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Abstract—Models with selective convexity are an important class of data envelopment anal-
ysis (DEA) models. This type of model allows managers to consider variables such as ratios,
averages, percentages, etc. The paper proposes algorithms for constructing input and output
isoquants using volume variables in models with selective convexity. These algorithms help
investigate the relationship between any volume variables in the model. Computational exper-
iments confirm the reliability and efficiency of the proposed methods.
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1. INTRODUCTION

The data envelopment analysis (DEA) approach arose as a generalization of simple indicators of
units behavior to a multidimensional case. Mathematically, this approach leads to solving a large
family of optimization problems. The founders of this approach were famous American scientists
A. Charnes, W. Cooper, E. Rhodes and R. Banker [1, 2]. The FDH (free disposal hull) models
appeared almost simultaneously with VRS formulation of DEA in the works of D. Deprins, L. Simar
and G. Tulkens [3] in the end of last century. Constraints sets of the DEA models are convex, so
optimization methods are widely used for DEA models. Production possibility set of the FDH
models are non-convex. For this reason, the development of visualization methods for FDH models
slows down.

The notion of selective convexity was proposed in [4]. This notion considers a range of new DEA
models, where DEA and FDH models are two extreme cases. Such models expands the possibilities
of DEA and FDH models, since problems with selective convexity include such variables into models
as ratios, percentages, averages, etc.

The DEA and FDH models aim to develop models and instruments for analyzing the behavior of
complex socio-economic systems, such as regions, banks, universities, hospitals, industrial facilities,
etc. For developing and applying these models it was necessary to develop new approaches.

Visualization techniques are utilized in various fields of human activity, including the study of the
behavior of large-scale socio-economic systems. It enables managers to construct the trajectories
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of units’ development, to obtain unknown dependencies between model components, detect and
correct incorrectness in models, to explore the problem of units’ separation and merging, as noted
in [5]. In general, visualization enhances a manager’s intuition in making strategic decisions.

However, there exist a few works [5–7] in the scientific papers devoted to the visualization of
multidimensional production possibility sets and dispositions of production units in such figures.
In [7], the methods for multidimensional visualization of convex DEA models were presented. In [5]
a review of visualization methods in DEA is presented. Visualization means the construction of in-
tersections of multidimensional polyhedral production possibility set with two- or three-dimensional
hyperplanes. This approach reduces the efficiency analysis of production units to the investigation
of well-known functions in economics, such as production function, isoquant, isocost, isoprofit,
etc. [8, 9].

In paper [10], visualization methods were proposed for models with selective convexity, in which
some of the variables are ratios. For such models, solution and visualization methods were proposed
and for any two ratio input or output variables. The new methods have shown their efficiency on
real-life problems.

Moreover, it was shown in paper [10] that not taking into account specifics of the task leads
to significant distortions of the result. In this paper, algorithms are considered for construction of
input and output isoquants in models with selective convexity with the use of volume variables.

2. BACKGROUND

Consider a set of production units (Xj , Yj), j = 1, . . . , n, where the vector of outputs Yj =
(y1j , . . . , yrj) � 0 is produced from the vector of inputs Xj = (x1j , . . . , xmj) � 0. All data are
assumed to be nonnegative, but at least one component of every input and output vector is positive.

Now consider the notion of selective convexity [4]. Let the input and output sets I and O have
the following partition

I = IC ∪ INC , O = OC ∪ONC ,

where the subsets IC and INC , and OC and ONC , are mutually disjoint.

Subsets IC and OC are called the subsets of volume inputs and outputs (volume measures). The
complementary subsets INC = I \ IC and ONC = O \OC are marked as ratio inputs and outputs
(ratio measures).

Let us assume that the set IC contains the inputs from 1 to m′, at the same time the set INC

contains the inputs from (m′+1) to m. Then it is evident that any vector of inputs can be written
in the form X = (XC ,XNC), where XC is the vector of the first m′ components of X, and XNC

is the vector of the last components of X.

In the same way, let us assume that the set OC contains the output components from 1 to r′,
and the set ONC contains the output components from (r′ + 1) to r. Hence any vector of outputs
can be written in the form Y = (Y C , Y NC).

The production possibility set T of the technology with selective convexity is determined by the
following postulates [4].

(A1) Feasibility of observed data. Unit (Xj , Yj) ∈ T for any j = 1, . . . , n.

(A2) Free disposability. (X,Y ) ∈ T , and Y � Y ′ � 0 and X ′ � X implies (X ′, Y ′) ∈ T .

(A3) Selective convexity. Let (X ′, Y ′) ∈ T and (X ′′, Y ′′) ∈ T . Assume that (X ′)i = (X ′′)i for all
i ∈ INC , and (Y ′)r = (Y ′′)r for all r ∈ ONC . Then, for any λ ∈ [0, 1], the unit λ(X ′, Y ′)+
(1− λ)(X ′′, Y ′′) ∈ T .
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The production possibility set T , which satisfies (A1)–(A3) can be written in the following form:

T =

{
(XC ,XNC , Y C , Y NC) � 0

∣∣∣∣∣
n∑

j=1

XC
j λj � XC ,

n∑
j=1

Y C
j λj � Y C , if λj � 0,

then XNC
j � XNC and Y NC

j � Y NC ,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n

}
. (1)

The selective convexity model combines two well-known DEA models. So if INC = ONC = ∅
(all variables are volume), then set (1) determines the BCC model. If set (1) contains only ratios,
i.e., IC = OC = ∅, then the selective convexity model becomes the FDH model.

Podinovski [4] used binary variables δj to transform set T to a mixed integer linear constraints.
However, for construction of isoquants for variables from IC and OC , ratio variables INC and ONC

do not change. So the mixed integer constraints in this case can be replaced by the equivalent
constraints (XNC

j −XNC)λj � 0 and (Y NC
j − Y NC)λj � 0; see [11, 12] and Remark 3 in [4].

3. ALGORITHM FOR CONSTRUCTION OF THE INPUT ISOQUANT

Input two-dimensional section of set T for unit (Xo, Yo) is determined by the following formula

I1(Xo, Yo) =
{
(X,Y )

∣∣ X = Xo + αd1 + βd2, Y = Yo, α, β ∈ E1}, (2)

where d1, d2 ∈ Em, (Xo, Yo) ∈ T , vectors d1 and d2 are directional vectors, and d1 is perpendicular
to d2.

Next, define the input two-dimensional isoquant as the intersection of the frontier and two-
dimensional plane I1.

SecI(Xo, Yo) =
{
(X,Y )

∣∣ (X,Y ) ∈ WEffPT ∩ I1
}
, (3)

where WEffPT is a set of weakly Pareto efficient points of set T .

Output two-dimensional section of set T for unit (XoYo) is written as

I2(Xo, Yo) =
{
(X,Y )

∣∣ X = Xo, Y = Yo + αg1 + βg2, α, β ∈ E1}, (4)

where g1, g2 ∈ Er, (Xo, Yo) ∈ T , g1 is perpendicular to g2.

Now, define the output two-dimensional isoquant as the intersection of the frontier and two-
dimensional plane I2.

SecO(Xo, Yo) =
{
(X,Y )

∣∣ (X,Y ) ∈ WEffPT ∩ I2
}
. (5)

Consider an optimization algorithm for construction of the input isoquant for unit (XoYo). The
isoquant is determined by directions ep ∈ Em′

and es ∈ Em′
, where ep and es are unity vectors with

ones in positions p and s, correspondingly. In addition, the inputs p and s belong to the set IC .

Algorithm 1 (construction of the input isoquant).

Step 1. Find a leftmost point on the input isoquant going through unit (Xo, Yo) and associated
with directions ep ∈ Em′

and es ∈ Em′
.
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Step 1a. Solve the following optimization problem.

max θ1

n∑
j=1

xCsjλj + θ1 � xso,

n∑
j=1

xCpjλj + τ1 � xpo,

n∑
j=1

xCijλj � xio, i �= p, s,

n∑
j=1

Y C
j λj � Yo

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,

n∑
j=1

λj = 1, λj � 0, j = 1, . . . , n,

(6)

where τ1 and θ1 are free variables.

Step 1b. Let θ∗1 be optimal objective of (6). Solve the following problem.

max τ1

n∑
j=1

xCsjλj + θ∗1 � xso,

n∑
j=1

xCpjλj + τ1 � xpo,

n∑
j=1

xCijλj � xio, i �= p, s,

n∑
j=1

Y C
j λj � Yo,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,

n∑
j=1

λj = 1, λj � 0, j = 1, . . . , n,

(7)

where τ1 is a free variable.

Let Z̃1
1 = (XC

o − θ∗1es − τ∗1 ep,XNC
o , Y C

o , Y NC
o ), where θ∗1 and τ∗1 are optimal objectives of prob-

lems (6) and (7), respectively.

Step 2. Find the second point on the input isoquant going through unit (Xo, Yo) and determined
by directions ep ∈ Em′

and es ∈ Em′
.
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Step 2a. Solve the following optimization problem.
max τ2
n∑

j=1

xCsjλj + θ2 � xso,

n∑
j=1

xCpjλj + τ2 � xpo,

n∑
j=1

xCijλj � xio, i �= p, s,

n∑
j=1

Y C
j λj � Yo,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n,

(8)

where τ2 and θ2 are free variables.

Step 2b. Let τ∗2 be optimal objective of (8). Solve the following problem.

max θ2
n∑

j=1

xCsjλj + θ2 � xso,

n∑
j=1

xCpjλj + τ∗2 � xpo,

n∑
j=1

xCijλj � xio, i �= p, s,

n∑
j=1

Y C
j λj � Yo,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n,

(9)

where τ2 is a free variable.

Let Z̃1
2 = (XC

o − θ∗2es − τ∗2 ep,XNC
o , Y C

o , Y NC
o ), where θ∗2 and τ∗2 are optimal objectives of prob-

lems (8) and (9), respectively.

Step 3. Set l := 1, k := 1, i1 := 1, i2 := 2. Create flow F l
k with points Z l

i1 = Z1
1 , Z

l
i2 = Z1

2 of
production possibility set T . Define set M = {Z1

1 , Z
1
2}.

Step 4. Perform the following operations. Take any unprocessed flow F l
k, solve optimization

problem of the following type
max β1

(Z l
i1 + Z l

i2)/2 + β1d1 + τd2 ∈ T,
(10)

where β1 and τ are scalar variables, vector d1 is perpendicular to the vector d2, it lies in the plane of
the section, and is directed to the low left corner of a two-dimensional section, vector d2 = Z l

i1−Z l
i2 .
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Fig. 1. Construction of input isoquant.

If optimal objective value of problem (10) β∗
1 > 0, then start new flows F l+1

k1
and F l+1

k2
and solve

optimization sub-problems.

Flow F l+1
k1

contains points

Z l+1
i1

= Z l
i1 , Z l+1

i2
= (Z l

i1 + Z l
i2)/2 + β∗

1d1 + τ∗d2,

where β∗
1 and τ∗ are optimal values of variables in (10).

Flow F l+1
k2

contains points

Z l+1
i3

= Z l+1
i2

, Z l+1
i4

= Z l
i2 , d2 = Z l+1

i4
− Z l+1

i3
,

where d1 is perpendicular to the vector d2.

If optimal solution value in (10) β∗
1 � 0, then points Z l

i1
and Z l

i2
are angular points of the

segment of input isoquant. Include these points to the set of corner points M . Flow F l
k is deleted

from the list of flow tasks.

Step 5. Set l:=l+ 1. If exist unprocessed flows F l
k, then go to the Step 4, else go to the Step 6.

Step 6. Points of set M are angular points of input isoquant. Connect adjacent pair points by
line segments. At last, add a vertical line after the first point, and a horizontal line starting from
the last point. This completes construction of the input isoquant.

Figure 1 illustrates the construction of isoquant with the help of the algorithm. At first, the
angular points Z1

1 and Z1
2 are found by solving models (6)–(9). Then the flow F 1

1 containing
these two points is started. At the next steps, point Z2

2 will be found with the help of solving
problem (10); and the flow F 1

1 will be split into two flows F 2
1 and F 2

2 , that will have vertices Z1
1

and Z2
2 for flow F 2

1 and vertices Z2
2 and Z1

2 for flow F 2
2 .

After this, the computations are repeated until all segments of the isoquant are found.

For the algorithm presented above the following assertion is valid.

Assertion 1. Algorithm constructs an input isoquant for production possibility set (1) in a finite
number of steps.

Proof. An input isoquant of the two-dimensional set (2) envelops this set or, in other words,
it is a boundary of this set. At Steps 1 and 2 the algorithm founds two points Z1

1 and Z2
1 of the

isoquant and determines segment [Z1
1 , Z

2
1 ] belonging to the set (2). This initial approximation of

the set (3) is found. After this, two optimization problems of the type (10) are solved. If β∗
1 > 0 for

at least one of this problem, then the algorithm starts new flows. The approximation of the set (3)
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is expanded. If β∗
1 � 0, then flow F l

k is deleted from the list of flow tasks. Iterations continued if
there exist unprocessed flows. However, all approximations of the set (3) belong to this set and
they are expanded during the iterations. The last approximation coincides with set (3). Since the
number of boundary segments is finite and the directions of the objective functions differ from each
other at every iteration. This completes the proof.

4. ALGORITHM FOR CONSTRUCTION OF THE OUTPUT ISOQUANT

The algorithm for construction of the output isoquant can be written in a similar way. Next, we
will focus only on the main differences. Let (Xo, Yo) be a production unit for which the isoquant
is being constructed, and let p and s be two outputs that determined that isoquant. At the first
step, we find a rightmost vertex Z1

1 of isoquant by solving the following optimization problems.

max θ1
n∑

j=1

XC
j λj � Xo,

n∑
j=1

yCsjλj − θ1 � yso,

n∑
j=1

yCpjλj − τ1 � ypo,

n∑
j=1

yCijλj � yio, i �= p, s,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n,

(11)

where τ1 and θ1 are free variables.

max τ1
n∑

j=1

XC
j λj � Xo,

n∑
j=1

yCsjλj − θ∗1 � yso,

n∑
j=1

yCpjλj − τ1 � ypo,

n∑
j=1

yCijλj � yio, i �= p, s,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n,

(12)

where τ1 is a free variable.
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Point Z1
1 is expressed as:

Z1
1 = (XC

o ,XNC
o , Y C

o + θ∗1es + τ∗1 ep, Y
NC
o ),

where ep ∈ Er′ and es ∈ Er′ are direction vectors of isoquant, θ∗1 and τ∗1 are optimal objectives of
problems (11) and (12), respectively.

Second vertex Z1
2 of the output isoquant is determined using following problems.

max τ2

n∑
j=1

XC
j λj � Xo,

n∑
j=1

yCsjλj − θ2 � yso,

n∑
j=1

yCpjλj − τ2 � ypo,

n∑
j=1

yCijλj � yio, i �= p, s,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,

n∑
j=1

λj = 1, λj � 0, j = 1, . . . , n,

(13)

where τ2 and θ2 are free variables.

max θ2

n∑
j=1

XC
j λj � Xo,

n∑
j=1

yCsjλj − θ2 � yso,

n∑
j=1

yCpjλj − τ∗2 � ypo,

n∑
j=1

yCijλj � yio, i �= p, s,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,

n∑
j=1

λj = 1, λj � 0, j = 1, . . . , n,

(14)

where τ2 is a free variable.
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Thus we have Z1
2 = (XC

o ,XNC
o , Y C

o + θ∗2es + τ∗2 ep, Y NC
o ), where θ∗2 and τ∗2 are optimal objective

values of problems (13) and (14), respectively.

Steps 3–6 of the algorithm for output isoquant coincide with the algorithm for the input isoquant.
The only difference is that vector d1 in model (10) must have positive p and s coordinates to secure
the correct shape of the output isoquant.

Assertion 2. Algorithm constructs an output isoquant for production possibility set (1) in a finite
number of steps.

The proof of this assertion is similar to the input isoquant case and hence omitted.

5. COMPUTATIONAL EXPERIMENTS

To perform the computational experiments we use a dataset with artificially generated DMUs.
It contains 100 units with 6 variables (3 inputs and 3 outputs). The variables were generated
randomly in a range from 5 to 95. Figure 2 shows three isoquants constructed for unit 78 (depicted
by point Z0) using three different models.

Curve 1 corresponds to the isoquant of BCC model, where all variables are from the set IC∪OC ,
i.e., INC ∪ONC = ∅. Curve 2 is associated with the model with selective convexity, where all
variables are volume except two outputs y2 and y3 that are ratio variables. Third model differs
from the previous only in inputs x1 and x2. In this model they belong to INC . The isoquant for
this model is depicted as curve 3. Input isoquant for FDH model looks exactly the same as curve 3;
it so happened that the two curves coincided. We see from Fig. 2 that BCC and FDH models are
two extreme cases, and curve 2 lies between them. Points Z1, Z2, and Z3 are radial projections of
unit Z0 onto the frontier of models 1, 2, and 3, respectively.

Figure 3 shows three output isoquants constructed for unit 78 (point Z0 in the figure) using
three different models. Curve 1 is associated with the output isoquant of the BCC model. Curve 2
corresponds to the model with one ratio output y3. Curve 3 is obtained for the model with two ratio
variables x3 and y3, and the rest are volume. Recall that the distances from the point Z0 to the
points Z1, Z2 and Z3 in relative units are measures of efficiency in models 1, 2 and 3, respectively.
This confirms the fact that the choice of the model significantly affects the accuracy of the analysis
of the production units’ behavior.

Fig. 2. Input isoquants for BCC model (curve 1), model with selective convexity (curve 2), and FDH model
(curve 3) for unit 78.
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Fig. 3. Output isoquants for BCC model (curve 1), model with one ratio variable (curve 2), and model with
two ratio variables (curve 3) for unit 78.

6. CONCLUSION

Visualization plays a huge role in the science and practice of mankind. Indeed, the invention of
the telescope by Giordano Bruno at the beginning of the 17th century allowed Newton at the end
of this century to discover the laws of planetary motion and formulate as a result world-famous
laws, without which it is impossible to create the modern development of science and technology.
Visualization methods are used in many areas of human activity, no captain goes on a long trip
without detailed maps, no doctor will start operation without a set of patient images, and no
engineer will start construction without detailed drawings. However, the leaders of large-scale
socio-economic systems often do not have all this instruments and rely on their intuition. However,
the cost of an error may be quite huge.

The DEA and FDH technologies do not embrace all possible model cases for production units
descriptions. In paper [4], the concept of selective convexity was proposed, which provides the
development of a range of new DEA models [13–16], where FDH and DEA models are two extreme
cases. Such modifications allow one to explain the class of model’s variables and include the
averages, percentages, ratios, etc. into DEA models.

In paper [10], algorithms were developed for the construction of input isoquants in DEA models
with selective convexity with the use of ratio variables.

In this paper, algorithms are developed for construction of two-dimensional input and output
isoquants with the use of volume input and output variables. The proposed algorithm requires
considerably fewer computations than the algorithm [10] for ratio variables since it involves only
linear problems, whereas the second uses mixed-integer programs.

Computational experiments documented that the proposed algorithms are reliable and efficient.
The proposed algorithm allows parallel and distributed implementation similar to the approach
proposed in [7]. The development of efficient parallel and distributed implementations [17–19] to
speed up computations and conducting computational experiments with large-scale datasets we
consider as a direction of our future research.
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