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Abstract—Space debris is an urgent problem of our time. This paper considers the idea of
reducing near-Earth space debris by releasing the spent additional fuel tank (AFT) and the
booster’s central block (CB) into the Earth’s atmosphere. The spacecraft transfer from a
reference circular orbit of an artificial Earth satellite to a target elliptical orbit is optimized.
The transition maneuvers are carried out using a booster with a high limited-thrust engine and
the AFT. The second zonal harmonic of the Earth’s gravitational field is taken into account. The
optimal control problem is solved based on Pontryagin’s maximum principle. Bulky derivatives
are calculated using a specially developed numerical-analytical differentiation technique. The
Pontryagin extremals obtained below are the next step in implementing the problem hierarchy
methodology.
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1. INTRODUCTION

Space debris is an urgent problem of our time. The approaches to solving this problem can be
divided into two large groups: prevention and cleaning. A detailed literature review on the topic
was presented in [1]. In addition, we mention the works [2, 3], covering the monitoring issues of
man-made space debris, and [4–7], describing different means of capture and removal of large-size
space debris.

This paper considers the idea of reducing near-Earth space debris (an approach from the pre-
vention group) by releasing the spent parts of spacecraft launch vehicles in orbits touching the
conditional boundary of the atmosphere at the transition maneuvers stage of insertion into the tar-
get orbit. The problem under study is to optimize the spacecraft transfer from a reference circular
orbit of an artificial Earth satellite of a given radius and inclination to a target elliptical orbit using
a booster with a high limited-thrust engine and an additional fuel tank (AFT), with releasing the
AFT and the booster’s central block (CB) into the Earth’s atmosphere. The final ascent maneuver
from the target orbit to the geostationary orbit (GEO) is considered within the simplified apsidal
pulse scheme and performed using the satellite engine.

This work is the next step in implementing the problem hierarchy methodology, which consists
in the sequential formalization and solution of a series of problems, where each previously obtained
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16 GRIGORIEV, PROSKURYAKOV

solution is used as an initial approximation in the next one. Initially, the simplest problem was
solved in the apsidal pulse statement [8]: according to the results, for the optimal transfer trajectory
with separation of the first impulse action and a limit of 1.5 km/s on the characteristic velocity of the
final ascent maneuver, the cost of releasing the CB’s spent parts (stages) turn out to be small. If the
characteristic velocity of the final ascent maneuver is less than 1.47 km/s, the trajectory structure
changes and the cost of releasing the AFT and CB into the atmosphere becomes significant. In
the next step [9, 10], the problem was solved without assuming the apsidality of impulse actions.
It was established that in the problem with a phase constraint on the maximum possible distance
between the spacecraft and the Earth and an unlimited transfer time, the solution is apsidal and
coincides with that obtained in the previous step. The need to solve the problem in a modified
pulse statement (considering the release of the AFT and CB) [1], representing the third step of the
problem hierarchy methodology, was due to the difficulty of a direct transition to the problem with
a high limited thrust: the modified Newton’s method did not converge when using the solution of
the second-step problem as an initial approximation.

Well, this paper aims at constructing Pontryagin extremals in the problem with high limited
thrust. The structure of this extremal (the sequence and approximate location of active segments
on the trajectory) is known from the previous studies conducted in the pulse statement. The first
series of transition maneuvers of a spacecraft to the target orbit is performed using fuel from the
AFT. After exhausting this fuel, the spacecraft is in an orbit touching the conditional boundary
of the Earth’s atmosphere (with a perigee altitude of 100 km). On the passive flight segment,
lasting 120 s, the AFT is released. The spacecraft returns to a safe orbit (with a perigee altitude
of 200 km) by an additional activation of the spacecraft engine. This activation, as well as the
subsequent ones, are performed using fuel from the CB’s main tank.

After performing the second series of maneuvers, the spacecraft is in a target orbit from which
the characteristic velocity of final ascent maneuvers to the GEO is bounded by a given value.
According to the earlier studies [1, 8–10], the cost of releasing is small for the bi-elliptical final
ascent scheme. In the target orbit, the satellite is separated from the CB. Due to the last engine
activation on the residual fuel from the main tank in the neighborhood of the target orbit apogee,
the CB is transferred to an orbit touching the conditional boundary of the Earth’s atmosphere,
and the satellite is transferred to the GEO using its engines.

In this paper, we consider two different but similar problem statements. Within the first one,
by assumption, the tanks contain exactly as much fuel as is necessary to perform the corresponding
maneuvers, the dry mass of the AFT and the mass of the CB’s main tank are proportional to the
mass of their fuel with a coefficient α, and the engine mass is proportional to the thrust-to-weight
ratio with a coefficient β [11]. Within the second statement, the following mass characteristics of
the booster are given: the dry masses of the AFT and the CB’s main tank as well as limits on the
masses of fuel in the AFT and the CB’s main tank.

The objective functional in the problems below is the payload mass, i.e., the mass of the space-
craft remaining in the target orbit after undocking the CB.

The problems under consideration are formalized as optimal control problems for a set of dy-
namic systems. Based on the corresponding Pontryagin’s maximum principle [12], they are reduced
to multipoint boundary-value problems. The boundary-value problems of the maximum principle
are solved numerically by the shooting method [13, 14]. Using the previous studies, we choose the
computational schemes of the shooting method and good initial approximations of the required
shooting parameters. The Cauchy problem is solved by the 8(7)th order Dorman–Prince method
with automatic step selection [15]; the system of nonlinear equations, by Newton’s method in the
Isaev–Sonin modification [16] with the Fedorenko normalization [17] used in convergence condi-
tions; the system of linear equations arising therein, by the Gaussian elimination technique with
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INSERTING A MAXIMUM-MASS SPACECRAFT INTO A TARGET ORBIT 17

selection of the leading element by column and recalculation [18]. The bulky derivatives in the
transversality conditions are considered through numerical-analytical differentiation [19].

2. PROBLEM STATEMENT

The transfer is considered in the rectangular Cartesian frame related to the Earth’s center. The
axis z of this frame is perpendicular to the equatorial plane and has south-to-north direction; the
axis x lies in the equatorial plane and is directed along the node line of the initial circular orbit
from the descending node to the ascending one; the axis y completes the frame to the right-hand
triple.

The motion of the spacecraft’s center of mass in the central Newtonian gravitational field in a
vacuum is described by the system of differential equations

ẋ(t) = vx(t), ẏ(t) = vy(t), ż(t) = vz(t),

v̇x(t) = −μx(t)

r3(t)
+

Px(t)

m(t)
, v̇y(t) = −μy(t)

r3(t)
+

Py(t)

m(t)
,

v̇z(t) = −μz(t)

r3(t)
+

Pz(t)

m(t)
, ṁ(t) = −P (t)

c

(1)

with the following notations: x(t), y(t), and z(t) are the coordinates of the spacecraft’s center of
mass at a time instant t; r =

√
x2(t) + y2(t) + z2(t) is the distance between the spacecraft and the

Earth’s center at a time instant t; vx(t), vy(t), and vz(t) are the velocity vector components of
the spacecraft’s center of mass at a time instant t; M(0) is the spacecraft mass at the initial time
instant; M(t) is the spacecraft mass at a time instant t; m(t) = M(t)/M(0) is the dimensionless
mass of the spacecraft (used in calculations); 	F (t) = (Fx(t), Fy(t), Fz(t)) is the jet thrust vector at

a time instant t; F (t) = |	F (t)| =
√
F 2
x (t) + F 2

y (t) + F 2
z (t) is the magnitude of the jet thrust vector;

	P (t) = (Px(t), Py(t), Pz(t)) = (Fx(t)/M(0), Fy(t)/M(0), Fz(t)/M(0)) is the dimensionless jet thrust

vector; n = Fmax/(M(0)gEar) is the initial thrust-to-weight ratio; P (t) =
√
P 2
x (t) + P 2

y (t) + P 2
z (t)

is the magnitude of the dimensionless jet thrust vector at a time instant t; μ = 398 601.19 km3/s2 is
the gravitational parameter of the Earth; c = PspegEar is the jet velocity; Pspe is the specific thrust;
finally, gEar = 9.80665 m/s2 is the gravitational acceleration at the Earth surface.

In addition to the central Newtonian gravitational field, we consider the motion of the space-
craft’s center of mass in the gravitational field with the second zonal harmonic:

ẋ(t) = vx(t), ẏ(t) = vy(t), ż(t) = vz(t),

v̇x(t) = −μx(t)

r3(t)
+

3

2
J2μ

R2
0

r5(t)

(
5x(t)z2(t)

r2(t)
− x(t)

)
+

Px(t)

m(t)
,

v̇y(t) = −μy(t)

r3(t)
+

3

2
J2μ

R2
0

r5(t)

(
5y(t)z2(t)

r2(t)
− y(t)

)
+

Py(t)

m(t)
,

v̇z(t) = −μz(t)

r3(t)
+

3

2
J2μ

R2
0

r5(t)

(
5z3(t)

r2(t)
− 3z(t)

)
+

Pz(t)

m(t)
,

ṁ(t) = −P (t)

c
,

where J2 = 1082.636023 × 10−6 is the coefficient of the second zonal harmonic.
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18 GRIGORIEV, PROSKURYAKOV

Controls are supposed to be piecewise continuous functions:

P (t) =
√
(Px(t))2 + (Py(t))2 + (Pz(t))2 � Pmax,

where Pmax = gEarnm0 is the limit on the magnitude of the control thrust vector, n is the initial
thrust-to-weight ratio of the spacecraft, and m0 is the initial weight of the spacecraft.

At the initial time instant (t = 0) the spacecraft is in the circular reference orbit of a given ra-
dius R0. Due to the chosen frame, the ascending node has the longitude Ω0 = 0, and the spacecraft’s
motion in the initial circular orbit can be formalized by the conditions

x(0)2 + y(0)2 + z(0)2 = R2
0, x(0)C0x + y(0)C0y + z(0)C0z = 0,

vx(0) +
v0
R0

(y(0) cos i0 + z(0) sin i0) = 0, vy(0)− v0
R0

x(0) cos i0 = 0,

vz(0)− v0
R0

x(0) sin i0 = 0,

(2)

where

C0x = 0, C0y = −C0 sin i0, C0z = C0 cos i0, C0 =
√
μR0,

v0 =

√
μ

R0
, R0 = REar + h0.

In these formulas, C0x, C0y, and C0z are the components of the kinetic momentum vector of the
spacecraft relative to the Earth’s center; C0 is the magnitude of this vector; v0 is the magnitude of
the velocity vector in the reference orbit; R0 is the radius of the reference orbit; REar = 6378.25 km
is the Earth’s radius; finally, h0 = 200 km is the altitude of the reference orbit above the Earth’s
surface.

The mass of the spacecraft is considered dimensionless and therefore equals 1 at the initial time
instant:

m(0) = m0 = 1. (3)

The perigee radius rp(x, y, z, vx, vy, vz) of an instantaneous elliptical orbit is a function of space-
craft coordinates and velocities and is calculated using the following formulas [20]:

r =
√
x2 + y2 + z2, V =

√
v2x + v2y + v2z ,

cosϕ =
xvx + yvy + zvz

rV
, V 2

cir =
μ

r
,

e =

√√√√[(
V

Vcir

)2

− 1

]2
+

r

a

(
V

Vcir

)2

cos2 ϕ,

a =
r

2−
(

V

Vcir

)2 , rp = a(1− e),

(4)

where a is the semi-major axis; e is eccentricity; Vcir is the circular velocity at the distance r from
the Earth’s center; finally, ϕ is the angle between the radius vector 	r = (x, y, z) and the velocity

vector
−→
V = (vx, vy, vz).

In what follows, the perigee radius of the orbit is denoted by

rp (τ) := rp (x(τ), y(τ), z(τ), vx(τ), vy(τ), vz(τ)) ,

where τ is an arbitrary time instant.
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INSERTING A MAXIMUM-MASS SPACECRAFT INTO A TARGET ORBIT 19

After performing the first series of maneuvers at the time instant τAFT
rel1 , the spacecraft must

be in the instantaneous Keplerian orbit touching the conditional boundary of the atmosphere.
(In fact, the conditions of touching the atmosphere of the instantaneous Keplerian orbit do not
ensure touching the orbit’s atmosphere in the Earth’s real field; by assumption in this paper, such
conditions are sufficient for the rapid elimination of space debris.) The orbit perigee altitude is
lowered to 100 km (the conditional boundary of the atmosphere) by activating the CB engine on
the residual fuel from the AFT. At the time instant τAFT

rel1 we have the conditions

rp(τ
AFT
rel1- ) = REar + 100 km, (5)

x(τAFT
rel1+)− x(τAFT

rel1- ) = 0, y(τAFT
rel1+)− y(τAFT

rel1- ) = 0,

z(τAFT
rel1+)− z(τAFT

rel1- ) = 0, vx(τ
AFT
rel1+)− vx(τ

AFT
rel1- ) = 0,

vy(τ
AFT
rel1+)− vy(τ

AFT
rel1- ) = 0, vz(τ

AFT
rel1+)− vz(τ

AFT
rel1- ) = 0,

τAFT
rel1+ − τAFT

rel1- = 0.

After the spacecraft reaches the AFT release orbit, the passive segment [τAFT
rel1 , τAFT

rel2 ] begins
(AFT release). On this segment, the mass is neglected in the system of differential equations. By
assumption, undocking the AFT takes a given time:

τAFT
rel2+ − τAFT

rel1- = 120 s.

We consider two different but similar problem statements. Within the first one, by assumption,
the tanks contain exactly as much fuel as is necessary to perform the corresponding maneuvers,
the dry mass of the AFT and the mass of the CB’s main tank are proportional to the mass of
their fuel with a coefficient α, and the engine mass (including the additional CB structures) is
proportional to the thrust-to-weight ratio with a coefficient β. Within the second statement, the
mass characteristics of the booster are given.

The mass of the spacecraft after AFT release is calculated as follows:

m
(
τAFT
rel2+

)
= m

(
τAFT
rel1-

)
− α

(
m0 −m

(
τAFT
rel1-

))
(6)

(the first problem statement) and

m
(
τAFT
rel2

)
= m

(
τAFT
rel1

)
−mAFT (7)

(the second problem statement), where mAFT is the given dry dimensionless mass of the AFT.
(This value can be supposed to include the mass of unreduced fuel residue.)

The constraint on the AFT fuel mass in the second problem statement has the form

m0 −m
(
τAFT
rel1

)
� mAFT

fuel . (8)

After releasing the AFT, the spacecraft performs a transition maneuver to the safe orbit. This
maneuver ends at the time instant τsafe. Fuel from the main tank is used to perform it. As before,
the pericenter radius rp(·) is a function of the coordinates and components of the spacecraft velocity
vector (4). At the time instant τsafe we have the conditions

rp (τsafe-) = REar + 200 km, (9)

x(τsafe+)− x(τsafe-) = 0, y(τsafe+)− y(τsafe-) = 0, z(τsafe+)− z(τsafe-) = 0,

vx(τsafe+)− vx(τsafe-) = 0, vy(τsafe+)− vy(τsafe-) = 0, vz(τsafe+)− vz(τsafe-) = 0,

τsafe+ − τsafe- = 0.
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20 GRIGORIEV, PROSKURYAKOV

After reaching the safe orbit, the second series of maneuvers begins to transfer the spacecraft to
the target orbit. In the target orbit, the satellite is undocked from the CB. The payload mass of
the satellite remaining in the target orbit has to be optimized:

mp = m (τtar-)−m (τtar+) → max,

where m (τtar-) is the mass of the spacecraft in the target orbit before undocking the satellite;
m (τtar+) is the CB mass in the target orbit after undocking the satellite. The satellite moves to
the GEO using its engines. By assumption, the characteristic velocity of the final ascent maneuver
from the target orbit to the GEO is limited by a given value Δv∗ and the apsidal line of the target
orbit lies in the equatorial plane, i.e., the z-component of the Laplace vector is zero. At the time
instant τtar we have the conditions

Δvfa(τtar-) := Δvfa(x(τtar-), y(τtar-), z(τtar-), vx(τtar-), vy(τtar-), vz(τtar-)) � Δv∗,

A (τtar-) := Cy (τtar-) vx (τtar-)− Cx (τtar-) vy (τtar-)− μz (τtar-)

r (τtar-)
= 0,

x(τtar+)− x(τtar-) = 0, y(τtar+)− y(τtar-) = 0, z(τtar+)− z(τtar-) = 0,

vx(τtar+)− vx(τtar-) = 0, vy(τtar+)− vy(τtar-) = 0, vz(τtar+)− vz(τtar-) = 0,

τtar+ − τtar- = 0,

(10)

where τtar is the time instant of reaching the target orbit; Cx (τtar-), Cy (τtar-), and Cz (τtar-) are
the components of the kinetic momentum vector of the spacecraft orbital motion at the time
instant τtar-.

Note that the characteristic velocity of the final ascent maneuvers of the satellite from the
target orbit to the GEO is considered by the simplified scheme. (It is considered within the central
Newtonian field, with apsidal impulse actions for maneuvering only, orbit rotation by the second
impulse action only, and the first accelerating and the last setting impulse actions not changing
the orbit plane.) Used together, these conditions simplify the problem statement very significantly.
The value Rmax (the distance to the Earth) is chosen, on the one hand, to be large enough, and on
the other hand, to be appropriate for neglecting the influence of other bodies of the Solar System.
First of all, the matter concerns the influence of the Moon and the Sun; for example, consideration
of the Moon will even avoid activation of the engine at the remote point [21]. Of course, this
influence can be modeled in the next steps of the problem hierarchy methodology. In this paper,
the influence of other bodies is omitted. The final ascent of the satellite is implemented using three
impulse actions:

Δvfa (τtar) = Δvfa1 (τtar) + Δvfa2 (τtar) + Δvfa3 (τtar) .

The first impulse action Δvfa1 (τtar) is applied at the perigee of the target orbit; without changing
the inclination, it raises the apogee to the maximum possible distance Rmax of the spacecraft from
the Earth:

Δvfa1 (τtar) =
√
V 2
tar p + V 2

1p − 2Vtar pV1p,

Vtar p =

√
2μRtar a

Rtar p(Rtar a +Rtar p)
, V1p =

√
2μRmax

Rtar p(Rmax +Rtar p)
,

(11)

where Rtar p is the perigee radius of the target orbit and Vtar p is the velocity at the perigee of the
target orbit.
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The second impulse action Δvfa2 (τtar) is applied at the apogee; it increases the perigee to the
GEO radius RGEO and decreases the inclination to zero:

Δvfa2 (τtar) =
√
V 2
1a + V 2

2a − 2V1aV2a cos itar,

V1a =

√
2μRtar p

Rmax(Rmax +Rtar p)
, V2a =

√
2μRGEO

Rmax(Rmax +RGEO)
,

(12)

where itar is the inclination angle of the target orbit to the equatorial plane. At the time instant
of passing the apogee, this value can be calculated as

cos itar =

√
v2x(τtar a) + v2y(τtar a)√

v2x(τtar a) + v2y(τtar a) + v2z(τtar a)
. (13)

The third impulse action Δvfa3 (τtar) is applied at the perigee; without changing the inclination,
it reduces the apogee to the GEO radius, thus moving the satellite to a non-predetermined point
in the GEO:

Δvfa3(·) = V2p − vGEO,

V2p =

√
2μRmax

RGEO(Rmax +RGEO)
, vGEO =

√
μ

RGEO
.

(14)

Note that Δvfa3 is actually a constant (depends on the given value RGEO and the problem param-
eter Rmax).

After undocking the satellite, the CB maneuver continues. Due to additional activation of the
engine, the perigee altitude of the CB’s orbit is lowered to 100 km (the conditional boundary of
the atmosphere):

rp (T ) = REar + 100 km. (15)

At the final time instant T all the fuel contained in the CB’s main tank is exhausted. Within the
first problem statement, the tanks are filled with exactly as much fuel as is necessary to perform the
corresponding maneuvers, the dry mass of the CB’s main tank is proportional to the mass of fuel
contained in it with the coefficient α, and the engine mass is proportional to the thrust-to-weight
ratio with the coefficient β [11]. Therefore, we obtain

m(T )− αmfuel − βn = 0,

mfuel =
(
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T )) .

(16)

Within the second problem statement, the CB’s dry mass and the fuel constraint in the CB’s main
tank are given. In this case,

m(T )−mCB = 0, (17)(
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T )) � mCB

fuel,

where mCB is the given dry dimensionless mass of the CB (the engine and additional structures)
and mCB

fuel is the maximum dimensionless mass of fuel that can be filled into the CB’s main tank.

Note that the spacecraft coordinates and velocities are continuous at all time instants. In
addition, the problem under consideration has another peculiarity: its objective functional is a
function of the phase variables at an intermediate time instant.
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3. PONTRYAGIN’S MAXIMUM PRINCIPLE

The problem under consideration is an optimal control problem with intermediate conditions.
It can be solved using Pontryagin’s maximum principle [12].

In the case of the central Newtonian gravitational field, the Pontryagin function has the form

H = pxvx + pyvy + pzvz + pm

(
−P

c

)

+ pvx

(
−μx

r3
+

Px

m

)
+ pvy

(
−μy

r3
+

Py

m

)
+ pvz

(
−μz

r3
+

Pz

m

)
;

in the problems with the second zonal harmonic, the form

H = pxvx + pyvy + pzvz + pm

(
−P

c

)
+ pvx

(
−μx

r3
+

3

2
J2μ

R2
0

r5

(
5xz2

r2
− x

)
+

Px

m

)

+ pvy

(
−μy(t)

r3(t)
+

3

2
J2μ

R2
0

r5(t)

(
5yz2

r2
− y

)
+

Py

m

)
+ pvz

(
−μz

r3
+

3

2
J2μ

R2
0

r5

(
5z3

r2
− 3z

)
+

Pz

m

)
.

For the first problem statement, the terminant is given by

l = l0 + lrel1 + lrel2 + lsafe + ltar + lT − λ0 (m (τtar−)−m (τtar+)) ,

where

l0 = λR0

(
x(0)2 + y(0)2 + z(0)2 −R2

0

)
+ λC0 (x(0)C0x + y(0)C0y + z(0)C0z)

+λvx0

(
vx(0) +

v0
R0

(y(0) cos i0 + z(0) sin i0)

)
+ λvy0

(
vy(0)− v0

R0
x(0) cos i0

)
+λvz0

(
vz(0)− v0

R0
x(0) sin i0

)
+ λm0 (m(0)−m0) ,

lrel1 =
∑

ξ=(x,y,z,vx,vy ,vz)

λξrel1

(
ξ
(
τAFT
rel1+

)
− ξ

(
τAFT
rel1-

))
+ λτrel1

(
τAFT
rel1+ − τAFT

rel1-

)
+ λrel1

(
rp

(
τAFT
rel1-

)
−REar − 100

)
,

lrel2 = λmτ

(
m
(
τAFT
rel2+

)
−m

(
τAFT
rel1-

)
+ α

(
m0 −m

(
τAFT
rel1-

)))
+ λτ

(
τAFT
rel2+ − τAFT

rel1- − 120
)
+ λτrel2

(
τAFT
rel2+ − τAFT

rel2-

)
,

lsafe =
∑

ξ=(x,y,z,vx,vy,vz)

λξsafe (ξ (τsafe+)− ξ (τsafe-)) + λτsafe (τsafe+ − τsafe-)

+ λsafe (rp (τsafe-)−REar − 200) ,

ltar =
∑

ξ=(x,y,z,vx,vy,vz)

λξtar (ξ (τtar+)− ξ (τtar-)) + λτtar (τtar+ − τtar-)

+ λtar

(
Cy(τtar-)vx(τtar-)−Cx(τtar-)vy(τtar-)− μz(τtar-)

r(τtar-)

)
+ λfa(Δvfa(x(τtar-), y(τtar-), z(τtar-), vx(τtar-), vy(τtar-), vz(τtar-))−Δv∗),

lT = λT (rp (T )−REar − 100)

+ λmT

(
m(T )− α

((
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T ))

)
− βn

)
.
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For the second problem statement, lrel2 and lT are given by

lrel2 = λmτ1

(
m
(
τAFT
rel2+

)
−m

(
τAFT
rel1-

)
+mAFT

)
+ λmτ2

(
m0 −m

(
τAFT
rel1-

)
−mAFT

fuel

)
+ λτ

(
τAFT
rel2+ − τAFT

rel1- − 120
)
+ λτrel2

(
τAFT
rel2+ − τAFT

rel2-

)
,

lT = λT (rp (T )−REar − 100) + λmT1

(
m(T )−mCB

)
+ λmT2

((
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T ))−mCB

fuel

)
.

Here, px(·), py(·), pz(·), pvx(·), pvy(·), pvz(·), and pm(·) are the conjugate variables (the functional
Lagrange multipliers) at each of the trajectory segments; λ0, λR0, λC0, λvx0, λvy0, λvz0, λm0, λξrel1,
λξsafe, λξtar (ξ = x, y, z, vx, vy, vz), λτrel1, λrel1, λmτ , λτ , λτrel2, λτsafe, λsafe, λτtar, λtar, λfa, λT , λmT ,
λmτ1, λmτ2, λmT1, and λmT2 are the numerical Lagrange multipliers.

Note that the term corresponding to the differential equation ṁ = −P
c is absent in the Pontrya-

gin function on the segment [τAFT
rel1 , τAFT

rel2 ].

The stationarity conditions with respect to the phase variables (the Euler–Lagrange equations)
have the form

ṗx =
μ

r3

[
pvx − 3x

r2
(xpvx + ypvy + zpvz)

]
,

ṗy =
μ

r3

[
pvy − 3y

r2
(xpvx + ypvy + zpvz)

]
,

ṗz =
μ

r3

[
pvz − 3z

r2
(xpvx + ypvy + zpvz)

]
,

ṗvx = −px, ṗvy = −py, ṗvz = −pz,

ṗm =
Pxpvx + Pypvy + Pzpvz

m2
.

In the case of a transfer in a gravitational field with the second zonal harmonic, the Euler–
Lagrange equations are not presented explicitly here. Their right-hand sides were calculated using
numerical-analytical differentiation [19].

Due to their bulkiness, we formally write the transversality conditions as

pξ(0) =
∂l

∂ξ(0)
, pξ(T ) = − ∂l

∂ξ(T )
,

pξ (β+) =
∂l

∂ξ (β+)
, pξ (β−) = − ∂l

∂ξ (β−)
,

ξ = x, y, z, vx, vy, vz, β = τAFT
rel1 , τAFT

rel2 , τsafe, τtar.

The transversality conditions at the initial time instant imply

px(0) = 2λR0x(0) + λC0C0x − v0
R0

(pvy(0) cos i0 + pvz(0) sin i0) ,

py(0) = 2λR0y(0) + λC0C0y +
v0
R0

pvx(0) cos i0,

pz(0) = 2λR0z(0) + λC0C0z +
v0
R0

pvy(0) sin i0.

(18)
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At the time instants τAFT
rel1 and τsafe, these conditions yield

pξ (γ−)− pξ (γ+) + λi
∂rp (γ−)
∂ξ (γ−)

= 0,

ξ = x, y, z, vx, vy, vz, γ = τAFT
rel1 , τsafe, i = rel1, safe.

(19)

Finally, at the time instant τtar, from the transversality conditions it follows that

pξ (τtar-)− pξ (τtar+) + λfa
Δvfa (τtar-)

∂ξ (τtar-)
+ λtar

∂A (τtar-)

∂ξ (τtar-)
= 0,

ξ = x, y, z, vx, vy, vz .

(20)

The derivatives of the functions rp(·), Δvfa(·), and A(·) (see (19), (20), and the transversality
conditions at the final time instant T ) are calculated using numerical-analytical differentiation.

In the first problem statement, the transversality conditions with respect to the variable m at
the time instants τAFT

rel1 , τAFT
rel2 , and T imply the equality

(1 + α)pm(τAFT
rel2+)− pm(τAFT

rel1- )− αpm(T ) = 0. (21)

Let us prove this equality. The transversality conditions with respect to the variable m at the
time instants τAFT

rel1 , τAFT
rel2 , and T have the form

pm(τAFT
rel1- ) = − ∂l

∂m(τAFT
rel1- )

= λmτ (1 + α),

pm(τAFT
rel2+) =

∂l

∂m(τAFT
rel2+)

= λmτ − αλmT ,

pm(T ) = − ∂l

∂m(T )
= −λmT (1 + α).

We obtain the following chain of equalities:

pm(τAFT
rel2+)− λmτ + αλmT = 0, λmτ =

pm(τAFT
rel1- )

1 + α
, λmT = −pm(T )

1 + α

⇒ pm(τAFT
rel2+)−

pm(τAFT
rel1- )

1 + α
− α

pm(T )

1 + α
= 0

⇒ (1 + α)pm(τAFT
rel2+)− pm(τAFT

rel1- )− αpm(T ) = 0.

In the second problem statement, the transversality conditions with respect to the variable m
at the time instants τAFT

rel1 and τAFT
rel2 imply the equality

pm(τAFT
rel2+)− pm(τAFT

rel1- ) = λmT2 − λmτ2. (22)

Let us prove this equality. The transversality conditions with respect to the variable m at the
time instants τAFT

rel1 and τAFT
rel2 have the form

pm(τAFT
rel2+) = λmτ1 + λmT2, pm(τAFT

rel1- ) = λmτ1 + λmτ2.

Subtracting the second equality from the first one yields (22).
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The transversality conditions with respect to the variable m at the time instant τtar imply the
continuity of the conjugate variable:

pm(τtar+) = pm(τtar-). (23)

Indeed, pm(τtar-) = −αλmT and pm(τtar+) = −αλmT (the first problem statement) and pm(τtar-) =
−αλmT2 and pm(τtar+) = −αλmT2 (the second problem statement).

At the initial time instant the stationarity condition is absent. The stationarity conditions at
the time instants τAFT

rel1 and τAFT
rel2 imply H(τAFT

rel2+) = H(τAFT
rel1- ). At the time instants τsafe and τtar,

the Pontryagin function is continuous: H (τsafe+) = H (τsafe-) and H (τtar+) = H (τtar-). The sta-
tionarity condition at a time instant T (unknown in advance) has the form H(T ) = 0.

Let 	e be a unit vector. Then the optimality conditions with respect to the control actions Px,
Py, and Pz have the form

−→
P = P	e, 	e = (cosα, cos β, cos γ) ,

Px = P cosα, Py = P cos β, Pz = P cos γ,

−→
P opt = arg absmax

0�P�Pmax

[
pvxPx + pvyPy + pvzPz

m
− pm

c
P

]
= arg absmax

0�P�Pmax

[
pvxP cosα+ pvyP cos β + pvzP cos γ

m
− pm

c
P

]
= arg absmax

0�P�Pmax

[
P

(
pvx cosα+ pvy cos β + pvz cos γ

m
− pm

c

)]
,

where cosα, cos β, and cos γ are the direction cosines.

If

(
pvx cosα+ pvy cosβ + pvz cos γ

m
− pm

c

)
> 0, then Popt = Pmax; in the case(

pvx cosα+ pvy cos β + pvz cos γ

m
− pm

c

)
< 0, Popt = 0. Thus,

Popt =

{
Pmax, χ > 0
0, χ < 0,

where χ ≡ ρ

m
− pm

c
is the switching function.

Note that pvx cosα+ pvy cos β + pvz cos γ is the inner product of the vectors 	pv = (pvx, pvy, pvz)
and 	e = (cosα, cos β, cos γ). It achieves maximum for the codirectional vectors 	pv and 	e:

cosαopt =
pvx
ρ

, cos βopt =
pvy
ρ

, cos γopt =
pvz
ρ

,

where ρ =
√
p2vx + p2vy + p2vz. Thus, due to the optimal direction of the thrust vector, we find

(Px)opt = Popt
pvx
ρ

, (Py)opt = Popt
pvy
ρ

, (Pz)opt = Popt
pvz
ρ

.

Special control regimes, potentially possible in the problems under study, are not considered in
this paper.

For the first problem statement, the complementary slackness and nonnegativity conditions have
the form

λfa(Δvfa(τtar-)−Δv∗) = 0,

λ0 � 0, λfa � 0.
(24)
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For the second problem statement, in addition to (24), we get the following complementary
slackness and nonnegativity conditions:

λmτ2

(
m0 −m

(
τAFT
rel1-

)
−mAFT

fuel

)
= 0,

λmT2

((
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T ))−mCB

fuel

)
= 0,

λmτ2 � 0, λmT2 � 0. (25)

The normalization condition is

p2vx(0) + p2vy(0) + p2vz(0) = 1. (26)

4. TRAJECTORY STRUCTURE AND NUMERICAL RESULTS

The trajectory structure is determined based on the previous studies [1, 8–10]. The main ad-
vantage of the given-structure trajectory approach is that it yields Pontryagin extremals: under
a “good” computational scheme for the shooting method and a “good” initial approximation, the
modified Newton’s method converges in a few iterations.

Other possible methods for solving the corresponding boundary-value problems were tested as
well, but without success (the Pontryagin extremals were not constructed).

The initial approximation to the values of the phase and conjugate variables in the shooting
parameter vector is chosen using the solution obtained previously in the modified pulse statement [1]
in accordance with [12]: at the thrust activation time instants they correspond to the values of the
phase and conjugate variables before the impulse action; at the thrust deactivation time instants,
to the values of the phase and conjugate variables after the impulse action. The duration of active
segments is estimated based on fuel consumption for a given engine activation; the duration of
passive segments is equal to the corresponding duration of passive segments between the impulse
actions. First, the problem with high limited thrust is solved in the first statement with n = 10.
Then the parameter continuation method is applied for the thrust-to-weight ratio to obtain the
solution for n = 0.1. The transition from the first problem statement to the second one is also
carried out using the parameter continuation method: the corresponding equations from the first
and second problem statements are multiplied by (1− γ) and γ, respectively, where γ ∈ [0, 1].

Let us describe the computational scheme of the shooting method (see the figure). The shooting
parameter vector consists of the following components:

• the numerical Lagrange multipliers λR0, λC0, λrel1, λsafe, λtar, λfa, and λT ; in the second
problem statement, also the numerical Lagrange multiplier λmT2;

• the angular position of the spacecraft in the reference circular orbit, ϕ0, and the values of the
four conjugate variables at the initial time instant, pvx(0), pvy(0), pvz(0), and pm(0); (The
coordinates and velocities of the spacecraft at the initial time instant are calculated by the
angular position; the values px(0), py(0), and pz(0) of the conjugate variables are calculated
using (18). By the condition, m(0) = 1 and, therefore, m(0) is not included in the shooting
parameter vector. Thus, we obtain the starting point for solving the Cauchy problem.)

• the duration of the first active segment, Δτact1 ;

0               ��act           ��pass  
         ��AFT

          ��AFT             ��������������� ��pass  
         ��act             ��������������������T

1                   1                       rel1                rel2                    safe              3                     4                      tar

��act         ��pass    ��act =��AFT ��pass
=120 s ��act=��safe  ��

pass
     ��act     ��pass

=��tar  ��act=�T
1                   1               2           rel1        2                         2                         3                4             4                        5

The computational scheme of the shooting method.
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• the coordinates and velocities as well as the values of the conjugate variables after engine
deactivation, x(τact1+ ), y(τact1+ ), z(τact1+ ), vx(τ

act
1+ ), vy(τ

act
1+ ), vz(τ

act
1+ ), px(τ

act
1+ ), py(τ

act
1+ ), pz(τ

act
1+ ),

pvx(τ
act
1+ ), pvy(τ

act
1+ ), and pvz(τ

act
1+ );

• the duration of the first passive segment, Δτpass1 ;

• the coordinates and velocities as well as the values of the conjugate variables after engine acti-
vation, x(τpass1+ ), y(τpass1+ ), z(τpass1+ ), vx(τ

pass
1+ ), vy(τ

pass
1+ ), vz(τ

pass
1+ ), px(τ

pass
1+ ), py(τ

pass
1+ ), pz(τ

pass
1+ ),

pvx(τ
pass
1+ ), pvy(τ

pass
1+ ), and pvz(τ

pass
1+ );

• the duration of the second active segment, Δτact2 = ΔτAFT
rel1 , where the perigee altitude of the

spacecraft orbit is lowered to the conditional boundary of the atmosphere;

• the coordinates and velocities as well as the values of the conjugate variables after engine de-
activation, x(τAFT

rel1+), y(τ
AFT
rel1+), z(τ

AFT
rel1+), vx(τ

AFT
rel1+), vy(τ

AFT
rel1+), vz(τ

AFT
rel1+), px(τ

AFT
rel1+), py(τ

AFT
rel1+),

pz(τ
AFT
rel1+), pvx(τ

AFT
rel1+), pvy(τ

AFT
rel1+), and pvz(τ

AFT
rel1+); (The duration of the second passive segment

(AFT release), Δτpass2 , is a parameter of the problem (120 s), being therefore not included in
the shooting parameter vector.)

• the coordinates and velocities as well as the values of the conjugate variables after engine
activation, x(τAFT

rel2+), y(τ
AFT
rel2+), z(τ

AFT
rel2+), vx(τ

AFT
rel2+), vy(τ

AFT
rel2+), vz(τ

AFT
rel2+), px(τ

AFT
rel2+), py(τ

AFT
rel2+),

pz(τ
AFT
rel2+), pvx(τ

AFT
rel2+), pvy(τ

AFT
rel2+), and pvz(τ

AFT
rel2+), including the conjugate variable correspond-

ing to the mass, pm(τAFT
rel2 ) = pm(τAFT

rel2+); (The mass of the spacecraft after AFT release is not
included in the shooting parameter vector and is calculated by formulas (6) (the first problem
statement) and (7) (the second problem statement).)

• the duration of the third active segment, Δτact3 = Δτsafe, where the perigee altitude of the
spacecraft orbit is increased to 200 km;

• the coordinates and velocities as well as the values of the conjugate variables after engine de-
activation, x(τsafe+), y(τsafe+), z(τsafe+), vx(τsafe+), vy(τsafe+), vz(τsafe+), px(τsafe+), py(τsafe+),
pz(τsafe+), pvx(τsafe+), pvy(τsafe+), and pvz(τsafe+);

• the duration of the third passive segment, Δτpass3 ;

• the coordinates and velocities as well as the values of the conjugate variables after engine acti-
vation, x(τpass3+ ), y(τpass3+ ), z(τpass3+ ), vx(τ

pass
3+ ), vy(τ

pass
3+ ), vz(τ

pass
3+ ), px(τ

pass
3+ ), py(τ

pass
3+ ), pz(τ

pass
3+ ),

pvx(τ
pass
3+ ), pvy(τ

pass
3+ ), and pvz(τ

pass
3+ );

• the duration of the fourth active segment, Δτact4 , at the end of which the spacecraft reaches
the target orbit;

• the coordinates and velocities as well as the values of the conjugate variables after engine
deactivation, x(τact4+ ), y(τact4+ ), z(τact4+ ), vx(τ

act
4+ ), vy(τ

act
4+ ), vz(τ

act
4+ ), px(τ

act
4+ ), py(τ

act
4+ ), pz(τ

act
4+ ),

pvx(τ
act
4+ ), pvy(τ

act
4+ ), and pvz(τ

act
4+ );

• the duration of the fourth passive segment, Δτpass4 = Δτtar, where the spacecraft moves in the
target orbit; (For convenience of calculations, τtar is the last engine activation point for the CB
release instead of the first point in the target orbit of the spacecraft; this is possible because
the points are connected by the passive segment.)

• the coordinates and velocities as well as the values of the conjugate variables after engine acti-
vation, x(τtar+), y(τtar+), z(τtar+), vx(τtar+), vy(τtar+), vz(τtar+), px(τtar+), py(τtar+), pz(τtar+),
pvx(τtar+), pvy(τtar+), and pvz(τtar+), and the CB mass m(τtar+) after undocking the satellite;
(The conjugate variable pm(τtar+) is not included in the shooting parameter vector since pm is
continuous at the point τtar by (23).)

• the duration of the fifth active segment, Δτact5 = ΔT , where the CB perigee is lowered to
100 km (the conditional boundary of the atmosphere).

The residual vector function includes the following elements:

• the twelve continuity conditions of the phase and conjugate variables at the time instant τact1 ;

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



28 GRIGORIEV, PROSKURYAKOV

• the twelve continuity conditions of the phase and conjugate variables at the time instant τpass1 ;

• the six continuity conditions of the phase variables and the six implications of the transversality
conditions at the time instant τAFT

rel1 (19);

• the twelve continuity conditions of the phase and conjugate variables at the time instant τAFT
rel2 ;

• the six continuity conditions of the phase variables and the six implications of the transversality
conditions at the time instant τsafe (19);

• the twelve continuity conditions of the phase and conjugate variables at the time instant τpass3 ;

• the twelve continuity conditions of the phase and conjugate variables at the time instant τact4 ;

• the six continuity conditions of the phase variables and the six implications of the transversality
conditions at the time instant τtar (20);

• the zero value of the z-component of the Laplace vector (the second condition from (10));

• the condition of exhausting all fuel from the CB’s main tank at the final time instant: formu-
las (16) and (17) in the first and second problem statements, respectively;

• the complementary slackness condition: a given value of the final ascent impulse from the
target orbit to the geostationary orbit (the first condition from (24));

• the three conditions on the perigee of the spacecraft orbit at the time instants τAFT
rel1 , τsafe,

and T : formulas (5), (9), and (15), respectively;

• the four conditions on the switching function: χ(τact1− ) = 0, χ(τpass1+ ) = 0, χ(τpass3+ ) = 0, and
χ(τact4− ) = 0;

• the six transversality conditions at the final time instant T ;

• the implication of the transversality conditions with respect to the variable m: formulas (21)
and (22) in the first and second problem statements, respectively (in the latter case, with
λmτ2 = 0);

• the three implications of the stationarity conditions, H(τAFT
rel2+) = H(τAFT

rel1- ), H(τsafe+) =
H (τsafe-), and H (τtar+) = H (τtar-);

• the stationarity condition at the final time instant, H(T ) = 0;

• the normalization condition (26);

• in the second problem statement, also the second complementary slackness condition from (25).
(The first complementary slackness condition from (25) is not included in the residual vector
function, and the corresponding inequality (8) is verified after solving the problem: the strict
inequality holds on the Pontryagin extremal, which matches the case λmτ2 = 0.)

Thus, the first problem statement has one hundred and eighteen shooting parameters and one
hundred and eighteen residuals; the second problem statement, one hundred and nineteen shooting
parameters and one hundred and nineteen residuals. In other words, in both statements, the
number of unknown parameters coincides with the number of equations for their determination.

In the Appendix, we present the Pontryagin extremal in the second problem statement with
the second zonal harmonic and n = 0.1, Pspe = 350 s, i0 = 0.9 rad, Δv∗ = 1.5 km/s, m(0) = 1

(M(0) = 22 500 kg), the AFT’s dry mass mAFT = 0.052 (which corresponds to the mass 1170 kg),
the CB’s dry mass mCB = 0.0635556 (which corresponds to the mass 1430 kg), the maximum AFT
fuel mass mAFT

fuel = 0.6488889 (which corresponds to the mass 14 600 kg), the maximum CB fuel
mass mCB

fuel = 0.2266667 (which corresponds to the mass 5100 kg), and Rmax = 280 000 km.

5. CONCLUSIONS

One result of the previous studies in the pulse statement was the possibility of releasing the
additional fuel tank and the booster of the central block into the Earth’s atmosphere at low cost.
The same result has been confirmed above in the case of spacecraft with a high limited-thrust
engine.
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As it has turned out, the solution of the spacecraft transfer problem with a high limited-thrust
engine is, to some extent, close to that obtained in the pulse statement. In the case under con-
sideration, the method for passing from the latter solution to the former one [12] is effective: the
Pontryagin extremal has been constructed.

The problems in the first and second statements (with optimizable design and fixed mass charac-
teristics) have been successfully included in the parametric family. The transition from the solution
of the first problem (with the chosen constants α = 0.08 and β = 0.01) to the second one (see the
extremal in the Appendix) has been effectively implemented the parameter continuation method.

The difference between the extremal considering the second zonal harmonic and the one without
such consideration is small in the sense of convergence of Newton’s method. (This method converges
in 11 iterations.)

The numerical-analytical differentiation technique has demonstrated its effectiveness and advan-
tages (the simplified program code and the reduced probability of programming errors).

The problem hierarchy methodology has been adopted to solve the original problem, choose an
appropriate computational scheme and a good initial approximation, and cope with the difficulties
of numerical solution due to the complexity and bulkiness of the problem statement, thus demon-
strating its effectiveness. The candidate’s dissertation by A.S. Samokhin [22] is another complete
example of the effective application of this methodology. Note that when the maximum possible
distance Rmax of the spacecraft to the Earth increases, the problem statement changes: it will be
necessary to consider the influence of the Moon’s gravitational field [21]; moreover, the resulting
problem will be in the next steps of the problem hierarchy methodology.

APPENDIX

The Pontryagin Extremal in the Second Problem Statement with the Second Zonal Harmonic

Here, we present the Pontryagin extremal in the second problem statement with the second zonal
harmonic and n = 0.1, Pspe = 350 s, i0 = 0.9 rad, Δv∗ = 1.5 km/s, m(0) = 1 (M(0) = 22 500 kg),
the AFT’s dry mass mAFT = 0.052 (which corresponds to the mass 1170 kg), the CB’s dry mass
mCB = 0.0635556 (which corresponds to the mass 1430 kg), the maximum AFT fuel mass mAFT

fuel =
0.6488889 (which corresponds to the mass 14 600 kg), the maximum CB fuel massmCB

fuel = 0.2266667
(which corresponds to the mass 5100 kg), and Rmax = 280 000 km.

The numerical Lagrange multipliers are:

λR0 = 0.000143381, λC0 = 0.000591830,

λvx0 = 0.454024806, λvy0 = 0.573821987, λvz0 = 0.681608247,

λm0 = 0.003461557, λxrel1 = −0.000341292, λyrel1 = 7.242061031 × 10−7,

λzrel1 = −4.016946803 × 10−7, λvxrel1 = −0.006462504, λvyrel1 = −0.749532226,

λvzrel1 = −0.815268562, λxsafe = −4.192288919 × 10−5, λysafe = 1.862663610 × 10−6,

λzsafe = 3.375542260 × 10−6, λvxsafe = 0.005756096, λvysafe = 0.122589304,

λvzsafe = 0.271310189, λxtar = 2.712182075 × 10−7, λytar = −1.138471581 × 10−9,

λztar = −6.622593433 × 10−13, λvxtar = 0.000524475, λvytar = 0.124996420,

λvztar = 0.154483787, λτrel1 = 1.017515559 × 10−10, λrel1 = 0.000457417,

λmτ1 = 0.005674790, λmτ2 = 0, λτ = −7.385740053 × 10−11,

λτrel2 = 8.771225602 × 10−11, λτsafe = 1.237010821 × 10−11, λsafe = −0.000291125,

λτtar = −1.948360860 × 10−19, λtar = −0.020742502, λfa = 1.164436713,

λT = 4.669488715 × 10−6, λmT1 = −0.009927899, λmT2 = 0.000804002, λ0 = 0.009915863.
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The spacecraft engine is activated at the initial time instant t = 0 under the angular position
ϕ0 = −0.7817944 rad in the reference orbit:

x(0) = 4668.258 km, y(0) = −2880.996 km, z(0) = −3630.510 km,

vx(0) = 5.484390 km/s, vy(0) = 3.433812 km/s, vz(0) = 4.327147 km/s,

px(0) = 0.000284790, py(0) = −0.000515932, pz(0) = −0.000601403,

pvx(0) = 0.454024806, pvy(0) = 0.573821987, pvz(0) = 0.681608247,

m(0) = 1, pm(0) = 0.003461557.

The duration of the first active segment is Δτact1 = 1234.190 s. The spacecraft moves to the elliptic
orbit with the apogee ra1 = 15500.572 km, the perigee rp1 = 6702.795 km, and the inclination angle
i1 = 0.8956402 rad. The coordinates, velocities, and mass of the spacecraft at the engine activation
time instant τact1 are

x(τact1− ) = x(τact1+ ) = 5360.198 km, y(τact1− ) = y(τact1+ ) = 3045.731 km,

z(τact1− ) = z(τact1+ ) = 3807.202 km, vx(τ
act
1− ) = vx(τ

act
1+ ) = −4.376498 km/s,

vy(τ
act
1− ) = vy(τ

act
1+ ) = 4.635010 km/s, vz(τ

act
1− ) = vz(τ

act
1+ ) = 5.786158 km/s,

px(τ
act
1− ) = px(τ

act
1+ ) = 0.000331052, py(τ

act
1− ) = py(τ

act
1+ ) = 0.000386951,

pz(τ
act
1− ) = pz(τ

act
1+ ) = 0.000452488, pvx(τ

act
1− ) = pvx(τ

act
1+ ) = −0.371919208,

pvy(τ
act
1− ) = pvy(τ

act
1+ ) = 0.637424282, pvz(τ

act
1− ) = pvz(τ

act
1+ ) = 0.754898302,

m(τact1 ) = 0.6473743, pm(τact1 ) = 0.005597245.

The duration of the first passive segment is Δτpass1 = 5219.504 s. At the end of this segment, the
spacecraft is in the orbit with the apogee ra2 = 15497.241 km, the perigee rp2 = 6704.141 km, and
the inclination angle i2 = 0.8956703 rad. The coordinates, velocities, and mass of the spacecraft at
the engine activation time instant τpass1 are

x(τpass1− ) = x(τpass1+ ) = −15495.958 km, y(τpass1− ) = y(τpass1+ ) = 133.386 km,

z(τpass1− ) = z(τpass1+ ) = 131.434 km, vx(τ
pass
1− ) = vx(τ

pass
1+ ) = −0.061410 km/s,

vy(τ
pass
1− ) = vy(τ

pass
1+ ) = −2.462966 km/s, vz(τ

pass
1− ) = vz(τ

pass
1+ ) = −3.076413 km/s,

px(τ
pass
1− ) = px(τ

pass
1+ ) = 0.000121015, py(τ

pass
1− ) = py(τ

pass
1+ ) = −2.300740522 × 10−6,

pz(τ
pass
1− ) = pz(τ

pass
1+ ) = −3.527557800 × 10−6, pvx(τ

pass
1− ) = pvx(τ

pass
1+ ) = 0.007053866,

pvy(τ
pass
1− ) = pvy(τ

pass
1+ ) = 0.600617145, pvz(τ

pass
1− ) = pvz(τ

pass
1+ ) = 0.868167234,

m(τpass1 ) = 0.6473743, pm(τpass1 ) = 0.005597245.

The duration of the second active segment is Δτact2 = ΔτAFT
rel1 = 30.961 s. The spacecraft moves to

the elliptic orbit with the apogee ra3 = 15497.241 km, the perigee rp3 = 6478.25 km, and the incli-
nation angle i3 = 0.8948234 rad. This orbit touches the conditional boundary of the atmosphere.
The coordinates, velocities, and mass of the spacecraft at the engine deactivation time instant τAFT

rel1

are

x(τAFT
rel1- ) = x(τAFT

rel1+) = −15 497.060 km, y(τAFT
rel1- ) = y(τAFT

rel1+) = 57.540 km,

z(τAFT
rel1- ) = z(τAFT

rel1+) = 36.780 km, vx(τ
AFT
rel1- ) = vx(τ

AFT
rel1+) = −0.009780 km/s,

vy(τ
AFT
rel1- ) = vy(τ

AFT
rel1+) = −2.436415 km/s, vz(τ

AFT
rel1- ) = vz(τ

AFT
rel1+) = −3.037856 km/s,

px(τ
AFT
rel1- ) = 0.000121065, py(τ

AFT
rel1- ) = −3.087854169 × 10−7, pz(τ

AFT
rel1- ) = −6.465598107 × 10−7,

pvx(τ
AFT
rel1- ) = 0.003306216, pvy(τ

AFT
rel1- ) = 0.600657543, pvz(τ

AFT
rel1- ) = 0.868231852,

px(τ
AFT
rel1+) = −0.000341292, py(τ

AFT
rel1+) = 7.242061031× 10−7, pz(τ

AFT
rel1+) = −4.016946803× 10−7,

pvx(τ
AFT
rel1+) = −0.006462504, pvy(τ

AFT
rel1+) = −0.749532226, pvz(τ

AFT
rel1+) = −0.815268562,

m(τAFT
rel1- ) = 0.6385284, pm(τAFT

rel1- ) = 0.005674790.
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The duration of the second passive segment is Δτpass2 = 120 s. On this segment, the AFT is
undocked from the spacecraft. At the end of the second passive segment, the spacecraft is in the
orbit with the apogee ra4 = 15497.245 km, the perigee rp4 = 6478.246 km, and the inclination angle
i4 = 0.8948232 rad. The coordinates, velocities, and mass of the spacecraft at the engine activation
time instant τAFT

rel2 are

x(τAFT
rel2- ) = x(τAFT

rel2+) = −15486.279 km, y(τAFT
rel2- ) = y(τAFT

rel2+) = −234.799 km,

z(τAFT
rel2- ) = z(τAFT

rel2+) = −327.697 km, vx(τ
AFT
rel2- ) = vx(τ

AFT
rel2+) = 0.189472 km/s,

vy(τ
AFT
rel2- ) = vy(τ

AFT
rel2+) = −2.435275 km/s, vz(τ

AFT
rel2- ) = vz(τ

AFT
rel2+) = −3.035984 km/s,

px(τ
AFT
rel2- ) = px(τ

AFT
rel2+) = −0.000341191, py(τ

AFT
rel2- ) = py(τ

AFT
rel2+) = −8.913952605 × 10−6,

pz(τ
AFT
rel2- ) = pz(τ

AFT
rel2+) = −1.089032490 × 10−5, pvx(τ

AFT
rel2- ) = pvx(τ

AFT
rel2+) = 0.034488810,

pvy(τ
AFT
rel2- ) = pvy(τ

AFT
rel2+) = −0.749040916, pvz(τ

AFT
rel2- ) = pvz(τ

AFT
rel2+) = −0.814591115,

m(τAFT
rel2+) = 0.5865284, pm(τAFT

rel2+) = 0.006478792.

The duration of the third active segment is Δτact3 = Δτsafe = 12.584 s. The spacecraft moves to
the elliptic orbit with the apogee ra5 = 15497.362 km, the perigee rp5 = 6578.25 km, and the
inclination angle i5 = 0.8944602 rad. This is the safe orbit. The coordinates, velocities, and mass
of the spacecraft at the engine deactivation time instant τsafe are

x(τsafe-) = x(τsafe+) = −15 483.759 km, y(τsafe-) = y(τsafe+) = −265.532 km,

z(τsafe-) = z(τsafe+) = −365.996 km, vx(τsafe-) = vx(τsafe+) = 0.211071 km/s,

vy(τsafe-) = vy(τsafe+) = −2.449215 km/s, vz(τsafe-) = vz(τsafe+) = −3.051042 km/s,

px(τsafe-) = −0.000341167, py(τsafe-) = −9.925271032 × 10−6,

pz(τsafe-) = −1.199086427 × 10−5, pvx(τsafe-) = 0.038782187,

pvy(τsafe-) = −0.748922381, pvz(τsafe-) = −0.814447148,

px(τsafe+) = −4.192288919 × 10−5, py(τsafe+) = 1.862663610 × 10−6,

pz(τsafe+) = 3.375542260 × 10−6, pvx(τsafe+) = 0.005756096,

pvy(τsafe+) = 0.122589304, pvz(τsafe+) = 0.271310189,

m(τsafe) = 0.5829330, pm(τsafe) = 0.006518753.

The duration of the third passive segment is Δτpass3 = 5213.308 s. At the end of this segment, the
spacecraft is in the orbit with the apogee ra6 = 15511.458 km, the perigee rp6 = 6576.991 km, and
the inclination angle i6 = 0.8945149 rad. The coordinates, velocities, and mass of the spacecraft at
the engine activation time instant τpass3 are

x(τpass3− ) = x(τpass3+ ) = 5800.915 km, y(τpass3− ) = y(τpass3+ ) = −2325.058 km,

z(τpass3− ) = z(τpass3+ ) = −2873.476 km, vx(τ
pass
3− ) = vx(τ

pass
3+ ) = 3.552179 km/s,

vy(τ
pass
3− ) = vy(τ

pass
3+ ) = 5.123342 km/s, vz(τ

pass
3− ) = vz(τ

pass
3+ ) = 6.398453 km/s,

px(τ
pass
3− ) = px(τ

pass
3+ ) = 0.000705371, py(τ

pass
3− ) = py(τ

pass
3+ ) = −0.000362590,

pz(τ
pass
3− ) = pz(τ

pass
3+ ) = −0.000422128, pvx(τ

pass
3− ) = pvx(τ

pass
3+ ) = 0.375643830,

pvy(τ
pass
3− ) = pvy(τ

pass
3+ ) = 0.672228633, pvz(τ

pass
3− ) = pvz(τ

pass
3+ ) = 0.795432792,

m(τpass3 ) = 0.5829330, pm(τpass3 ) = 0.006518753.

The duration of the fourth active segment is Δτact4 = 780.500 s. The spacecraft moves to the target
orbit with the apogee ra7 = 227 835.611 km, the perigee rp7 = 6644.321 km, and the inclination
angle i7 = 0.8906535 rad. The coordinates, velocities, and mass of the spacecraft at the engine
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deactivation time instant τact4 are

x(τact4− ) = x(τact4+ ) = 6084.753 km, y(τact4− ) = y(τact4+ ) = 2384.542 km,

z(τact4− ) = z(τact4+ ) = 2973.927 km, vx(τ
act
4− ) = vx(τ

act
4+ ) = −2.938015 km/s,

vy(τ
act
4− ) = vy(τ

act
4+ ) = 6.263591 km/s, vz(τ

act
4− ) = vz(τ

act
4+ ) = 7.730739 km/s,

px(τ
act
4− ) = px(τ

act
4+ ) = 0.000708160, py(τ

act
4− ) = py(τ

act
4+ ) = 0.000286427,

pz(τ
act
4− ) = pz(τ

act
4+ ) = 0.000340122, pvx(τ

act
4− ) = pvx(τ

act
4+ ) = −0.318610391,

pvy(τ
act
4− ) = pvy(τ

act
4+ ) = 0.697696303, pvz(τ

act
4− ) = pvz(τ

act
4+ ) = 0.821832874,

m(τact4 ) = 0.3599331, pm(τact4 ) = 0.010719865.

In the target orbit, the satellite is separated from the CB. The satellite mass in the target orbit
(payload mass) is mp = 0.2963061 (6666.888 kg). At the time instant τtar the last engine activation
occurs to lower the perigee altitude of the CB orbit to the conditional boundary of the atmosphere.
For convenience of calculations, the mass jump (after undocking the satellite) is considered at the
last engine activation instant. The duration of the fourth passive section (passive flight of the
CB in the target orbit) is Δτpass4 = Δτtar = 197 376.995 s. At the end of this passive segment, the
spacecraft is in the orbit with the apogee ra8 = 226 259.913 km, the perigee rp8 = 6643.293 km,
and the inclination angle i8 = 0.8905128 rad. The coordinates and mass of the CB at the engine
activation time instant τtar are

x(τtar-) = x(τtar+) = −226 257.921 km, y(τtar-) = y(τtar+) = 949.323 km,

z(τtar-) = z(τtar+) = 0.031 km, vx(τtar-) = vx(τtar+) = −0.000838 km/s,

vy(τtar-) = vy(τtar+) = −0.199407 km/s, vz(τtar-) = vz(τtar+) = −0.246448 km/s,

px(τtar-) = −7.173006000 × 10−7, py(τtar-) = 1.993046144 × 10−9,

pz(τtar-) = −3.571982769 × 10−8, pvx(τtar-) = −0.003979552,

pvy(τtar-) = −0.672797915, pvz(τtar-) = 0.617436221,

px(τtar+) = 2.712182075 × 10−7, py(τtar+) = −1.138471581 × 10−9,

pz(τtar+) = −6.622593433 × 10−13, pvx(τtar+) = 0.000524475,

pvy(τtar+) = 0.124996420, pvz(τtar+) = 0.154483787,

m(τtar-) = 0.3599331, m(τtar+) = 0.0636269,

pm(τtar-) = pm(τtar+) = 0.010719865.

The duration of the fifth (last) active segment is Δτact5 = ΔT = 0.250 s. The spacecraft moves to the
orbit touching the conditional boundary of the atmosphere with the apogee ra9 = 226 259.913 km,
the perigee rp9 = 6478.25 km, and the angle of inclination i9 = 0.8905128 rad. The coordinates,
velocities, and mass of the CB at the engine deactivation time instant T are

x(T ) = −226 257.922 km, y(T ) = 949.274 km,

z(T ) = −0.030 km, vx(T ) = −0.000826 km/s,

vy(T ) = −0.196984 km/s, vz(T ) = −0.243454 km/s,

px(T ) = 2.712182120 × 10−7, py(T ) = −1.137397235 × 10−9,

pz(T ) = 6.655346255 × 10−13, pvx(T ) = 0.000524407,

pvy(T ) = 0.124996420, pvz(T ) = 0.154483787,

m(T ) = 0.0635556, pm(T ) = 0.010731902.

The final ascent impulses to transfer the satellite from the target orbit to the GEO are

Δvfa1 = 0.029677 km/s, Δvfa2 = 0.491271 km/s, Δvfa3 = 0.979052 km/s.
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The fuel consumed to lower the perigee altitude to 100 km (to release the AFT) is 199.034 kg
(0.0088460). The fuel consumed to raise the perigee altitude to 200 km (to reach the safe orbit)
is 80.897 kg (0.0035954). The fuel consumed to lower the perigee altitude to 100 km (to release
the CB) is 1.606 kg (7.1361228 × 10−5). The total fuel consumption for releasing the AFT and CB
constitutes 281.536 kg (0.0125127).

The correspondence of the phase and conjugate variables at the starts and ends of the passive
segments can be verified by numerical integration. The conditions of Pontryagin’s maximum prin-
ciple can be verified by substituting the phase and conjugate variables and the numerical Lagrange
multipliers into the corresponding formulas, and numerical-analytical differentiation can be used
to verify the transversality conditions. The basic dimensional units in the calculations are 1000 km
and 1 s. When passing to other dimensional units, the conjugate variables must be recalculated by
appropriate formulas. The 8(7)th order Dorman–Prince method was used for numerical integration.
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