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Abstract—In this paper, we consider finite- and infinite-dimensional optimization problems
with constraints of general type. We obtain sufficient conditions for stability of a strict solution
and conditions for stability of a set of solutions with more than one point in it according to
small perturbations of the problem parameters. For finite-dimensional extremal problems with
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1. INTRODUCTION

In the theory and practice of extremal problems solving, one often has to deal with uncertain
parameters involved in the optimized functional and/or the constraints in the problem. In this
regard, a significant amount of research were aimed in recent decades at studying the dependence
of solutions to extremal problems on these parameters. The key question is how much the solution
to a given extremal problem will change (assuming that this solution exists) with a “small” change
in parameters near some given values. In the case of the same “small” changes in the solution, we
call this solution stable, and the magnitude of these changes is usually called an index of sensitivity
of the solution with respect to small changes in parameters [1].

Abstract optimization problems with constraints and uncertain parameters and the stability of
their solutions were considered earlier in [2, 3]. It is also the main topic in [4]. The fundamentals
of sensitivity theory for finite-dimensional problems with constraints are described in detail in [1].
A significant number of results on stability of solutions to optimization problems with constraints
were obtained under additional regularity conditions; see, for example, the latest results concerning
the Robinson regularity condition [5, 6]. Stability analysis in the absence of such additional as-
sumptions still remains a non-trivial task [7]. At the same time, the issue of estimating sensitivity
of solutions is relevant for a wide class of finite-dimensional extremal problems and optimal control
problems with uncertain and random parameters [8].

In this paper, we consider the following constrained minimization problem:
flx,0) = inf, x € ®(0),

where o is a parameter. This statement naturally includes parameterized maximization problem
of the same type. In Sections 2, 3 we assume that variable x takes values in an arbitrary Banach
space, the parameter o takes values in a topological space, and the function f and the set-valued
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100 ARUTYUNOV et al.

mapping ¢ satisfy natural continuity assumptions only. Under these assumptions, we obtain suffi-
cient conditions for stability of a strict solution xg to the problem for a certain fixed value of the
parameter o = oy (Lemma 1). In Section 4 the obtained result is generalized to the case when the
minimum of the problem for ¢ = g is attained not at a single point, but on an entire subset of
the set ®(0p) (Lemma 2). In Section 5, we use the construction of A-truncations [9] to concretize
these results to a finite-dimensional case with constraints of equality type.

2. PRELIMINARIES

Let a Banach space X and a point zg € X be given. Denote by B, (xg) C X a closed ball of
radius r > 0 with center at point z.

Let R > 0 be some fixed radius and ®(0), o € 3, be given non-empty closed sets, where ¥ is a
given topological (in particular, metric) space. Moreover, let ®(o) C Bgr(z¢) Vo € 3.

Consider the problem
f(x,0) = inf, x € ®(0) (1)

for each fixed o € ¥, playing the role of a parameter. Here f(-,0) are given continuous functions
on Br(xo).

The sets ®(o) have the following meaning. As a rule, they are given in the form ®(0) = {z €
X : F(z,0) € C(0)} N Br(xp). Here F' : X x ¥ — Y is a given continuous mapping, and C(c) C Y
are given non-empty closed sets that define the constraints of the problem (1), Y is a normed space.
If we consider the problem without constraints, then ®(o) = Bg(zo).

Let a point 0p € ¥ be given and assume that the first countability axiom holds at og (for
example, og is an arbitrary point in a metric space ). From the set of the problems (1) we
separately consider the problem

f(x):= f(z,00) = inf, € ®(0y). (2)

Suppose that the functions f(-, o) converge to f = f(-,00) as 0 — ¢ uniformly on Br(xp). The
latter means that for any ¢ > 0 there exists a neighborhood O(og) C X of the point o( such that

|f(x,0) — f(z)] <e Vx & Br(zg) Vo e O(op). (3)

We will assume that for each o the infimum in problem (1) is finite. Let also xzy € ®(0y), and
let z¢ be the strict solution to the problem (2), i.e.

flzo) < f(x) Vo e P(og): z # xo. (4)

Let us introduce two assumptions on the function f = f(-,0¢). The first one is that there exists
a non-decreasing function ¢ : Ry — Ry U {400} such that §(0) =0, d(r) > 0 for r > 0 and

f(x) = f(zo) +0(lz — zoll)  Va € ®(00). (5)
The second assumption is that
z € ®(0), T€P(0g), |z—2| =0, c=00 = flz)>[f(Z) —1Lo), (6)

where 1(0) > 0 for any o # 0g and 1(o) — 0 as 0 — 0¢. In other words, for any € > 0 there exists
a neighborhood O(og) C ¥ of the point oy and a real v > 0 such that for all o € O(o() we have

e ®(0), Te®(on) lz—z<r = [fl)=/fF) -
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STABILITY OF SOLUTIONS TO EXTREMAL PROBLEMS 101

The following assumption concerns the set-valued mapping ® : ¥ = Bpg(zg). Namely, we will
assume that it is upper semicontinuous at the point og, i.e.

®(0) C ®(00) + Bi(0)(0) =: By(5)(®(00)) as o — oo. (7)

Here the function 1(o) is the same as in (6), the symbol + denotes the Minkowski addition (for
more information about set-valued mappings, see, for example, [10, Chapter 1] or [11, §17]).

3. STABILITY OF THE SOLUTION TO AN EXTREMAL PROBLEM

Let by definition z(og) = z¢. Let a non-negative scalar function ¢ be given on ¥ such that
(o) = ¥(0op) = 0as 0 — og and for any o € X3, 0 # 0y, there exists x(0) € (o) with the property

f(x(0),0) < f(x,0) +1(0) Ve P(o). (8)

The specified function 1 always exists. Indeed, if the space X is finite-dimensional, then the
solution x(o) to the problem (1) of minimizing a continuous function on a compact set ®(o) exists
and we can put ) = 0. Now let the Banach space X be infinite-dimensional. Then for any (o) > 0,
o # 09, the infimum in the problem (1) is finite, so its solution exists, but only up to . Therefore,
there exists x(o) such that (8) is satisfied.

Definition 1. The solution x( to the extremal problem (2) is called stable if for any points
z(o) € ®(0), o # 00, satisfying the condition (8), occurs

x(o) > x9 as o — o0p.

The question is, when the solution z( to the problem (2) is stable? One of the answers to this
question is given below.

Lemma 1. Let p(0y) := x, and for any o # og there exists p(o) € ®(o) such that
p(o) > x9 as o — og. (9)

Let, in addition, the point xo be the strict solution to the problem (2), and let the conditions (3),
(5)=(7) hold. Then the solution xq to the problem (2) is stable.

Proof of Lemma 1.

Without loss of generality, we assume that 2o = 0 and f(0) = 0.

Consider the contrary. Then, by virtue of the first countability axiom, this means that there
exist sequences {o;} and {z;} such that o; — oo, Vi z; = 2(0;) € ®(0;) and (8) holds, but the
sequence {x;} does not converge to zero, i.e. there exists a real £ such that 0 < 2¢ < R and, after
passing to a subsequence, we have ||z;|| > 2¢ for all i.

By (7) there exist points ; € ®(og) such that

This means that for all sufficiently large ¢ we have ||Z;|| > . Hence, by assumption (5), f(Z;) >
0(||z:]]) = d(e) > 0 holds, i.e. there exists dp = d(¢)/2 > 0 such that f(z;) > 2Jy for all sufficiently
large 4. But then, due to (6) and (10), we have f(z;) > f(Z;) — 60/2 = 30, for all sufficiently large 4.
Therefore, since by virtue of (3) the functions f; := f(-,0;) converge uniformly to the function f
on Br(0), for all sufficiently large i the inequality f;(z;) > do holds.
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Let us put ¢; = ¢(0;) and ¥; = ¢¥(0;). By (9) ¢; — 0, and by virtue of the properties of the
function ¢ we have ¢; — 0, i — oo. Therefore, by virtue of (3), there exists a positive integer iy
such that for all i > ig

do
[fi(x) = f@)| + 4 < 5 Vo € Br(0). (11)
From the continuity of f, increasing the positive integer i( if necessary, we obtain that
1 S
fle) < iz (12)

For i > iy, by virtue of (8) for an arbitrary x € ®(0;), fi(x;) < fi(z) + ¢; holds. In particular,
for x = ¢; € ®(0;) we obtain that for all sufficiently large 7

0

fi(zi) < filwi) + i = (fz‘(%‘) = flei) + %‘) + flpi) < %0 + flpi) < ?0-

Here the last inequality follows from (12), and the previous one follows from (11).

Thus, we have proved that f;(z;) < d9/2 for all large i. But by construction we have f;(x;) >
do > 0, i.e. a contradiction is obtained. Lemma 1 is proved.

Let us discuss the stability conditions in Lemma 1. We start with the assumption (5). As the
following example shows, in a finite-dimensional space X it always holds when (4) is fulfilled.

Ezample 1. Let the Banach space X be finite-dimensional, and zy be the strict minimum of
the function f on the set ®(oy), i.e. the condition (4) holds. Then the function § satisfying the
estimate (5) is determined by the formula

3(r) = min{ f(z) = f(w0) : @ € B(00), |lz — wo|| =7}, r>0.

Here we consider the minimum over the empty set to be equal to +oo.

Obviously, for a finite-dimensional space X, due to the compactness of each of the sets ®(o() N
{z € X : ||z — x| = r}, the defined function 0 satisfies all the assumptions. The example is com-
plete.

Let us consider the case when the space X is infinite-dimensional, the function f is smooth in
a neighborhood of the point z(, and the set ®(ogp) is determined by a finite number of smooth
constraints of equality and inequality type. In this case, if the sufficient second-order condition is
satisfied in the problem (2) (see, for example, [12, §8] or [13, Theorem 8.1]) and the radius R > 0 of
the ball Bg(xg) is small enough, then there exists ¢ > 0 such that the function §(r) = er? satisfies
the estimate (5). Generally speaking, for the existence of a function ¢ satisfying (5), it is sufficient
that any sufficient conditions for a strict minimum of the second or higher orders are satisfied (see,
for example, [13, Theorems 8.3, 15.2, 15.3]) and the real R > 0 is small enough.

At the same time, the following counterexample shows that in an infinite-dimensional Hilbert
(especially Banach) space X, if the sufficient conditions for a strict minimum of the second or
higher orders in the problem are not satisfied, then the appropriate function § may not exist for
any value of R > 0. In this case, the assertion of Lemma 1 is failed even in a problem without
conatraints. Thus, the assumption (5) is essential.

Ezample 2. Let X = £y be the space of real square-summable sequences with the usual inner
product. Let {e;} denote the standard basis in /5, i.e. sequences whose ith real equals 1 and the
rest are zeros. Let A denote a positive self-adjoint compact linear operator A : X — X, which is
defined by an infinite diagonal matrix containing i~! on the main diagonal, i = 1,2, ..., and zeros
outside it (see, for example, [14, § 6.9]).
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STABILITY OF SOLUTIONS TO EXTREMAL PROBLEMS 103

Let ¥ ={i~!:i e N}U{0} C R with the topology induced from R, and let g = 0, f(x) = (Az, ).
For i € N we put fi(z):= f(z,i" ') = (A;x,z), where A; is obtained from A by replacing i~?
with —i~! at the 7th place on the diagonal. Next, we put zg =0 and 1(c) =0. Let us also
fix an arbitrary R > 0 and put ®(o) = Br(0) Vo (i.e., there is no constraint x € ®(0)).

Here the condition (7) is satisfied trivially. The condition (6) is satisfied by the following:

[f(z) = f(@)| = [(Az, z) — (AZ, )|
< [(Az,2) — (AT, 2)| + [(AZ, x) — (AT, )| < [[Allllz — Z[|([J< ]| + [1Z]])
<2R||Alljz =z =0 as |z —Z| — 0, =z, € Bgr(0).

As {¢(i71)} in the condition (9) we can take any sequence of elements from Bg(0) converging
to zero, for example {i~!Re;}. Condition (3) is satisfied, since by construction f; — f as i — oo
uniformly in z € Bg(0). Thus, in this example, the conditions (3), (6), (7) and (9) hold.

At the same time, condition (5) is failed, since Vr > 0 inf{f(x) : ||z|| = r} = 0, and there is no
corresponding function . Let us show that the assertion of Lemma 1 is also failed. Indeed, the val-
ues of f(z) are positive for z # 0, f(0) = 0, however inf{fi(x) : # € Br(0)} = —R%* ! for alli € N,
and this infimum is attained at x; := Re; € Br(0). The points x; = x(i~!) satisfy the condition (8)
for ¢» = 0, but the sequence {z;} does not converge to zero, i.e. the point xg = 0 is not the stable
solution to the problem (2). The example is complete.

Let us turn to the assumption (6). From the Cantor theorem on the uniform continuity of a
continuous function on a compact set it follows that the assumption (6) is automatically satisfied
in a finite-dimensional space X.

Indeed, let X be finite-dimensional. Then for an arbitrary fixed R > 0 the closed ball Br(z)
is compact. From the conditions x € (o), T € ®(0p) and the assumption ®(o) C Br(xg) Vo, it
follows that =, € Bgr(xo). By virtue of the Cantor theorem applied to the function f on the
compact set Br(xo), we obtain that |f(z) — f(Z)| — 0 as ||z — Z|| = 0, which proves (6).

If the space X is infinite-dimensional, then the assumption (6) is already essential, even if this
space is Hilbert. Let us give a corresponding example.

Ezample 3. Let X = {5 be the Hilbert space, as in Example 2, {e;} C {2 be the standard basis.
Let us put 29 = e1, R =2, B := Bsy(e1), ¥ = {i~! :i € N} U {0}, with op = 0 and ¢/(c) = 0. The
function f(z,0) does not depend on o and is determined by the formula

flx,o0)=f(zx)=1-— imax{o, 1 —2illx —¢l|]}, x€ly, oe€X. (13)
i=1

Since the supports of continuous functions x — max{0,1 — 2i||x — ¢;||} are pairwise disjoint balls
B2 (ei), then the function f : X — R is well defined and continuous (including on B).

Further, we put

1
O0)={e1}U{u;:i=2,3,...}, where u; = (1 - §>€z‘;
1

1 1
O(i7") = {as, b}, where a; = (1 - 2_1')617 b; = <1 REES 1)2.>6i7 =12,

r)y=r/2, r=0.
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To carry out the following constructions, let us calculate the values of the function f at some
points. Since ey, a; € Bys(e1), then
f(er) =1 —max{0,1 —2|le; —e1|} =0, (14)
1
f(a;)) =1 —max{0,1 —2||a; —e1]|} = T (15)

Since u;, b; € Bl/(%)(ei), then

f(u;) =1 —max{0,1 — 2i||u; —e;||} =1, (16)

f(b;) =1—max{0,1 — 2i||b; —e;||} =1 — maX{O, 1-— ; i 1} = zi T (17)

Let us show that for given X, f, &, 3, xg,00 and R, all assumptions of Lemma 1 are satisfied,
except the assumption (6).

The assumption (3) is satisfied since f does not depend on ¢. The infimum in the problem (1)
is finite for any o # o0¢, since the set ®(o) is finite, and the infimum in the problem (2) is finite
due to (14) and (16). Moreover, f(xg) = f(e1) =0 < 1 = f(x) for any = € ®(0) : x # x, which fol-
lows (4). The relation (8) holds for z(i7!) = b; € ®(i71),i =1,2,..., 2(0) = e; € ®(0) and 1) = 0.
The inequality (5) is satisfied because

14 U — e 1 1\? 16
en) + 80 —eal) 2 o - eal) = LA = 2 s (1= 1) <199 g
2 2 27
for any ¢« = 2,3,.... The mapping ® is upper semicontinuous at zero because |la; — e1|| — 0 and

lbi — wil| — 0 as i — oo, i.e. (7) holds. Finally, the relation (9) obviously holds for ¢(i~1) = a;,
i=1,2,....

Thus, all assumptions of Lemma 1 are satisfied except (6). And this assumption (6) is failed
since [|b; — u;|| = 0, f(b;) — 0 and f(u;) — 1 as i — oo. The assertion of Lemma 1 is also failed,
since z(i~1) = b; /4 e1 = xg as i — oo. The example is complete.

Let us turn to the assumption (7). The following example shows that it is also essential.

Ezample 4. Let X =R, ¥ =R, f(z,0) =2, 20 =09 =0, R=1, (o) = [-1;1] for o # 0,
®(0) = {0} and ¢ (o) = 0. Then, obviously, o = 0 is not the stable solution to the problem (2).
It is directly verified that in this example all assumptions of Lemma 1 are satisfied, except for the
assumption (7).

Note that this essential assumption (7) is fulfilled for a wide class of problems, for example,
for all finite-dimensional problems with the inclusion-type constraints under natural continuity
assumptions. Let us demonstrate this with the following example.

Example 5. Let X be a finite-dimensional Banach space, Y be a normed space, and ¥ be a
metric space. Let F': X x X — Y be a continuous mapping and C' C Y be a non-empty closed set.
For o € X we put

O(o)={r € X: F(x,0) € C} N Bg(xy) # 2. (18)

Then the set-valued mapping ® satisfies the assumption (7). Indeed, to verify (7) by [11, Theo-
rem 17.15] it is sufficient to show that @ is a closed mapping. Recall that a set-valued mapping
® : ¥ = Br(xp) is called closed if its graph gph ® := {(0,x) € 3 X Bg(zg) : x € ®(0)} is closed.
So, let the sequence of points (o;,x;) € gph ® converge to the point (7,%) € ¥ x Bgr(zp). Let
us check that (6,7) € gph® < 7 € ®(0) & F(z,0) € C. By assumption we have F(x;,0;) € C,
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STABILITY OF SOLUTIONS TO EXTREMAL PROBLEMS 105

o; — o0 and z; — T as i — oo. But then, due to the continuity of F', F(z;,0;) = F(Z,5), i — 0.
Therefore F(Z,o) is the limit point for the sequence of points F(z;,0;) € C. Since the set C is
closed, we obtain F(z,0) € C, i.e. (7,%) € gph ®. This means that the mapping ® is closed and (7)
holds. The example is complete.

Similar reasoning is valid for the more general case of constraint F(z,0) € C(0), i.e. ®(o) =
{r e X:F(z,0) € C(0)} N Br(xg), where C': ¥ — Y is an upper semicontinuous at the point oy
closed-set-valued mapping.

The main assumption that must be checked to apply Lemma 1 is (9). It is clear that this
assumption is essential.

Example 6. Let X = R, 0 = [0;1], f(z,0) = 2% 20 =00 =0, R =1, ®(0) = {1} for o > 0,
®(0) = [-1;1] and ¢(0) = 0. In this example, all assumptions of Lemma 1 are obviously satisfied,
except for (9). Also, the point 2y = 0 is naturally not the stable solution to the problem (2).

The assumption (9) is closely related to the concept of the implicit function. Below, when
considering finite-dimensional problems in section 5, we formulate one of the possible conditions
under which (9) is satisfied. Here we note that in the case when the constraint set does not depend
on the parameter o, i.e. ®(0) = ®(0y), condition (9) holds for p(o) = xo.

Examples similar to Examples 3, 4, 6 discussed in this section and the following Examples 7, 9
can be constructed for an arbitrary pre-fixed R > 0.

4. STABILITY OF A SET OF SOLUTIONS

Let us now consider the case when in the problem (2) the minimum of the continuous function f
is attained not necessarily at the unique point zp, but on a given non-empty set Xy C ®(09), i.e.
occurs

f(z) =min{f(§,00): €€ P(og)} & € Xo.

Note that such a set X is closed due to the continuity of the function f and the closedness of the
set ®(oy).

The following example shows that even in one-dimensional case in the problem without con-
straints f(z) — min, z € Bg(zo), if the set of solutions Xy to the problem (2) is not a singleton,
then each point in Xy may not be a stable solution in sense of Definition 1.

Example 7. Let X =R, ¥ = {i7! :i e NJU{0}, 20 =0, R =1, ¢ = 0, the function f(z) van-
ishes for z € [—1/2;1/2], strictly monotonically decreases on the segment [—1; —1/2], strictly mono-
tonically increases on [1/2; 1] and is continuous on [—1; 1]. There are no constraints in the considered
problem (2) and the function f reaches its minimum on the set Xy = [—1/2;1/2].

We define the functions f;(x) = f(x,i~!) to be continuous on [—1;1] and reach a negative min-
imum at a unique point x; € [—1/2;1/2]. Moreover, we assume that f; — f as i — oo uniformly

n [—1;1]. Finally, suppose that for each point = € [—1/2;1/2] it is possible to select a subsequence
from the sequence {x;} converging to x. It is easy to see that such functions f; exist.

For the functions f; that uniformly converge to f on the segment [—1;1], consider the problem
without constraints f;(z) — min, x € [—1;1]. By construction, the minimum in this problem is
attained at the unique point z;, and the limit points of the set {z;} cover the whole segment X of
the unit length. Hence, any point from the set Xy can be approached arbitrarily by the minima of
the perturbed functions f;. Thus, none of these points is a stable solution to the problem (2). The
example is complete.

Despite this example, one can obtain sufficient conditions for convergence of minima x (o), up to
1, of the perturbed functions f(z,0) on the sets ®(o) in terms of distance between the point x (o)
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106 ARUTYUNOV et al.

and the set Xy. Recall that
dist(¢, Xo) := inf{||¢ —z|| : = € Xo}, &€ X.

Put
fo:=mf{f(z,00) : =€ P(0p)}.

Assume that, in addition to the existing assumptions and conditions (3), (6) and (7), the function f
has the following property:

F() > fo+ 0(dist(x, Xo)) Vo € ®(op), (19)

where the function ¢ is the same as in (5). At the same time, (4) and the stronger assumption (5)
may not hold.

Let us also introduce an additional assumption on uniform continuity of the function f on the
set Xp:

flx) = fo as dist(z,X9) =0, x € Bg(xo). (20)
Lemma 2. Let for any o € ¥ there exist (o) € ®(o) such that
dist(p(0), Xo) = 0 as o — oy, (21)

and assumptions (3), (6), (7), (19) and (20) hold. Then for any x(c) € ®(0), o # 09, satisfying
the condition (8), we have
dist(z(0),Xo) = 0 as o — op.

Proof of Lemma 2.

Without loss of generality, we assume that fo = 0, xg = 0 and, hence, Br(zy) = Br(0).

Consider the contrary. Then there exist sequences {o;} and {z;} such that o; — o¢, Vi z; =
z(o;) € ®(o;) and (8) holds, but the sequence {dist(z;, Xo)} does not converge to zero. It follows
that there exists a real € such that 0 < 2e < R and, after passing to a subsequence, dist(x;, Xo) > 2¢
holds for all 4.

Let us put ¢; = ¢ (o;) in the same way as in the proof of Lemma 1. Due to (7) there exist
points Z; € ®(0g) such that ||z; — Z;|| — 0. This means that for all sufficiently large i we have
dist(Z;, Xo) > €. Therefore, by assumption (19) f(Z;) > §(dist(Z;, Xo)) = 0(¢) > 0. Thus, there ex-
ists 6y > 0 such that f(Z;) > 26, for all large i. Hence, by (6) we have f(z;) > 26, for all sufficiently
large i. Consequently, since by virtue of (3) the functions f; = f(,0;) converge uniformly to f
on Bgr(0), then f;(x;) = do for all large 1.

Due to the properties of the function 1) we have ¢; — 0, i — 0o. Therefore, by (3) there exist
a positive integer ig such that for all ¢ > ig we have

i) — F(@)] + 1 < % v € B(0).

By (21) there exists a sequence ¢; € ®(o;) with the property dist(y;, Xo) — 0. Therefore, in-
creasing the positive integer ig, from (20) with 2 = ¢; we obtain that f(¢;) < %‘J. It follows, just as
in Lemma 1, that f;(z;) < do/2 for i > ip. But according to the construction, f;(x;) = dp > 0, i.e.
a contradiction is obtained. Lemma 2 is proved.

Thus, Example 7 and Lemma 2 show that, under natural assumptions, although the solu-
tions z(o), up to v, of the perturbed problems may not converge to any point in the set Xo;
nevertheless they converge in the sense of the distance to the entire set Xj.
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Remark 1. If X = {zo}, then Lemmas 1 and 2 are equivalent. Indeed, in this case the assump-
tion (5) coincides with (19), since dist(x, Xo) = ||z — zo||; assumption (9) coincides with (21), since
p(o) = xo & dist(p(o), Xg) — 0; and the assumption (20) is equivalent to the continuity of f at
the point zy. The remaining assumptions of these two lemmas coincide.

The assumption (19) has the same sense as the assumption (5). In particular, for a finite-
dimensional space X the following analogue of Example 1 holds.

Ezample 8. Let the Banach space X be finite-dimensional and the condition
f(x)=fo Vo€ Xo, f(z)> fo Yz e P(oo)\ Xo (22)

holds. Then the function J satisfying the estimate (19) is determined by the formula
o(r) = min{f(x) — fo: z € P(og), dist(x,Xp) > 7“}, r = 0.

Let us discuss the assumption (20). If X is the singleton {z}, then (20) is fulfilled automatically,
which follows from continuity of the function f.

If X is finite-dimensional, then X is compact, since it is closed and lies in Bg(zg). Then (20)
is also satisfied automatically, due the Cantor theorem on the uniform continuity of a continuous
function on a compact set.

Now let X be infinite-dimensional, and let the set X be closed and bounded (since it is a subset
of Bgr(zg)), but not compact. Then the assumption (20) is essential. Let us show this with the
following example.

Ezample 9. Suppose that X, X, 0¢, ¢ and f(x,0) are the same as in Example 3. Let xg = 0,
R =1 and B := B;(0). Put

3 _ 1 ,
a= e D1 1):{<1_E>6i’a}’ ieN; @0)=B.

Here a is chosen so that f(a) = 1.

From the definition of the function f it is obvious that Xy = {e1,e9,...} and fy = 0. Firstly,
we show that (6) holds.

Let us take arbitrary sequences {z; € ®(i~1)} and {&; € ®(0)} with the property ||z; — Z;|| — 0.
Now we take all ¢ such that ||z; — Z;|| < 1/4 and consider two cases: x; = a and z; # a. Let first
r; = a. Then, since |la — 7;|| < 1/4, we have Z; € By/3(e1). Hence,

f(.%l) =1- maX{O, 1-— QH.%Z — 61”} = QH.%Z - 61” < 2”%1 - le + QH.IZ — 61”.
Moreover, since f(z;) = f(a) = 2|la — e1|| = 2||x; — e1]|, then
f(ai) = 2llw; — e = f(T3) — 27 — .

Let now z; # a. Then z; = (1—(2i)~!)e; and direct calculation (16) shows that f(z;) = 1. Since the
largest value of the function f is 1, then in this case we also have f(x;) > f(Z;) > f(@;) —2||T; —x4]|.
Thus, for every sufficiently large ¢ we have

Flx) = f@) = 2@ — @i = f(&) — 167Y).

This means that (6) is fulfilled.

The assumption (19) is satisfied for §(r) = r, » > 0. Indeed, let z € B = ®(0). One of two cases
is possible: either for some i > 1 we have x € By (9;)(e;) holds, nor = ¢ B /(9;)(e;) for all 4. In the
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first case dist(x, Xo) = ||z — e;|| < 2i||lx — ;]| = f(z), and in the second case dist(x, Xy) < 1 = f(x)
due to Xg C B.

Obviously, the remaining assumptions of Lemma 2 are also satisfied, except for the assump-
tion (20), which is failed. Let us show this.

Indeed, for the sequence of points z; = (1 — 3-)e; we have dist(z;, Xo) = |lz; — ;| = (2i)™* — 0
as i — oo, however, f(x;) = 1 for all i. But by construction, fo = 0 and, therefore, f(x;) 4 fo.
Thus, (20) is failed.

Now we show that the assertion of Lemma 2 is also failed. Indeed, for all i we have f((1— %)e,;) =1,
and by construction f(a) = 3. Consequently, the minimum of the function f on the set ®(i~!) for
all 7 is attained at the unique point a. Since a ¢ Xy, the assertion of Lemma 2 is failed. The
example is complete.

We can make a quite similar remark on the assumption (21) as that given at the end of Section 3.
Namely, if the set of constraints in the problem (1) does not depend on the parameter o, then the
condition (21) is satisfied for (o) = = € X, where x is an arbitrary point in the set Xj.

5. FINITE-DIMENSIONAL PROBLEMS AND A-TRUNCATIONS

Let us turn to the theory of finite-dimensional extremal problems with the parameter o € 3,
where ¥ C R™. In this theory, the space X is defined as X = R", and the sets ®(o) are given by

P(o)={reX: F(zr,0) =0}N Bgr(zg), o€ (23)

Here F' : R® x R™ — R™ is a continuous mapping, n,m are positive integers, o € R™. We will
assume that all sets ®(o) are non-empty, o € X.
Consider the problem

f(z,0) - min, F(x,0)=0, z¢€ Bgr(zy), o€ (24)
As before, we separately consider the problem
f(x) = f(z,00) — inf, F(x,00) =0, x € Bgr(xg), (25)

and we will assume that xg is its strict solution. Here we obtain stability conditions for the so-
lution zg to the problem (25) assuming that F(z,0) has the form F(z,0) = F(x) —o. In this
particular case, F' is a given continuous mapping F' = (F,..., F,) : R" - R™ and ¥ is a neigh-
borhood of a point oy € R™ with the natural metric induced from R™.

Before formulating the corresponding statement, we write down some constructions from [9].
In this section, the coordinates of a vector x € R"™ are denoted by subscripts, i.e. we have x =
(x1,...,2y). The symbols (-,-) mean the inner product in R".

Let D denote the set of nonzero n-dimensional vectors d with non-negative coordinates d;, and
let D C D denote the set of all nonzero integer vectors z = (21,...,2n) € D. For z € R", z € D
and d € D we use the notations

n n
H e

Here we put 2, = |2x|' = 1 for [ = 0. Vector z = (z1,..., 2,) is called a multi-index of the monomial
2%, and z1 + ...+ z, is called its degree.

Let us start with the case m = 1. Consider a continuous function g : R” — R and a vector A € R"
such that A > 0 (here and below this means the coordinate-wise inequality \; > 0, i = 1,n).
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Definition 2. The function p : R” — R is called a A-truncation of the function g in a neighbor-
hood of the point xyp € R™ if there exists a > 0 such that the following conditions hold:
1) there exists a non-empty finite set Z C D such that

p(x) =Y p.a®, p.€R, p.£0, (\z)=a VzeZ;
2

2) there exist a real K > 0, a finite set Z C D and a continuous function A : R™ — R such that
function ¢ in a neighborhood of the point xy has the form

g(x) = g(wo) + p(x — 20) + Az — 20),

and
|A(z —x0)| < K Z |z —z0l?, (A\d)>a Vde Z
deZ
Let us give an illustrative example to Definition 2.

Ezample 10. Let n =2, xop = 0 and
g(x) = sina?} + 2z sinwy + 23 + w123 + datas.

We have the following A-truncations (unique for each \):

A=(1,1) = p(z) = 2z1209, a=2;
A= (1,2) = p(x) =23} +22122, O =3;
A= (2,1) = p(z)=2r120+ 23, a=3;
A= (1,3) = p(x)= a3, o = 3;
A= (3,1) = p(x)=a3, a=

This function g has no other A-truncations.

Definition 3. A mapping P : R — R™ is called a A-truncation of the mapping F' : R" — R™
in a neighborhood of the point x, if each component F; is a A-truncation of the component F; in
a neighborhood of the same point, ¢ = 1, m.

Let a vector h € R™ be given. A A-truncation P is called regular in direction h if
P(h) =0, imP'(h)=R"™.

The A-truncations constructed in Example 10 for A = (1,1) and A = (1,2) are regular in the
directions h = (0,£1), for A = (1,1) and A = (2,1) are regular in the directions h = (+1,0), and
the A-truncations for A = (1,3) and A = (3,1) do not have regular directions.

From [9, Theorem 1], we have the following statement.

Proposition 1. Let P be a A\-truncation of the mapping F in a neighborhood of the point xq for
A >0, let P be regular in a direction h € R™, and let F(xg) = 09. Then there exist a neighborhood
O(o0) of the point og and positive reals ¢ and [ such that for any o € O(og) there exists a solution
© = (o) to the equation F(x) = o with the following estimate:

le(o) = zoll < ¢llo — ool”.

Theorem 1. Let R > 0 and a continuous mapping F : Br(zg) — X be given. Consider the
parameter-dependent problem of minimizing continuous functions f(x,o) with a finite number of
continuous constraints of the equality type:

f(x,0) - min, F(x)=o0, z€ Bgr(xg), o€X. (26)
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Let there exist h € R™, a vector A > 0 and a mapping P : R™ — R"™ such that P is a A-truncation
of the mapping F' in a neighborhood of the point xo, and P is reqular in the direction h. Then for any
function f satisfying only conditions (3) and (4), the point xq is the stable solution to problem (26)
for o = oy.

Proof of Theorem 1. Put ®(o) = {x: F(x) = o}. Then, for the considered problem, all the
assumptions of Lemma 1 are satisfied. Indeed, (5) follows from the finite-dimensionality of the
space X, the condition (4) and Example 1. The assumption (6) follows from the finite-dimension-
ality of X and the Cantor theorem. Finally, (7) follows from the finite-dimensionality of X and the
fact that (26) is the problem with equality-type constraints, i.e. the conditions of Example 5 are
fulfilled with C'= {0} in (18).

Now we check (9). Due to the assumption of the theorem on the A-truncation P of the mapping F
in a neighborhood of the point xg, all conditions of Proposition 1 are satisfied. It follows that the
equation F'(xz) = o has a solution (o) in some neighborhood of the point o such that p(og) = xg
and the function ¢ is continuous at the point ¢g. Using the continuity of ¢ and reducing the
indicated neighborhood if necessary, we get (o) € Br(zo) for all o from this neighborhood. For
the rest 0 € ¥ we select p(0) € (o) arbitrarily. Then by construction (o) € ®(o) Vo € ¥ and,
in addition, p(0) — 29 as 0 — o0g. Therefore, the assumption (9) is satisfied. To complete the
proof, it remains to apply Lemma 1. Theorem 1 is proved.

Let us give an example of using Theorem 1.

Example 11. Let n =3, m =2, zog = 0. Let 3 be a neighborhood of zero in R?, and put oy = 0.
It is a straightforward task to ensure that for A\ = (9,6,4) the mapping

F(x) = (x% + x%,x% + x§)7 z € R3,

is a A-truncation of itself in a neighborhood of zero, and, moreover, I’ is regular in the direction
h=(1,-1,-1).

Consider the problem (26) with arbitrary functions f(z,0), o € X, continuous in some ball of
radius R > 0 with center at zero in R? and convergent uniformly on this ball to some function f as
o — 0, while f has a strict minimum at zero. Then, by virtue of Theorem 1, the solution xy = 0
to problem (26) for o = o is stable. The example is complete.

In conclusion, we present a result using the constructions from Section 4, in particular, Lemma 2.
To do this, let us assume that in problem (25) the minimum is attained not at the point g, but on a
given non-empty set Xog C ®(0g), where ®(o) is given by (23). Here we also put F(z,0) = F(z)—o.
In other words, we assume that

f(x) = fo=min{f(§, 00) : F(§) =00, £ € Br(zg)} < z¢€ Xp.

Note that the latter is equivalent to (22).

Theorem 2. Let R >0 and a continuous mapping F : Br(zg) — X be given. Consider the
parameter-dependent problem of minimizing continuous functions f(x,o) with a finite number of
continuous constraints of the equality type:

f(x,0) - min, F(x)=o0, z€ Bgr(xg), o€X.

Let Xo C Br(xg) with F(x) = o¢ and f(x,00) = fo Yz € Xj.

Let there exist h € R", z € Xy, a vector A > 0 and a mapping P : R™ — R™ such that P is a
A-truncation of the mapping F in a neighborhood of the point X, regqular in the direction h, and let
T € int Br(xg), i.e. T does not lie on the boundary of the ball Br(xzg). Then, for any function f

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 2 2024



STABILITY OF SOLUTIONS TO EXTREMAL PROBLEMS 111

satisfying only conditions (3) and (22), the result of Lemma 2 holds. Namely, for any points
z(o) € ®(0), o # 00, satisfying the condition (8), we have

dist(z(0),Xo) =0 as o — op.

Proof of Theorem 2. Let us show that all assumptions of Lemma 2 are satisfied. In fact, (6)
and (7) were checked in the proof of Theorem 1. The assumption (19) follows from the finite-
dimensionality of the space X, the condition (22) and Example 8. The assumption (20) follows
from the finite dimensionality of X and the Cantor theorem.

Now we check (21) in the same way as we have checked (9) in the previous theorem. Namely, due
to the assumption on A-truncation, we obtain for the equation F'(z) = o a solution ¢(o) in some
neighborhood of og such that (o) = Z and the function ¢ is continuous at the point oy. Using
again the continuity of the function ¢ and reducing the indicated neighborhood if necessary, we
get (o) € Br(xg) for all o from this neighborhood. The latter is possible due to the assumption
T € int Bgr(xg). For the rest o € ¥ select ¢(o) € (o) arbitrarily. Then by construction we have
(o) € ®(0) Yo € ¥ and, in addition, p(c) — T € Xy as 0 — 0g. Therefore, the condition (21) is
satisfied. To complete the proof, it remains to apply Lemma 2. Theorem 2 is proved.

Note that Theorem 1 follows directly from Theorem 2 in the case when Xy = {x¢}. In this case,
we put x = x¢ in Theorem 2.
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