x)u∗(t, x), x(tmin,j) = vj , t ∈ [tmin,j, 0].

As the linearized system (14) appropriately approximates the nonlinear system (12) only for
x ∈ Bri(x

(i)), then it is necessary to change (compared to the case with linear dynamics) the
conditions for filtering out appropriate trajectories (line 13 of the main algorithm):

x∗(j, k∗, t) ∈ Xfree ∩ Bri(x
(i)), ∀t ∈ [tmin,j, 0].

To obtain the optimal pair (x(t), u(t)) for which x(tmin,j) = vj, x(0) ∈ Bεi(x
(i)), it is necessary

to modify the relations (11) used for the case of linear dynamics:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ(t) ∈ f(x(t)) + g(x(t))u∗(t, x)

u∗(t, x) =

⎧⎪⎨⎪⎩p− PBT l0(t)√〈l0(t),Pl0(t)〉 , BT l0(t) �= 0

E(p, P ) otherwise,
x(tmin,j) = vj,

l0(t) = etA
T
s(t), (18)

s(t) =

{
argmax{〈x(t)−w(t), s〉 −

√
〈s,Wj∗(t)s〉 : ‖s‖ � 1} , x(t) /∈ int E(w(t),Wj∗(t))

0 otherwise.

The constructed feedback control should be substituted in the original nonlinear system, rather
than to its linearized analogue, in order to subsequently obtain the open-loop control.

Note that the trajectory x(t), starting from the boundary of the ellipsoid E(w(tmin,j),Wk∗(tmin,j)),
for t > tmin,j can get inside the corresponding ellipsoid due to the “non-optimality” of uncer-
tainty v(·). Moreover, it may turn out that the final trajectory will end up at point x(i) (or
it’s small neighborhood) for some t∗ < 0. In this case calculation of the trajectory x(t) should
be stopped, and the value (t∗ − tmin,j∗) should be used as a minimal time estimation instead of
−tmin,j∗. As mentioned above, another situation is also possible, when the trajectory of the system
at time t = 0 hits the point x̃ ∈ Bεi(x

(i)), x̃ �= x(i). This should also be taken into account in the
main algorithm: the point x̃ should be added to the set V of the graph’s vertices instead of x(i) (see
lines 17–23 of the main algorithm). Here, however, arises a difficulty with that part of the basic
RRT* algorithm in which the previously constructed part of the graph should be “rewired” (see
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lines 19–23). Now the constructed control function does not guarantee that the trajectory will hit
the point x(i). Then either it is necessary to consider εi > 0 sufficiently small and thereby identify
all points from the εi-neighborhood of x(i), or to completely abandon “rewiring”. In the latter case,
however, the quality of the algorithm may worsen.

7. EXAMPLE (NONLINEAR DYNAMICS)

Let’s consider a mathematical model of the planar motion of an autonomous vehicle (robot)
driven by two rotors. The equations of motion are as follows:⎧⎪⎨⎪⎩

mẍ1 = −ξ1ẋ1 + (u1 + u2) cos(ϕ)
mẍ2 = −ξ1ẋ2 + (u1 + u2) sin(ϕ)
Jϕ̈ = −ξ2ϕ̇+ (u1 − u2)r.

(19)

Here (x1, x2) is the position of the vehicle’s center of mass, ϕ – the angle that specifies its orientation
on the plane, m – the mass, J – the moment of inertia, ξ1 and ξ2 – the coefficients of viscous friction,
r – the radius of the device. u1 and u2 here denote the forces from two rotors. The following
constraints are imposed on the control parameters: ui ∈ [0, umax], i = 1, 2, where the value of umax

is given.

Let’s reduce the system (19) to the following form:

ẋ = Ax+ g(x)u. (20)

Here x ∈ R
6, x3 = ϕ, x4 = ẋ1, x5 = ẋ2, x6 = ẋ3, u ∈ R

2,

A =

(
O3×3 I3×3

O3×3 −Ã

)
, g(x) =

(
O3×2

g̃

)
, Ã = diag

(
ξ1
m
,
ξ1
m
,
ξ2
J

)
, g̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos(x3)

m

cos(x3)

m

sin(x3)

m

sin(x3)

m
r

J
− r

J

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let’s estimate the set of admissible control values using an ellipsoid:

u ∈ E(p, P ), p =

(
umax

2
,
umax

2

)
, P = diag

(
u2max

4
,
u2max

4

)
.

Linearizing the equations (20) in the neighborhood of the graph vertex x(i) (see (14)), we obtain
the following parameters: B(x(i)) = g(x(i)),

A(x(i)) = A+
umax

m

⎛⎜⎜⎜⎜⎜⎝
O3×6

0 0 − sin(x
(i)
3 ) 0 0 0

0 0 cos(x
(i)
3 ) 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , h(x(i)) =
umaxx

(i)
3

m

⎛⎜⎜⎜⎜⎜⎝
O3×1

sin(x
(i)
3 )

− cos(x
(i)
3 )

0

⎞⎟⎟⎟⎟⎟⎠ ,

R1 = R2 = R3 = R6 = 0,

R4 =
r2i umax

2m
max

{
| cos(ζ)| : |ζ − x

(i)
3 | � ri

}
+

riumax

m
max

{
| sin(ζ)| : |ζ − x

(i)
3 | � ri

}
,

R5 =
r2i umax

2m
max

{
| sin(ζ)| : |ζ − x

(i)
3 | � ri

}
+

riumax

m
max

{
| cos(ζ)| : |ζ − x

(i)
3 | � ri

}
.
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Fig. 3. Projection of the tree Γ = (V,E) onto the plane (x1, x2).

We define obstacles Mi so that constraints will be imposed only on the coordinates x1 and x2. Below
are the results of the Ellipsoidal KRRT* algorithm in this case. Figure 3 shows the projections
of the resulting graph Γ edges, as well as obstacles onto the plane of variables (x1, x2) at the
algorithm’s iteration when |V | = 369.

The parameters that were used in this numerical simulation: T = −15, m = 5 kg, J = 0.05 kg·m
rad ,

r = 0.24 m, ξ1 = 8.5 kg
s , ξ2 = 0.08 kg·m2

s·rad , umax = 1.5 N, x1(0) = ẋ1(0) = x2(0) = ẋ2(0) = ϕ(0) =
ϕ̇(0) = 0.

For the given target set

Xgoal = {x ∈ R
2 : 9.5 < x1 < 11.5, 10.5 < x2 < 12.5}

the value of the functional in this example is as follows:

t∗ = min{C(v) : v ∈ V, v ∈ Xgoal} = 134.42.

Unlike the linear version of the algorithm proposed in this paper, it is not possible to compare
its operation in the case of nonlinear dynamics with the existing KRRT* type algorithms due to
the fact that the latter either don’t allow systems with nonlinear dynamics at all or can only be
used to calculate specific, specially selected examples.

8. CONCLUSION

The modification of the RRT* algorithm considered in this article makes it possible to con-
struct suboptimal trajectories for objects with both linear and nonlinear dynamics. The software
implementation of the proposed method can be used to solve various applied problems. In some
situations the presented algorithm can be improved (be made more efficient) by the use of various
heuristics. Further work of the authors will be devoted to the study of these issues.
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