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Abstract—This paper considers the problem of stabilizing the output variables of a Lurie-type
nonlinear system in a given set at any time instant. A special output transformation is used to
reduce the original constrained problem to that of analyzing the input-to-state stability of a new
extended system without constraints. For this system, nonlinear control laws are obtained using
the technique of linear matrix inequalities. Examples are given to illustrate the effectiveness of
the method proposed and confirm the theoretical conclusions.
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1. INTRODUCTION

Guaranteeing the desired quality of transients is a key criterion in the design of automatic con-
trol systems. Classical control methods, such as modal control [1], adaptive robust control [2, 3],
etc., ensure control performance only in the steady-state mode. The transient mode remains un-
controllable.

Control problems for linear plants with a guarantee for the controlled variable to stay in a
given set at any time instant were presented in [4–6]. Within this approach, control performance
is ensured not only in the steady-state mode but also in the transient mode. Such problems
often arise in practice, e.g., when controlling electric power systems to maintain the frequency and
voltage of electric generators in specified ranges [7, 8], when stabilizing the formation pressure of oil
production, where the pressure at the wellhead must strictly belong to a given band [9], etc. To solve
such problems, the authors [4, 5] proposed a method based on a special output transformation that
reduces the original control problem with output constraints to a new control problem without
constraints on the auxiliary variable. For the class of linear plants, the corresponding control
problems were well studied and solved in [4]. However, they remain open for Lurie-type nonlinear
systems.

Below we consider Lurie-type systems with an unstable linear part and unknown bounded dis-
turbances and pose the problem of stabilizing such systems in a given set of output variables. The
remainder of this paper is organized as follows. Section 2 formulates the problem of stabilizing the
controlled variables of Lurie-type nonlinear systems in given sets. In section 3, control design meth-
ods are proposed. Finally, section 4 provides some numerical examples in MATLAB to illustrate
the theoretical results.
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36 NGUYEN

The following notations are used in the presentation: R
n is the n-dimensional Euclidean space

with the Euclidean norm | · |; R
n×m is the set of all real matrices of dimensions n×m with

the Euclidean norm ‖ · ‖; for A∈R
n×n, the relation A � 0 (A ≺ 0) means that A is a positive

(negative, respectively) definite matrix, whereas the relation A � 0 (A � 0) means that A is a
nonnegative (nonpositive, respectively) definite matrix; I, 0, and diag{·} are identity, zero, and
diagonal, respectively, matrices of appropriate dimensions; 1m ∈R

m is an m dimensional vector
composed of unit elements; col{·}∈R

m is a column vector in the space Rm; finally, the symbol “�”
indicates a symmetric block in a symmetric matrix.

2. PROBLEM STATEMENT

Consider a Lurie-type nonlinear system of the form

ẋ(t) = Ax(t) +Bu(t) +Gφ(z(t)) +Df(t),

y(t) = Lx(t), z(t) = Cx(t),
(1)

where t � 0; x(t)∈R
n is the vector of measured states; u(t)∈R

m is the control variable (input);
y(t) = col{y1(t), . . . , ym(t)}∈R

m is the controlled output; f(t)∈R
l is an unknown disturbance such

that |f(t)| � f̄ ; z(t)∈R
q is the argument of the nonlinearity φ; the matrices A∈R

n×n, B ∈R
n×m,

G∈R
n×q, D∈R

n×l, L∈R
m×n, and C ∈R

q×n are known. The pair of matrices (A,B) is control-
lable, and the pair of matrices (A,L) is observable. System (1) has a relative degree of 1m, i.e.,
det(LB) �= 0 [10, 11]. The unknown nonlinearity φ(·) : Rq → R

q satisfies sector constraints: for all
z, φ(z) = col{φ1(z1), . . . , φq(zq)}∈R

q,

k1i �
φi(zi)

zi
� k2i, ∀zi �= 0, i = 1, . . . , q, (2)

where k1i and k2i are some known constants.

This paper aims at designing a control law that stabilizes the output y(t) of the plant (1) in a
given set at any time instant:

Y =
{
y(t)∈R

m : g
i
(t) < yi(t) < gi(t), i = 1, . . . ,m

}
, ∀t � 0, (3)

where g
i
(t) and gi(t) are bounded differentiable functions with bounded first derivatives. These

functions can be selected by the designers according to system performance requirements. To
illustrate the objective of control, Fig. 1 shows a given pipe where the output must be at any time
instant.

Fig. 1. The objective of control: one illustration.
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3. SOLUTION METHOD

Following [4, 5], we introduce the output transformation

ε(t) = Φ(y(t), t), (4)

where ε(t) = col{εi(t), i = 1, . . . ,m}∈R
m and Φ : Y × [0,∞) → R

m is a differentiable function
(with respect to all arguments) in the diagonal form that satisfies several conditions:

(a) There exists the inverse mapping

y = Φ−1(ε, t),∀ε∈R
m, t � 0. (5)

(b) The function Φ−1(ε, t) is differentiable with respect to ε and t, and ∂Φ−1(ε,t)
∂ε � 0∀ε∈R

m and
t � 0.

(c) g
i
(t) < Φ−1

i (εi, t) < gi(t), i = 1, . . . ,m, ∀εi ∈R and t � 0.

(d)
∣∣∣∂Φ−1(ε,t)

∂t

∣∣∣ < γ for ε and t � 0, where γ > 0 is some constant defined by the transforma-

tion (4).

In this paper, the functions Φ−1
i (εi, t) depend on εi ∈R and t; therefore, the matrix ∂Φ−1(ε,t)

∂ε
has the diagonal form. Some knowledge regarding the dynamics of the variable ε(t) is needed to
construct a control law. For this purpose, we take the total time derivative of the function y(t)
considering (5):

ẏ =
∂Φ−1(ε, t)

∂ε
ε̇+

∂Φ−1(ε, t)

∂t
. (6)

Due to (1) and det
(
∂Φ−1(ε,t)

∂ε

)
�= 0, the expression (6) can be written as

ε̇ =

(
∂Φ−1(ε, t)

∂ε

)−1 [
LAx+ LBu+ LGφ+ LDf − ∂Φ−1(ε, t)

∂t

]
. (7)

In (7), LDf(t) and ∂Φ−1(ε,t)
∂t are bounded values. Applying the change ψ(t) = LDf(t)− ∂Φ−1(ε,t)

∂t
yields |ψ(t)| � κ, where κ = ‖LD‖f̄ + γ. In view of this change, (7) reduces to

ε̇ =

(
∂Φ−1(ε, t)

∂ε

)−1 [
LAx+ LBu+ LGφ+ ψ

]
. (8)

We recall the main result of [4] to solve the problem.

Theorem 1. Let conditions (a)–(d) hold for the transformation (4). If there exists a control law
u(t) under which the solutions of (8) and (1) are bounded, then y(t)∈Y.

Remark 1. Conditions (a)–(d) affect the choice of the transformation function (4) only: they do
not guarantee condition (3). For example, if the trajectories ε(t) tend to infinity in a finite time,
y(t) will converge to a boundary of the pipe defined by (3). Therefore, after choosing the output
transformation function based on conditions (a)–(d), it is required to obtain a control law that
would ensure the boundedness of ε(t). Theorem 1 reduces the original control problem (1) with
the constraints (3) on the output y(t) to an auxiliary control problem without any constraints on
the variable ε(t).
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38 NGUYEN

Now we find a control law u(t) ensuring the boundedness of ε(t). Consider a Lyapunov function
of the form V = 1

2ε
Tε. According to (8),

V̇ = εTε̇ = εT
(
∂Φ−1(ε, t)

∂ε

)−1 [
LAx+ LBu+ LGφ+ ψ

]
. (9)

Let the set Ω be an open Euclidean ball in the space R
m, i.e.,

Ω =
{
ε∈R

m : |ε| <
√
2c, c > 0

}
, (10)

where c is a given positive number. The idea is to stabilize the trajectory ε(t) in the set Ω. For ε(t)
to stay in Ω, it suffices to guarantee the negative derivative of the Lyapunov function for all ε
outside the set Ω, i.e., V̇ < 0 ∀ε /∈ Ω. (See the concept of input-to-state stability in the book [12].)

The derivative of the Lyapunov function in (9) contains the matrix
(
∂Φ−1(ε,t)

∂ε

)−1
, which is positive

definite. In particular, if the plant (1) is one-dimensional, then
(
∂Φ−1(ε,t)

∂ε

)−1
is a positive scalar not

affecting the sign of V̇ < 0. The control law can be constructed using the technique of linear matrix
inequalities (LMIs) as described in [6]. Below, we present control design procedures for a particular
case of one-dimensional systems and extend them to the general case of multidimensional ones.

Remark 2. The sector nonlinearity condition (2) can be written as the norm constraint |φi(zi)
zi

| �
ki = max{|k1i|, |k2i|}. Hence, it follows that |φ(z)| � μ|z|, where μ =

√
qmaxi{ki}, i = 1, . . . , q.

When passing from the original nonlinearity sector to the new one, the nonlinearity range will be
expanded: [k1i, k2i] ⊂ [−μ, μ]. Then a control law will be designed for any nonlinearity in the new
sector. In other words, this law can handle any nonlinearity in the original sector as well (i.e., it
has higher “robustness” to the nonlinearity).

3.1. One-Dimensional Systems

We define a piecewise continuous control law of the form

u = −(LB)−1[Kε+ LAx+ μsgn(ε)‖LG‖‖C‖|x|], (11)

where K ∈R is the desired gain and

sgn(ε) =

{
1, ε � 0,

−1, ε < 0.

The following result is true for the one-dimensional system.

Theorem 2. Let conditions (a)–(d) hold for the transformation (4), and let ∂Φ−1(ε,t)
∂ε > 0 for any

ε∈R and t � 0. For given numbers c, α > 0, assume the existence of a positive number K and
positive coefficients τi, i = 1, 2, such that[

−K + α+ 0.5τ1 0.5
� −τ2

]
� 0,

− cτ1 + κ2τ2 � 0.

(12)

Then the control law (11) ensures the target condition (3).

The proof of Theorem 2 is postponed to the Appendix.
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3.2. Multidimensional Systems

Proposition 1. Consider given block matrices

M =

[
Q 0
� Q

]
� 0, N =

[
N11 N12

� N22

]
≺ 0,

where Q,N11, N12, N21, N22 ∈R
n×n are diagonal matrices. Then the matrix

MN =

[
QN11 QN12

� QN22

]

is negative definite.

Proposition 1 is used to prove the main result of this subsection, see below. The proof of
Proposition 1 is provided in the Appendix.

We define a piecewise continuous control law of the form

u = −(LB)−1

⎡⎣Kε+ LAx+ σ̄μSign(ε)

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x|
⎤⎦ , (13)

where K ∈R
m×m is the gain matrix and σ̄ is a constant determined by the transformation (4). In

addition, Sign(ε) = col{sgn(εi), i = 1, . . . ,m}.
Substituting the control law (13) into (8) gives the closed loop system

ε̇ =

(
∂Φ−1(ε, t)

∂ε

)−1 [
−Kε− σ̄μSign(ε)

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x| + LGφ+ ψ

]
. (14)

We arrive at the following result.

Theorem 3. Let conditions (a)–(d) hold for the transformation (4), and let 0 ≺ ∂Φ−1(ε,t)
∂ε � σI

for any ε∈R
m and t � 0. For a given number c > 0, assume the existence of a diagonal matrix

K ∈R
m×m and positive coefficients τi, i = 1, 2, such that[

−K + [(0.5τ1 − α)σ + β]I 0.5I
� −τ2σI

]
� 0,

− cτ1 + κ2τ2 � 0

(15)

for any σ∈ (0, σ] and α > 0, β > 0.

Then the control law (13) ensures the target condition (3).

The proof of Theorem 3 can be found in the Appendix.

Remark 3. The technique of LMIs and the S-procedure allow analyzing the input-to-state sta-
bility of the closed loop system under unknown bounded disturbances. Moreover, the gain for ε
in (11), (13) can be obtained by finding an admissible solution of (12), (15), which is easy to do
using widespread solvers for semidefinite programming problems (e.g., SEDUMI [14], SDPT3 [15],
CSDP [16], and others.)

Remark 4. Obviously, the parameter c in (12), (15) is related to the radius of the open balls Ω
attracting the system trajectories ε(t): this radius equals

√
2c. Decreasing the value of c will

reduce the radius of the ball and, in turn, the limit value of ε(t). Therefore, a decrease in the limit
value of ε(t) will also reduce the fluctuation of the variable y(t) in the set Y due to the exogenous
disturbance f(t).
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4. NUMERICAL EXAMPLES

4.1. Example 1. One-Dimensional System

Consider an unstable plant of the form (1) with the following parameters:

A =

[
0 1

2 −3

]
, B =

[
0

1

]
, G =

[
0

0.1

]
, D =

[
1

1

]
, L =

[
2 1

]
, C =

[
1 2

]
,

f(t) = 0.1 + sin(3t) + 0.5sat(d(t)), φ(z) = sin(z).

where sat{·} is the saturation function and d(t) is a white noise with an intensity and sampling
time of 0.1. Then f̄ = 1.6 and μ = 1.

Let the function ε(t) be specified as

ε(t) = ln

(
y(t)− g(t)

g(t)− y(t)

)
.

Consequently, the inverse function Φ−1(ε(t), t) is given by

Φ−1(ε, t) =
g(t)eε + g(t)

eε + 1
.

For all ε∈R and t � 0, we have

∂Φ−1(ε, t)

∂ε
=

eε(g(t)− g(t))

(eε + 1)2
> 0

and ∣∣∣∣∣∂Φ−1(ε, t)

∂t

∣∣∣∣∣ =
∣∣∣∣∣ ġ(t)eε + ġ(t)

eε + 1

∣∣∣∣∣ � max

{
sup
t�0

|ġ(t)|, sup
t�0

|ġ(t)|
}

= γ. (16)

Let the functions g(t) and g(t) be specified as

g(t) =

⎧⎨⎩−3 cos(t) + 0.2, t < 2π,

cos(t) + 2.2, t � 2π,

g(t) =

⎧⎨⎩3 cos(t)− 0.2, t < 2π,

cos(t) + 1.8, t � 2π.

The control law (11) can be written as

u = −(LB)−1
[
K ln

(
y − g

g − y

)
+ LAx+ μsgn

(
ln

(
y − g

g − y

))
‖LG‖‖C‖|x|

]
.

In view of (16), we find γ = 3 and κ = 8.6. Inequality (12) was solved using YALMIP [17] with
SEDUMI. For c = 100 and α = 2, the result is τ1 = 3.10, τ2 = 4.14, and K = 6.54; for c = 0.1 and
α = 2, the result is τ1 = 45.47, τ2 = 0.04, and K = 35.36.
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Fig. 2. Transients in the closed loop system for c = 0.01 and c = 100 : (a) output y(t),
(b) control variable u(t), and (c) disturbance f(t).

The transients in y(t), u(t), and f(t) for x(0) = col{1, 1} are shown in Fig. 2. According to
Fig. 2a, the output y(t) never reaches the boundaries of the given set. Note also that the smaller the
parameter c is, the better the effect of exogenous disturbances will be suppressed. The fluctuations
of the control variable in Fig. 2b are explained by the disturbance f(t) present in the system.
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4.2. Example 2. Multidimensional System

We demonstrate control performance for an unstable double-input double-output plant with the
following parameters:

A =

⎡⎢⎣ 0 1 0
0 0 1
0.1 2 −3

⎤⎥⎦, B =

⎡⎢⎣1 2
1 1
1 3

⎤⎥⎦, G =

⎡⎢⎣0.1 0
0 0.1
0, 1 0.1

⎤⎥⎦,

D =

⎡⎢⎣11
1

⎤⎥⎦, L =

[
2 1 1
1 2 1

]
, C =

[
1 0 1
1 1 1

]
,

φ(z) = col{z1 + sin(z1), sin(z2)},
where f(t) is the same as in Example 1. Then f̄ = 1.6 and μ = 2.

Let Φ(y(t), t) = diag{Φ1(y1(t), t),Φ2(y2(t), t)}, where Φi, i = 1, 2, are the same as in Exam-

ple 1, i.e., Φ(yi(t), t) = ln

(
yi(t)−g

i
(t)

gi(t)−yi(t)

)
. Consequently, Φ−1(εi, t) =

gi(t)e
εi+g

i
(t)

eεi+1 . For ε /∈ Ω, we have

0 ≺ ∂Φ−1(ε,t)
∂ε � σI, where σ = 1

4 maxi
[
supt�0(gi(t)− g

i
(t))

]
, i = 1, 2.

Fig. 3. Transients in the closed loop system for c = 0.1, σ = 0.01, and σ = 0.542:
(a) y1(t) and (b) y2(t).
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Fig. 4. Control variables in the closed loop system for c = 0.1, σ = 0.01, and σ = 0.542:
(a) u1(t) and (b) u2(t).

Let the parameters of the constraint functions g(t) and g(t) be specified as

g1(t) = 3.52e−0.5t + 0.1,

g
1
(t) = 1.62e−0.5t − 0.1,

g2(t) = 1.62 cos(0.5t) + 1.52,

g
2
(t) = cos(0.5t) + 0.8.

In this case,

γ =
√
2max

i

{
sup
t�0

|ġi(t)|, sup
t�0

|ġ
i
(t)|

}
= 2.49, i = 1, 2

and

κ = 11.54, σ = 0.542.

For c = 0.1, we solve inequality (15) under some values of σ∈ (0, 0.542]:

τ1 = 527.72, τ2 = 0.3, and K = diag{108.42, 108.42} (for σ = 0.01) and

τ1 = 92.33, τ2 = 0.05, and K = diag{39.26, 39.26} (for σ = 0.542).

Figure 3 presents the transients of y1(t) and y2(t) for x(0) = col
{
5
3 ,

2
3 ,−1

}
whereas Fig. 4 the

control variables u1(t) and u2(t). According to Fig. 3, the outputs always belong to the given pipes.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024
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Fig. 5. Transients of y1(t) for x(0) = col{− 1
3 ,

2
3 , 1}.

Remark 5. In the above examples, the initial values of the outputs are supposed to belong to a
given set. However, if they are outside it, the control design method will fail: by the transforma-
tion (3), the outputs must be specified inside this set. This drawback can be eliminated by adding
a fast exponentially decaying function to the limit functions, so the new limits will cover the initial

conditions. Figure 5 shows the transients of y1(t) for x(0) = col
{
−1

3 ,
2
3 , 1

}
, i.e., y1(0) = 1 falls

beyond the initial set Y. The function g0(t) = −e−100t is added to the function g
1
(t) so that the

initial condition y1(0) is bounded from below by the new constraint function.

5. CONCLUSIONS

This paper has proposed a new method for stabilizing the output variables of nonlinear Lurie-
type systems in given sets at any time instant. The method is based on a special output transforma-
tion and the technique of LMIs. With this transformation, the original problem with a constraint
on the output variables is reduced to a problem without any constraints on the auxiliary variable.
The control law for the new perturbing closed-loop system is designed using the Lyapunov function
method in combination with the technique of LMIs. Simulation results in MATLAB/Simulink have
illustrated the effectiveness of the method and confirmed the theoretical conclusions.
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APPENDIX

Proof of Theorem 2. Substituting (11) into (8) yields the closed loop system

ε̇ =

(
∂Φ−1(ε, t)

∂ε

)−1 [
−Kε− μ sgn(ε)‖LG‖‖C‖|x| + LGφ+ ψ

]
. (A.1)
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We choose a Lyapunov function of the form V = 1
2ε

2. Its total time derivative along the solutions
of (A.1) is given by

V̇ = εε̇= ε

(
∂Φ−1(ε, t)

∂ε

)−1 [
−Kε−μ sgn(ε)‖LG‖‖C‖|x|+LGφ+ψ

]
. (A.2)

For V � c, we require the condition V̇ � −2αV , where α is any known positive number, i.e.,
V̇ < 0 ∀ε /∈ Ω. Due to LGφ � |LGφ| � μ‖LG‖‖C‖|x| and the constraint |ψ| � κ, the above condi-
tions can be written as

(−K + α)ε2 + εψ � 0 ∀ (ε, ψ) :
0.5ε2 � c, ψ2 � κ2.

(A.3)

Denoting z = col{ε, ψ}, we represent (A.3) in the matrix form

zT
[
−K + α 0.5

� 0

]
z � 0,

zT
[
−0.5 0
� 0

]
z � −c, zT

[
0 0
� 1

]
z � κ2.

(A.4)

By the S-procedure [13], inequalities (A.4) hold under conditions (12). Hence, system (A.1)
is input-to-state stable, and the variable ε(t) is bounded. Owing to the transformation (4), the
output y(t) is also bounded, and the state vector x(t) of system (1) possesses the same property
accordingly. Therefore, the control variable u(t) in (11) is bounded as well. Due to Theorem 1, the
target condition (3) holds.

The proof of Theorem 2 is complete.

Proof of Proposition 1. Obviously, the matrix MN is symmetric. Let λi, xi, i = 1, . . . , 2n, be
the eigenvalues and eigenvectors of the matrix MN, respectively. Then

xTi NMNxi = λix
T
i Nxi.

Hence, the values λi can be expressed as

λi =
xTi NMNxi

xTi Nxi
.

Since M � 0 and N = NT ≺ 0, we obtain NMN � 0, i.e., xTNMNx > 0 ∀x �= 0. In view of
xTNx < 0 ∀x �= 0, it follows that λi < 0, i = 1, . . . , 2n. All eigenvalues of the symmetric matrix
MN are negative, so the matrix MN is negative definite.

The proof of Proposition 1 is complete.

Proof of Theorem 3. We choose a Lyapunov function of the form V = 1
2ε

Tε. Its total time
derivative along the solutions of (14) is given by

V̇ = εTε̇ = εT
(
∂Φ−1(ε, t)

∂ε

)−1 [
−Kε

− σ̄μ Sign(ε)

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x| + LGφ+ ψ

]
.

(A.5)
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Formula (A.5) can be written as

V̇ = V̇1 + V̇2, (A.6)

where

V̇1 = −εT
(
∂Φ−1(ε, t)

∂ε

)−1

Kε+ εT
(
∂Φ−1(ε, t)

∂ε

)−1

ψ,

V̇2 = −εT
(
∂Φ−1(ε, t)

∂ε

)−1

Sign(ε)σ̄μ

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x|

+ εT
(
∂Φ−1(ε, t)

∂ε

)−1

LGφ.

Considering
(
∂Φ−1(ε,t)

∂ε

)
� σ̄I, we estimate V̇2 as

V̇2 � −
(

υ∑
i=1

|εi|
)
σ̄−1σ̄μ

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x|

+ μ|ε|
∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x| � 0.

Based on this inequality, the condition V̇ � 0 is equivalent to V̇1 � 0. In the case under study,(
∂Φ−1(ε,t)

∂ε

)−1
is a matrix and cannot be neglected when analyzing the sign definiteness of V̇ , in

contrast to the previous section. For V � c, we require the condition V̇ � −2αV , where α is any
known positive number. Due to the constraints |ψ| � κ, the above conditions can be written as

−εT

⎡⎣(∂Φ−1(ε, t)

∂ε

)−1

K + αI

⎤⎦ ε+ εT
(
∂Φ−1(ε, t)

∂ε

)−1

ψ � 0

∀ (ε, ψ) : 0.5εTε � c, ψTψ � κ2.

(A.7)

Denoting z = col{ε, ψ}, z ∈R
2m, we represent (A.7) in the matrix form

zT

⎡⎢⎣ −
(
∂Φ−1(ε, t)

∂ε

)−1

K − αI 0.5

(
∂Φ−1(ε, t)

∂ε

)−1

� 0

⎤⎥⎦ z � 0,

zT
[
−0.5I 0

� 0

]
z � −c, zT

[
0 0
� I

]
z � κ2.

(A.8)

By the S-procedure, inequalities (A.8) hold under the conditions⎡⎢⎣ −
(
∂Φ−1(ε, t)

∂ε

)−1

K − αI + 0.5τ1I 0.5

(
∂Φ−1(ε, t)

∂ε

)−1

� −τ2I

⎤⎥⎦ ≺ 0,

−cτ1 + κ2τ2 � 0.

(A.9)
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The first inequality in (A.9) is equivalent to⎡⎢⎢⎢⎢⎣
(
∂Φ−1(ε, t)

∂ε

)−1

0

�

(
∂Φ−1(ε, t)

∂ε

)−1

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎣
−K + (0.5τ1 − α)

∂Φ−1(ε, t)

∂ε
0.5I

� −τ2
∂Φ−1(ε, t)

∂ε

⎤⎥⎥⎥⎦ ≺ 0.

(A.10)

Since
(
∂Φ−1(ε,t)

∂ε

)−1 � 0, by Proposition 1, the latter inequality holds if, for any β > 0,⎡⎢⎢⎢⎣
−K + (0.5τ1 − α)

∂Φ−1(ε, t)

∂ε
0.5I

� −τ2
∂Φ−1(ε, t)

∂ε

⎤⎥⎥⎥⎦ � −βI ≺ 0. (A.11)

Due to condition (A.7), it is required to ensure V̇ < 0 for all ε from the set {ε∈R
m : |ε| � √

2c,
c > 0}. In addition, for all ε from this set, we have an interval uncertainty in (A.11) with

0 ≺ ∂Φ−1(ε,t)
∂ε � σI. Conditions (A.7) will be valid if the LMIs (15) are feasible for any σ ∈ (0, σ].

Moreover, obviously, there always exist a matrix K and τ1, τ2 > 0 such that (15) are feasible.
Indeed, using Schur’s complement lemma [13], we write (15) as

−τ2σ + β < 0,

−K + [(0.5τ1 − α)σ + β]I +
1

τ2σ − β
I � 0,

−cτ1 + κ2τ2 � 0,

τ1 > 0, τ2 > 0,

α > 0, β > 0, 0 < σ � σ.

(A.12)

For a given number c > 0 and fixed numbers σ, α, and β, inequalities (A.12) always have finite
solutions (K, τ1, τ2). Thus, according to Theorem 1, the control law (13) with the gain matrix K
satisfying (15) ensures the target condition (3).

The proof of Theorem 3 is complete.

REFERENCES

1. Grigor’ev, V.V., Zhuravleva, N.V., Luk’yanova, G.V., and Sergeev, K.A., Sintez sistem metodom
modal’nogo upravleniya (Systems Design by the Modal Control Method), St. Petersburg: ITMO Uni-
versity, 2007.

2. Ioannou, P.A. and Sun, J., Robust Adaptive Control, Courier Corporation, 2012.

3. Narendra, K.S. and Annaswamy, A.M., Stable Adaptive Systems, Courier Corporation, 2012.

4. Furtat, I.B. and Gushchin, P.A., Control of Dynamical Plants with a Guarantee for the Controlled Signal
to Stay in a Given Set, Autom. Remote Control, 2021, vol. 82, no. 4, pp. 654–669.

5. Furtat, I. and Gushchin, P., Nonlinear Feedback Control Providing Plant Output in Given Set, Int. J.
Control, 2022, vol. 95, no. 6, pp. 1533–1542. https://doi.org/10.1080/00207179.2020.1861336

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



48 NGUYEN

6. Nguyen, B.H., Furtat, I.B., and Nguyen, Q.C., Observer-BasedControl of Linear Plants with the Guaran-
tee for the Controlled Signal to Stay in a Given Set, Diff. Eqs. Control Processes, 2022, no. 4, pp. 95–104.

7. Furtat, I., Nekhoroshikh, A., and Gushchin, P., Synchronization of Multi-Machine Power Systems under
Disturbances and Measurement Errors, Int. J. Adaptive Control Signal Proc., 2022, vol. 36, no. 6,
pp. 1272–1284. https://doi.org/10.1002/acs.3372

8. Pavlov, G.M. and Merkur’ev, G.V., Automation of Power Systems, St. Petersburg: Personnel Training
Center of the Unified Energy Systems of Russia, 2001.

9. Verevkin, A.P. and Kiryushin, O.V., Control of a Reservoir Pressure Maintenance System Using Finite-
State Machines, Territoriya Neftegaz, 2008, no. 10, pp. 14–19.

10. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nonlinear and Adaptive Control of Complex Sys-
tems, Dordrecht–Boston–London: Kluwer Academic Publishers, 1999.

11. Isidori, A., Nonlinear Control Systems, Springer, 1995.

12. Khalil, H.K., Nonlinear Systems, 3rd ed., Pearson, 2001.

13. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vnesh-
nikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems under
Exogenous Disturbances: The Technique of Linear Matrix Inequalities), Moscow: LENAND, 2014.

14. Sturm, J.F., Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones, Optim.
Method. Softwar., 1999, vol. 11, no. 1, pp. 625–653. https://doi.org/10.1080/10556789908805766

15. Toh, K.C., Todd, M.J., and Tutuncu, R.H., SDPT3-a MATLAB Software Package for Semidefinite
Programming, ver. 1.3, Optim. Method. Softwar., 1999, vol. 11, pp. 545–581. https://doi.org/10.1080/
10556789908805762

16. Borchers, B., A C Library for Semidefinite Programming, Optim. Method. Softwar., 1999, vol. 11,
pp. 613–623.

17. Lofberg, J., YALMIP: A Toolbox for Modeling and Optimization in MATLAB, Proc. of the IEEE
International Conference on Robotics and Automation, 2004, pp. 284–289. IEEE Cat. No. 04CH37508.
https://doi.org/10.1109/CACSD.2004.1393890

This paper was recommended for publication by L.B. Rapoport, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024


