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Abstract—In precision agriculture, path planning for agricultural robots with complete cover-
ing a three-dimensional landscape is an essential task. For robots with front wheels steering
the normal curvature of the trajectories should be limited to some value determined by the
characteristics of the vehicle. The paper considers a method of deformation of these paths to
account for obstacles for trajectories described by homogeneous cubic B-splines. We propose an
optimization problem that allows calculating paths with minimizing skips in the coverage. The
considered problem is convex and belongs to the class of second-order cone programming, which
entails the possibility of its computationally efficient solution. The computational examples are
presented.
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1. INTRODUCTION

In precision agriculture, navigation measurements and monitoring using various sensors are used
to improve crop cultivation technologies. Effective use of the collected data allows, for example,
to reduce the work time, the area of the land plots involved in farming and the amount of neces-
sary resources. One of the work planning problems in precision farming is to construct paths for
agricultural robots that completely cover a specified area of a three-dimensional landscape.

Planned movement trajectories must be realizable. The normal curvature u of the trajectories
of robots with front wheel steering must satisfy the condition

‖u‖ < umax, (1)

where umax is the maximum possible normal curvature of the trajectory. The value of umax is
defined by the formula

umax =
tanαmax

L
, (2)

where L is the distance between the front and rear robot axles (wheelbase), αmax is the maximum
efficient front wheels steering angle [1]. For a vehicle with two front wheels, the angles of their
rotation may be different. For this reason, we use the effective rotation angle in the formula (2).
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PATH DEFORMATION METHOD WITH CONSTRAINTS 135

A differential wheeled agricultural machine allows can turn on the spot (zero turn), and the condi-
tion (1) is not necessary to implement the trajectory. In this paper, we consider the path planning
for the machines with front wheel steering for which the normal curvature of the realized trajecto-
ries must be limited. It is assumed that during the field processing the movement is carried out by
front gear, and the reverse gear can only be used for the turns at the field boundary.

Complete coverage path planning for landscapes is used, for example, in sowing and planting
plants, treating them from pests, harvesting and mowing lawns. Parallel or almost parallel paths
are often used to cover the field. When the terrain of the field can be neglected, path planning
is performed for a flat surface. The features of constructing flat parallel paths in arable farming
are considered in [2]. Also the problem of choosing the direction of constructing paths taking into
account the shape and length of turns and the problem of decomposing a field of complex shape
into sections, for each of which parallel paths can be planned separately, are reviewed in [2]. The
path planning on a three-dimensional landscape is noticeably different from the flat case. In [3–5]
it is proposed to construct a three-dimensional coating relative to some initial swath that crossing
the field. In general, the initial path is curved. In [4], a search for neighboring paths by solving the
problem of the intersection of a cylinder with a surface is proposed. For a parametrically defined
curved surface an approach to construct strictly parallel paths without restrictions on curvature
is proposed in [6]. As shown in the work on the planning of three-dimensional paths in arable
farming [3], the target functions that allow estimating field coverage can take into account soil
erosion by water, the lengths of turns between swaths, gaps in the coverage due to curvature
restrictions. In [5], an complete coverage path planning algorithm for constructing swaths along a
gentle landscape with restrictions on the normal curvature and on the overlap width of neighboring
swaths is proposed.

The obstacles on the field can be both dynamic and stationary. The dynamic obstacles can
change their position over time. For example, it can be animals or other agricultural machines. For
autonomous robots, the trajectories of dynamic obstacle avoidance planned during the movement.
Information about dynamic obstacles is collected in real time using stereo cameras, lidars and other
sensors [7]. Dynamic consideration of obstacles requires the trajectory replanning [8]. Solving
trajectory planning problems in real time requires a certain amount of computing resources. For
this reason, stationary obstacles must be considered when designing a coverage prior to starting
field processing. Note that in both the static and dynamic obstacle cases the condition (1) must
be met.

In [2, 9–11] field decomposition methods are discussed. For the different configurations of ob-
stacles, these methods allow to divide the field into separate sections, each of which can be covered
by parallel paths. Such separation often requires the allocation of a sufficiently wide area for turns
near the obstacle. In the literature, many problems are considered in which obstacle avoidance tra-
jectories are constructed with minimizing the path length. We can be notice the approaches based
on the graph search algorithms [12, 13] and path deformation algorithms using penalty functions
(artificial potential fields) [14–16]. However, in precision farming, solving the problem of deforming
the path while minimizing its length can lead to significant skips in the coveage. Therefore, an
approach to reduce the unprocessed area is required.

In this paper, we propose a method that allows for planning field coverage while taking obstacles
into consideration by solving the second-order cone programming problem for machines with front
wheel steering. Second-order cone programming (SOCP) problem can be formulated in general as
follows. [17, 18].

Problem 1.

minimize
x

fTx (3)
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136 TORMAGOV

subject to

‖Aix+ bi‖ � cTi x+ di, i = 1, . . . , N, (4)

where x∈Rl (l is the dimension of the variable), f ∈Rl, Ai ∈R(li−1)×l, bi ∈Rli−1, ci ∈Rl, di ∈R,
N is number of constraints, and li are natural numbers.

Denote by ‖·‖ the Euclidean norms of vector. SOCP problems are convex and have computa-
tionally efficient solution methods, see [19, 20].

Note that after coverage path planning, it is necessary to determine the routes of one or more
machines along the obtained swaths, which allows processing in the shortest time or with the
minimum route length. In general, routing is a computationally time-consuming problem. Its
exact solution often cannot be obtained in an acceptable time. Therefore, in practice, heuristic
routing algorithms are often used. Examples of such algorithms based on the simulated annealing
method are given in [5, 21, 22].

2. PROPOSED METHOD

Let us assume that the field coverage has been constructed without taking into account obstacles.
It is required to change the swaths that cross the boundaries of obstacles so that each path is feasible
and the area of the untreated sections is as small as possible. For realizability, it is necessary that
the path does not cross obstacles and that the curvature condition (1) is met.

For proposed method, it is convenient to use a local right Cartesian coordinate system
ENU (x, y, z) (East, North and Up) to determine the coordinates of points in space. To deter-
mine it, a certain point on the field is fixed, which is then used as the origin of the coordinate
system. The x axis is directed to the east, the y axis is directed to the north, and the z axis com-
plements the axes to a right-handed set of vectors. The x and y axes lie in a tangent plane to the
ellipsoid of the Earth model. A digital elevation model (DEM) is used to describe the surface on
which robots operate. It is defined by the function z = (x, y), which allows to determine the value
of z for the known coordinates x and y. However, in practice, it is often impossible to accurately
determine the height of each point on a field. Therefore, height interpolation is used. First, data on
the heights of reference points on the field are collected. Then, the height determination function
z = (x, y) is constructed based on the data obtained. Examples of methods for constructing such
functions on a uniform grid include bilinear interpolation and bicubic interpolation [4]. On an
irregular grid bivariate B-splines interpolation [23] and Kriging [24] can be be used.

It is convenient to use smooth functions to describe the trajectory of wheeled robots. One
example of such a function is the homogeneous cubic B-spline [25]. The spline curve is defined by
a set of control points r1, r2, . . . , rn. The set is supplemented with points

r0 = 2r1 − r2, rn+1 = 2rn − rn−1. (5)

Every four adjacent control points ri−1, ri, ri+1, ri+2 set an elementary B-spline r(i)(t), i =
1, . . . , n− 1, by parametric formula

r(i)(t) =
(1− t)3

6
ri−1 +

4− 6t2 + 3t3

6
ri +

1 + 3t+ 3t2 − 3t3

6
ri+1 +

t3

6
ri+2, (6)

where the spline parameter t takes values from the interval [0, 1], see Fig. 1. The curve r(t), t∈ [0, n]
consists of a set of elementary splines r(i)(t), i = 1, . . . , n. It can be defined by formula

r(t) = r(i)(t− (i− 1)), i = �t+ 1� , t∈ [0; n), (7)
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PATH DEFORMATION METHOD WITH CONSTRAINTS 137

Fig. 1. The spline curve r(t), the elementary spline r(i)(t) (highlighted on the spline curve) determined by
four equidistant control points ri−1, ri, ri+1, ri+2, vectors r

(i)′(0) and r(i)′′(0).

Fig. 2. The contour of the obstacle (solid line), the spline curve r(t) before (dashed line) and after (dotted
line) the deformation of the path, the search directions Ni and control points ri.

r(n) = r(n−1)(1), where �t� is integer part of t. As it can be seen from the formulas (6) and (7),
r(t) is continuous with continuous first and second derivatives including at the junctions of ele-
mentary splines. Note that both the spline trajectory and the control points may not lie on the
surface z = (x, y) defined by the digital elevation model. However, they are usually located near
this surface, which is suitable for the practical application of such a description of paths.

In [5, 7] a method for constructing obstacle-free path coverage using limited curvature paths
described using homogeneous cubic B-splines is proposed. Due to the presence of obstacles in the
field, this method cannot be used directly. In this paper it is proposed to modify the field coverage
constructed without taking into account obstacles by solving a set of path deformation problems.
Since the spline curve is defined by a set of control points, the definition of a deformed path is
reduced to specifying its control points.

Denote the coordinates of control points by xi, yi, zi, such that ri = (xi, yi, zi). Let us define a
set of unit vectors Ni = (Nx

i , N
y
i , N

z
i )∈R3, i = 1, . . . , n, so that they are parallel to the tangent

planes to the surface at points (xi, yi, z(xi, yi)) and the direction of the normal of the spline
projection onto the tangent plane for (xi, yi, z(xi, yi)) matches Ni. Along the directions Ni we
look for new positions of the spline control points ri +Nidi, i = 1, . . . , n, where the ranges of
values of di are determined by the geometric constraints of the problem, see Fig. 2.

Let us consider the issue of constraints on the normal curvature of a trajectory (1).

Statement 1 (sufficient conditions). For a flat homogeneous cubic B-spline with control points
ri +Nidi, i = 1, . . . , n, and the complement (5), to be meet the condition (1), it is sufficient that∥∥∥∥∥xi−1 +Nx

i−1di−1 − 2(xi +Nx
i di) + xi+1 +Nx

i+1di+1

yi−1 +Ny
i−1di−1 − 2(yi +Ny

i di) + yi+1 +Ny
i+1di+1

∥∥∥∥∥ � umax l̂i(di−1, di+1), (8)

4l̂i(di−1, di+1) = (xi+1 − xi−1)
2 + 2(xi+1 − xi−1)(N

x
i+1di+1 −Nx

i−1di−1) +

+ (yi+1 − yi−1)
2 + 2(yi+1 − yi−1)(N

y
i+1di+1 −Ny

i−1di−1), (9)

for i = 1, 2, . . . , n.
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138 TORMAGOV

Note that (8) only implies the fulfillment of condition (1) at the junction points of elementary
splines. The suitability of this condition for practical application is due to two factors. The first
factor is that the maximum value of ‖r(i)′′(t)‖ for each elementary spline achieves at t = 0 or t = 1.
The proof of this statement is given in [5]. The second factor is that the value of ‖r(i)′(t)‖ reflects
the correspondence between small changes in the trajectory length and corresponding changes in
the spline parameter. It is approximately constant for an elementary spline with equidistant control
points.

In the case where the surface (x, y) is an inclined plane, the conditions for normal curvature
can be obtained from (8) by rotating the coordinate system. For a curved surface, the curvature
vector k(t) may not coincide with the vector of normal curvature u(t). Denote the maximum
length of the vector between adjacent control points of the spline by Ds. Consider the case of
gentle surfaces for which motion over a distance of 2Ds can be considered with good accuracy as
motion on an inclined plane. In precision agriculture, this assumption is valid for a wide range
of applications. In this instance, the magnitude of the vector u(t) can be approximated using the
curvature of the trajectory in the tangent plane. Define the vector r′i as

r′i =
ri+1 − ri−1

‖ri+1 − ri−1‖ . (10)

For each control point ri let us define a flat coordinate system (x̃, ỹ) with the origin at the point ri
with coordinate axes co-directed to the vectors r′i and Ni. The condition (8) take the form∥∥∥∥∥∥

x̃i−1 + Ñx
i−1di−1 + x̃i+1 + Ñx

i+1di+1

ỹi−1 + Ñy
i−1di−1 − 2di + ỹi+1 + Ñy

i+1di+1

∥∥∥∥∥∥ � umax l̃i(di−1, di+1), (11)

where

4l̃i(di−1, di+1) = (x̃i+1 − x̃i−1)
2 + 2(x̃i+1 − x̃i−1)(Ñ

x
i+1di+1 − Ñx

i−1di−1) +

+ (ỹi+1 − ỹi−1)
2 + 2(ỹi+1 − ỹi−1)(Ñ

y
i+1di+1 − Ñy

i−1di−1), (12)

in the coordinate system for the control point ri. Value pairs (x̃i−1, ỹi−1) and (x̃i+1, ỹi+1) are
coordinates of projections of neighboring control points in the system (x̃, ỹ). (Ñx

i−1, Ñy
i−1) and

(Ñx
i+1, Ñy

i+1) are the coordinates of their normals in the system (x̃, ỹ). Note that in general the
coordinate system (x̃, ỹ) is different for each ri. Therefore the calculated values of (x̃i−1, ỹi−1),
(x̃i+1, ỹi+1), (Ñ

x
i−1, Ñy

i−1), and (Ñx
i+1, Ñy

i+1) for ri can not be used in the curvature conditions
for ri−2 and ri+2. If the points ri−2 and ri+2 exist then a separate calculations of projections in
coordinate systems with origins at ri−2 and at ri+2 are required.

The curvature conditions (11) have the form of the second-order cone (4). The right side
of (11) depends linearly on the variables di, i = 1, . . . , n. It allows us to formulate the problem
of path deformation with the curvature constraints in the form of the following second-order cone
programming problem.

Problem 2.

minimize
q

qn+1 (13)

subject to (11) for i = 1, . . . , n, ∥∥∥wTq
∥∥∥ � qn+1, (14)

di � qi � di, i = 1, . . . , n, (15)

where q ∈Rn+1, qi is the ith component of the vector q.
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PATH DEFORMATION METHOD WITH CONSTRAINTS 139

The first n components of the optimal vector q are equal to shifts of the control points that

need to be carried out, di = qi, i = 1, . . . , n. The values of di and di, i = 1, . . . , n define geometric
constraints on the shift of control points in the direction Ni caused by obstacles and field boundaries.
A bypass direction is selected for each obstacle. The first n components of the vector w∈Rn+1

are fixed weights, which can be chosen as equal or depending on the location of the control points
relative to the obstacles. The last component of the vector w is zero, wn+1 = 0. The optimization
criterion (13) and the condition (14) allow to minimize the shift of the control points and reduce
gaps in the coverage formed when bypassing obstacles due to restrictions on the path normal
curvature.

In practice, we can use the representation of obstacle boundaries and the field contour as closed

polylines to determine the values of di and di, i = 1, . . . , n. The projections of these closed polylines

onto the local horizon form polygons. In the local horizontal plane, the search for di and di
represents the selection of the traversing direction for each obstacle and solving the intersection
search problem for a straight line and a polygon.

The proposed optimization problem is convex and admits computationally efficient solution
methods. Another computational feature of this problem is that a conclusion about its feasibility
or infeasibility can be reached during the solution process. Note that the proposed approach is not
aimed at finding directions to bypass obstacles. It serves as a tool for constructing paths within a
given convex area defined by the constraints (15). If the path deformation problem is infeasible and
an acceptable path exists within the specified boundaries, then this may be due to the inability to
meet the conditions for curvature when shifting points along the selected directions. The inability
to satisfy the curvature constraints may be due to the fact that the uniformity of the control point
locations is violated for large displacements. In addition, the projections on the plane (x, y) of the
search directions Ni can intersect. This fact leads to solutions with self-intersecting trajectories
for which the curvature conditions are often violated. These drawbacks can be eliminated using
the following path-deformation algorithm based on the relaxation of the problem’s constraints and
representing the path with equidistant control points.

Algorithm 1 (path deformation).

1. Solve the Problem 2 with the initial value of umax. If a solution exists, parameterize the
trajectory using evenly spaced control points. The Problem 2 is repeatedly solved using the current
positions of the control points. Return the solution as an answer, if it exists.

2. Solve the Problem 2 for the current location of the control points and the maximum value of
normal curvature umax +Δ, Δ > 0. If a solution exists, parameterize the trajectory using evenly
spaced control points and go back a step 1. If a solution does not exists, increase the value of Δ
and repeat the calculations.

The algorithm at each stage of its operation involves choosing a change in the curvature of Δ.
The number of iterations in the algorithm depends on the value of Δ that is chosen.

3. THE COMPUTATIONAL EXAMPLES

Figure 3 shows an example of solving the path deformation problem for three obstacles. The
value of umax is 0.4 m−1 and the swath width is 1m. Firstly, the field coverage was constructed
without taking into account obstacles using the method given in [5]. Then the path was deformed
with unit weights (wi = 1) for all control points. The parameter Δ was selected equal to

Δ = (u−1
max − 0.09m)−1 − umax, (16)

where m is the iteration number of the path deformation algorithm in step 2. This relaxation
of the curvature constraint corresponds to a decrease in the allowed radius of curvature of the
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140 TORMAGOV

Fig. 3. The example of the path deformation for three obstacles on the field.

Fig. 4. The example of path deformation using the penalty functions (artificital potential fields).

trajectory by 0.09 meters for each iteration. Obviously, the number of iterations is limited because
it is necessary to provide a non-negative value for the expression u−1

max − 0.09m.

Figure 4 shows an example of solving the path deformation problem using penalty functions
(artificial potential fields [15, 16]). The result of the application of the path deformation method
based on the solution to problem 2 (SOCP) is shown in Fig. 5. It can be seen that the optimization
criteria (13) for the problem 2, together with the conditions (14), made it possible to reduce the
untreated area around a non-convex obstacle, which was formed due to restrictions on the normal
curvature.
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Fig. 5. The example of path deformation based on solving the SOCP problem.

In all examples, the algorithm described in [19] (with CVXPY [26, 27]) was used for solving
second-order cone programming problems. The routes for bypassing swaths are designed for a
single robot with forward and reverse gears in headland turns. The ant colony algorithm (ACO)
was used to optimize the length of the route. The features of its application to routing problems
are discussed in [28]. It should be noted that minimizing the route length for this example does not
necessarily translate into minimizing the working time, at least due to the requirement for stops
when changing directions on headland turns.

4. CONCLUSION

The paper proposes a method for deforming trajectories to account for obstacles, which is
applicable in precision agriculture when planning the field coverage with swaths. The results are
obtained for the case of describing the motion trajectory by the homogeneous cubic B-spline. The
proposed method allows to obtain paths for front wheel steering robots, for which the maximum
acceptable normal curvature of the path is limited. The trajectory is calculated by minimizing the
Euclidean distance between control points of the initial and final splines, which reduces the area
that remains unprocessed. The novelty of the approach is the formulation of the path deformation
with a curvature constraint in the form of the second-order cone programming problem, which
is convex and has computationally efficient solution methods. The limitation of the approach is
the need for a sufficiently flat field relief, which often meets in practical applications of precision
agriculture.

APPENDIX

Proof of Statement 1. In the case of motion in the plane (x, y), the norm of the curvature
vector k(t) of the spline curve at the point r(i)(t) is determined by the formula

‖k(t)‖ =

∥∥∥r(i)′′(t)∥∥∥ sinϕ(t)∥∥r(i)′(t)∥∥2 , (A.1)
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where r(i)
′
(t) and r(i)

′′
(t) are vectors of the first and second derivatives of the spline by parameter,

ϕ(t) is the angle between the vectors r(i)
′
(t) and r(i)

′′
(t). In this case, the curvature vector k(t)

coincides with the normal curvature vector u(t). The vectors of the first and second derivatives at
the junction of elementary splines have the form

r(i)′(0) =
1

2
(ri+1 +Ni+1di+1 − ri−1 −Ni−1di−1) , (A.2)

r(i)
′′
(0) = ri−1 +N r

i−1di−1 − 2(ri +N r
i di) + ri+1 +N r

i+1di+1. (A.3)

Note that the function l̂i(di−1, di+1), defined by the formula (9), is a lower bound for
∥∥∥r(i)′(0)∥∥∥2,

which does not take into account the quadratic terms of displacement.∥∥∥r(i)′(0)∥∥∥2 = l̂i(di−1, di+1) +
1

4
(Nx

i+1di+1 −Nx
i−1di−1)

2 +
1

4
(Ny

i+1di+1 −Ny
i−1di−1)

2
. (A.4)

Using (8), we obtain ∥∥∥r(i)′′(0)∥∥∥ sinϕ(0) � umax

∥∥∥r(i)′(0)∥∥∥2 . (A.5)

This concludes the proof of (1) for the junctions of elementary splines.
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