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Abstract—This paper considers a linear continuous- or discrete-time dynamic object in the
absence of its mathematical model. As is demonstrated below, a control law that suboptimally
damps initial and (or) exogenous disturbances of such objects can be implemented based on
experimental and a priori data. The approach involves the methods of robust control design
and duality theory as well as the technique of linear matrix inequalities.
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1. INTRODUCTION

Recently, increasing attention in control theory has been paid to the design of control laws for
dynamic objects with highly uncertain mathematical models, exogenous disturbances, and unknown
initial conditions. Within this line of research, by assumption, a series of experiments can be
conducted with an object by setting input actions and measuring output variables. The problem
is to determine the feedback parameters ensuring a given quality of the closed-loop control system
directly, i.e., based on available measurements and a priori data without identifying the unknown
parameters of the object.

As was established in [1], a single trajectory can be used to fully characterize a linear time-
invariant dynamic system under the so-called persistency of excitation. In view of this fundamental
result, different direct control design schemes based on experimental data were proposed in [2]
for objects with unknown state dynamics matrices and given target output matrices under the
persistency of excitation. According to [3], it suffices to fulfill the data informativity condition in
order to construct control laws from experimental data, which is less restrictive than the persistency
of excitation. For a fully uncertain object, H2- andH∞-optimal control laws were constructed based
on input and output measurements using a matrix version of S-lemma [5] in the publication [4]
and using Petersen’s lemma [7] in the publication [6]. In [8, 9], the state feedback parameters were
calculated from a priori data and open-loop measurements of the input and output of a discrete-time
uncertain object subjected to an unmeasured disturbance from a definite class.

In this paper, generalized H∞-suboptimal control laws that damp initial and (or) exogenous dis-
turbances (as a special case, linear-quadratic control laws) for continuous- or discrete-time objects
with completely unknown state dynamics and target output matrices are designed from a priori
and experimental data. The design procedure is based on the approach used in [9]: the uncertain
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2 KOGAN, STEPANOV

system is “immersed” into an artificial system with known equations and an additional disturbance
whose influence corresponds to that of the unknown terms in the original equation. The idea of
such an artificial immersion (in other words, the representation of an uncertain system as a system
whose feedback loop contains a block with unknown bounded parameters or an unknown bounded
operator) was actively employed in robust control based on H∞ optimization; see the survey [10].
However, the direct application of this approach to the design of control laws based on experimental
data caused difficulties. This problem is solved below by passing from the original uncertain system
to a dual uncertain system immersed into the corresponding augmented system. Implementing such
an approach requires establishing a connection between the generalized H∞ norms of the primal
and dual systems.

This paper is organized as follows. After the Introduction, Section 2 gives the general prob-
lem statement; in particular, two quadratic inequalities for the unknown object parameter matrices
(state and target output) are derived from a priori information and experimental data. In Section 3,
a necessary background is provided on the generalized H∞ norm, and this norm is calculated in
terms of the dual system; see Lemma 3.1. Section 4 describes the design procedure for the gen-
eralized H∞-suboptimal control laws based on a priori and experimental data, including the main
theorem and its proof. Several experiments with an uncertain system are presented in Section 5 to
illustrate the effectiveness of this control approach. Finally, Section 6 summarizes the results and
draws conclusions.

2. PROBLEM STATEMENT

Consider an uncertain system described by

∂x(t) = Ax(t) +Bu(t) + w(t), x(0) = x0,

z(t) = Cx(t) +Du(t)
(2.1)

with the following notations: ∂ is the differentiation operator in the continuous-time case or the
shift operator in the discrete-time case; x(t)∈Rnx is the state vector, u(t)∈Rnu is the control
vector (input), w(t)∈Rnw is an exogenous disturbance, and z(t)∈Rnz is the target output. By as-
sumption, the disturbance w(t)∈L2(l2) and the system matrices A, B, C, and D are unknown.
In general, it is required to design linear state-feedback control laws based on a priori and experi-
mental data so that the damping level of the disturbances in the closed loop system does not exceed
a specified value.

The information about the unknown parameters of system (2.1) is extracted from a finite set
of measurements of its trajectory. For the discrete-time system, there are available measurements
of its state and target output, x0, x1, . . . , xN and z0, . . . , zN−1, respectively, under chosen controls
u0, . . . , uN−1 and some unknown disturbance w0, . . . , wN−1. We compile the matrices

Φ = (x0 · · · xN−1) , Φ+ = (x1 · · · xN ) ,

U = (u0 · · · uN−1) , W = (w0 · · ·wN−1) , Z = (z0 · · · zN−1) .

In the continuous-time case, there are measurements of the system state, its derivative, and the
target output, x(t0), . . . , x(tN−1), ẋ(t0), . . . , ẋ(tN−1), and z(t0), . . . , z(tN−1), respectively, under
chosen controls u(t0), . . . , u(tN−1) and some unknown disturbances w(t0), . . . , w(tN−1) at time in-
stants t0, . . . , tN−1. By analogy, we compile the matrices

Φ = (x(t0) · · · x(tN−1)) , Φ+ = (ẋ(t0) · · · ẋ(tN−1)) ,

U = (u(t0) · · · u(tN−1)) , W = (w(t0) · · ·w(tN−1)) , Z = (z(t0) · · · z(tN−1)) .

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



DESIGN OF GENERALIZED H∞-SUBOPTIMAL CONTROLLERS 3

The experimental data matrices in both cases satisfy the relations

Φ+ = ArealΦ+BrealU +W,

Z = CrealΦ+DrealU,
(2.2)

where Areal, Breal, Creal, and Dreal are the real (unknown) system matrices. With the notations

Δreal =

(
Areal Breal

Creal Dreal

)
, Φ̂ =

(
Φ
U

)
, Φ̃ =

(
Φ+

Z

)
, Ŵ =

(
W
0

)
,

equations (2.2) can be written as the linear matrix regression

Φ̃ = ΔrealΦ̂ + Ŵ . (2.3)

Assume that the disturbance in the experiment satisfies the condition

N−1∑
i=0

w(ti)w
T(ti) =WWT � Ω. (2.4)

In particular, if ‖w(t)‖∞ � dw for all t and a given value dw (the damping level), then Ω= d2wnwNInx .
In the case

∑N−1
i=0 |w(ti)|2 � α2 (i.e., the total energy of the disturbance is bounded during the

experiment), we obtain Ω = α2I. If w(t) in (2.1) has the form w(t) = Bvv(t), where v(t)∈Rnv for
some matrix Bv and ‖v(t)‖∞ � dv, then Ω = d2vnvNBvB

T
v .

From (2.4) it follows that

ŴŴT �
(

Ω �
0 0

)
= Ω̂. (2.5)

We define the set Δp of matrices Δ of dimensions (nx + nz) × (nx + nu) that could generate
the experimental matrices Φ, Φ+, and Z under the chosen controls U and some admissible distur-
bances W satisfying the constraint (2.4). For these matrices, the quality Φ̃ = ΔΦ̂ + Ŵ must hold
with some matrix Ŵ satisfying (2.5). Consequently,

Δp =
{
Δ : Φ̃ = ΔΦ̂ + Ŵ , ŴŴT � Ω̂

}
and Δ∈Δp iff

(Φ̃−ΔΦ̂)(Φ̃ −ΔΦ̂)T � Ω̂. (2.6)

It is obvious that Δreal ∈Δp. For further use, we represent this inequality as

(Δ Inx+nz)Ψ1 (Δ Inx+nz)
T � 0, (2.7)

where the symmetric matrix Ψ1 of order (2nx + nu + nz) is partitioned into appropriate blocks as
follows:

Ψ1 =

⎛⎜⎜⎜⎜⎜⎜⎝
ΦΦT ∗ | ∗ ∗
UΦT UUT | ∗ ∗

——————————————

−Φ+Φ
T −Φ+U

T | Φ+Φ
T
+ −Ω ∗

−ZΦT −ZUT | ZΦT
+ ZZT

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.8)

Thus, the set of all matrices Δ consistent with the available experimental data satisfies inequal-
ity (2.7). The lemma below formulates boundedness conditions for the set Δp. Its proof is provided
in the Appendix.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



4 KOGAN, STEPANOV

Fig. 1. The set Δset of unknown parameters Δ consistent with experimental and a priori data.

Lemma 2.1. If the information matrix Φ̂Φ̂T is nonsingular, then the set Δp is a nondegenerate
“matrix ellipsoid” centered at ΔLS given by

(Δ −ΔLS)(Φ̂Φ̂
T)(Δ −ΔLS)

T � Γ, (2.9)

where

Γ = Ω̂ + Φ̃[Φ̂T(Φ̂Φ̂T)−1Φ̂− I]Φ̃T � 0, (2.10)

and ΔLS = Φ̃Φ̂T(Φ̂Φ̂T)−1 is the optimal least-squares estimate of the unknown matrix Δreal in (2.3)
that minimizes the squared matrix norm of the residual ‖Φ̃−ΔΦ̂‖2F with respect to Δ.

According to this lemma, given a nonsingular information matrix, the “size” of the set Δp is
determined by the regressor matrices Φ̂ and ultimately depends on the real object, the controls U
chosen in the experiment, and the disturbances W.

Now consider an additional information that the unknown matrix Δreal satisfies the constraint

(Δ−Δ∗)(Δ −Δ∗)T � ρ2I, Δ∗ =

(
A∗ B∗
C∗ D∗

)
=

⎛⎝ Δ
(1)
∗

Δ
(2)
∗

⎞⎠ , (2.11)

where Δ∗ and ρ are given matrix and parameter characterizing the center and size of the uncertainty
domain. We write this inequality as

(Δ Inx+nz)Ψ2 (Δ Inx+nz)
T � 0, (2.12)

where

Ψ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Inx � | � �

0nu×nx Inu | � �
————————————————————

−A∗ −B∗ | Δ
(1)
∗ Δ

(1)T
∗ − ρ2Inx �

−C∗ −D∗ | Δ
(2)
∗ Δ

(1)T
∗ Δ

(2)
∗ Δ

(2)T
∗ − ρ2Inz

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.13)

We introduce the following notations: Δa is the set of matrices satisfying inequality (2.12),
and Δset = Δp

⋂
Δa is the set of matrices satisfying inequalities (2.7) and (2.12). Obviously,

Δreal ∈Δset (see Fig. 1).
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DESIGN OF GENERALIZED H∞-SUBOPTIMAL CONTROLLERS 5

The quality of the closed loop system (2.1) with the linear state-feedback control law u(t) =
Θx(t) and a given matrix Δ will be evaluated by the damping level of the exogenous and initial
disturbances, i.e., by the generalized H∞ norm

γg∞(Δ,Θ) = sup
x0, w

‖z‖(
xT0R

−1x0 + ‖w‖2)1/2 ,
where R = RT > 0 is a weight matrix and ‖ξ‖2 =

∑∞
t=0 |ξ(t)|2 (in the discrete-time case) or ‖ξ‖2 =∫∞

t=0 |ξ(t)|2 (in the continuous-time case). If w(t) ≡ 0 (no exogenous disturbance), the general-
ized H∞ norm turns into the so-called γ0 norm given by

γ0(Δ,Θ) = sup
x0 �=0

‖z‖(
xT0R

−1x0
)1/2 .

This norm characterizes the “worst” value of the quadratic functional on the system trajectories
provided that the initial state is inside the ellipsoid xTR−1x � 1. Under zero initial state, the
generalized H∞ norm (with R→ 0) turns into the conventional H∞ norm:

γ∞(Δ,Θ) = sup
w �=0

‖z‖
‖w‖ .

The quality of the closed-loop uncertain system (2.1) with the control law u(t) = Θx(t) will
be evaluated by the minimum upper bound of the damping level of the exogenous and initial
disturbances, i.e., by the minimum upper bound of the generalized H∞ norm for all object matrices
consistent with experimental and a priori data:

γ∗(Θ) = sup
Δ∈Δset

γg∞(Δ,Θ). (2.14)

The robust generalized H∞-optimal control law is defined as a control law with the parameter
matrix Θ∗ minimizing this bound, i.e., with the solution of the minimax problem

inf
Θ

sup
Δ∈Δset

γg∞(Δ,Θ) = inf
Θ
γ∗(Θ) = γ∗(Θ∗). (2.15)

The problem is to design, directly from input and state measurements, a robust generalizedH∞-sub-
optimal control law with a parameter matrix Θ under which the generalized H∞ norm of the closed
loop system will be bounded by a given constant: γ∗(Θ) < γ.

3. THE GENERALIZED H∞ NORM IN TERMS OF THE DUAL SYSTEMS

Recall that

γg∞ = sup
x0, v

‖z‖(
xT0R

−1x0 + ‖v‖2)1/2 , (3.1)

the generalized H∞ norm from the input v to the output z of a stable system

∂x(t) = Ax(t) + Bv(t),
z(t) = Cx(t), (3.2)

satisfies the condition γg∞ < γ iff the following LMIs are solvable in the matrix Y = Y T > 0 :⎛⎜⎜⎜⎝
YAT +AY � �

BT −γ2I �

CY 0 −I

⎞⎟⎟⎟⎠ < 0,

⎛⎝ Y �

I γ2R−1

⎞⎠ > 0 (3.3)

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



6 KOGAN, STEPANOV

(for the continuous-time system) or

⎛⎜⎜⎜⎜⎜⎜⎝
−Y � � �

YAT −Y � �

BT 0 −γ2I �

0 CY 0 −I

⎞⎟⎟⎟⎟⎟⎟⎠ < 0,

⎛⎝ Y �

I γ2R−1

⎞⎠ > 0 (3.4)

(for the discrete-time system). According to [11, 12], inequalities (3.3) and (3.4) mean that

V̇ (x) + |z|2 − γ2|v|2 < 0 and ΔV (x) + |z|2 − γ2|v|2 < 0 ∀x, v, respectively, (3.5)

for a positive definite function V (x) = xTY −1x with Y > γ−2R along the trajectories of sys-
tem (3.2).

The next auxiliary result, proved in the Appendix, characterizes the generalized H∞ norm of
system (3.2) in terms of the dual system.

Lemma 3.1. The generalized H∞ norm of system (3.2) satisfies the condition γg∞ < γ iff there
exists a positive definite quadratic form Va(xa) = xTa Pxa with P > R such that

V̇a(xa(t)) + |za(t)|2 − γ2|va(t)|2 < 0 or

ΔVa(xa(t)) + |za(t)|2 − γ2|va(t)|2 < 0, respectively,
(3.6)

along the trajectories of the dual system

∂xa(t) = ATxa(t) + CTva(t),

za(t) = BTxa(t).
(3.7)

Corollary 3.1. For v(t) ≡ 0, the γ0 norm of system (3.2) satisfies the condition γ0 < γ iff there
exists a quadratic form Va(xa) = xTa Pxa with P > R such that the corresponding inequality in (3.6)
is valid for za(t) ≡ 0 along the trajectories of the dual system

∂xa(t) = ATxa(t) + CTva(t).

Remark 1. Formally, the dual system is described by the equations

˙̂xa = −ATx̂a − CTv̂a,

ẑa = BTx̂a
(3.8)

(in the continuous-time case) or

x̂a(t) = ATx̂a(t+ 1) + CTv̂a(t),

ẑa(t) = BTx̂a(t+ 1)
(3.9)

(in the discrete-time case). By the proof of this lemma, from systems (3.8) and (3.9) we can pass
to system (3.7), also called dual, which satisfies the corresponding inequality of (3.6).

Remark 2. The matrices of the quadratic forms V (x) = xTY −1x and Va(xa) = xTa Pxa of the
primal and dual systems have the relation P = γ2Y ; see the proof of Lemma 3.1.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



DESIGN OF GENERALIZED H∞-SUBOPTIMAL CONTROLLERS 7

4. DESIGN OF GENERALIZED H∞-SUBOPTIMAL CONTROLLERS

We describe the main steps for obtaining an upper bound of the generalized H∞ norm and the
corresponding parameter matrices Θ of control laws for the uncertain closed-loop system

∂x(t) = (A+BΘ)x(t) + w(t),

z(t) = (C +DΘ)x(t).
(4.1)

Assume that the closed loop system with the parameters Θ is stable. With the notations introduced
above, these equations can be written as

∂x(t) = (Inx 0nx×nz)Δ

(
Inx

Θ

)
x(t) + w(t),

z(t) = (0nz×nx Inz)Δ

(
Inx

Θ

)
x(t),

(4.2)

where Δ is an unknown matrix of dimensions (nx+nz)×(nx+nu) and Θ is the controller’s parameter
matrix of dimensions (nu×nx). Due to Lemma 3.1, the dual continuous- and discrete-time systems
are described by the equations

∂xa(t) =

(
I

Θ

)T

ΔT

(
I

0

)
xa(t) +

(
I

Θ

)T

ΔT

(
0

I

)
wa(t),

za(t) = xa(t).

(4.3)

We define an augmented system with an additional artificial input wΔ(t)∈L2(l2) and an out-
put zΔ(t) in both cases as follows:

∂x̂(t) =

(
I

Θ

)T

wΔ(t),

ẑ(t) = x̂(t), zΔ(t) =

(
I

0

)
x̂(t) +

(
0

I

)
ŵ(t),

(4.4)

where x̂(t) is the state variable, ŵ(t) is a disturbance, and ẑ(t) is the target output. Note that for
wΔ(t) = ΔTzΔ(t), equations (4.4) coincide with the equations of system (4.3). For all t � 0, let
the additional input and output signals in system (4.4) satisfy the two inequalities(

wΔ(t)

zΔ(t)

)T

Ψ1

(
wΔ(t)

zΔ(t)

)
� 0,

(
wΔ(t)

zΔ(t)

)T

Ψ2

(
wΔ(t)

zΔ(t)

)
� 0 (4.5)

where the matrices Ψ1 and Ψ2 are given by (2.8) and (2.13). We denote by WΔ the set of all such
signals wΔ(t). According to (2.7) and (2.12), for wΔ(t) = ΔTzΔ(t) and all Δ∈Δset,(

wΔ(t)

zΔ(t)

)T

Ψ1

(
wΔ(t)

zΔ(t)

)
= zTΔ(t)

(
ΔT

I

)T

Ψ1

(
ΔT

I

)
zΔ(t) � 0,

(
wΔ(t)

zΔ(t)

)T

Ψ2

(
wΔ(t)

zΔ(t)

)
= zTΔ(t)

(
ΔT

I

)T

Ψ2

(
ΔT

I

)
zΔ(t) � 0.

Thus, wΔ(t) = ΔTzΔ(t)∈WΔ and consequently, system (4.3) with Δ∈Δset, dual to the original
uncertain system, is immersed into the augmented system (4.4), (4.5). In view of Lemma 3.1, this
fact can be used to derive an upper bound of the generalized H∞ norm of the uncertain system
through the corresponding property of the augmented system.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



8 KOGAN, STEPANOV

Theorem 4.1. The upper bound of the generalized H∞ norm of the uncertain system (2.1) with
the control law u(t) = Θx(t), Θ = QP−1, is less than γ if the following LMIs are solvable in P =
PT > 0, Q, μ1 � 0, and μ2 � 0:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I −
2∑

i=1

μi Ξ
(i)
11 � � �

−
2∑

i=1

μi Ξ
(i)
21 −

2∑
i=1

μi Ξ
(i)
22 − γ2I � �

P −
2∑

i=1

μi Ξ
(i)
31 −

2∑
i=1

μi Ξ
(i)
32 −

2∑
i=1

μi Ξ
(i)
33 �

Q−
2∑

i=1

μi Ξ
(i)
41 −

2∑
i=1

μi Ξ
(i)
42 −

2∑
i=1

μi Ξ
(i)
43 −

2∑
i=1

μi Ξ
(i)
44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0 (4.6)

(for the continuous-time system) or

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P � � � �

0 −P + I −
2∑

i=1

μi Ξ
(i)
11 � � �

0 −
2∑

i=1

μi Ξ
(i)
21 −

2∑
i=1

μi Ξ
(i)
22 − γ2I � �

P −
2∑

i=1

μi Ξ
(i)
31 −

2∑
i=1

μi Ξ
(i)
32 −

2∑
i=1

μi Ξ
(i)
33 �

Q −
2∑

i=1

μi Ξ
(i)
41 −

2∑
i=1

μi Ξ
(i)
42 −

2∑
i=1

μi Ξ
(i)
43 −

2∑
i=1

μi Ξ
(i)
44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0 (4.7)

(for the discrete-time system), where P > R,

Ξ
(1)
11 = Φ+Φ

T
+ − Ω, Ξ

(1)
21 = ZΦT

+, Ξ
(1)
22 = ZZT,

Ξ
(1)
31 = −ΦΦT

+, Ξ
(1)
32 = −ΦZT, Ξ

(1)
33 = ΦΦT,

Ξ
(1)
41 = −UΦT

+, Ξ
(1)
42 = −UZT, Ξ

(1)
43 = UΦT, Ξ

(1)
44 = UUT,

Ξ
(2)
11 = Δ

(1)
∗ Δ

(1)T
∗ − ρ2Inx , Ξ

(2)
21 = Δ

(2)
∗ Δ

(1)T
∗ , Ξ

(2)
22 = Δ

(2)
∗ Δ

(2)T
∗ − ρ2Inz ,

Ξ
(2)
31 = −AT∗ , Ξ

(2)
32 = −CT∗ , Ξ

(2)
33 = Inx ,

Ξ
(2)
41 = −BT∗ , Ξ

(2)
42 = −DT∗ , Ξ

(2)
43 = 0nu×nx , Ξ

(2)
44 = Inu.

Proof of Theorem 4.1. We establish conditions for the existence of a positive definite quadratic
function V̂ (x̂) = x̂TPx̂ with P > R that satisfies the corresponding inequality in (3.6) along the
trajectories of the augmented system (4.4) for all wΔ(t) with (4.5). By the S-procedure, a sufficient
condition is the existence of a function V̂ (x̂) = x̂TPx̂ with P > R that satisfies the corresponding
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inequality

˙̂
V (x̂) + |ẑ|2 − γ2|ŵ|2 −

2∑
i=1

μi

(
wΔ

zΔ

)T

Ψi

(
wΔ

zΔ

)
< 0,

ΔV̂ (x̂) + |ẑ|2 − γ2|ŵ|2 −
2∑

i=1

μi

(
wΔ

zΔ

)T

Ψi

(
wΔ

zΔ

)
< 0

(4.8)

along the trajectories of system (4.4) for all x̂, ŵ, wΔ, and some μ1 � 0 and μ2 � 0.

These inequalities reduce to the following inequalities for the quadratic forms in the variables
x̂, ŵ, and wΔ :

2x̂TP

(
I
Θ

)T

wΔ + |ẑ|2 − γ2|ŵ|2 −
2∑

i=1

μi

(
wΔ

zΔ

)T

Ψi

(
wΔ

zΔ

)
< 0,

wT
Δ

(
I
Θ

)
P

(
I
Θ

)T

wΔ − x̂TPx̂+ |ẑ|2 − γ2|ŵ|2 −
2∑

i=1

μi

(
wΔ

zΔ

)T

Ψi

(
wΔ

zΔ

)
< 0,

(4.9)

where ẑ = x̂ and zΔ = col (x̂, ŵ). System (4.3), dual to the original one (4.2), is immersed into
the augmented system, and condition (4.5) holds. Therefore, we have inequality (3.6) along the
trajectories of (4.3) for all Δ∈Δset. By Lemma 3.1, for any Δ∈Δset, the original uncertain system
satisfies γg∞(Δ,Θ) < γ and consequently, γ∗(Θ) < γ. Finally, we write inequalities (4.9) for the
quadratic forms as matrix inequalities, introduce the new matrix variable Q = ΘP, and apply
Schur’s complement lemma to get the LMIs (4.6) and (4.7), respectively. The proof of Theorem 4.1
is complete.

Remark 3. To find the upper bound of the γ0 norm, it is necessary to eliminate the term I
from the block located in the first row and first column of inequalities (4.6) (for the continuous-
time system) or from the block in the second row and second column of inequalities (4.7) (for the
discrete-time system). This follows from the fact that in the case of the γ0 norm, the term |ẑ|2
vanishes in inequalities (4.8) and, accordingly, in inequalities (4.9). To find the upper bound of the
conventional H∞ norm, we should use Theorem 4.1 with R = 0.

Remark 4. According to the lossless S-procedure under two quadratic constraints (Theorem 4.1
in [13]), if μ1Ψ1 + μ2Ψ2 > 0 for some μ1 and μ2 (this LMI can be directly solved with respect to
μ1 and μ2), then the corresponding inequality (4.8) is a sufficient and also necessary condition for
the existence of the above function V̂ (x̂) = x̂TPx̂ for the augmented system.

The minimum value of γ for which each of inequalities (4.6) or (4.7) is solvable will be denoted
by γrob(Θrob), where Θrob is the corresponding control parameter matrix. Since

γ∗(Θ∗) � γ∗(Θrob) � γrob(Θrob),

where Θ∗ is the parameter matrix of the robust generalized H∞-optimal control law (2.15), then
γrob(Θrob) is the upper bound of the minimum damping level of the disturbances in the uncertain
system with the robust generalized H∞-optimal control law under given a priori and experimental
data. In addition, Theorem 4.1 can be used to find out whether the guaranteed generalized H∞
norm of the closed-loop uncertain system (4.1) with the feedback parameter matrix Θ̂ is less than
a given number γ2. For this purpose, we should let Q = Θ̂P in inequality (4.6) for the continuous-
time system or inequality (4.7) for the discrete-time system and solve the resulting inequality with
respect to the variables P , μ1, and μ2.
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5. AN ILLUSTRATIVE EXAMPLE

To illustrate the approach, we consider a discrete-time object of the form (2.1) of the fifth
order (nx = 5) with two control actions (nu = 2), a five-dimensional disturbance (nw = 5), and two
target outputs (nz = 2) with matrices whose elements were chosen randomly on the interval [−1, 1].
Thus, the system contains 49 unknown parameters. In the experiment, the initial conditions and the
components of the control vector were chosen randomly on the interval [−1, 1], and the disturbance
was chosen randomly on the interval [−d, d]. In total, N = 50 measurements were taken. The
weight matrix of the initial disturbance is R = 0.01I5. Figure 2 shows three typical graphs of
the squared damping levels of the disturbances in the closed loop system with the control law
designed from the experimental data only, depending on the disturbance level d in the experiment.
The solid curve corresponds to the square γ2rob(Θrob) of the guaranteed generalized H∞ norm
under the control law with the parameter matrix Θrob obtained by solving the LMIs (4.7) with
the minimum value of γ2. The dashed-dotted curve corresponds to the square of the damping
level γreal = γg∞(Δreal,Θrob) of the disturbances, i.e., the generalized H∞ norm of the closed loop
system composed of the real object with the parameter matrix Δreal (if it were known) and the
feedback loop with the parameters Θrob. The dotted curve corresponds to the square of the damping
level γprob = γg∞(Δprob,Θrob) of the disturbances, i.e., the generalized H∞ norm of the closed loop

system composed of the trial object with the matrix Δprob = ΔLS + Γ1/2(Φ̂Φ̂T)−1/2, which lies
on the boundary of the uncertainty ellipsoid Δset (see Lemma 2.1), and the feedback loop with
the parameters Θrob. The growth of these curves with increasing the disturbance level d in the
experiment can be explained as follows: for a higher value of d, we obtain a greater ellipsoid Δp

of the unknown parameters Δ consistent with the experimental data.

According to Fig. 2, first, the curve γ2rob majorizes with some margin the damping levels of the
disturbances in the closed loop system for particular objects with the matrices Δreal and Δprob from
the set Δset; second, under the control law with the parameter matrix Θrob, the generalized H∞
norms of the closed loop systems slightly exceed (especially at small perturbation levels d) their
minimum values γ2 � 0.26 for the completely known model. Note that the margin by which γ2rob

Fig. 2. The guaranteed generalized H∞ norm and the generalized H∞ norms for the real and trial objects as
functions of the disturbance level in measurements.
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Fig. 3. The guaranteed estimates of the H∞ norm as functions of the disturbance level in experimental data
for different types of available information.

exceeds γ2real and γ
2
prob substantially depends on the experimental data and can be much smaller

than on the graphs in Fig. 2.

Figure 3 presents the three guaranteed estimates of the generalized H∞ norm based on different
information (a priori data only, experimental data only, and a priori data jointly with experimental
ones) as a function of the disturbance level d in the experiment. The a priori information was that
the unknown matrices of the system satisfy condition (2.11) with ρ = 0.1 and A∗ = Areal + (ρ/2)I,
B∗ = Breal, C∗ = Creal, and D∗ = Dreal. Starting from some disturbance level in the experiment,
the guaranteed estimates of the norms of the closed-loop uncertain system designed using both a
priori and experimental data are much smaller than the corresponding estimates of the norms of
the closed loop system with the control laws designed using only a priori or only experimental data.

Finally, we note the following aspect as well. Consider the object with the matrices ALS , BLS ,
CLS , and DLS constituting the parameter matrix ΔLS obtained by the least squares method from
the same experimental data. For this object, let us find the parameter matrix ΘLS = QP−1 of the
generalized H∞-optimal feedback loop by solving the LMIs (3.4) with Y = P , AY = ALSP +BLSQ,
CY = CLSP +DLSQ, and B = I. This is essentially the so-called indirect H∞-suboptimal adaptive
control, i.e., the control law determined by estimating the unknown parameters of the object. If
there are sufficiently many measurements and the information matrix is nonsingular, the generalized
H∞ norm of the closed loop system consisting of the real object and the feedback loop with Θ = ΘLS

may be smaller than the corresponding guaranteed generalized H∞ norm under the feedback loop
with Θ = Θrob. In the latter case, we have an upper bound of the generalized H∞ norm of the closed
loop system for any object from the setΔset consistent with the experimental data; however, for the
feedback loop with Θ = ΘLS, such an estimate can be obtained from inequalities (4.7) only under
very small disturbance levels d (see the experimental results). In the example under consideration,
for d = 0.02 we have γ2rob(Θrob) = 0.27, whereas γ2rob(ΘLS) = 41.77; for d > 0.03, inequality (4.7)
with Q = ΘLSP becomes unsolvable.
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6. CONCLUSIONS

This paper has been devoted to constructing generalized H∞-suboptimal (as a special case,
linear-quadratic) control laws for linear continuous- and discrete-time dynamic objects without
precise mathematical models. As has been demonstrated above, for dynamic objects whose equa-
tions contain unknown parameters in some bounded sets, classical robust control methods based
on a priori data can be applied, after an appropriate modification, to control design from a pri-
ori and experimental data. These methods consist in immersing an uncertain system into some
enlarged system with additional input and output satisfying a quadratic inequality, applying the
S-procedure, and reducing the problem to the design of H∞-optimal control for the enlarged sys-
tem. The modification is to characterize the control criterion (the generalized H∞ norm of the
system under initial and exogenous disturbances or the value of the quadratic functional under
the initial disturbance only) in terms of the dual system, immerse the dual uncertain system into
some enlarged system, and apply the technique of LMIs. As a result, the parameters of linear
suboptimal feedback loops are expressed in terms of solutions of LMIs containing only a priori and
experimental data. An illustrative example with a randomly generated fifth-order object has been
provided to demonstrate that when a priori and experimental data are applied together, the quality
of the control system is improved significantly.
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APPENDIX

Proof of Lemma 2.1. For the unknown matrix Δreal in (2.3), we define the least-squares
estimate ΔLS minimizing the squared matrix norm of the residual with respect to Δ, i.e., the
function ‖Φ̃−ΔΦ̂‖2F = tr (Φ̃−ΔΦ̂)T(Φ̃−ΔΦ̂). Equating the gradient of this function with respect

to Δ to zero, −2Φ̃Φ̂T + 2ΔΦ̂Φ̂T = 0, yields the optimal estimate ΔLS = Φ̃Φ̂T(Φ̂Φ̂T)−1 under the
assumption that the information matrix Φ̂Φ̂T is nonsingular. Next, we transform inequality (2.6)
to

ΔΦ̂Φ̂TΔT − Φ̃Φ̂TΔT −ΔΦ̂Φ̃T + Φ̃Φ̃T − Ω̂ � 0,

writing the result as

[Δ− Φ̃Φ̂T(Φ̂Φ̂T)−1](Φ̂Φ̂T)[Δ − Φ̃Φ̂T(Φ̂Φ̂T)−1]T � Γ,

where Γ = Ω̂ + Φ̃[Φ̂T(Φ̂Φ̂T)−1Φ̂− I]Φ̃T. Substituting the expression for Φ̃ (2.3) into Γ and us-
ing (2.5) finally give

Γ = Ω̂ + Ŵ [Φ̂T(Φ̂Φ̂T)−1Φ̂− I]ŴT � Ŵ Φ̂T(Φ̂Φ̂T)−1Φ̂ŴT � 0.

Proof of Lemma 3.1. We define a linear operator Γ mapping the pair (x(0), v(t))∈Rn×L2(l2) =
Ξ (the initial state of the system and the input disturbance) into the target output z(t)∈L2(l2) = Υ,
i.e.,

Γ : Ξ = Rnx × L2(l2) → Υ = L2(l2) : (x(0), v) → z.

The inner products in these spaces are given by

〈·, ·〉Ξ = xT1 (0)R
−1x2(0) + 〈v1(t), v2(t)〉L2(l2), 〈·, ·〉Υ = 〈z1(t), z2(t)〉L2(l2).
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Moreover, the generalized H∞ norm coincides with the induced norm of this operator since

‖Γ‖ = sup
(x0, v)�=0

‖Γ(x0, v)‖
‖(x0, v)‖ = sup

x0, v �=0

‖z‖(
xT0R

−1x0 + ‖v‖2)1/2 = γg∞.

We show that the adjoint operator Γ∗ is given by

Γ∗ : Υ → Ξ : v̂a(t) → (Rx̂a(0), ẑa(t)),

where x̂a(t) and ẑa(t) satisfy equations (3.8) and (3.9) in the continuous- and discrete-time cases,
respectively.

Indeed, for the continuous-time system, from equations (3.8) it follows that

d(xTx̂a)

dt
= vTẑa − zTv̂a;

for the discrete-time system (see equations (3.9)),

xT(t+ 1)x̂a(t+ 1)− xT(t)x̂a(t) = vT(t)ẑa(t)− zT(t)v̂a(t).

Integrating in the former case or summing in the latter one, we obtain

< z, v̂a >= xT(0)R−1[Rx̂a(0)]+ < v, ẑa > .

Thus,
< Γ(x(0), v), v̂a >Υ=< (x(0), v),Γ∗(v̂a) >Ξ .

Because the norms of the adjoint operators are equal,

‖Γ‖ = ‖Γ∗‖ = sup
v̂a �≡0

(
‖ẑa‖2 + x̂Ta (0)Rx̂a(0)

)1/2
‖v̂a‖ .

Next, we establish that ‖Γ∗‖ < γ iff there exists a function V (x̂a) = x̂Ta Px̂a with P > R such
that

V̇ (x̂a(t))− |ẑa(t)|2 + γ2|v̂a(t)|2 > 0 or

ΔV (x̂a(t))− |ẑa(t)|2 + γ2|v̂a(t)|2 > 0
(A.1)

along the trajectories of the continuous-time system (3.8) or along the trajectories of the discrete-
time system (3.9), respectively.

Indeed, integrating the former inequality or summing the latter one with P > R, we arrive
at ‖ẑa‖2 + x̂Ta (0)Rx̂a(0) < γ2‖v̂a‖2 for all v̂a(t), i.e., ‖Γ∗‖ < γ. Conversely, let ‖Γ∗‖ < γ, which
implies ‖Γ‖ < γ. According to [11, 12], this means the existence of a function V (x) = xTY −1x
with a matrix Y satisfying inequalities (3.3) in the continuous-time case or inequalities (3.4) in the
discrete-time case. Here, we consider the former case only: the proof for the discrete-time system
is analogous. Using Schur’s complement lemma, the first inequality in (3.3) can be transformed to(

YAT +AY + γ−2BBT �
CY −I

)
< 0.

With the change of variables Y = γ−2P , this condition is equivalently written as the following
inequality for the quadratic form in the abstract variables x̂a and v̂a:

2x̂Ta P (−AT x̂a − CTv̂a)− x̂TaBBTx̂a + γ2v̂Ta v̂a > 0.
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It obviously coincides with the first inequality in (A.1). Due to Y > γ−2R, the function Va(x̂a) =
x̂Ta Px̂a with P > R satisfies the first inequality in (A.1) along the trajectories of system (3.8). Thus,
‖Γ∗‖ < γ and consequently, ‖Γ‖ = γg∞ < γ iff the corresponding inequality in (A.1) holds along
the trajectories of system (3.8) or (3.9). Reverting the time, we finally pass from equations (3.8)
or (3.9) to system (3.7), along whose trajectories the function V (xa) = xTa Pxa will satisfy the
corresponding inequality in (3.6).
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Abstract—Space debris is an urgent problem of our time. This paper considers the idea of
reducing near-Earth space debris by releasing the spent additional fuel tank (AFT) and the
booster’s central block (CB) into the Earth’s atmosphere. The spacecraft transfer from a
reference circular orbit of an artificial Earth satellite to a target elliptical orbit is optimized.
The transition maneuvers are carried out using a booster with a high limited-thrust engine and
the AFT. The second zonal harmonic of the Earth’s gravitational field is taken into account. The
optimal control problem is solved based on Pontryagin’s maximum principle. Bulky derivatives
are calculated using a specially developed numerical-analytical differentiation technique. The
Pontryagin extremals obtained below are the next step in implementing the problem hierarchy
methodology.
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1. INTRODUCTION

Space debris is an urgent problem of our time. The approaches to solving this problem can be
divided into two large groups: prevention and cleaning. A detailed literature review on the topic
was presented in [1]. In addition, we mention the works [2, 3], covering the monitoring issues of
man-made space debris, and [4–7], describing different means of capture and removal of large-size
space debris.

This paper considers the idea of reducing near-Earth space debris (an approach from the pre-
vention group) by releasing the spent parts of spacecraft launch vehicles in orbits touching the
conditional boundary of the atmosphere at the transition maneuvers stage of insertion into the tar-
get orbit. The problem under study is to optimize the spacecraft transfer from a reference circular
orbit of an artificial Earth satellite of a given radius and inclination to a target elliptical orbit using
a booster with a high limited-thrust engine and an additional fuel tank (AFT), with releasing the
AFT and the booster’s central block (CB) into the Earth’s atmosphere. The final ascent maneuver
from the target orbit to the geostationary orbit (GEO) is considered within the simplified apsidal
pulse scheme and performed using the satellite engine.

This work is the next step in implementing the problem hierarchy methodology, which consists
in the sequential formalization and solution of a series of problems, where each previously obtained
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16 GRIGORIEV, PROSKURYAKOV

solution is used as an initial approximation in the next one. Initially, the simplest problem was
solved in the apsidal pulse statement [8]: according to the results, for the optimal transfer trajectory
with separation of the first impulse action and a limit of 1.5 km/s on the characteristic velocity of the
final ascent maneuver, the cost of releasing the CB’s spent parts (stages) turn out to be small. If the
characteristic velocity of the final ascent maneuver is less than 1.47 km/s, the trajectory structure
changes and the cost of releasing the AFT and CB into the atmosphere becomes significant. In
the next step [9, 10], the problem was solved without assuming the apsidality of impulse actions.
It was established that in the problem with a phase constraint on the maximum possible distance
between the spacecraft and the Earth and an unlimited transfer time, the solution is apsidal and
coincides with that obtained in the previous step. The need to solve the problem in a modified
pulse statement (considering the release of the AFT and CB) [1], representing the third step of the
problem hierarchy methodology, was due to the difficulty of a direct transition to the problem with
a high limited thrust: the modified Newton’s method did not converge when using the solution of
the second-step problem as an initial approximation.

Well, this paper aims at constructing Pontryagin extremals in the problem with high limited
thrust. The structure of this extremal (the sequence and approximate location of active segments
on the trajectory) is known from the previous studies conducted in the pulse statement. The first
series of transition maneuvers of a spacecraft to the target orbit is performed using fuel from the
AFT. After exhausting this fuel, the spacecraft is in an orbit touching the conditional boundary
of the Earth’s atmosphere (with a perigee altitude of 100 km). On the passive flight segment,
lasting 120 s, the AFT is released. The spacecraft returns to a safe orbit (with a perigee altitude
of 200 km) by an additional activation of the spacecraft engine. This activation, as well as the
subsequent ones, are performed using fuel from the CB’s main tank.

After performing the second series of maneuvers, the spacecraft is in a target orbit from which
the characteristic velocity of final ascent maneuvers to the GEO is bounded by a given value.
According to the earlier studies [1, 8–10], the cost of releasing is small for the bi-elliptical final
ascent scheme. In the target orbit, the satellite is separated from the CB. Due to the last engine
activation on the residual fuel from the main tank in the neighborhood of the target orbit apogee,
the CB is transferred to an orbit touching the conditional boundary of the Earth’s atmosphere,
and the satellite is transferred to the GEO using its engines.

In this paper, we consider two different but similar problem statements. Within the first one,
by assumption, the tanks contain exactly as much fuel as is necessary to perform the corresponding
maneuvers, the dry mass of the AFT and the mass of the CB’s main tank are proportional to the
mass of their fuel with a coefficient α, and the engine mass is proportional to the thrust-to-weight
ratio with a coefficient β [11]. Within the second statement, the following mass characteristics of
the booster are given: the dry masses of the AFT and the CB’s main tank as well as limits on the
masses of fuel in the AFT and the CB’s main tank.

The objective functional in the problems below is the payload mass, i.e., the mass of the space-
craft remaining in the target orbit after undocking the CB.

The problems under consideration are formalized as optimal control problems for a set of dy-
namic systems. Based on the corresponding Pontryagin’s maximum principle [12], they are reduced
to multipoint boundary-value problems. The boundary-value problems of the maximum principle
are solved numerically by the shooting method [13, 14]. Using the previous studies, we choose the
computational schemes of the shooting method and good initial approximations of the required
shooting parameters. The Cauchy problem is solved by the 8(7)th order Dorman–Prince method
with automatic step selection [15]; the system of nonlinear equations, by Newton’s method in the
Isaev–Sonin modification [16] with the Fedorenko normalization [17] used in convergence condi-
tions; the system of linear equations arising therein, by the Gaussian elimination technique with

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



INSERTING A MAXIMUM-MASS SPACECRAFT INTO A TARGET ORBIT 17

selection of the leading element by column and recalculation [18]. The bulky derivatives in the
transversality conditions are considered through numerical-analytical differentiation [19].

2. PROBLEM STATEMENT

The transfer is considered in the rectangular Cartesian frame related to the Earth’s center. The
axis z of this frame is perpendicular to the equatorial plane and has south-to-north direction; the
axis x lies in the equatorial plane and is directed along the node line of the initial circular orbit
from the descending node to the ascending one; the axis y completes the frame to the right-hand
triple.

The motion of the spacecraft’s center of mass in the central Newtonian gravitational field in a
vacuum is described by the system of differential equations

ẋ(t) = vx(t), ẏ(t) = vy(t), ż(t) = vz(t),

v̇x(t) = −μx(t)
r3(t)

+
Px(t)

m(t)
, v̇y(t) = −μy(t)

r3(t)
+
Py(t)

m(t)
,

v̇z(t) = −μz(t)
r3(t)

+
Pz(t)

m(t)
, ṁ(t) = −P (t)

c

(1)

with the following notations: x(t), y(t), and z(t) are the coordinates of the spacecraft’s center of
mass at a time instant t; r =

√
x2(t) + y2(t) + z2(t) is the distance between the spacecraft and the

Earth’s center at a time instant t; vx(t), vy(t), and vz(t) are the velocity vector components of
the spacecraft’s center of mass at a time instant t; M(0) is the spacecraft mass at the initial time
instant; M(t) is the spacecraft mass at a time instant t; m(t) =M(t)/M(0) is the dimensionless
mass of the spacecraft (used in calculations); 	F (t) = (Fx(t), Fy(t), Fz(t)) is the jet thrust vector at

a time instant t; F (t) = |	F (t)| =
√
F 2
x (t) + F 2

y (t) + F 2
z (t) is the magnitude of the jet thrust vector;

	P (t) = (Px(t), Py(t), Pz(t)) = (Fx(t)/M(0), Fy(t)/M(0), Fz(t)/M(0)) is the dimensionless jet thrust

vector; n = Fmax/(M(0)gEar) is the initial thrust-to-weight ratio; P (t) =
√
P 2
x (t) + P 2

y (t) + P 2
z (t)

is the magnitude of the dimensionless jet thrust vector at a time instant t; μ = 398 601.19 km3/s2 is
the gravitational parameter of the Earth; c = PspegEar is the jet velocity; Pspe is the specific thrust;
finally, gEar = 9.80665 m/s2 is the gravitational acceleration at the Earth surface.

In addition to the central Newtonian gravitational field, we consider the motion of the space-
craft’s center of mass in the gravitational field with the second zonal harmonic:

ẋ(t) = vx(t), ẏ(t) = vy(t), ż(t) = vz(t),

v̇x(t) = −μx(t)
r3(t)

+
3

2
J2μ

R2
0

r5(t)

(
5x(t)z2(t)

r2(t)
− x(t)

)
+
Px(t)

m(t)
,

v̇y(t) = −μy(t)
r3(t)

+
3

2
J2μ

R2
0

r5(t)

(
5y(t)z2(t)

r2(t)
− y(t)

)
+
Py(t)

m(t)
,

v̇z(t) = −μz(t)
r3(t)

+
3

2
J2μ

R2
0

r5(t)

(
5z3(t)

r2(t)
− 3z(t)

)
+
Pz(t)

m(t)
,

ṁ(t) = −P (t)
c
,

where J2 = 1082.636023 × 10−6 is the coefficient of the second zonal harmonic.
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Controls are supposed to be piecewise continuous functions:

P (t) =
√
(Px(t))2 + (Py(t))2 + (Pz(t))2 � Pmax,

where Pmax = gEarnm0 is the limit on the magnitude of the control thrust vector, n is the initial
thrust-to-weight ratio of the spacecraft, and m0 is the initial weight of the spacecraft.

At the initial time instant (t = 0) the spacecraft is in the circular reference orbit of a given ra-
dius R0. Due to the chosen frame, the ascending node has the longitude Ω0 = 0, and the spacecraft’s
motion in the initial circular orbit can be formalized by the conditions

x(0)2 + y(0)2 + z(0)2 = R2
0, x(0)C0x + y(0)C0y + z(0)C0z = 0,

vx(0) +
v0
R0

(y(0) cos i0 + z(0) sin i0) = 0, vy(0)− v0
R0

x(0) cos i0 = 0,

vz(0)− v0
R0
x(0) sin i0 = 0,

(2)

where

C0x = 0, C0y = −C0 sin i0, C0z = C0 cos i0, C0 =
√
μR0,

v0 =

√
μ

R0
, R0 = REar + h0.

In these formulas, C0x, C0y, and C0z are the components of the kinetic momentum vector of the
spacecraft relative to the Earth’s center; C0 is the magnitude of this vector; v0 is the magnitude of
the velocity vector in the reference orbit; R0 is the radius of the reference orbit; REar = 6378.25 km
is the Earth’s radius; finally, h0 = 200 km is the altitude of the reference orbit above the Earth’s
surface.

The mass of the spacecraft is considered dimensionless and therefore equals 1 at the initial time
instant:

m(0) = m0 = 1. (3)

The perigee radius rp(x, y, z, vx, vy, vz) of an instantaneous elliptical orbit is a function of space-
craft coordinates and velocities and is calculated using the following formulas [20]:

r =
√
x2 + y2 + z2, V =

√
v2x + v2y + v2z ,

cosϕ =
xvx + yvy + zvz

rV
, V 2

cir =
μ

r
,

e =

√√√√[(
V

Vcir

)2

− 1

]2
+
r

a

(
V

Vcir

)2

cos2 ϕ,

a =
r

2−
(
V

Vcir

)2 , rp = a(1− e),

(4)

where a is the semi-major axis; e is eccentricity; Vcir is the circular velocity at the distance r from
the Earth’s center; finally, ϕ is the angle between the radius vector 	r = (x, y, z) and the velocity

vector
−→
V = (vx, vy, vz).

In what follows, the perigee radius of the orbit is denoted by

rp (τ) := rp (x(τ), y(τ), z(τ), vx(τ), vy(τ), vz(τ)) ,

where τ is an arbitrary time instant.
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After performing the first series of maneuvers at the time instant τAFT
rel1 , the spacecraft must

be in the instantaneous Keplerian orbit touching the conditional boundary of the atmosphere.
(In fact, the conditions of touching the atmosphere of the instantaneous Keplerian orbit do not
ensure touching the orbit’s atmosphere in the Earth’s real field; by assumption in this paper, such
conditions are sufficient for the rapid elimination of space debris.) The orbit perigee altitude is
lowered to 100 km (the conditional boundary of the atmosphere) by activating the CB engine on
the residual fuel from the AFT. At the time instant τAFT

rel1 we have the conditions

rp(τ
AFT
rel1- ) = REar + 100 km, (5)

x(τAFT
rel1+)− x(τAFT

rel1- ) = 0, y(τAFT
rel1+)− y(τAFT

rel1- ) = 0,

z(τAFT
rel1+)− z(τAFT

rel1- ) = 0, vx(τ
AFT
rel1+)− vx(τ

AFT
rel1- ) = 0,

vy(τ
AFT
rel1+)− vy(τ

AFT
rel1- ) = 0, vz(τ

AFT
rel1+)− vz(τ

AFT
rel1- ) = 0,

τAFT
rel1+ − τAFT

rel1- = 0.

After the spacecraft reaches the AFT release orbit, the passive segment [τAFT
rel1 , τAFT

rel2 ] begins
(AFT release). On this segment, the mass is neglected in the system of differential equations. By
assumption, undocking the AFT takes a given time:

τAFT
rel2+ − τAFT

rel1- = 120 s.

We consider two different but similar problem statements. Within the first one, by assumption,
the tanks contain exactly as much fuel as is necessary to perform the corresponding maneuvers,
the dry mass of the AFT and the mass of the CB’s main tank are proportional to the mass of
their fuel with a coefficient α, and the engine mass (including the additional CB structures) is
proportional to the thrust-to-weight ratio with a coefficient β. Within the second statement, the
mass characteristics of the booster are given.

The mass of the spacecraft after AFT release is calculated as follows:

m
(
τAFT
rel2+

)
= m

(
τAFT
rel1-

)
− α

(
m0 −m

(
τAFT
rel1-

))
(6)

(the first problem statement) and

m
(
τAFT
rel2

)
= m

(
τAFT
rel1

)
−mAFT (7)

(the second problem statement), where mAFT is the given dry dimensionless mass of the AFT.
(This value can be supposed to include the mass of unreduced fuel residue.)

The constraint on the AFT fuel mass in the second problem statement has the form

m0 −m
(
τAFT
rel1

)
� mAFT

fuel . (8)

After releasing the AFT, the spacecraft performs a transition maneuver to the safe orbit. This
maneuver ends at the time instant τsafe. Fuel from the main tank is used to perform it. As before,
the pericenter radius rp(·) is a function of the coordinates and components of the spacecraft velocity
vector (4). At the time instant τsafe we have the conditions

rp (τsafe-) = REar + 200 km, (9)

x(τsafe+)− x(τsafe-) = 0, y(τsafe+)− y(τsafe-) = 0, z(τsafe+)− z(τsafe-) = 0,

vx(τsafe+)− vx(τsafe-) = 0, vy(τsafe+)− vy(τsafe-) = 0, vz(τsafe+)− vz(τsafe-) = 0,

τsafe+ − τsafe- = 0.
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After reaching the safe orbit, the second series of maneuvers begins to transfer the spacecraft to
the target orbit. In the target orbit, the satellite is undocked from the CB. The payload mass of
the satellite remaining in the target orbit has to be optimized:

mp = m (τtar-)−m (τtar+) → max,

where m (τtar-) is the mass of the spacecraft in the target orbit before undocking the satellite;
m (τtar+) is the CB mass in the target orbit after undocking the satellite. The satellite moves to
the GEO using its engines. By assumption, the characteristic velocity of the final ascent maneuver
from the target orbit to the GEO is limited by a given value Δv∗ and the apsidal line of the target
orbit lies in the equatorial plane, i.e., the z-component of the Laplace vector is zero. At the time
instant τtar we have the conditions

Δvfa(τtar-) := Δvfa(x(τtar-), y(τtar-), z(τtar-), vx(τtar-), vy(τtar-), vz(τtar-)) � Δv∗,

A (τtar-) := Cy (τtar-) vx (τtar-)− Cx (τtar-) vy (τtar-)− μz (τtar-)

r (τtar-)
= 0,

x(τtar+)− x(τtar-) = 0, y(τtar+)− y(τtar-) = 0, z(τtar+)− z(τtar-) = 0,

vx(τtar+)− vx(τtar-) = 0, vy(τtar+)− vy(τtar-) = 0, vz(τtar+)− vz(τtar-) = 0,

τtar+ − τtar- = 0,

(10)

where τtar is the time instant of reaching the target orbit; Cx (τtar-), Cy (τtar-), and Cz (τtar-) are
the components of the kinetic momentum vector of the spacecraft orbital motion at the time
instant τtar-.

Note that the characteristic velocity of the final ascent maneuvers of the satellite from the
target orbit to the GEO is considered by the simplified scheme. (It is considered within the central
Newtonian field, with apsidal impulse actions for maneuvering only, orbit rotation by the second
impulse action only, and the first accelerating and the last setting impulse actions not changing
the orbit plane.) Used together, these conditions simplify the problem statement very significantly.
The value Rmax (the distance to the Earth) is chosen, on the one hand, to be large enough, and on
the other hand, to be appropriate for neglecting the influence of other bodies of the Solar System.
First of all, the matter concerns the influence of the Moon and the Sun; for example, consideration
of the Moon will even avoid activation of the engine at the remote point [21]. Of course, this
influence can be modeled in the next steps of the problem hierarchy methodology. In this paper,
the influence of other bodies is omitted. The final ascent of the satellite is implemented using three
impulse actions:

Δvfa (τtar) = Δvfa1 (τtar) + Δvfa2 (τtar) + Δvfa3 (τtar) .

The first impulse action Δvfa1 (τtar) is applied at the perigee of the target orbit; without changing
the inclination, it raises the apogee to the maximum possible distance Rmax of the spacecraft from
the Earth:

Δvfa1 (τtar) =
√
V 2
tar p + V 2

1p − 2Vtar pV1p,

Vtar p =

√
2μRtar a

Rtar p(Rtar a +Rtar p)
, V1p =

√
2μRmax

Rtar p(Rmax +Rtar p)
,

(11)

where Rtar p is the perigee radius of the target orbit and Vtar p is the velocity at the perigee of the
target orbit.
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The second impulse action Δvfa2 (τtar) is applied at the apogee; it increases the perigee to the
GEO radius RGEO and decreases the inclination to zero:

Δvfa2 (τtar) =
√
V 2
1a + V 2

2a − 2V1aV2a cos itar,

V1a =

√
2μRtar p

Rmax(Rmax +Rtar p)
, V2a =

√
2μRGEO

Rmax(Rmax +RGEO)
,

(12)

where itar is the inclination angle of the target orbit to the equatorial plane. At the time instant
of passing the apogee, this value can be calculated as

cos itar =

√
v2x(τtar a) + v2y(τtar a)√

v2x(τtar a) + v2y(τtar a) + v2z(τtar a)
. (13)

The third impulse action Δvfa3 (τtar) is applied at the perigee; without changing the inclination,
it reduces the apogee to the GEO radius, thus moving the satellite to a non-predetermined point
in the GEO:

Δvfa3(·) = V2p − vGEO,

V2p =

√
2μRmax

RGEO(Rmax +RGEO)
, vGEO =

√
μ

RGEO
.

(14)

Note that Δvfa3 is actually a constant (depends on the given value RGEO and the problem param-
eter Rmax).

After undocking the satellite, the CB maneuver continues. Due to additional activation of the
engine, the perigee altitude of the CB’s orbit is lowered to 100 km (the conditional boundary of
the atmosphere):

rp (T ) = REar + 100 km. (15)

At the final time instant T all the fuel contained in the CB’s main tank is exhausted. Within the
first problem statement, the tanks are filled with exactly as much fuel as is necessary to perform the
corresponding maneuvers, the dry mass of the CB’s main tank is proportional to the mass of fuel
contained in it with the coefficient α, and the engine mass is proportional to the thrust-to-weight
ratio with the coefficient β [11]. Therefore, we obtain

m(T )− αmfuel − βn = 0,

mfuel =
(
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T )) .

(16)

Within the second problem statement, the CB’s dry mass and the fuel constraint in the CB’s main
tank are given. In this case,

m(T )−mCB = 0, (17)(
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T )) � mCB

fuel,

where mCB is the given dry dimensionless mass of the CB (the engine and additional structures)
and mCB

fuel is the maximum dimensionless mass of fuel that can be filled into the CB’s main tank.

Note that the spacecraft coordinates and velocities are continuous at all time instants. In
addition, the problem under consideration has another peculiarity: its objective functional is a
function of the phase variables at an intermediate time instant.
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3. PONTRYAGIN’S MAXIMUM PRINCIPLE

The problem under consideration is an optimal control problem with intermediate conditions.
It can be solved using Pontryagin’s maximum principle [12].

In the case of the central Newtonian gravitational field, the Pontryagin function has the form

H = pxvx + pyvy + pzvz + pm

(
−P
c

)

+ pvx

(
−μx
r3

+
Px

m

)
+ pvy

(
−μy
r3

+
Py

m

)
+ pvz

(
−μz
r3

+
Pz

m

)
;

in the problems with the second zonal harmonic, the form

H = pxvx + pyvy + pzvz + pm

(
−P
c

)
+ pvx

(
−μx
r3

+
3

2
J2μ

R2
0

r5

(
5xz2

r2
− x

)
+
Px

m

)

+ pvy

(
−μy(t)
r3(t)

+
3

2
J2μ

R2
0

r5(t)

(
5yz2

r2
− y

)
+
Py

m

)
+ pvz

(
−μz
r3

+
3

2
J2μ

R2
0

r5

(
5z3

r2
− 3z

)
+
Pz

m

)
.

For the first problem statement, the terminant is given by

l = l0 + lrel1 + lrel2 + lsafe + ltar + lT − λ0 (m (τtar−)−m (τtar+)) ,

where

l0 = λR0

(
x(0)2 + y(0)2 + z(0)2 −R2

0

)
+ λC0 (x(0)C0x + y(0)C0y + z(0)C0z)

+λvx0

(
vx(0) +

v0
R0

(y(0) cos i0 + z(0) sin i0)

)
+ λvy0

(
vy(0)− v0

R0
x(0) cos i0

)
+λvz0

(
vz(0)− v0

R0
x(0) sin i0

)
+ λm0 (m(0)−m0) ,

lrel1 =
∑

ξ=(x,y,z,vx,vy ,vz)

λξrel1
(
ξ
(
τAFT
rel1+

)
− ξ

(
τAFT
rel1-

))
+ λτrel1

(
τAFT
rel1+ − τAFT

rel1-

)
+ λrel1

(
rp

(
τAFT
rel1-

)
−REar − 100

)
,

lrel2 = λmτ

(
m
(
τAFT
rel2+

)
−m

(
τAFT
rel1-

)
+ α

(
m0 −m

(
τAFT
rel1-

)))
+ λτ

(
τAFT
rel2+ − τAFT

rel1- − 120
)
+ λτrel2

(
τAFT
rel2+ − τAFT

rel2-

)
,

lsafe =
∑

ξ=(x,y,z,vx,vy,vz)

λξsafe (ξ (τsafe+)− ξ (τsafe-)) + λτsafe (τsafe+ − τsafe-)

+ λsafe (rp (τsafe-)−REar − 200) ,

ltar =
∑

ξ=(x,y,z,vx,vy,vz)

λξtar (ξ (τtar+)− ξ (τtar-)) + λτtar (τtar+ − τtar-)

+ λtar

(
Cy(τtar-)vx(τtar-)−Cx(τtar-)vy(τtar-)− μz(τtar-)

r(τtar-)

)
+ λfa(Δvfa(x(τtar-), y(τtar-), z(τtar-), vx(τtar-), vy(τtar-), vz(τtar-))−Δv∗),

lT = λT (rp (T )−REar − 100)

+ λmT

(
m(T )− α

((
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T ))

)
− βn

)
.
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For the second problem statement, lrel2 and lT are given by

lrel2 = λmτ1

(
m
(
τAFT
rel2+

)
−m

(
τAFT
rel1-

)
+mAFT

)
+ λmτ2

(
m0 −m

(
τAFT
rel1-

)
−mAFT

fuel

)
+ λτ

(
τAFT
rel2+ − τAFT

rel1- − 120
)
+ λτrel2

(
τAFT
rel2+ − τAFT

rel2-

)
,

lT = λT (rp (T )−REar − 100) + λmT1

(
m(T )−mCB

)
+ λmT2

((
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T ))−mCB

fuel

)
.

Here, px(·), py(·), pz(·), pvx(·), pvy(·), pvz(·), and pm(·) are the conjugate variables (the functional
Lagrange multipliers) at each of the trajectory segments; λ0, λR0, λC0, λvx0, λvy0, λvz0, λm0, λξrel1,
λξsafe, λξtar (ξ = x, y, z, vx, vy, vz), λτrel1, λrel1, λmτ , λτ , λτrel2, λτsafe, λsafe, λτtar, λtar, λfa, λT , λmT ,
λmτ1, λmτ2, λmT1, and λmT2 are the numerical Lagrange multipliers.

Note that the term corresponding to the differential equation ṁ = −P
c is absent in the Pontrya-

gin function on the segment [τAFT
rel1 , τAFT

rel2 ].

The stationarity conditions with respect to the phase variables (the Euler–Lagrange equations)
have the form

ṗx =
μ

r3

[
pvx − 3x

r2
(xpvx + ypvy + zpvz)

]
,

ṗy =
μ

r3

[
pvy − 3y

r2
(xpvx + ypvy + zpvz)

]
,

ṗz =
μ

r3

[
pvz − 3z

r2
(xpvx + ypvy + zpvz)

]
,

ṗvx = −px, ṗvy = −py, ṗvz = −pz,

ṗm =
Pxpvx + Pypvy + Pzpvz

m2
.

In the case of a transfer in a gravitational field with the second zonal harmonic, the Euler–
Lagrange equations are not presented explicitly here. Their right-hand sides were calculated using
numerical-analytical differentiation [19].

Due to their bulkiness, we formally write the transversality conditions as

pξ(0) =
∂l

∂ξ(0)
, pξ(T ) = − ∂l

∂ξ(T )
,

pξ (β+) =
∂l

∂ξ (β+)
, pξ (β−) = − ∂l

∂ξ (β−)
,

ξ = x, y, z, vx, vy, vz, β = τAFT
rel1 , τAFT

rel2 , τsafe, τtar.

The transversality conditions at the initial time instant imply

px(0) = 2λR0x(0) + λC0C0x − v0
R0

(pvy(0) cos i0 + pvz(0) sin i0) ,

py(0) = 2λR0y(0) + λC0C0y +
v0
R0
pvx(0) cos i0,

pz(0) = 2λR0z(0) + λC0C0z +
v0
R0
pvy(0) sin i0.

(18)
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At the time instants τAFT
rel1 and τsafe, these conditions yield

pξ (γ−)− pξ (γ+) + λi
∂rp (γ−)
∂ξ (γ−)

= 0,

ξ = x, y, z, vx, vy, vz, γ = τAFT
rel1 , τsafe, i = rel1, safe.

(19)

Finally, at the time instant τtar, from the transversality conditions it follows that

pξ (τtar-)− pξ (τtar+) + λfa
Δvfa (τtar-)

∂ξ (τtar-)
+ λtar

∂A (τtar-)

∂ξ (τtar-)
= 0,

ξ = x, y, z, vx, vy, vz .

(20)

The derivatives of the functions rp(·), Δvfa(·), and A(·) (see (19), (20), and the transversality
conditions at the final time instant T ) are calculated using numerical-analytical differentiation.

In the first problem statement, the transversality conditions with respect to the variable m at
the time instants τAFT

rel1 , τAFT
rel2 , and T imply the equality

(1 + α)pm(τAFT
rel2+)− pm(τAFT

rel1- )− αpm(T ) = 0. (21)

Let us prove this equality. The transversality conditions with respect to the variable m at the
time instants τAFT

rel1 , τAFT
rel2 , and T have the form

pm(τAFT
rel1- ) = − ∂l

∂m(τAFT
rel1- )

= λmτ (1 + α),

pm(τAFT
rel2+) =

∂l

∂m(τAFT
rel2+)

= λmτ − αλmT ,

pm(T ) = − ∂l

∂m(T )
= −λmT (1 + α).

We obtain the following chain of equalities:

pm(τAFT
rel2+)− λmτ + αλmT = 0, λmτ =

pm(τAFT
rel1- )

1 + α
, λmT = −pm(T )

1 + α

⇒ pm(τAFT
rel2+)−

pm(τAFT
rel1- )

1 + α
− α

pm(T )

1 + α
= 0

⇒ (1 + α)pm(τAFT
rel2+)− pm(τAFT

rel1- )− αpm(T ) = 0.

In the second problem statement, the transversality conditions with respect to the variable m
at the time instants τAFT

rel1 and τAFT
rel2 imply the equality

pm(τAFT
rel2+)− pm(τAFT

rel1- ) = λmT2 − λmτ2. (22)

Let us prove this equality. The transversality conditions with respect to the variable m at the
time instants τAFT

rel1 and τAFT
rel2 have the form

pm(τAFT
rel2+) = λmτ1 + λmT2, pm(τAFT

rel1- ) = λmτ1 + λmτ2.

Subtracting the second equality from the first one yields (22).
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The transversality conditions with respect to the variable m at the time instant τtar imply the
continuity of the conjugate variable:

pm(τtar+) = pm(τtar-). (23)

Indeed, pm(τtar-) = −αλmT and pm(τtar+) = −αλmT (the first problem statement) and pm(τtar-) =
−αλmT2 and pm(τtar+) = −αλmT2 (the second problem statement).

At the initial time instant the stationarity condition is absent. The stationarity conditions at
the time instants τAFT

rel1 and τAFT
rel2 imply H(τAFT

rel2+) = H(τAFT
rel1- ). At the time instants τsafe and τtar,

the Pontryagin function is continuous: H (τsafe+) = H (τsafe-) and H (τtar+) = H (τtar-). The sta-
tionarity condition at a time instant T (unknown in advance) has the form H(T ) = 0.

Let 	e be a unit vector. Then the optimality conditions with respect to the control actions Px,
Py, and Pz have the form

−→
P = P	e, 	e = (cosα, cos β, cos γ) ,

Px = P cosα, Py = P cos β, Pz = P cos γ,

−→
P opt = arg absmax

0�P�Pmax

[
pvxPx + pvyPy + pvzPz

m
− pm

c
P

]
= arg absmax

0�P�Pmax

[
pvxP cosα+ pvyP cos β + pvzP cos γ

m
− pm

c
P

]
= arg absmax

0�P�Pmax

[
P

(
pvx cosα+ pvy cos β + pvz cos γ

m
− pm

c

)]
,

where cosα, cos β, and cos γ are the direction cosines.

If

(
pvx cosα+ pvy cosβ + pvz cos γ

m
− pm

c

)
> 0, then Popt = Pmax; in the case(

pvx cosα+ pvy cos β + pvz cos γ

m
− pm

c

)
< 0, Popt = 0. Thus,

Popt =

{
Pmax, χ > 0
0, χ < 0,

where χ ≡ ρ

m
− pm

c
is the switching function.

Note that pvx cosα+ pvy cos β + pvz cos γ is the inner product of the vectors 	pv = (pvx, pvy, pvz)
and 	e = (cosα, cos β, cos γ). It achieves maximum for the codirectional vectors 	pv and 	e:

cosαopt =
pvx
ρ
, cos βopt =

pvy
ρ
, cos γopt =

pvz
ρ
,

where ρ =
√
p2vx + p2vy + p2vz. Thus, due to the optimal direction of the thrust vector, we find

(Px)opt = Popt
pvx
ρ
, (Py)opt = Popt

pvy
ρ
, (Pz)opt = Popt

pvz
ρ
.

Special control regimes, potentially possible in the problems under study, are not considered in
this paper.

For the first problem statement, the complementary slackness and nonnegativity conditions have
the form

λfa(Δvfa(τtar-)−Δv∗) = 0,

λ0 � 0, λfa � 0.
(24)
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For the second problem statement, in addition to (24), we get the following complementary
slackness and nonnegativity conditions:

λmτ2

(
m0 −m

(
τAFT
rel1-

)
−mAFT

fuel

)
= 0,

λmT2

((
m
(
τAFT
rel2+

)
−m (τtar-)

)
+ (m (τtar+)−m(T ))−mCB

fuel

)
= 0,

λmτ2 � 0, λmT2 � 0. (25)

The normalization condition is

p2vx(0) + p2vy(0) + p2vz(0) = 1. (26)

4. TRAJECTORY STRUCTURE AND NUMERICAL RESULTS

The trajectory structure is determined based on the previous studies [1, 8–10]. The main ad-
vantage of the given-structure trajectory approach is that it yields Pontryagin extremals: under
a “good” computational scheme for the shooting method and a “good” initial approximation, the
modified Newton’s method converges in a few iterations.

Other possible methods for solving the corresponding boundary-value problems were tested as
well, but without success (the Pontryagin extremals were not constructed).

The initial approximation to the values of the phase and conjugate variables in the shooting
parameter vector is chosen using the solution obtained previously in the modified pulse statement [1]
in accordance with [12]: at the thrust activation time instants they correspond to the values of the
phase and conjugate variables before the impulse action; at the thrust deactivation time instants,
to the values of the phase and conjugate variables after the impulse action. The duration of active
segments is estimated based on fuel consumption for a given engine activation; the duration of
passive segments is equal to the corresponding duration of passive segments between the impulse
actions. First, the problem with high limited thrust is solved in the first statement with n = 10.
Then the parameter continuation method is applied for the thrust-to-weight ratio to obtain the
solution for n = 0.1. The transition from the first problem statement to the second one is also
carried out using the parameter continuation method: the corresponding equations from the first
and second problem statements are multiplied by (1− γ) and γ, respectively, where γ ∈ [0, 1].

Let us describe the computational scheme of the shooting method (see the figure). The shooting
parameter vector consists of the following components:

• the numerical Lagrange multipliers λR0, λC0, λrel1, λsafe, λtar, λfa, and λT ; in the second
problem statement, also the numerical Lagrange multiplier λmT2;

• the angular position of the spacecraft in the reference circular orbit, ϕ0, and the values of the
four conjugate variables at the initial time instant, pvx(0), pvy(0), pvz(0), and pm(0); (The
coordinates and velocities of the spacecraft at the initial time instant are calculated by the
angular position; the values px(0), py(0), and pz(0) of the conjugate variables are calculated
using (18). By the condition, m(0) = 1 and, therefore, m(0) is not included in the shooting
parameter vector. Thus, we obtain the starting point for solving the Cauchy problem.)

• the duration of the first active segment, Δτact1 ;

0               ��act           ��pass  
         ��AFT

          ��AFT             ��������������� ��pass  
         ��act             ��������������������T

1                   1                       rel1                rel2                    safe              3                     4                      tar

��act         ��pass    ��act =��AFT ��pass
=120 s ��act=��safe  ��pass

     ��act     ��pass
=��tar  ��act=�T

1                   1               2           rel1        2                         2                         3                4             4                        5

The computational scheme of the shooting method.
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• the coordinates and velocities as well as the values of the conjugate variables after engine
deactivation, x(τact1+ ), y(τact1+ ), z(τact1+ ), vx(τ

act
1+ ), vy(τ

act
1+ ), vz(τ

act
1+ ), px(τ

act
1+ ), py(τ

act
1+ ), pz(τ

act
1+ ),

pvx(τ
act
1+ ), pvy(τ

act
1+ ), and pvz(τ

act
1+ );

• the duration of the first passive segment, Δτpass1 ;

• the coordinates and velocities as well as the values of the conjugate variables after engine acti-
vation, x(τpass1+ ), y(τpass1+ ), z(τpass1+ ), vx(τ

pass
1+ ), vy(τ

pass
1+ ), vz(τ

pass
1+ ), px(τ

pass
1+ ), py(τ

pass
1+ ), pz(τ

pass
1+ ),

pvx(τ
pass
1+ ), pvy(τ

pass
1+ ), and pvz(τ

pass
1+ );

• the duration of the second active segment, Δτact2 = ΔτAFT
rel1 , where the perigee altitude of the

spacecraft orbit is lowered to the conditional boundary of the atmosphere;

• the coordinates and velocities as well as the values of the conjugate variables after engine de-
activation, x(τAFT

rel1+), y(τ
AFT
rel1+), z(τ

AFT
rel1+), vx(τ

AFT
rel1+), vy(τ

AFT
rel1+), vz(τ

AFT
rel1+), px(τ

AFT
rel1+), py(τ

AFT
rel1+),

pz(τ
AFT
rel1+), pvx(τ

AFT
rel1+), pvy(τ

AFT
rel1+), and pvz(τ

AFT
rel1+); (The duration of the second passive segment

(AFT release), Δτpass2 , is a parameter of the problem (120 s), being therefore not included in
the shooting parameter vector.)

• the coordinates and velocities as well as the values of the conjugate variables after engine
activation, x(τAFT

rel2+), y(τ
AFT
rel2+), z(τ

AFT
rel2+), vx(τ

AFT
rel2+), vy(τ

AFT
rel2+), vz(τ

AFT
rel2+), px(τ

AFT
rel2+), py(τ

AFT
rel2+),

pz(τ
AFT
rel2+), pvx(τ

AFT
rel2+), pvy(τ

AFT
rel2+), and pvz(τ

AFT
rel2+), including the conjugate variable correspond-

ing to the mass, pm(τAFT
rel2 ) = pm(τAFT

rel2+); (The mass of the spacecraft after AFT release is not
included in the shooting parameter vector and is calculated by formulas (6) (the first problem
statement) and (7) (the second problem statement).)

• the duration of the third active segment, Δτact3 = Δτsafe, where the perigee altitude of the
spacecraft orbit is increased to 200 km;

• the coordinates and velocities as well as the values of the conjugate variables after engine de-
activation, x(τsafe+), y(τsafe+), z(τsafe+), vx(τsafe+), vy(τsafe+), vz(τsafe+), px(τsafe+), py(τsafe+),
pz(τsafe+), pvx(τsafe+), pvy(τsafe+), and pvz(τsafe+);

• the duration of the third passive segment, Δτpass3 ;

• the coordinates and velocities as well as the values of the conjugate variables after engine acti-
vation, x(τpass3+ ), y(τpass3+ ), z(τpass3+ ), vx(τ

pass
3+ ), vy(τ

pass
3+ ), vz(τ

pass
3+ ), px(τ

pass
3+ ), py(τ

pass
3+ ), pz(τ

pass
3+ ),

pvx(τ
pass
3+ ), pvy(τ

pass
3+ ), and pvz(τ

pass
3+ );

• the duration of the fourth active segment, Δτact4 , at the end of which the spacecraft reaches
the target orbit;

• the coordinates and velocities as well as the values of the conjugate variables after engine
deactivation, x(τact4+ ), y(τact4+ ), z(τact4+ ), vx(τ

act
4+ ), vy(τ

act
4+ ), vz(τ

act
4+ ), px(τ

act
4+ ), py(τ

act
4+ ), pz(τ

act
4+ ),

pvx(τ
act
4+ ), pvy(τ

act
4+ ), and pvz(τ

act
4+ );

• the duration of the fourth passive segment, Δτpass4 = Δτtar, where the spacecraft moves in the
target orbit; (For convenience of calculations, τtar is the last engine activation point for the CB
release instead of the first point in the target orbit of the spacecraft; this is possible because
the points are connected by the passive segment.)

• the coordinates and velocities as well as the values of the conjugate variables after engine acti-
vation, x(τtar+), y(τtar+), z(τtar+), vx(τtar+), vy(τtar+), vz(τtar+), px(τtar+), py(τtar+), pz(τtar+),
pvx(τtar+), pvy(τtar+), and pvz(τtar+), and the CB mass m(τtar+) after undocking the satellite;
(The conjugate variable pm(τtar+) is not included in the shooting parameter vector since pm is
continuous at the point τtar by (23).)

• the duration of the fifth active segment, Δτact5 = ΔT , where the CB perigee is lowered to
100 km (the conditional boundary of the atmosphere).

The residual vector function includes the following elements:

• the twelve continuity conditions of the phase and conjugate variables at the time instant τact1 ;

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



28 GRIGORIEV, PROSKURYAKOV

• the twelve continuity conditions of the phase and conjugate variables at the time instant τpass1 ;

• the six continuity conditions of the phase variables and the six implications of the transversality
conditions at the time instant τAFT

rel1 (19);

• the twelve continuity conditions of the phase and conjugate variables at the time instant τAFT
rel2 ;

• the six continuity conditions of the phase variables and the six implications of the transversality
conditions at the time instant τsafe (19);

• the twelve continuity conditions of the phase and conjugate variables at the time instant τpass3 ;

• the twelve continuity conditions of the phase and conjugate variables at the time instant τact4 ;

• the six continuity conditions of the phase variables and the six implications of the transversality
conditions at the time instant τtar (20);

• the zero value of the z-component of the Laplace vector (the second condition from (10));

• the condition of exhausting all fuel from the CB’s main tank at the final time instant: formu-
las (16) and (17) in the first and second problem statements, respectively;

• the complementary slackness condition: a given value of the final ascent impulse from the
target orbit to the geostationary orbit (the first condition from (24));

• the three conditions on the perigee of the spacecraft orbit at the time instants τAFT
rel1 , τsafe,

and T : formulas (5), (9), and (15), respectively;

• the four conditions on the switching function: χ(τact1− ) = 0, χ(τpass1+ ) = 0, χ(τpass3+ ) = 0, and
χ(τact4− ) = 0;

• the six transversality conditions at the final time instant T ;

• the implication of the transversality conditions with respect to the variable m: formulas (21)
and (22) in the first and second problem statements, respectively (in the latter case, with
λmτ2 = 0);

• the three implications of the stationarity conditions, H(τAFT
rel2+) = H(τAFT

rel1- ), H(τsafe+) =
H (τsafe-), and H (τtar+) = H (τtar-);

• the stationarity condition at the final time instant, H(T ) = 0;

• the normalization condition (26);

• in the second problem statement, also the second complementary slackness condition from (25).
(The first complementary slackness condition from (25) is not included in the residual vector
function, and the corresponding inequality (8) is verified after solving the problem: the strict
inequality holds on the Pontryagin extremal, which matches the case λmτ2 = 0.)

Thus, the first problem statement has one hundred and eighteen shooting parameters and one
hundred and eighteen residuals; the second problem statement, one hundred and nineteen shooting
parameters and one hundred and nineteen residuals. In other words, in both statements, the
number of unknown parameters coincides with the number of equations for their determination.

In the Appendix, we present the Pontryagin extremal in the second problem statement with
the second zonal harmonic and n = 0.1, Pspe = 350 s, i0 = 0.9 rad, Δv∗ = 1.5 km/s, m(0) = 1

(M(0) = 22 500 kg), the AFT’s dry mass mAFT = 0.052 (which corresponds to the mass 1170 kg),
the CB’s dry mass mCB = 0.0635556 (which corresponds to the mass 1430 kg), the maximum AFT
fuel mass mAFT

fuel = 0.6488889 (which corresponds to the mass 14 600 kg), the maximum CB fuel
mass mCB

fuel = 0.2266667 (which corresponds to the mass 5100 kg), and Rmax = 280 000 km.

5. CONCLUSIONS

One result of the previous studies in the pulse statement was the possibility of releasing the
additional fuel tank and the booster of the central block into the Earth’s atmosphere at low cost.
The same result has been confirmed above in the case of spacecraft with a high limited-thrust
engine.
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As it has turned out, the solution of the spacecraft transfer problem with a high limited-thrust
engine is, to some extent, close to that obtained in the pulse statement. In the case under con-
sideration, the method for passing from the latter solution to the former one [12] is effective: the
Pontryagin extremal has been constructed.

The problems in the first and second statements (with optimizable design and fixed mass charac-
teristics) have been successfully included in the parametric family. The transition from the solution
of the first problem (with the chosen constants α = 0.08 and β = 0.01) to the second one (see the
extremal in the Appendix) has been effectively implemented the parameter continuation method.

The difference between the extremal considering the second zonal harmonic and the one without
such consideration is small in the sense of convergence of Newton’s method. (This method converges
in 11 iterations.)

The numerical-analytical differentiation technique has demonstrated its effectiveness and advan-
tages (the simplified program code and the reduced probability of programming errors).

The problem hierarchy methodology has been adopted to solve the original problem, choose an
appropriate computational scheme and a good initial approximation, and cope with the difficulties
of numerical solution due to the complexity and bulkiness of the problem statement, thus demon-
strating its effectiveness. The candidate’s dissertation by A.S. Samokhin [22] is another complete
example of the effective application of this methodology. Note that when the maximum possible
distance Rmax of the spacecraft to the Earth increases, the problem statement changes: it will be
necessary to consider the influence of the Moon’s gravitational field [21]; moreover, the resulting
problem will be in the next steps of the problem hierarchy methodology.

APPENDIX

The Pontryagin Extremal in the Second Problem Statement with the Second Zonal Harmonic

Here, we present the Pontryagin extremal in the second problem statement with the second zonal
harmonic and n = 0.1, Pspe = 350 s, i0 = 0.9 rad, Δv∗ = 1.5 km/s, m(0) = 1 (M(0) = 22 500 kg),
the AFT’s dry mass mAFT = 0.052 (which corresponds to the mass 1170 kg), the CB’s dry mass
mCB = 0.0635556 (which corresponds to the mass 1430 kg), the maximum AFT fuel mass mAFT

fuel =
0.6488889 (which corresponds to the mass 14 600 kg), the maximum CB fuel massmCB

fuel = 0.2266667
(which corresponds to the mass 5100 kg), and Rmax = 280 000 km.

The numerical Lagrange multipliers are:

λR0 = 0.000143381, λC0 = 0.000591830,

λvx0 = 0.454024806, λvy0 = 0.573821987, λvz0 = 0.681608247,

λm0 = 0.003461557, λxrel1 = −0.000341292, λyrel1 = 7.242061031 × 10−7,

λzrel1 = −4.016946803 × 10−7, λvxrel1 = −0.006462504, λvyrel1 = −0.749532226,

λvzrel1 = −0.815268562, λxsafe = −4.192288919 × 10−5, λysafe = 1.862663610 × 10−6,

λzsafe = 3.375542260 × 10−6, λvxsafe = 0.005756096, λvysafe = 0.122589304,

λvzsafe = 0.271310189, λxtar = 2.712182075 × 10−7, λytar = −1.138471581 × 10−9,

λztar = −6.622593433 × 10−13, λvxtar = 0.000524475, λvytar = 0.124996420,

λvztar = 0.154483787, λτrel1 = 1.017515559 × 10−10, λrel1 = 0.000457417,

λmτ1 = 0.005674790, λmτ2 = 0, λτ = −7.385740053 × 10−11,

λτrel2 = 8.771225602 × 10−11, λτsafe = 1.237010821 × 10−11, λsafe = −0.000291125,

λτtar = −1.948360860 × 10−19, λtar = −0.020742502, λfa = 1.164436713,

λT = 4.669488715 × 10−6, λmT1 = −0.009927899, λmT2 = 0.000804002, λ0 = 0.009915863.
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The spacecraft engine is activated at the initial time instant t = 0 under the angular position
ϕ0 = −0.7817944 rad in the reference orbit:

x(0) = 4668.258 km, y(0) = −2880.996 km, z(0) = −3630.510 km,

vx(0) = 5.484390 km/s, vy(0) = 3.433812 km/s, vz(0) = 4.327147 km/s,

px(0) = 0.000284790, py(0) = −0.000515932, pz(0) = −0.000601403,

pvx(0) = 0.454024806, pvy(0) = 0.573821987, pvz(0) = 0.681608247,

m(0) = 1, pm(0) = 0.003461557.

The duration of the first active segment is Δτact1 = 1234.190 s. The spacecraft moves to the elliptic
orbit with the apogee ra1 = 15500.572 km, the perigee rp1 = 6702.795 km, and the inclination angle
i1 = 0.8956402 rad. The coordinates, velocities, and mass of the spacecraft at the engine activation
time instant τact1 are

x(τact1− ) = x(τact1+ ) = 5360.198 km, y(τact1− ) = y(τact1+ ) = 3045.731 km,

z(τact1− ) = z(τact1+ ) = 3807.202 km, vx(τ
act
1− ) = vx(τ

act
1+ ) = −4.376498 km/s,

vy(τ
act
1− ) = vy(τ

act
1+ ) = 4.635010 km/s, vz(τ

act
1− ) = vz(τ

act
1+ ) = 5.786158 km/s,

px(τ
act
1− ) = px(τ

act
1+ ) = 0.000331052, py(τ

act
1− ) = py(τ

act
1+ ) = 0.000386951,

pz(τ
act
1− ) = pz(τ

act
1+ ) = 0.000452488, pvx(τ

act
1− ) = pvx(τ

act
1+ ) = −0.371919208,

pvy(τ
act
1− ) = pvy(τ

act
1+ ) = 0.637424282, pvz(τ

act
1− ) = pvz(τ

act
1+ ) = 0.754898302,

m(τact1 ) = 0.6473743, pm(τact1 ) = 0.005597245.

The duration of the first passive segment is Δτpass1 = 5219.504 s. At the end of this segment, the
spacecraft is in the orbit with the apogee ra2 = 15497.241 km, the perigee rp2 = 6704.141 km, and
the inclination angle i2 = 0.8956703 rad. The coordinates, velocities, and mass of the spacecraft at
the engine activation time instant τpass1 are

x(τpass1− ) = x(τpass1+ ) = −15495.958 km, y(τpass1− ) = y(τpass1+ ) = 133.386 km,

z(τpass1− ) = z(τpass1+ ) = 131.434 km, vx(τ
pass
1− ) = vx(τ

pass
1+ ) = −0.061410 km/s,

vy(τ
pass
1− ) = vy(τ

pass
1+ ) = −2.462966 km/s, vz(τ

pass
1− ) = vz(τ

pass
1+ ) = −3.076413 km/s,

px(τ
pass
1− ) = px(τ

pass
1+ ) = 0.000121015, py(τ

pass
1− ) = py(τ

pass
1+ ) = −2.300740522 × 10−6,

pz(τ
pass
1− ) = pz(τ

pass
1+ ) = −3.527557800 × 10−6, pvx(τ

pass
1− ) = pvx(τ

pass
1+ ) = 0.007053866,

pvy(τ
pass
1− ) = pvy(τ

pass
1+ ) = 0.600617145, pvz(τ

pass
1− ) = pvz(τ

pass
1+ ) = 0.868167234,

m(τpass1 ) = 0.6473743, pm(τpass1 ) = 0.005597245.

The duration of the second active segment is Δτact2 = ΔτAFT
rel1 = 30.961 s. The spacecraft moves to

the elliptic orbit with the apogee ra3 = 15497.241 km, the perigee rp3 = 6478.25 km, and the incli-
nation angle i3 = 0.8948234 rad. This orbit touches the conditional boundary of the atmosphere.
The coordinates, velocities, and mass of the spacecraft at the engine deactivation time instant τAFT

rel1

are

x(τAFT
rel1- ) = x(τAFT

rel1+) = −15 497.060 km, y(τAFT
rel1- ) = y(τAFT

rel1+) = 57.540 km,

z(τAFT
rel1- ) = z(τAFT

rel1+) = 36.780 km, vx(τ
AFT
rel1- ) = vx(τ

AFT
rel1+) = −0.009780 km/s,

vy(τ
AFT
rel1- ) = vy(τ

AFT
rel1+) = −2.436415 km/s, vz(τ

AFT
rel1- ) = vz(τ

AFT
rel1+) = −3.037856 km/s,

px(τ
AFT
rel1- ) = 0.000121065, py(τ

AFT
rel1- ) = −3.087854169 × 10−7, pz(τ

AFT
rel1- ) = −6.465598107 × 10−7,

pvx(τ
AFT
rel1- ) = 0.003306216, pvy(τ

AFT
rel1- ) = 0.600657543, pvz(τ

AFT
rel1- ) = 0.868231852,

px(τ
AFT
rel1+) = −0.000341292, py(τ

AFT
rel1+) = 7.242061031× 10−7, pz(τ

AFT
rel1+) = −4.016946803× 10−7,

pvx(τ
AFT
rel1+) = −0.006462504, pvy(τ

AFT
rel1+) = −0.749532226, pvz(τ

AFT
rel1+) = −0.815268562,

m(τAFT
rel1- ) = 0.6385284, pm(τAFT

rel1- ) = 0.005674790.
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The duration of the second passive segment is Δτpass2 = 120 s. On this segment, the AFT is
undocked from the spacecraft. At the end of the second passive segment, the spacecraft is in the
orbit with the apogee ra4 = 15497.245 km, the perigee rp4 = 6478.246 km, and the inclination angle
i4 = 0.8948232 rad. The coordinates, velocities, and mass of the spacecraft at the engine activation
time instant τAFT

rel2 are

x(τAFT
rel2- ) = x(τAFT

rel2+) = −15486.279 km, y(τAFT
rel2- ) = y(τAFT

rel2+) = −234.799 km,

z(τAFT
rel2- ) = z(τAFT

rel2+) = −327.697 km, vx(τ
AFT
rel2- ) = vx(τ

AFT
rel2+) = 0.189472 km/s,

vy(τ
AFT
rel2- ) = vy(τ

AFT
rel2+) = −2.435275 km/s, vz(τ

AFT
rel2- ) = vz(τ

AFT
rel2+) = −3.035984 km/s,

px(τ
AFT
rel2- ) = px(τ

AFT
rel2+) = −0.000341191, py(τ

AFT
rel2- ) = py(τ

AFT
rel2+) = −8.913952605 × 10−6,

pz(τ
AFT
rel2- ) = pz(τ

AFT
rel2+) = −1.089032490 × 10−5, pvx(τ

AFT
rel2- ) = pvx(τ

AFT
rel2+) = 0.034488810,

pvy(τ
AFT
rel2- ) = pvy(τ

AFT
rel2+) = −0.749040916, pvz(τ

AFT
rel2- ) = pvz(τ

AFT
rel2+) = −0.814591115,

m(τAFT
rel2+) = 0.5865284, pm(τAFT

rel2+) = 0.006478792.

The duration of the third active segment is Δτact3 = Δτsafe = 12.584 s. The spacecraft moves to
the elliptic orbit with the apogee ra5 = 15497.362 km, the perigee rp5 = 6578.25 km, and the
inclination angle i5 = 0.8944602 rad. This is the safe orbit. The coordinates, velocities, and mass
of the spacecraft at the engine deactivation time instant τsafe are

x(τsafe-) = x(τsafe+) = −15 483.759 km, y(τsafe-) = y(τsafe+) = −265.532 km,

z(τsafe-) = z(τsafe+) = −365.996 km, vx(τsafe-) = vx(τsafe+) = 0.211071 km/s,

vy(τsafe-) = vy(τsafe+) = −2.449215 km/s, vz(τsafe-) = vz(τsafe+) = −3.051042 km/s,

px(τsafe-) = −0.000341167, py(τsafe-) = −9.925271032 × 10−6,

pz(τsafe-) = −1.199086427 × 10−5, pvx(τsafe-) = 0.038782187,

pvy(τsafe-) = −0.748922381, pvz(τsafe-) = −0.814447148,

px(τsafe+) = −4.192288919 × 10−5, py(τsafe+) = 1.862663610 × 10−6,

pz(τsafe+) = 3.375542260 × 10−6, pvx(τsafe+) = 0.005756096,

pvy(τsafe+) = 0.122589304, pvz(τsafe+) = 0.271310189,

m(τsafe) = 0.5829330, pm(τsafe) = 0.006518753.

The duration of the third passive segment is Δτpass3 = 5213.308 s. At the end of this segment, the
spacecraft is in the orbit with the apogee ra6 = 15511.458 km, the perigee rp6 = 6576.991 km, and
the inclination angle i6 = 0.8945149 rad. The coordinates, velocities, and mass of the spacecraft at
the engine activation time instant τpass3 are

x(τpass3− ) = x(τpass3+ ) = 5800.915 km, y(τpass3− ) = y(τpass3+ ) = −2325.058 km,

z(τpass3− ) = z(τpass3+ ) = −2873.476 km, vx(τ
pass
3− ) = vx(τ

pass
3+ ) = 3.552179 km/s,

vy(τ
pass
3− ) = vy(τ

pass
3+ ) = 5.123342 km/s, vz(τ

pass
3− ) = vz(τ

pass
3+ ) = 6.398453 km/s,

px(τ
pass
3− ) = px(τ

pass
3+ ) = 0.000705371, py(τ

pass
3− ) = py(τ

pass
3+ ) = −0.000362590,

pz(τ
pass
3− ) = pz(τ

pass
3+ ) = −0.000422128, pvx(τ

pass
3− ) = pvx(τ

pass
3+ ) = 0.375643830,

pvy(τ
pass
3− ) = pvy(τ

pass
3+ ) = 0.672228633, pvz(τ

pass
3− ) = pvz(τ

pass
3+ ) = 0.795432792,

m(τpass3 ) = 0.5829330, pm(τpass3 ) = 0.006518753.

The duration of the fourth active segment is Δτact4 = 780.500 s. The spacecraft moves to the target
orbit with the apogee ra7 = 227 835.611 km, the perigee rp7 = 6644.321 km, and the inclination
angle i7 = 0.8906535 rad. The coordinates, velocities, and mass of the spacecraft at the engine
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deactivation time instant τact4 are

x(τact4− ) = x(τact4+ ) = 6084.753 km, y(τact4− ) = y(τact4+ ) = 2384.542 km,

z(τact4− ) = z(τact4+ ) = 2973.927 km, vx(τ
act
4− ) = vx(τ

act
4+ ) = −2.938015 km/s,

vy(τ
act
4− ) = vy(τ

act
4+ ) = 6.263591 km/s, vz(τ

act
4− ) = vz(τ

act
4+ ) = 7.730739 km/s,

px(τ
act
4− ) = px(τ

act
4+ ) = 0.000708160, py(τ

act
4− ) = py(τ

act
4+ ) = 0.000286427,

pz(τ
act
4− ) = pz(τ

act
4+ ) = 0.000340122, pvx(τ

act
4− ) = pvx(τ

act
4+ ) = −0.318610391,

pvy(τ
act
4− ) = pvy(τ

act
4+ ) = 0.697696303, pvz(τ

act
4− ) = pvz(τ

act
4+ ) = 0.821832874,

m(τact4 ) = 0.3599331, pm(τact4 ) = 0.010719865.

In the target orbit, the satellite is separated from the CB. The satellite mass in the target orbit
(payload mass) is mp = 0.2963061 (6666.888 kg). At the time instant τtar the last engine activation
occurs to lower the perigee altitude of the CB orbit to the conditional boundary of the atmosphere.
For convenience of calculations, the mass jump (after undocking the satellite) is considered at the
last engine activation instant. The duration of the fourth passive section (passive flight of the
CB in the target orbit) is Δτpass4 = Δτtar = 197 376.995 s. At the end of this passive segment, the
spacecraft is in the orbit with the apogee ra8 = 226 259.913 km, the perigee rp8 = 6643.293 km,
and the inclination angle i8 = 0.8905128 rad. The coordinates and mass of the CB at the engine
activation time instant τtar are

x(τtar-) = x(τtar+) = −226 257.921 km, y(τtar-) = y(τtar+) = 949.323 km,

z(τtar-) = z(τtar+) = 0.031 km, vx(τtar-) = vx(τtar+) = −0.000838 km/s,

vy(τtar-) = vy(τtar+) = −0.199407 km/s, vz(τtar-) = vz(τtar+) = −0.246448 km/s,

px(τtar-) = −7.173006000 × 10−7, py(τtar-) = 1.993046144 × 10−9,

pz(τtar-) = −3.571982769 × 10−8, pvx(τtar-) = −0.003979552,

pvy(τtar-) = −0.672797915, pvz(τtar-) = 0.617436221,

px(τtar+) = 2.712182075 × 10−7, py(τtar+) = −1.138471581 × 10−9,

pz(τtar+) = −6.622593433 × 10−13, pvx(τtar+) = 0.000524475,

pvy(τtar+) = 0.124996420, pvz(τtar+) = 0.154483787,

m(τtar-) = 0.3599331, m(τtar+) = 0.0636269,

pm(τtar-) = pm(τtar+) = 0.010719865.

The duration of the fifth (last) active segment is Δτact5 = ΔT = 0.250 s. The spacecraft moves to the
orbit touching the conditional boundary of the atmosphere with the apogee ra9 = 226 259.913 km,
the perigee rp9 = 6478.25 km, and the angle of inclination i9 = 0.8905128 rad. The coordinates,
velocities, and mass of the CB at the engine deactivation time instant T are

x(T ) = −226 257.922 km, y(T ) = 949.274 km,

z(T ) = −0.030 km, vx(T ) = −0.000826 km/s,

vy(T ) = −0.196984 km/s, vz(T ) = −0.243454 km/s,

px(T ) = 2.712182120 × 10−7, py(T ) = −1.137397235 × 10−9,

pz(T ) = 6.655346255 × 10−13, pvx(T ) = 0.000524407,

pvy(T ) = 0.124996420, pvz(T ) = 0.154483787,

m(T ) = 0.0635556, pm(T ) = 0.010731902.

The final ascent impulses to transfer the satellite from the target orbit to the GEO are

Δvfa1 = 0.029677 km/s, Δvfa2 = 0.491271 km/s, Δvfa3 = 0.979052 km/s.
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The fuel consumed to lower the perigee altitude to 100 km (to release the AFT) is 199.034 kg
(0.0088460). The fuel consumed to raise the perigee altitude to 200 km (to reach the safe orbit)
is 80.897 kg (0.0035954). The fuel consumed to lower the perigee altitude to 100 km (to release
the CB) is 1.606 kg (7.1361228 × 10−5). The total fuel consumption for releasing the AFT and CB
constitutes 281.536 kg (0.0125127).

The correspondence of the phase and conjugate variables at the starts and ends of the passive
segments can be verified by numerical integration. The conditions of Pontryagin’s maximum prin-
ciple can be verified by substituting the phase and conjugate variables and the numerical Lagrange
multipliers into the corresponding formulas, and numerical-analytical differentiation can be used
to verify the transversality conditions. The basic dimensional units in the calculations are 1000 km
and 1 s. When passing to other dimensional units, the conjugate variables must be recalculated by
appropriate formulas. The 8(7)th order Dorman–Prince method was used for numerical integration.
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Abstract—This paper considers the problem of stabilizing the output variables of a Lurie-type
nonlinear system in a given set at any time instant. A special output transformation is used to
reduce the original constrained problem to that of analyzing the input-to-state stability of a new
extended system without constraints. For this system, nonlinear control laws are obtained using
the technique of linear matrix inequalities. Examples are given to illustrate the effectiveness of
the method proposed and confirm the theoretical conclusions.
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1. INTRODUCTION

Guaranteeing the desired quality of transients is a key criterion in the design of automatic con-
trol systems. Classical control methods, such as modal control [1], adaptive robust control [2, 3],
etc., ensure control performance only in the steady-state mode. The transient mode remains un-
controllable.

Control problems for linear plants with a guarantee for the controlled variable to stay in a
given set at any time instant were presented in [4–6]. Within this approach, control performance
is ensured not only in the steady-state mode but also in the transient mode. Such problems
often arise in practice, e.g., when controlling electric power systems to maintain the frequency and
voltage of electric generators in specified ranges [7, 8], when stabilizing the formation pressure of oil
production, where the pressure at the wellhead must strictly belong to a given band [9], etc. To solve
such problems, the authors [4, 5] proposed a method based on a special output transformation that
reduces the original control problem with output constraints to a new control problem without
constraints on the auxiliary variable. For the class of linear plants, the corresponding control
problems were well studied and solved in [4]. However, they remain open for Lurie-type nonlinear
systems.

Below we consider Lurie-type systems with an unstable linear part and unknown bounded dis-
turbances and pose the problem of stabilizing such systems in a given set of output variables. The
remainder of this paper is organized as follows. Section 2 formulates the problem of stabilizing the
controlled variables of Lurie-type nonlinear systems in given sets. In section 3, control design meth-
ods are proposed. Finally, section 4 provides some numerical examples in MATLAB to illustrate
the theoretical results.
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The following notations are used in the presentation: R
n is the n-dimensional Euclidean space

with the Euclidean norm | · |; R
n×m is the set of all real matrices of dimensions n×m with

the Euclidean norm ‖ · ‖; for A∈R
n×n, the relation A � 0 (A ≺ 0) means that A is a positive

(negative, respectively) definite matrix, whereas the relation A � 0 (A � 0) means that A is a
nonnegative (nonpositive, respectively) definite matrix; I, 0, and diag{·} are identity, zero, and
diagonal, respectively, matrices of appropriate dimensions; 1m ∈R

m is an m dimensional vector
composed of unit elements; col{·}∈R

m is a column vector in the space Rm; finally, the symbol “�”
indicates a symmetric block in a symmetric matrix.

2. PROBLEM STATEMENT

Consider a Lurie-type nonlinear system of the form

ẋ(t) = Ax(t) +Bu(t) +Gφ(z(t)) +Df(t),

y(t) = Lx(t), z(t) = Cx(t),
(1)

where t � 0; x(t)∈R
n is the vector of measured states; u(t)∈R

m is the control variable (input);
y(t) = col{y1(t), . . . , ym(t)}∈R

m is the controlled output; f(t)∈R
l is an unknown disturbance such

that |f(t)| � f̄ ; z(t)∈R
q is the argument of the nonlinearity φ; the matrices A∈R

n×n, B ∈R
n×m,

G∈R
n×q, D∈R

n×l, L∈R
m×n, and C ∈R

q×n are known. The pair of matrices (A,B) is control-
lable, and the pair of matrices (A,L) is observable. System (1) has a relative degree of 1m, i.e.,
det(LB) �= 0 [10, 11]. The unknown nonlinearity φ(·) : Rq → R

q satisfies sector constraints: for all
z, φ(z) = col{φ1(z1), . . . , φq(zq)}∈R

q,

k1i �
φi(zi)

zi
� k2i, ∀zi �= 0, i = 1, . . . , q, (2)

where k1i and k2i are some known constants.

This paper aims at designing a control law that stabilizes the output y(t) of the plant (1) in a
given set at any time instant:

Y =
{
y(t)∈R

m : g
i
(t) < yi(t) < gi(t), i = 1, . . . ,m

}
, ∀t � 0, (3)

where g
i
(t) and gi(t) are bounded differentiable functions with bounded first derivatives. These

functions can be selected by the designers according to system performance requirements. To
illustrate the objective of control, Fig. 1 shows a given pipe where the output must be at any time
instant.

Fig. 1. The objective of control: one illustration.
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3. SOLUTION METHOD

Following [4, 5], we introduce the output transformation

ε(t) = Φ(y(t), t), (4)

where ε(t) = col{εi(t), i = 1, . . . ,m}∈R
m and Φ : Y × [0,∞) → R

m is a differentiable function
(with respect to all arguments) in the diagonal form that satisfies several conditions:

(a) There exists the inverse mapping

y = Φ−1(ε, t),∀ε∈R
m, t � 0. (5)

(b) The function Φ−1(ε, t) is differentiable with respect to ε and t, and ∂Φ−1(ε,t)
∂ε � 0∀ε∈R

m and
t � 0.

(c) g
i
(t) < Φ−1

i (εi, t) < gi(t), i = 1, . . . ,m, ∀εi ∈R and t � 0.

(d)
∣∣∣∂Φ−1(ε,t)

∂t

∣∣∣ < γ for ε and t � 0, where γ > 0 is some constant defined by the transforma-

tion (4).

In this paper, the functions Φ−1
i (εi, t) depend on εi ∈R and t; therefore, the matrix ∂Φ−1(ε,t)

∂ε
has the diagonal form. Some knowledge regarding the dynamics of the variable ε(t) is needed to
construct a control law. For this purpose, we take the total time derivative of the function y(t)
considering (5):

ẏ =
∂Φ−1(ε, t)

∂ε
ε̇+

∂Φ−1(ε, t)

∂t
. (6)

Due to (1) and det
(
∂Φ−1(ε,t)

∂ε

)
�= 0, the expression (6) can be written as

ε̇ =

(
∂Φ−1(ε, t)

∂ε

)−1 [
LAx+ LBu+ LGφ+ LDf − ∂Φ−1(ε, t)

∂t

]
. (7)

In (7), LDf(t) and ∂Φ−1(ε,t)
∂t are bounded values. Applying the change ψ(t) = LDf(t)− ∂Φ−1(ε,t)

∂t
yields |ψ(t)| � κ, where κ = ‖LD‖f̄ + γ. In view of this change, (7) reduces to

ε̇ =

(
∂Φ−1(ε, t)

∂ε

)−1 [
LAx+ LBu+ LGφ+ ψ

]
. (8)

We recall the main result of [4] to solve the problem.

Theorem 1. Let conditions (a)–(d) hold for the transformation (4). If there exists a control law
u(t) under which the solutions of (8) and (1) are bounded, then y(t)∈Y.

Remark 1. Conditions (a)–(d) affect the choice of the transformation function (4) only: they do
not guarantee condition (3). For example, if the trajectories ε(t) tend to infinity in a finite time,
y(t) will converge to a boundary of the pipe defined by (3). Therefore, after choosing the output
transformation function based on conditions (a)–(d), it is required to obtain a control law that
would ensure the boundedness of ε(t). Theorem 1 reduces the original control problem (1) with
the constraints (3) on the output y(t) to an auxiliary control problem without any constraints on
the variable ε(t).
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Now we find a control law u(t) ensuring the boundedness of ε(t). Consider a Lyapunov function
of the form V = 1

2ε
Tε. According to (8),

V̇ = εTε̇ = εT
(
∂Φ−1(ε, t)

∂ε

)−1 [
LAx+ LBu+ LGφ+ ψ

]
. (9)

Let the set Ω be an open Euclidean ball in the space R
m, i.e.,

Ω =
{
ε∈R

m : |ε| <
√
2c, c > 0

}
, (10)

where c is a given positive number. The idea is to stabilize the trajectory ε(t) in the set Ω. For ε(t)
to stay in Ω, it suffices to guarantee the negative derivative of the Lyapunov function for all ε
outside the set Ω, i.e., V̇ < 0 ∀ε /∈ Ω. (See the concept of input-to-state stability in the book [12].)

The derivative of the Lyapunov function in (9) contains the matrix
(
∂Φ−1(ε,t)

∂ε

)−1
, which is positive

definite. In particular, if the plant (1) is one-dimensional, then
(
∂Φ−1(ε,t)

∂ε

)−1
is a positive scalar not

affecting the sign of V̇ < 0. The control law can be constructed using the technique of linear matrix
inequalities (LMIs) as described in [6]. Below, we present control design procedures for a particular
case of one-dimensional systems and extend them to the general case of multidimensional ones.

Remark 2. The sector nonlinearity condition (2) can be written as the norm constraint |φi(zi)
zi

| �
ki = max{|k1i|, |k2i|}. Hence, it follows that |φ(z)| � μ|z|, where μ =

√
qmaxi{ki}, i = 1, . . . , q.

When passing from the original nonlinearity sector to the new one, the nonlinearity range will be
expanded: [k1i, k2i] ⊂ [−μ, μ]. Then a control law will be designed for any nonlinearity in the new
sector. In other words, this law can handle any nonlinearity in the original sector as well (i.e., it
has higher “robustness” to the nonlinearity).

3.1. One-Dimensional Systems

We define a piecewise continuous control law of the form

u = −(LB)−1[Kε+ LAx+ μsgn(ε)‖LG‖‖C‖|x|], (11)

where K ∈R is the desired gain and

sgn(ε) =

{
1, ε � 0,

−1, ε < 0.

The following result is true for the one-dimensional system.

Theorem 2. Let conditions (a)–(d) hold for the transformation (4), and let ∂Φ−1(ε,t)
∂ε > 0 for any

ε∈R and t � 0. For given numbers c, α > 0, assume the existence of a positive number K and
positive coefficients τi, i = 1, 2, such that[

−K + α+ 0.5τ1 0.5
� −τ2

]
� 0,

− cτ1 + κ2τ2 � 0.

(12)

Then the control law (11) ensures the target condition (3).

The proof of Theorem 2 is postponed to the Appendix.
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3.2. Multidimensional Systems

Proposition 1. Consider given block matrices

M =

[
Q 0
� Q

]
� 0, N =

[
N11 N12

� N22

]
≺ 0,

where Q,N11, N12, N21, N22 ∈R
n×n are diagonal matrices. Then the matrix

MN =

[
QN11 QN12

� QN22

]

is negative definite.

Proposition 1 is used to prove the main result of this subsection, see below. The proof of
Proposition 1 is provided in the Appendix.

We define a piecewise continuous control law of the form

u = −(LB)−1

⎡⎣Kε+ LAx+ σ̄μSign(ε)

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x|
⎤⎦ , (13)

where K ∈R
m×m is the gain matrix and σ̄ is a constant determined by the transformation (4). In

addition, Sign(ε) = col{sgn(εi), i = 1, . . . ,m}.
Substituting the control law (13) into (8) gives the closed loop system

ε̇ =

(
∂Φ−1(ε, t)

∂ε

)−1 [
−Kε− σ̄μSign(ε)

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x| + LGφ+ ψ

]
. (14)

We arrive at the following result.

Theorem 3. Let conditions (a)–(d) hold for the transformation (4), and let 0 ≺ ∂Φ−1(ε,t)
∂ε � σI

for any ε∈R
m and t � 0. For a given number c > 0, assume the existence of a diagonal matrix

K ∈R
m×m and positive coefficients τi, i = 1, 2, such that[

−K + [(0.5τ1 − α)σ + β]I 0.5I
� −τ2σI

]
� 0,

− cτ1 + κ2τ2 � 0

(15)

for any σ∈ (0, σ] and α > 0, β > 0.

Then the control law (13) ensures the target condition (3).

The proof of Theorem 3 can be found in the Appendix.

Remark 3. The technique of LMIs and the S-procedure allow analyzing the input-to-state sta-
bility of the closed loop system under unknown bounded disturbances. Moreover, the gain for ε
in (11), (13) can be obtained by finding an admissible solution of (12), (15), which is easy to do
using widespread solvers for semidefinite programming problems (e.g., SEDUMI [14], SDPT3 [15],
CSDP [16], and others.)

Remark 4. Obviously, the parameter c in (12), (15) is related to the radius of the open balls Ω
attracting the system trajectories ε(t): this radius equals

√
2c. Decreasing the value of c will

reduce the radius of the ball and, in turn, the limit value of ε(t). Therefore, a decrease in the limit
value of ε(t) will also reduce the fluctuation of the variable y(t) in the set Y due to the exogenous
disturbance f(t).
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4. NUMERICAL EXAMPLES

4.1. Example 1. One-Dimensional System

Consider an unstable plant of the form (1) with the following parameters:

A =

[
0 1

2 −3

]
, B =

[
0

1

]
, G =

[
0

0.1

]
, D =

[
1

1

]
, L =

[
2 1

]
, C =

[
1 2

]
,

f(t) = 0.1 + sin(3t) + 0.5sat(d(t)), φ(z) = sin(z).

where sat{·} is the saturation function and d(t) is a white noise with an intensity and sampling
time of 0.1. Then f̄ = 1.6 and μ = 1.

Let the function ε(t) be specified as

ε(t) = ln

(
y(t)− g(t)

g(t)− y(t)

)
.

Consequently, the inverse function Φ−1(ε(t), t) is given by

Φ−1(ε, t) =
g(t)eε + g(t)

eε + 1
.

For all ε∈R and t � 0, we have

∂Φ−1(ε, t)

∂ε
=
eε(g(t)− g(t))

(eε + 1)2
> 0

and ∣∣∣∣∣∂Φ−1(ε, t)

∂t

∣∣∣∣∣ =
∣∣∣∣∣ ġ(t)eε + ġ(t)

eε + 1

∣∣∣∣∣ � max

{
sup
t�0

|ġ(t)|, sup
t�0

|ġ(t)|
}

= γ. (16)

Let the functions g(t) and g(t) be specified as

g(t) =

⎧⎨⎩−3 cos(t) + 0.2, t < 2π,

cos(t) + 2.2, t � 2π,

g(t) =

⎧⎨⎩3 cos(t)− 0.2, t < 2π,

cos(t) + 1.8, t � 2π.

The control law (11) can be written as

u = −(LB)−1
[
K ln

(
y − g

g − y

)
+ LAx+ μsgn

(
ln

(
y − g

g − y

))
‖LG‖‖C‖|x|

]
.

In view of (16), we find γ = 3 and κ = 8.6. Inequality (12) was solved using YALMIP [17] with
SEDUMI. For c = 100 and α = 2, the result is τ1 = 3.10, τ2 = 4.14, and K = 6.54; for c = 0.1 and
α = 2, the result is τ1 = 45.47, τ2 = 0.04, and K = 35.36.
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Fig. 2. Transients in the closed loop system for c = 0.01 and c = 100 : (a) output y(t),
(b) control variable u(t), and (c) disturbance f(t).

The transients in y(t), u(t), and f(t) for x(0) = col{1, 1} are shown in Fig. 2. According to
Fig. 2a, the output y(t) never reaches the boundaries of the given set. Note also that the smaller the
parameter c is, the better the effect of exogenous disturbances will be suppressed. The fluctuations
of the control variable in Fig. 2b are explained by the disturbance f(t) present in the system.
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4.2. Example 2. Multidimensional System

We demonstrate control performance for an unstable double-input double-output plant with the
following parameters:

A =

⎡⎢⎣ 0 1 0
0 0 1
0.1 2 −3

⎤⎥⎦, B =

⎡⎢⎣1 2
1 1
1 3

⎤⎥⎦, G =

⎡⎢⎣0.1 0
0 0.1
0, 1 0.1

⎤⎥⎦,

D =

⎡⎢⎣11
1

⎤⎥⎦, L =

[
2 1 1
1 2 1

]
, C =

[
1 0 1
1 1 1

]
,

φ(z) = col{z1 + sin(z1), sin(z2)},
where f(t) is the same as in Example 1. Then f̄ = 1.6 and μ = 2.

Let Φ(y(t), t) = diag{Φ1(y1(t), t),Φ2(y2(t), t)}, where Φi, i = 1, 2, are the same as in Exam-

ple 1, i.e., Φ(yi(t), t) = ln

(
yi(t)−g

i
(t)

gi(t)−yi(t)

)
. Consequently, Φ−1(εi, t) =

gi(t)e
εi+g

i
(t)

eεi+1 . For ε /∈ Ω, we have

0 ≺ ∂Φ−1(ε,t)
∂ε � σI, where σ = 1

4 maxi
[
supt�0(gi(t)− g

i
(t))

]
, i = 1, 2.

Fig. 3. Transients in the closed loop system for c = 0.1, σ = 0.01, and σ = 0.542:
(a) y1(t) and (b) y2(t).
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Fig. 4. Control variables in the closed loop system for c = 0.1, σ = 0.01, and σ = 0.542:
(a) u1(t) and (b) u2(t).

Let the parameters of the constraint functions g(t) and g(t) be specified as

g1(t) = 3.52e−0.5t + 0.1,

g
1
(t) = 1.62e−0.5t − 0.1,

g2(t) = 1.62 cos(0.5t) + 1.52,

g
2
(t) = cos(0.5t) + 0.8.

In this case,

γ =
√
2max

i

{
sup
t�0

|ġi(t)|, sup
t�0

|ġ
i
(t)|

}
= 2.49, i = 1, 2

and

κ = 11.54, σ = 0.542.

For c = 0.1, we solve inequality (15) under some values of σ∈ (0, 0.542]:

τ1 = 527.72, τ2 = 0.3, and K = diag{108.42, 108.42} (for σ = 0.01) and

τ1 = 92.33, τ2 = 0.05, and K = diag{39.26, 39.26} (for σ = 0.542).

Figure 3 presents the transients of y1(t) and y2(t) for x(0) = col
{
5
3 ,

2
3 ,−1

}
whereas Fig. 4 the

control variables u1(t) and u2(t). According to Fig. 3, the outputs always belong to the given pipes.
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Fig. 5. Transients of y1(t) for x(0) = col{− 1
3 ,

2
3 , 1}.

Remark 5. In the above examples, the initial values of the outputs are supposed to belong to a
given set. However, if they are outside it, the control design method will fail: by the transforma-
tion (3), the outputs must be specified inside this set. This drawback can be eliminated by adding
a fast exponentially decaying function to the limit functions, so the new limits will cover the initial

conditions. Figure 5 shows the transients of y1(t) for x(0) = col
{
−1

3 ,
2
3 , 1

}
, i.e., y1(0) = 1 falls

beyond the initial set Y. The function g0(t) = −e−100t is added to the function g
1
(t) so that the

initial condition y1(0) is bounded from below by the new constraint function.

5. CONCLUSIONS

This paper has proposed a new method for stabilizing the output variables of nonlinear Lurie-
type systems in given sets at any time instant. The method is based on a special output transforma-
tion and the technique of LMIs. With this transformation, the original problem with a constraint
on the output variables is reduced to a problem without any constraints on the auxiliary variable.
The control law for the new perturbing closed-loop system is designed using the Lyapunov function
method in combination with the technique of LMIs. Simulation results in MATLAB/Simulink have
illustrated the effectiveness of the method and confirmed the theoretical conclusions.
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APPENDIX

Proof of Theorem 2. Substituting (11) into (8) yields the closed loop system

ε̇ =

(
∂Φ−1(ε, t)

∂ε

)−1 [
−Kε− μ sgn(ε)‖LG‖‖C‖|x| + LGφ+ ψ

]
. (A.1)
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We choose a Lyapunov function of the form V = 1
2ε

2. Its total time derivative along the solutions
of (A.1) is given by

V̇ = εε̇= ε

(
∂Φ−1(ε, t)

∂ε

)−1 [
−Kε−μ sgn(ε)‖LG‖‖C‖|x|+LGφ+ψ

]
. (A.2)

For V � c, we require the condition V̇ � −2αV , where α is any known positive number, i.e.,
V̇ < 0 ∀ε /∈ Ω. Due to LGφ � |LGφ| � μ‖LG‖‖C‖|x| and the constraint |ψ| � κ, the above condi-
tions can be written as

(−K + α)ε2 + εψ � 0 ∀ (ε, ψ) :
0.5ε2 � c, ψ2 � κ2.

(A.3)

Denoting z = col{ε, ψ}, we represent (A.3) in the matrix form

zT
[
−K + α 0.5

� 0

]
z � 0,

zT
[
−0.5 0
� 0

]
z � −c, zT

[
0 0
� 1

]
z � κ2.

(A.4)

By the S-procedure [13], inequalities (A.4) hold under conditions (12). Hence, system (A.1)
is input-to-state stable, and the variable ε(t) is bounded. Owing to the transformation (4), the
output y(t) is also bounded, and the state vector x(t) of system (1) possesses the same property
accordingly. Therefore, the control variable u(t) in (11) is bounded as well. Due to Theorem 1, the
target condition (3) holds.

The proof of Theorem 2 is complete.

Proof of Proposition 1. Obviously, the matrix MN is symmetric. Let λi, xi, i = 1, . . . , 2n, be
the eigenvalues and eigenvectors of the matrix MN, respectively. Then

xTi NMNxi = λix
T
i Nxi.

Hence, the values λi can be expressed as

λi =
xTi NMNxi
xTi Nxi

.

Since M � 0 and N = NT ≺ 0, we obtain NMN � 0, i.e., xTNMNx > 0 ∀x �= 0. In view of
xTNx < 0 ∀x �= 0, it follows that λi < 0, i = 1, . . . , 2n. All eigenvalues of the symmetric matrix
MN are negative, so the matrix MN is negative definite.

The proof of Proposition 1 is complete.

Proof of Theorem 3. We choose a Lyapunov function of the form V = 1
2ε

Tε. Its total time
derivative along the solutions of (14) is given by

V̇ = εTε̇ = εT
(
∂Φ−1(ε, t)

∂ε

)−1 [
−Kε

− σ̄μ Sign(ε)

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x| + LGφ+ ψ

]
.

(A.5)
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Formula (A.5) can be written as

V̇ = V̇1 + V̇2, (A.6)

where

V̇1 = −εT
(
∂Φ−1(ε, t)

∂ε

)−1

Kε+ εT
(
∂Φ−1(ε, t)

∂ε

)−1

ψ,

V̇2 = −εT
(
∂Φ−1(ε, t)

∂ε

)−1

Sign(ε)σ̄μ

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x|

+ εT
(
∂Φ−1(ε, t)

∂ε

)−1

LGφ.

Considering
(
∂Φ−1(ε,t)

∂ε

)
� σ̄I, we estimate V̇2 as

V̇2 � −
(

υ∑
i=1

|εi|
)
σ̄−1σ̄μ

∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x|

+ μ|ε|
∥∥∥∥
(
∂Φ−1(ε, t)

∂ε

)−1 ∥∥∥∥‖LG‖‖C‖|x| � 0.

Based on this inequality, the condition V̇ � 0 is equivalent to V̇1 � 0. In the case under study,(
∂Φ−1(ε,t)

∂ε

)−1
is a matrix and cannot be neglected when analyzing the sign definiteness of V̇ , in

contrast to the previous section. For V � c, we require the condition V̇ � −2αV , where α is any
known positive number. Due to the constraints |ψ| � κ, the above conditions can be written as

−εT
⎡⎣(∂Φ−1(ε, t)

∂ε

)−1

K + αI

⎤⎦ ε+ εT
(
∂Φ−1(ε, t)

∂ε

)−1

ψ � 0

∀ (ε, ψ) : 0.5εTε � c, ψTψ � κ2.

(A.7)

Denoting z = col{ε, ψ}, z ∈R
2m, we represent (A.7) in the matrix form

zT

⎡⎢⎣ −
(
∂Φ−1(ε, t)

∂ε

)−1

K − αI 0.5

(
∂Φ−1(ε, t)

∂ε

)−1

� 0

⎤⎥⎦ z � 0,

zT
[
−0.5I 0
� 0

]
z � −c, zT

[
0 0
� I

]
z � κ2.

(A.8)

By the S-procedure, inequalities (A.8) hold under the conditions⎡⎢⎣ −
(
∂Φ−1(ε, t)

∂ε

)−1

K − αI + 0.5τ1I 0.5

(
∂Φ−1(ε, t)

∂ε

)−1

� −τ2I

⎤⎥⎦ ≺ 0,

−cτ1 + κ2τ2 � 0.

(A.9)
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The first inequality in (A.9) is equivalent to⎡⎢⎢⎢⎢⎣
(
∂Φ−1(ε, t)

∂ε

)−1

0

�

(
∂Φ−1(ε, t)

∂ε

)−1

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎣
−K + (0.5τ1 − α)

∂Φ−1(ε, t)

∂ε
0.5I

� −τ2∂Φ
−1(ε, t)

∂ε

⎤⎥⎥⎥⎦ ≺ 0.

(A.10)

Since
(
∂Φ−1(ε,t)

∂ε

)−1 � 0, by Proposition 1, the latter inequality holds if, for any β > 0,⎡⎢⎢⎢⎣
−K + (0.5τ1 − α)

∂Φ−1(ε, t)

∂ε
0.5I

� −τ2∂Φ
−1(ε, t)

∂ε

⎤⎥⎥⎥⎦ � −βI ≺ 0. (A.11)

Due to condition (A.7), it is required to ensure V̇ < 0 for all ε from the set {ε∈R
m : |ε| � √

2c,
c > 0}. In addition, for all ε from this set, we have an interval uncertainty in (A.11) with

0 ≺ ∂Φ−1(ε,t)
∂ε � σI. Conditions (A.7) will be valid if the LMIs (15) are feasible for any σ ∈ (0, σ].

Moreover, obviously, there always exist a matrix K and τ1, τ2 > 0 such that (15) are feasible.
Indeed, using Schur’s complement lemma [13], we write (15) as

−τ2σ + β < 0,

−K + [(0.5τ1 − α)σ + β]I +
1

τ2σ − β
I � 0,

−cτ1 + κ2τ2 � 0,

τ1 > 0, τ2 > 0,

α > 0, β > 0, 0 < σ � σ.

(A.12)

For a given number c > 0 and fixed numbers σ, α, and β, inequalities (A.12) always have finite
solutions (K, τ1, τ2). Thus, according to Theorem 1, the control law (13) with the gain matrix K
satisfying (15) ensures the target condition (3).

The proof of Theorem 3 is complete.
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Abstract—The transient mode of a two-phase queuing system with a Poisson input flow, ex-
ponential distribution of service time in each phase, and a limitation on the total buffer size of
the two phases is considered. Nonstationary probabilities of system states are found using the
Laplace transform. A numerical calculation and analysis of the system performance charac-
teristics in transient mode with parameters corresponding to new-generation optical networks
were carried out.
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1. INTRODUCTION

Multiphase queuing systems (QSs), or so-called tandem networks, are widely used to describe
the operation of telecommunication systems, in which the process of processing requests consists of
several stages [1]. This class of systems includes, for example, multi-stage switching systems or a
network of linear topology base stations. Moreover, the stationary operation mode of such systems
is well studied both for the case of Poisson and correlated input flow. Let us note only some recent
works on this topic [1–7].

In recent years, in addition to the study of the stationary mode of QSs, the study of the transient
mode of their operation has continued. For example, an important problem in designing optical
telecommunication networks with high information transfer rates is to study changes in the system
performance characteristics over time and estimate the transition time in stationary mode after the
system reboot process or a failure of service devices [8]. A similar situation arises when studying
new-generation 5G and 6G networks [9]. Due to the relevance of this problem, in recent years
the number of works devoted to the study of the transient operating mode of QSs and their non-
stationary Markov models has increased [10–19]. One of the first works where such a problem for
a two-phase QS with a Poisson input flow, an infinite buffer in the first phase, and a zero buffer in
the second phase was considered is the paper of 1967 [20]. In further works, more complex systems
are studied, such as systems with phase-type service time [11, 12] and various types of tandem
networks [14, 15]. It should be noted that in most of these works, the authors do not provide
final expressions that allow analyzing the performance characteristics of the QS in the transient
mode, but use ready-made numerical methods of existing software packages. An analysis of the
stability of non-stationary Markov processes with continuous time, describing the functioning of
the main classes of QSs with non-stationary input flows, including those varying according to a
sinusoidal law, was carried out in [10, 13, 18, 19]. In [21–23], the main performance characteristics
of single-line and multi-line QSs with Poisson and correlated flows in transient mode are analyzed.
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This work studies the non-stationary performance characteristics of a two-phase QS with a
limitation on the total buffer size of the two phases. One example of a real system, the model of
which is represented by this QS, is a car service station with two stages of service: diagnostics and
repair. Cars queued for service at each stage are placed in a common parking lot with a certain
number of parking spaces, which determines the limit on the total number of cars simultaneously
located at the service station. The stationary mode of this QS was studied in [24]. There is no
study of the non-stationary mode of such a system in the world literature, which determines the
novelty of this article.

The structure of the article is as follows. Section 3 presents differential equations that describe
the functioning of a two-phase QS, for the convenience of writing which new functions are intro-
duced. Section 4 presents an expression for finding the probabilities of states of a two-phase QS,
containing an auxiliary matrix, the elements of which are found using the Laplace transform appa-
ratus. Section 5 provides expressions for finding the main performance indicators of a two-phase
QS in transient mode. The numerical results of the study are presented in Section 6.

2. STATEMENT OF THE PROBLEM

A two-phase QS with one single-line service device on each phase is considered. The input flow
is Poisson with intensity λ, and the time for servicing requests by devices of the first and second
phases has an exponential distribution with intensities μ1 and μ2, respectively.

After completing the servicing of a request in the first phase, each request moves to the second
phase. The number of requests in the first and second phases can take the values n1 = 0, N ,
n2 = 0, N , respectively, where N is the maximum number of requests in the system. In this case, a
limitation is imposed on the total buffer size of the two phases of the system, such that n1+n2 � N
at any time. A new request can enter the system only under the condition n1 + n2 < N (Fig. 1).

Fig. 1. System state graph.
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The purpose of this work is to analyze the performance characteristics of the system described
above in transient mode, such as transition time, loss probability, throughput, and the average
number of requests in the system.

3. CONSTRUCTION OF DIFFERENTIAL EQUATIONS DESCRIBING THE FUNCTIONING
OF A TWO-PHASE QS WITH A LIMITATION ON THE TOTAL BUFFER SIZE

TheMarkov process describing the operation of the considered QS consists of R= 1
2

(
N2+3N+2

)
states of the system S (n1, n2, t), when n1 requests are served in the first phase, and n2 requests
are served in the second phase at time t, where n1 + n2 � N (Fig. 1). The system of differential
equations for such a QS has the form:

dP (0, 0, t)

dt
= −λP (0, 0, t) + μ2P (0, 1, t), (n1, n2 = 0);

dP (0, n2, t)

dt
= −(λ+ μ2)P (0, n2, t) + μ2P (0, n2 + 1, t) + μ1P (0, n2 − 1, t),

(n1 = 0, n2 = 1, N − 1);

dP (0, N, t)

dt
= −μ2P (0, N, t) + μ1P (1, N − 1, t), (n1 = 0, n2 = N);

dP (n1, 0, t)

dt
= − (λ+ μ2)P (n1, 0, t) + μ2P (n1, 1, t) + λP (n1 − 1, 0, t) ,

(n1 = 1, N − 1, n2 = 0);

dP (N, 0, t)

dt
= −μ1P (N, 0, t) + λP (N − 1, 0, t), (n1 = N,n2 = 0);

dP (n1, n2, t)

dt
= − (λ+ μ1 + μ2)P (n1, n2, t) + μ2P (n1, n2 + 1, t)

+μ1P (n1 + 1, n2 − 1, t) + λP (n1 − 1, n2, t), (n1, n2 > 0, n1 + n2 < N);

dP (n1, n2, t)

dt
= − (μ1 + μ2)P (n1, n2, t) + μ1P (n1 + 1, n2 − 1, t)

+λP (n1 − 1, n2, t), (n1, n2 > 0, n1 + n2 = N).

(1)

It should be noted that the well-known approach to constructing a system of differential equa-
tions, which involves the use of various forms of writing the equations for different permissible
values of n1 and n2, is very inconvenient for calculating and analyzing the characteristics of the
QS in the transient mode. For the convenience of further solution and analysis of system (1), we
introduce the functions

υ1 (x,M) =
|x−M + 0.5| + x−M + 0.5

2 |x−M + 0.5| , (2)

υ2 (x,K) =
|K − x− 0.5|+K − x− 0.5

2 |K − x− 0.5| , (3)

where M = 0, N , K = 0, N . Then system (1) can be written in the form

dP (n1, n2, t)

dt
= − [λυ2 (n1 + n2, N − 1) + μ1υ1 (n1, 1) + μ2υ1 (n2, 1)]P (n1, n2, t)

+ μ1υ1 (n2, 1) υ2 (n1 + n2, N)P (n1 + 1, n2 − 1, t) + μ2υ2 (n1 + n2, N − 1)

× P (n1, n2 + 1, t) + λυ1 (n1, 1) υ2 (n1 + n2, N)P (n1 − 1, n2, t) , (4)
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where n1 = 0, N , n2 = 0, N , n1 + n2 � N . The described system can be represented in matrix
form:

d	P (t)

dt
= A	P (t) , (5)

where A is the matrix of coefficients of the system of differential Eqs. (4), 	P (t) = {P (n1, n2, t)}T
is the column vector of system state probabilities. To construct the matrix A, we additionally
introduce the function

ϑ (nk, nl) = (N + 1)nk + nl − nk (nk − 1)

2
+ 1, (6)

transforming the number of requests nk, nl in the first and second buffer, respectively, into the
number of a column or row of this matrix. A brief description of functions (2), (3) and (6) is given
in the Appendix. Then the elements of the matrix of system (5), located on the main diagonal, are
written in the form

Aϑ(n1,n2),ϑ(n1,n2) = − [λυ2 (n1 + n2, N) + μ1υ1 (n1, 1) + μ2υ1 (n2, 1)] . (7)

The remaining non-zero elements are determined by the relations

Aϑ(n1,n2),ϑ(n3,n4) = μ1υ1 (n2, 1) υ2 (n1 + n2, N + 1) ;

Aϑ(n1,n2),ϑ(n1,n5) = μ2υ2 (n1 + n2, N) ;

Aϑ(n1,n2),ϑ(n6,n2) = λυ1 (n2, 1) υ2 (n1 + n2, N + 1) . (8)

Here n1 = 0, N , n2 = 0, N , n3 = n1 + 1, n4 = n2 − 1, n5 = n2 + 1, n6 = n1 − 1. The remaining
elements Ai,j of the matrix A in (5) are equal to zero. The new function (6) is also necessary for
the ordered construction of a column vector of system state probabilities at time t in equation (5).
Indeed, in terms of nk and nl it has the form

	P (t) = {p (0, 0, t) , . . . , p (0, N, t) , p (1, 0, t) , . . . ,
p (1, N − 1, t) , . . . . . . , p (N − 1, 0, t) , p (N − 1, 1, t) , p(N, 0, t)}T , (9)

where T is the transposition operator. However, to correctly solve (5), it is necessary to use not a
two-dimensional array of numbers nk and nl when indicating the state of the system, but a sequence
number from 1 to R = 1

2

(
N2 + 3N + 2

)
. To do this, using function (6), we finally obtain

	P (t) = {P (1, t) , P (2, t) , P (3, t) , P (4, t) , . . . , P (ϑ (nk, nl) , t) , . . . , P (ϑ (N, 0) , t)}T , (10)

where P (ϑ (nk, nl) , t) corresponds to p (nk, nl, t) in (9).

Thus, using the functions ϑ (nk, nl), υ1 (x,M), υ2 (x,K) makes it possible to construct a matrix
of coefficients in (5) in general form for any number of requests N .

4. STATE PROBABILITIES OF A TWO-PHASE QS IN A TRANSIENT MODE

To connect the system state probabilities at time t with the probabilities of system states at
some initial time t0, we introduce the matrix L, the order of which is one greater than the order of
the fundamental matrix of the system of equations (4) and such that

	P (t) = L (t− t0) 	P (t0) , (11)

where 	P (t) = {P (ϑ (n1, n2) , t)}T is the vector column of system state probabilities at time t.
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Let us apply the direct Laplace transform to the system of equations (5):

∞∫
0

e−std
	P (t)

dt
dt =

∞∫
0

e−stA	P (t)dt. (12)

Then the elements of the matrix L (t− t0) are determined by the following theorem.

Theorem 1. The elements of the matrix L (t− t0) of a two-phase QS with a limitation on the
total buffer size of two phases N , described by the system of equations (4), have the form

Ll,j (t− t0) =
R∑

k=1

(−1)l+j Δj,l(sk)
dΔ(s)
ds

∣∣∣
s=sk

exp (sk (t− t0)), (13)

where Δ(s) is the determinant of the matrix B = A − sI, A is the coefficient matrix in (5), I is
the unit diagonal matrix, s = α+ iβ is the independent variable in the complex domain, i =

√−1,
Δli(s) is the determinant of the minor element Bli of the matrix B, sk is the kth root of the
polynomial Δ(s) in the case when all its roots are simple, R = (N2 + 3N + 2)/2 is the number of
roots of the polynomial Δ(s), equal to the number of differential equations in system (4).

Proof. Considering that
∫∞
0 e−st

(
d	P (t)
dt

)
dt = s 	P (s)− 	P (0), where 	P (0) is the column vector

of initial conditions, and also that in this case A is a constant matrix, let us carry out the trans-
formations

s 	P (s)− 	P (0) = A	P (s) ⇒ A	P (s)− s 	P (s) = −	P (0) ⇒ (A− sI) 	P (s) = −	P (0) . (14)

As a result, we obtain a system of linear inhomogeneous algebraic equations

B	P (s) = −	P (0) (15)

with constant coefficients. Taking into account (4), system (15) can be written in the form

− [λυ2 (n1 + n2, N − 1) + μ1υ1 (n1, 1) + μ2υ1 (n2, 1) + s]P (n1, n2, s)

+ μ1υ1 (n2, 1) υ2 (n1 + n2, N)P (n1 + 1, n2 − 1, s) + μ2υ2 (n1 + n2, N − 1)P (n1, n2 + 1, s)

+ λυ1 (n1, 1) υ2 (n1 + n2, N)P (n1 − 1, n2, s) = P (n1, n2, 0) , (16)

where n1 = 0, N , n2 = 0, N , n1 + n2 � N . Then, in accordance with (7) and (8), the non-zero
elements of the matrix B are written as

Bϑ(n1,n2),ϑ(n1,n2)(s) = − [λυ2 (n1 + n2, N) + μ1υ1 (n1, 1) + μ2υ1 (n2, 1) + s] ;

Bϑ(n1,n2),ϑ(n3,n4)(s) = μ1υ1 (n2, 1) υ2 (n1 + n2, N + 1) ;

Bϑ(n1,n2),ϑ(n1,n5) = μ2υ2 (n1 + n2, N) ;

Bϑ(n1,n2),ϑ(n6,n2)(s) = λυ1 (n2, 1) υ2 (n1 + n2, N + 1) . (17)

To find images of elements of the matrix L it is necessary to use linearly independent initial
conditions. These conditions are:

P (N1, N2, 0) = 1(N1 = 0, N,N2 = 0, N,N1+N2 � N);P (n1, n2, 0) = 0(n1 �= N1, n2 �= N2). (18)

Solutions to system (16) for P (n1, n2, 0) = 1 (n1 = n2 = 0), P (n1, n2, 0) = 0 (n1 = 1, N , n2 = 1, N ,
n1 + n2 � N) give the first column of images of the elements of the transformation matrix, the
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solution to system (15) for P (0, 1, 0) = 1 and the rest P (n1, n2, 0) = 0 give the second column of
images of the elements of the transformation matrix. Similarly, all columns of images of elements of
the transformation matrix L (s− s0) are found. To obtain an image of the matrix L, it is advisable
to use the Cramer method. In accordance with this method, the elements of the matrix, which are
linearly independent solutions (16), are fractions of the form

Ll,j (s− s0) = (−1)l+j Δj,l(s)

Δ(s)
, (19)

where Δ(s) is the determinant of the matrix B, Δjl(s) is the minor of the element Bjl of the
matrix B. Now consider the inverse Laplace transform. First of all, we note that the image of the
element of the probability transformation matrix (19) is a proper fraction

Ll,j (s− s0) = (−1)l+j Δj,l(s)

Δ(s)
= (−1)l+j ans

n + an−1s
n−1 + . . . + a2s

2 + a1s+ a0
bmsm + bm−1sm−1 + . . .+ b2s2 + b1s+ b0

. (20)

Moreover, n < m, since the numerator is the determinant of the algebraic complement of the matrix
element whose determinant is in the denominator. Then the fraction in (20) can be factorized

L (s) =
Δj,l(s)

Δ(s)
= A1

1

s− s1
+A2

1

s− s2
+ . . .+Am

1

s− sm
=

m∑
k=1

Ak
1

s− sk
. (21)

To find the coefficients Ak, multiply both sides of (21) by (s− s1) and get

L (s) =
Δj,l(s)

Δ(s)
(s− s1) = A1 + (s− s1)

m∑
k=2

Ak
1

s− sk
. (22)

The right-hand side of (22) at s→ s1 is equal to A1, since s− s1 → 0. The left side represents the
uncertainty 0/0, since the factor s− s1 is present in both the numerator and the denominator. Let
us reveal this uncertainty using L’Hopital’s rule and obtain the left-hand side in the form

lim
x→x1

Δj,l(s)

Δ(s)
(s− s1) = lim

x→x1

Δj,l(s) + (s− s1)
dΔj,l(s)

ds
dΔ(s)
ds

=
Δj,l(s1)[

dΔ(s)
ds

]
|s=s1

. (23)

Taking into account (22) and (23), we obtain

A1 =
Δj,l(s1)[

dΔ(s)
ds

]
|s=s1

. (24)

Similarly, we find the kth coefficient in (22) as

Ak =
Δj,l(sk)[

dΔ(s)
ds

]
|s=sk

. (25)

Thus, expression (21) takes the form

L (s) =
m∑
k=1

Δj,l(sk)[
dΔ(s)
ds

]
|s=sk

· 1

s− sk
. (26)
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Applying the inverse Laplace transform to (26) and carrying out mathematical transformations

L (t) =
1

2πi

σ+i∞∫
σ−i∞

m∑
k=1

Δj,l(sk)[
dΔ(s)
ds

]
|s=sk

exp(st)ds

s− sk
=

1

2πi

m∑
k=1

Δj,l(sk)[
dΔ(s)
ds

]
|s=sk

σ+i∞∫
σ−i∞

exp(st)ds

s− sk

=
m∑
k=2

Δj,l(sk)[
dΔ(s)
ds

]
|s=sk

exp(skt), (27)

we obtain an expression for the original from image (26) in the form (12). The theorem has been
proven.

By substituting (27) and expression (11), we can find the probabilities of states of a two-phase
QS in the transition mode under given initial conditions. These expressions make it possible to
calculate and analyze the performance indicators of the system under consideration at an arbitrary
moment of time t in both transient and stationary modes: the time before the system enters
stationary mode, the probability of losses, throughput, and the number of requests served in each
phase.

5. PERFORMANCE INDICATORS OF A TWO-PHASE QS IN TRANSIENT MODE

5.1. Transition Time

The transition time is the time during which the QS goes into stationary mode. In accordance
with [22], the time of the transition mode is determined by the smallest absolute value of the real
part of the pole of the state probability images:

τtr =
k

αmin
. (28)

Here ∀αj ∈ Γ: (Γ = αj , αj � αmin =⇒ αj = αmin) and k > 0, k ∈ R. The value of k is selected
based on the formulation of a specific problem. It was shown in [22] that the transition mode can
be considered completed when k = (3÷ 5).

5.2. Probability of Losses

Since the maximum number of requests in the system is n1 + n2 = N , all requests in the states
(i,N − i), i = 0, N will be lost. Considering that the presence of requests in the specified states
are independent events, the sum of the probabilities of these states at time t

Ploss (t) =
N∑
i=0

P (i,N − i, t) =
N∑
i=0

P (ϑ (i,N − i) , t) (29)

determines the probability of loss of requests.

5.3. Throughput

Since expression (29) determines the resulting probability of requests being lost in the system,
it is obvious that requests entering the system in any other states will be serviced. Then the
throughput at time t in the transition mode is equal to

A (t) = [1− Ploss (t)]λ =

[
1−

N∑
i=0

P (i,N − i, t)

]
λ =

[
1−

N∑
i=0

P (ϑ (i,N − i) , t)

]
λ. (30)
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Since the throughput actually represents the intensity of the system servicing the requests received
by it, then in the time dt the system services A (t) dt requests. Consequently, during the transition
mode the number of requests served is equal to

Zservice tr =

t0+τtr∫
t0

λ

[
1−

N∑
i=0

P (ϑ (i,N − i) , t)

]
dt, (31)

and the number of lost requests is

Zloss tr =

t0+τtr∫
t0

λ
N∑
i=0

P (ϑ (i,N − i) , t) dt. (32)

Thus, the sum of (31) and (32) gives the number of requests received during the transition
mode λτtr, which confirms the correctness of the obtained relationships.

5.4. Number of Requests Served at Each Phase in Transition Mode

Let P (n1, n2, t) be the probability of finding n1 requests in the first phase and n2 requests in
the second phase at time t, then the number of requests in the first phase, provided that the system
is in the state (n1, n2), is equal to n1P (n1, n2, t). Summing n1P (n1, n2, t) over all possible states,
we obtain the average number of requests in the first phase at time t as

Zphase1 (t) =
N∑

n1=0

N∑
n2=0

[n1P (n1, n2, t)] =
N∑

n1=0

N∑
n2=0

[n1P (ϑ (n1, n2) , t)] , (33)

where n1 +n2 � N . Similarly, the average number of requests in the second phase at time t in the
transition mode is equal to

Zphase2 (t) =
N∑

n1=0

N∑
n2=0

[n2P (n1, n2, t)] =
N∑

n1=0

N∑
n2=0

[n2P (ϑ (n1, n2) , t)] , (34)

where n1 + n2 � N . Then the average number of requests in the system in the transition mode
will be

Z (t) =
N∑

n1=0

N∑
n2=0

[(n1 + n2)P (n1, n2, t)] =
N∑

n1=0

N∑
n2=0

[(n1 + n2)P (ϑ (n1, n2) , t)] , (35)

where n1 + n2 � N .

6. NUMERICAL STUDY OF A TWO-PHASE QS TRANSIENT MODE

Let us consider the transient mode of a two-phase QS operation, which adequately describes the
operation of a switch in an all-optical network. In the presented numerical experiment, the values
λ = 8 · 106 packets/s, μ1 = 15 · 106 packets/s, μ2 = 10 · 106 packets/s (λ < μ2 < μ1) correspond to
the actual characteristics of modern optical networks [25]. Here n1 is the number of packets in the
first servicing phase, n2 is the number of packets in the second servicing phase, N = n1 + n2 = 4
is the maximum number of packets in the system. The small buffer size in this numerical example
is determined by the technical limitations of modern optical devices.

To analyze the performance characteristics of the considered QS, first of all, the matrix A is
constructed in accordance with (7) and (8), and then the matrix B is constructed in accordance
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Fig. 2. Dependence of system state probabilities on time in transition mode.

with (17). Next, the elements of the matrix L(t) are written in accordance with (13). To do
this, we find the poles of functions that describe the elements of the matrix L(s− s0) in terms
of the Laplace transform: s0 = 0, s1 = −1.2 · 107, s2 = −2.8 · 107, s3,4 = −3.9 · 107 ± i1.9 · 107,
s5,6 = −3.2 · 107 ± i9.9 · 107, s7,8 = −2.8 · 107 ± i1.2 · 107, s9,10 = −5.1 · 107 ± i1.4 · 107, s11,12 =
−1.5 · 107 ± i6.0 · 107, s13,14 = −2.2 · 107 ± i4.0 · 107. One of these poles is zero, all others have
a negative real part. This indicates the presence of a stationary mode in the system. Moreover,
12 of the 15 poles are pairwise complex conjugate, which indicates the oscillatory nature of the
probabilities of states in the transition mode. Indeed, the exponent of a complex number in (12) is
a combination of trigonometric functions in accordance with Euler’s formula.

Studying the poles of state probability images also allows one to calculate the time constant us-
ing formula (28) τ = 1/ |αmin| = 1/5 138 202.473908113 = 1.9462 · 10−7 s and transition time τtr =
5τ = 9, 731 · 10−7 s.

The dependence of state probabilities on time for the case under consideration is presented in
Fig. 2. The figure shows: Pidle(t) is the probability that the system is free; Pphase1(t), Pphase2(t) are
dependencies of the probabilities of the states of finding requests only in the first and only in the
second phases of service, respectively; Ploss(t) is the probability of losses calculated in accordance
with (29).

From Fig. 2 it can be seen that the time of the transition mode, calculated from (28), corre-
sponds to the time of reaching the stationary mode according to the state probability graphs. The
oscillatory nature of the transition mode is clearly visible from the dependence of the probability
of finding requests in the first phase of service Pphase1(t) (Fig. 3). Note that the probabilities of
states in a stationary mode, obtained by the authors using the proposed approach, are equal to
the stationary probabilities calculated using a well-known technique [24]. Indeed, from Fig. 2, it
is clear that πidle = 0.167, πloss = 0.172, πphase1 = 0.24, πphase2 = 0.49, which corresponds to the
stationary probabilities calculated using formulas (6) and (7) presented in [24].

Next, the performance indicators of the considered QS are calculated in accordance with Sec-
tion 5 of this work.
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Fig. 3. Dependence of the average number of requests in each phase on time.

Fig. 4. Dependence of system throughput on time in transition mode.

Figure 4 shows the dependence of the system throughput on time in the transient mode, calcu-
lated in accordance with (30). The system throughput at the initial time is equal to 8·106 packets/s
and decreases to a stationary value of 6.62 · 106 packets/s. Studying changes in the throughput of
an all-optical switch in transient mode makes it possible to obtain more accurate estimates of its
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Fig. 5. Dependence of system state probabilities on time in transition mode.

performance, taking into account possible switch reboots when changing information transmission
routes in all-optical networks.

Figure 5 shows the time dependence of the number of packets in the first and second phases, as
well as the total number of packets in the system in the transient mode, calculated in accordance
with (33)–(35). It can be seen that until the moment t = 0.28 · 10−7 s the number of packets in
the first phase exceeds the number of packets in the second phase. At the same time, in stationary
mode, the average number of packets in the first phase is less than in the second phase of service,
which is obvious, since μ1 > μ2. Considering that the number of requests in the first and second
phases of the QS under study corresponds to the number of packets processed in the first and
second stages of the all-optical switch [8], the results obtained make it possible to estimate the
degree of filling of the switch buffers during the transition mode.

As the buffer size increases, the size of the matrices in (12) increases, which requires additional
computational resources. Figure 4 shows the calculation of a two-phase system with a buffer volume
of N = 15: the probability of losses Ploss(t) and the probability that the system is empty, Pidle(t).
The graph shows that with an increase in the buffer size, the probability of losses in the stationary
mode decreased — πloss = 0.1, and the time of the transition mode increased — τtr = 4 · 10−7 s.

7. CONCLUSION

In this paper, the transient mode of a two-phase QS with a Poisson input flow, an exponential
law of distribution of service time in each phase and a limitation on the total buffer size of two
phases is considered and analyzed. Previously, the non-stationary mode of such a system was not
considered in the world literature. However, it is of interest for various applications, in particular in
the design of all-optical network switches. It should be noted that the study of the non-stationary
mode of an all-optical switch allows a more accurate assessment of its performance metrics, which
differ significantly from stationary values due to the high information transfer rate of all-optical
networks [8].
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A system of differential equations describing the functioning of this QS is presented, the solu-
tion of which is written using the Laplace transform. The characteristics of system performance
in transient mode, such as the probability of losses, throughput, the average number of serviced
requests, and the transition time, were obtained. Obviously, as the buffer size increases, obtaining
numerical solutions to the characteristics of a two-phase QS with a limited buffer is a computa-
tionally intensive task and requires the use of high-performance computing systems or the use of
approaches based on simulation modeling and machine learning [26].
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APPENDIX

Formally, eliminating certain terms in equations (4) and preserving the remaining ones can be
done using the Heaviside function. However, this function is essentially logical, not analytical, and,
therefore, does not allow one to write down an expression for the probabilities of system states in
a general form. In particular, when using it in program code, it is necessary to organize additional
loops. Therefore, to enable a compact analytical representation of the system of equations (4), the
analytical function was introduced

σ1 (x, x0) =
|x− x0|+ x− x0

2 |x− x0| . (A.1)

Thus, the function limiting from below the permissible states of the system has the form

υ1 (x,M) =
|x−M + 0.5| + x−M + 0.5

2 |x−M + 0.5| . (A.2)

For example, for M = 0 the function υ1 (x,M) has the form shown in Fig. 6.

A shift of 0.5 along the time axis was chosen due to the fact that otherwise, in the state x =M
of the system, this function would be indefinite, and its derivative would tend to infinity at this
point. Similarly with (A.1), we introduce the function

σ2 (x, x0) =
|x0 − x|+ x0 − x

2 |x0 − x| . (A.3)

Thus, the function that limits from above the permissible states of the system can be written in
the form

υ2 (x,K) =
|K − x− 0.5|+K − x− 0.5

2 |K − x− 0.5| , (A.4)

where K = 0, N is the state of the system. For K = 4, the function υ2 (x,M) has the form shown
in Fig. 7.

Fig. 6. Function υ1 (x, 0).
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Fig. 7. Function υ2 (x, 4).

Fig. 8. Function υ (x, 0, 4).

Obviously, the function limiting the permissible range of values from the smallest M to the
largest K takes the form

υ (x,M,N) = υ1 (x,M) υ2 (x,N)

=
(|x−M + 0.5| + x−M + 0.5) (|K − x− 0.5| +K − x− 0.5)

4 |x−M + 0.5| |K − x− 0.5| . (A.5)

For example, with M = 0 and K = 4 it has the form shown in Fig. 8.

In relation to the problem being solved, x can take the values n1, n2, n1 + n2, etc. The advantage
of functions (A.2), (A.4) and (A.5) is the absence of conditions. However, it should be noted that
such conditions still exist when the module is expanded. However, despite the fact that these
functions do not speed up the calculation process, they allow for analytical study of the resulting
expressions and simplify the program code.

To find the function ϑ (nk, nl) (see (6)), which transforms a pair of numbers nk, nl, characterizing
the state of the system, into the column number of the matrix A, let us analyze the following
pattern for N = 4: for nk = 0 the values of nl change from 0 to N , and the values of ϑ (nk, nl)
change from 1 up to N + 1; for nk = 1 the values of nl change from 0 to N − 1, and the values of
ϑ (nk, nl) change from N + 2 to 2N + 1; for nk = 2 the values of nl change from 0 to N − 2, and
the values of ϑ (nk, nl) change from 2N + 2 to 3N ; for nk = 3 the values of nl change from 0 to
N − 3, and the values of ϑ (nk, nl) change from 3N + 1 to 4N − 2; for nk = 4 we have nl = 0 and
ϑ (nk, nl) = 4N − 1. Therefore, the expression for ϑ (nk, nl) must contain the term nk (N + 1), as
well as the term nl. Thus, for nk = 0:

ϑ (0, nl) = (N + 1)nk + nl + 1 = (N + 1)nk + nl + 0 · (−0.5) + 1, (A.6)

for nk = 1:

ϑ (1, nl) = (N + 1)nk + nl + 1 = (N + 1)nk + nl − 1 · 0 + 1, (A.7)
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for nk = 2:

ϑ (2, nl) = (N + 1)nk + nl + 0 = (N + 1)nk + nl − 2 · 0.5 + 1, (A.8)

for nk = 3:

ϑ (3, nl) = (N + 1)nk + nl − 2 = (N + 1)nk + nl − 3 · 1 + 1, (A.9)

for nk = 4:

ϑ (4, nl) = (N + 1)nk + nl − 5 = (N + 1)nk + nl − 4 · 1.5 + 1, (A.10)

for nk = m:

ϑ (m,nl) = (N + 1)m+ nl − (m+ 1) = (N + 1)m+ nl −m
m− 1

2
+ 1. (A.11)

Thus, expressions (A.6)–(A.11) connect a pair of numbers to the corresponding ordinal number
of the element in the row (column) of the coefficient matrix. It is easy to check that relation (6) is
valid for any N .
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Abstract—The problem of finding the optimal sequence of performing a set of tasks in a time-
limited test is considered. That is, a task group is allocated for mandatory initial execution in
the test, the remaining tasks are performed during the remaining time until the end of the test.
For each correctly completed task of the test, the subject is awarded a certain number of points.
The proposed criterion is the probability that the total number of points scored for the test
exceeds a certain level, which is a fixed parameter, while simultaneously fulfilling the time limit
of the test. Random parameters are the user’s response time to each test task. The correctness
of the user’s answer to the task is modeled by a random variable with a Bernoulli distribution.
The resulting stochastic bilinear programming problem boils down to a deterministic integer
problem of mathematical programming.

Keywords : time-constrained test, maximum likelihood estimation, integer mathematical pro-
gramming
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1. INTRODUCTION

In the paradigm of computerized adaptive testing [1–6] the problem of constructing an optimal
test passing strategy is related to the formation of an individual learning trajectory. This problem
seems to be relevant in various fields of the educational process: preparation for passing the Unified
State Exam (USE) by applicants, passing regular tests in the learning management system (LMS),
checking the residual knowledge of students, etc. As a rule, such forms of testing are limited in time,
and the structure of the test is known in advance with an accuracy of the types of tasks, or sections
of the course, to test the knowledge of which these tasks are aimed. At the same time, there are
considerable statistics of the performance of such tasks by the subjects during the training both by
the type of tasks and by the individual user. Often, for example, in the context of using LMS in the
educational process, the collection and storage of this information are automated, as is done in the
CLASS.NET LMS of the Moscow Aviation Institute [7, 8]. This allows us to reasonably use in the
problem under consideration mathematical models of random parameters taken into account, for
example, the time spent by the subject on solving a task of a certain type. Models of the response
time of the user to the test task are widely represented in the literature. Van der Linden proposed
a lognormal time model [1], and in [9, 10] gamma distribution and discrete distribution were used
as models. The frequency of the correct solution of the problems of a certain type by the subject,
obtained on the basis of data on the work of the subject in the learning process, can serve as a
good estimate of the parameter of the Bernoulli distribution, modeling the correct solution of the
corresponding task in the test by the subject. All tasks of the test, as a rule, are characterized
by a certain number of points that the subject scores, having solved them correctly. The total

64



ON THE PROBLEM OF MAXIMIZING THE PROBABILITY 65

number of points scored during testing characterizes the quality of the subject’s preparation and
is the basis for his assessment. The achievement by the subject of a certain total score for the test
can serve as a certain target indicator for him. As a strategy of the subject in the presence of the
above-mentioned random parameters in the problem, a set of test tasks can be used, which should
be performed first.

The literature presents quite widely the problems of constructing various tests in order to check
the level of knowledge of the subjects, including in probabilistic or quantile statement [3, 4, 6, 9, 10].
However, the authors are not aware of publications in which the problems of constructing an optimal
strategy for the subject to pass the test would be considered.

The paper formulates the problem of finding the optimal strategy of the subject (in the above
sense) according to the criterion of maximizing the probability of gaining a total score for the test
above a certain level chosen by the subject. This takes into account the probabilistic constraint
associated with the fact that the time spent by the subject on completing the test should not exceed
the total fixed testing time.

This problem of stochastic bilinear programming based on the generalized minimax approach [11]
according to the technique proposed in [12] is reduced to an integer mathematical programming
problem. The initial data for estimating the parameters of the probabilistic models used in the
problem are taken from the statistics of the work of users of the MAI CLASS.NET LMS. The paper
also discusses the results of a numerical experiment and the dependence of the optimal value of the
criterion on the total score, which the subject seeks to exceed.

2. DISTRIBUTIONS OF RANDOM PARAMETERS USED IN THE WORK

Two vector random parameters are used in the problem under consideration. One of them is
the vector X = col (X1, . . . ,Xn), the ith coordinate of which model the correctness of the solution
of the ith test task. It is assumed that Xi are independent random variables having a Bernoulli
distribution, with parameters pi, i = 1, . . . , n, estimated by the frequency of correct answers of the
subject to similar tasks of the ith type during preparation for testing or in the learning process.
Equality Xi = 1 models the correctness of the solution of the ith task, and equality to zero — the
opposite event. Another random parameter is the vector T = col(T 1, . . . , Tn), the coordinates of
which characterize the time spent by the subject on solving the task of the ith type. Random
variables Ti, i = 1, . . . , n are also assumed to be independent. However, it would be reckless to
assume independence between the values of X and T , therefore for each value of Xi (0 or 1) its own
distribution of the random variable Ti is estimated also on the basis of statistics of solving tasks of
a similar type by the subject. Continuous distributions of the user’s response time to the task (Van
der Linden [1], Gamma distributions [9]) do not allow finding an exact solution to the problem in a
probabilistic statement, therefore a discretized response time model with three values is used in the
work, modeling situations of quick solution, standard solution and solution with difficulties. The
technique for constructing a discrete distribution law of the response time of the subject to the test
tasks can be different: from discretization in various ways of continuous distribution models (for
example, the Van der Linden model [1]), the parameters of which are determined based on statistical
data on the time of solving the problems of the corresponding class by the subject, to using the
initial distribution histogram, built according to the same statistical data. In this work, for each
task of the test, based on the available statistical data obtained from the CLASS.NET system [8],
a variation series of the response time of the subject to similar tasks is constructed, which is divided
into three equal parts at a distance between the maximum and minimum elements. For each part,
the sample mean is calculated, which is used as the corresponding possible value of the random
variable of interest to us. The probabilities of the obtained three possible values are assumed to be
equal to the frequencies of the elements of the sample used falling into the corresponding selected
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ranges. Thus, the general vector of random variables has a discrete distribution with the number
of implementations D = 2n3n. The probabilities of each implementation can be found using the
formula for multiplying probabilities, and using the conditional distribution of the response time
of the subject to the test tasks under the conditions of its correct or incorrect solution.

3. STATEMENT OF THE PROBLEM AND METHOD OF ITS SOLUTION

It is required to define the strategy of the testee while performing a time-limited test consisting
of n tasks. The strategy is defined by a vector of Boolean variables u ∈ {0, 1}n, where

ui �
{
1, if the testee tries to solve the ith task of the test,

0 otherwise,
i = 1, n.

For each ith task of the test, bi points are awarded. To successfully pass the test, it is necessary
to score at least ϕ points. The time for completing the test is limited to T . The probability of
successfully passing the test while simultaneously fulfilling the time limit for its completion was
chosen as the optimization criterion.

Let us consider the probability function

Pϕ,T (u) � P

{
n∑

i=1

uiXibi � ϕ,
n∑

i=1

uiTi � T

}
.

In it, the values ϕ and T play the role of parameters. To ensure the reasonableness of the problem
statement, we impose restrictions on the specified parameters: 0 < ϕ � ∑n

i=1 bi and
∑n

i=1 T
min
i � T ,

where Tmin
i is the minimum time for the testee to solve the ith task. Then the problem of finding

the optimal strategy for the testee can be formulated as follows:

Pϕ,T (u) → max
u∈{0,1}n

. (1)

This problem is a stochastic programming problem with Boolean variables.

As mentioned above, the number of all possible realizations of the random parameter vector
col(X	, T	) is D = 2n3n. Let us consider the vector δ ∈ {0, 1}D, each νth coordinate of which

corresponds to one of the realizations col((xν)	, (tν)	) of the vector (X	, T	)	 and can take
values 0 or 1. Let Υ � eT b, where e = col(1, . . . , 1) ∈ Rn, i.e. Υ =

∑n
i=1 bi — the maximum number

of points that can be scored for the test. Let pν = P (col(X	, T	) = col((xν)	, (tν)	)), ν = 1,D.
Then, similarly to the method proposed in [12] for solving the problem of minimizing the quantile
function based on the confidence method [11], the stochastic programming problem (1) can be
reduced to a deterministic optimization problem with Boolean variables:

D∑
ν=1

pνδν → max
u∈{0,1}n
δ∈{0,1}D

(2)

under the constraints

ϕ−Υ− δν

(
n∑

i=1

uix
ν
i bi −Υ

)
� 0, ν = 1,D, (3)

δνu
T t

ν − T � 0, ν = 1,D. (4)

In the problem considered above, the optimal value of the vector δ determines the type of the opti-
mal confidence set (in terms of the confidence method [11]) as the implementations of the random
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parameter vector corresponding to ones in the optimal vector δ. The total probability measure
of such implementations is maximized in the problem under consideration, and the constraints on
the test execution time and the number of points scored during the test are satisfied, while for the
remaining implementations corresponding to zero values of the coordinates of the optimal vector δ,
these constraints in the original problem may not be satisfied, and constraints (3) and (4) are
satisfied by construction.

Problem (2)–(4), constructed strictly according to the technique of [12], is a bilinear program-
ming problem (with a bilinear system of constraints), which, together with the Boolean nature of
the variables and the large dimensionality, makes it difficult to solve. However, the structure of
the problem under consideration makes it possible to rewrite it as a linear programming problem
(LPP), which will possibly allow the use of special methods for solving LPPs with Boolean variables
implemented in modern applied optimization software packages. The form of this LPP is as follows:

D∑
ν=1

pνδν → max
u∈{0,1}n
δ∈{0,1}D

(5)

under the constraints

δνϕ �
n∑

i=1

uix
ν
i bi, ν = 1,D, (6)

n∑
i=1

uibi � ϕ,
n∑

i=1

uiT
min
i � T .

uT t
ν � δνT + (1− δν)T

MAX , ν = 1,D, (7)

where TMAX =
∑n

i=1 T
max
i , and Tmax

i is the maximum of all possible realizations of the random
variable Ti, i = 1, n.

If the dimensions of the problems (2)–(4), (5)–(7) allow to solve them using standard procedures
from known libraries of optimization programs, then the solution can be found with their help.
However, these problems contain an additional vector of optimization variables δ ∈ {0, 1}D of large
dimension, which, taking into account the large number of constraints, makes them difficult to
solve by exhaustive search of all possible values of Boolean optimization variables and requires
the development of special solution methods that take into account the structure of the problem.
Next, we consider an algorithm for solving the original problem. The efficiency of its application in
comparison with standard library procedures for solving problems (2)–(4), (5)–(7) will be discussed
in the section concerning the results of a numerical experiment.

4. ALGORITHM FOR SOLVING THE ORIGINAL PROBLEM

Step 0.

Of all 2n strategies u ∈ {0, 1}n we choose N , forming the set U , for the elements of which the
following conditions are satisfied

n∑
i=1

uibi � ϕ,
n∑

i=1

uiT
min
i � T .

The point is that in this way we filter out strategies that are obviously unsuitable in terms of the
total time or the number of points even in the most optimistic case, when all the tasks selected for
solving the problem are solved correctly and in the minimum possible time.
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We renumber all elements of the set U . Thus, a number from 1 to N uniquely defines an
element of the set. By um we will mean the mth element of the set U . Let m := 1, P ∗ := 0, and
u∗ := (0, . . . , 0)	.

At this step, the external loop for enumerating allN selected optimization strategies is initialized.

Step 1.

If m > N , then go to Step 5. Otherwise Pm := 0.

The auxiliary parameter Pm is used below to calculate the probability of fulfilling the constraints
at u = um.

Step 2.

Suppose that the vector um contains exactly K ones. Suppose that the nonzero compo-
nents of the vector um are the components with numbers i1, . . . , iK . Consider the subvector
col(Xi1 , . . . ,XiK ) of the random vector X. Let J := 2K , and j := 1.

At this step, the cycle of enumerating all possible realizations col(xji1 , . . . , x
j
iK
), j = 1, 2K is

initialized.

Step 3.

If j > J and Pm > P ∗, then we assume P ∗ := Pm, u∗ := um, m := m+1 and proceed to Step 1.

If j > J and Pm � P ∗, then we assume m := m+ 1 and proceed to Step 1.

Otherwise, if for the realization col(xji1 , . . . , x
j
iK
) the condition

∑
i∈{i1,i2,...,iK}

umi x
j
i � ϕ,

is satisfied, then we assume L := 3K , l := 1 and proceed to Step 4. If the specified condition is not
satisfied, then we assume j := j + 1 and proceed to the beginning of Step 3.

At this step, the cycle of enumerating all possible realizations col(tli1 , . . . , t
l
iK
), l = 1, L of the

subvector col(Ti1 , . . . , TiK ) of the random vector T is initialized.

Step 4.

If l > L, then we assume j := j + 1 and proceed to Step 3. Otherwise, if for the realization
col(tli1 , . . . , t

l
iK
) the condition ∑

i∈{i1,i2,...,iK}
umi t

l
i � T ,

is satisfied, then we assume Pm := Pm +
∏

i∈{i1,i2,...,iK}
P (Ti = tli|Xi = xji )P (Xi = xji ).

We assume l := l + 1 and proceed to the beginning of Step 4.

Step 5. We assume the optimal value of the criterion to be equal to P ∗, and the optimal value
of the strategy to be equal to u∗.

Note that in all nested cycles considered in the algorithm, there is a significant reduction in the
required volume of enumeration of possible values of optimization variables. The volume of full
enumeration can be reduced by an order of magnitude depending on the selected values of the task
parameters ϕ and T .

5. RESULTS OF NUMERICAL EXPERIMENT

The initial distributions for solving the problem were obtained based on the analysis functioning
of the MAI CLASS.NET learning management system [8]. We will assume the number of tasks in
the test is n = 10. Estimates of the parameters of the initial distributions are given in Tables 1–6.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



ON THE PROBLEM OF MAXIMIZING THE PROBABILITY 69

Table 1. Probability of correct solution of test tasks

Task number in the test Probability of correct
solution

Number of points
for the task

1 0.9 1

2 0.91 1

3 0.95 1

4 0.97 1

5 0.90 1

6 0.8 2

7 0.65 3

8 0.75 2

9 0.5 4

10 0.55 3

Table 2. Conditional distribution of the test subject response time for a test task
in case of its incorrect solution

Task number in the test Conditional distribution of response time

1 tj1 60 100 160

P (T1 = tj1l X1 = 0) 0.3 0.55 0.15

2 tj2 70 130 250

P (T2 = tj2l X2 = 0) 0.25 0.6 0.15

3 tj3 60 150 270

P (T3 = tj3l X3 = 0) 0.2 0.45 0.35

4 tj4 100 200 350

P (T4 = tj4l X4 = 0) 0.15 0.6 0.25

5 tj5 75 140 210

P (T5 = tj5l X5 = 0) 0.2 0.45 0.35

6 tj6 190 290 400

P (T6 = tj6l X6 = 0) 0.1 0.65 0.25

7 tj7 310 380 450

P (T7 = tj7l X7 = 0) 0.2 0.4 0.4

8 tj8 180 250 320

P (T8 = tj8l X8 = 0) 0.1 0.3 0.6

9 tj9 360 480 600

P (T9 = tj9l X9 = 0) 0.1 0.3 0.6

10 tj10 320 400 470

P (T10 = tj10l X10 = 0) 0.3 0.55 0.15

Consider the value bmax =
∑n

i=1 bi. As a result of the proposed algorithm, the dependences of
optimal solutions on the values of the problem parameters ϕ and T were obtained, see Tables 4
and 5.

The calculations were performed on a computer ASUS X550LC (Intel Core i5 2.3 GHz, 8Gb
RAM). The linear programming problem was solved by the IBM Cplex package from the Python
library. As can be seen, the values of the problem parameters significantly affect the speed of the
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Table 3. Conditional distribution of the test subject response time for a test task
in case of its correct solution

Task number in the test Conditional distribution of response time

1 tji 60 180 300

P (T1 = tj1l X1 = 1) 0.3 0.5 0.2

2 tji 75 190 330

P (T2 = tj2l X2 = 1) 0.15 0.6 0.25

3 tji 60 120 250

P (T3 = tj3l X3 = 1) 0.15 0.35 0.5

4 tji 130 200 350

P (T4 = tj4l X4 = 1) 0.1 0.3 0.6

5 tji 75 140 210

P (T5 = tj5l X5 = 1) 0.2 0.45 0.35

6 tji 200 275 380

P (T6 = tj6l X6 = 1) 0.2 0.35 0.45

7 tji 310 380 450

P (T7 = tj7l X7 = 1) 0.2 0.4 0.4

8 tji 200 290 370

P (T8 = tj8l X8 = 1) 0.25 0.4 0.35

9 tji 380 470 650

P (T9 = tj9l X9 = 1) 0.1 0.25 0.65

10 tji 150 275 500

P (T10 = tj10l X10 = 1) 0.3 0.55 0.15

Table 4. Dependence of the optimal solution on the parameter ϕ at T = 0.8 Tmax

ϕ
Optimal
strategy

Opt. value
of the criterion

Calculation
time
(sec)

Number
of investigated

strategies

0.4bmax 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0.9241 29.9 727

0.5bmax 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0.7874 18.2 511

0.6bmax 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0.5777 8.9 295

0.7bmax 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0.3830 3.2 131

0.8bmax 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.2028 0.9 39

0.9bmax 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.0816 0.1 5

author’s algorithm. Thus, increasing the desired number of points for the test leads to a decrease
in the probability of achieving this result and a decrease in the calculation time using the proposed
algorithm due to a decrease in the volume of enumeration of admissible optimization strategies u.
Comparative analysis of the running time of the algorithms shows its significant growth with an
increase in the number of tasks in the test, see Table 6. All algorithms with the same problem
parameters received coinciding solutions for all values of n. At n � 7, it was not possible to solve
the LP problem due to problems with insufficient memory for storing the matrix of the constraint
system. The most effective was the authors’ algorithm, which for large n exceeded by an order of
magnitude the running time of other considered algorithms.
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Table 5. Dependence of the optimal solution on the parameter T at ϕ = 0.6 bmax

T Optimal
strategy

Opt. value
of the criterion

Calculation
time (sec)

Number
of investigated

strategies

0.4Tmax 0. 0. 0. 0. 0. 1. 1. 0. 1. 1. 0.0633 1.8 273

0.5Tmax 0. 0. 1. 0. 1. 1. 1. 1. 0. 1. 0.1733 9.5 296

0.6Tmax 1. 1. 1. 0. 1. 1. 1. 1. 0. 1. 0.2786 8.7 296

0.7Tmax 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0.5049 9.0 296

0.8Tmax 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0.5777 8.9 296

0.9Tmax 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.7213 8.3 296

Table 6. Algorithms running time (s) for different values of n

n LPP Full enumeration Authors’ algorithm

1 0.0010 0.0340 0.0010

2 0.0010 0.0400 0.0016

3 0.0102 0.0580 0.0020

4 0.0202 0.0800 0.0029

5 0.0628 0.2000 0.0077

6 0.0991 0.6100 0.0117

7 – 2.1900 0.0636

8 – 9.3800 0.1600

9 – 48.1000 2.1500

10 – 3010.0000 9.1100

6. CONCLUSION

This article considers the problem of stochastic programming to search for an optimal strategy
for passing a time-limited test according to the criterion of the maximum probability of the testee
overcoming a certain number of points scored for the test, taking into account the time limit
for completing the test. For the testee, the probability of a correct solution to each test task is
considered known. The time spent by the testee on solving each task is also random.

The considered problem of stochastic programming with a probabilistic quality criterion is re-
duced to a deterministic problem of large dimensionality, for which standard optimization pro-
cedures from known program libraries can be used. In addition, an algorithm is proposed for a
directed search possible values of a discrete optimization strategy, reducing time costs for solving the
problem. The conducted numerical experiment confirmed the effectiveness of using the developed
algorithm for solving the original problem in comparison with the use of standard optimization
procedures for its deterministic equivalents. This efficiency, determined by the difference in the
time of calculating the optimal strategy in various ways, increases with an increase in the number
of tasks in the test. Numerical experiment also showed a significant dependence of the optimal
solution and the time of its calculation on the parameters tasks, which justifies the relevance of
further improvement her solution algorithm.

The results obtained in the work can be extended to the quantile formulation of the problem
under consideration, when the testee seeks to maximize the number of points scored for the test
while maintaining the selected probability level of fulfilling all the constraints of the problem. This
is a separate study, the results of which the authors plan to publish.
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Abstract—The analysis of the known [8] approach in which tropical geometry over complex
multifields of active power balances is used to estimate the region of existence of the electric
power system mode. Its limitations are shown and a new approach is proposed, a criterion
is also represented for determining the boundary that precedes the violation of the stability
of the energy system due to the restructuring of the tropical set of solutions. The developed
approach allows to determine the approach of the power system mode to the limit by the known
parameters of the lines and the dynamics of changes of the nodes voltage modules and the nodes
load.

Keywords : electric power system, static stability, regime existence subdomains, tropical geom-
etry
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1. INTRODUCTION

Calculation of steady-state modes (states) of electric power systems is necessary to verify the
actual possibility of transmitting of the required power to consumers from existing generators [1–3].
In addition, it is important for control problems [4–6] to be able to estimate the design parameters
of the power system state under study relative to the maximum possible mode [7–9]. The limiting
mode is determined by increasing the energy consumption of nodes (buses) to critical values, at
which the power balance in the system is still maintained. In the event of a further increase of
the nodes load, the balance in power system will not be maintained due to a violation of static
stability, and such a mode is impossible to actually implement. The procedure of finding limiting
modes, called weighting, is performed by selecting nodes and the step of incrementing their power,
which can be determined by empirical considerations based on an analysis of the network topology
or other necessary criteria. There are various approaches to searching of limiting modes and the
criteria used in this case. The traditional [3] method includes the Zhdanov approach and criterion;
in this case, weighting is performed and the Jacobian of the linearized equations of the power system
steady state is controlled to be equal zero [1, 2]. An optimization model of electrical power systems
limiting modes is proposed and the importance of method of balancing node setting is shown in [3],
which is also noted in [7]. It is proposed to use an approach based on tropical geometry over complex
multipoles of active power balance equations in [8]. In [9], measurement data performed by PMU
(Phasor Measurement Unit) devices are used to estimate the voltage safety margin. In [10], the
limiting states of the power system are found by incrementing of the nodes load at each step of
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the iterative calculation of the steady state. In [11, 12] it is proposed to use a modal approach
to solve the problem of ensuring static stability, which consists in analyzing of the eigenvalues of
the Jacobian matrix. In [13, 14], the limiting steady states of the power system are found by the
Holomorphic Embedding Load-flow Method (HELM), which guarantees that the found solution,
when it exists, always corresponds to the correct one, and otherwise signals about the absence of
solutions. In [15], an approach to approximating of region boundaries of the regime existence is
proposed, taking into account the limitation of generator reactive power. In [16], emergency modes
and the using of group lines switching to control and ensure static voltage stability were considered.
In [17], an algorithmic procedure of adjusting of the known (previously found) base point of the
network limit mode according to the occurrence of changes in node loads is proposed. In [18, 19],
methods of estimating of the voltage stability margin for power supply systems with distributed
and [20] renewable energy sources are proposed. The authors of [21] proposed a method using
the holomorphic load embedding approach, as well as arc length parameterization and piecewise
approximations to determine the boundary of the mode existence and to track the entire PV curve
of power system nodes. The shape of the boundary of the energy network limiting modes (in
the multidimensional space of parameters), which has a complex topology with non-intersecting
isolated sections, is studied in [22, 23]. In [24], the conditions of the mode existence of are given only
for linear circuits of four-terminal networks operating on alternating current with constant power
loads. It must be noted that such schemes correspond to simulated power lines when calculating
critical modes.

Determination and research of the stability boundary of the power system and its power lines and
associated mode calculation methods [25, 26] are also important when optimizing of the operation
of both the distribution network [27–29] and power plants [30].

The presented article analyzes the results of work [8], notes its shortcomings, and proposes an
original approach and criterion for determining the boundary of the region of permissible modes
preceding instability.

The material of the article is structured as follows. In Section 2, the problem of determining the
boundary of the region preceding the limiting steady states of a power system with an arbitrary
number of buses is formulated. Section 3 discusses the problem of load power supply through a
line from an infinite power bus and the application of analysis over a complex tropical multipole to
this system. The main properties of their solutions are noted. Section 4 demonstrates the results
obtained using two examples of power system calculations. The first example: a power system with
four nodes, in one of which the active power is increased. The second is a standard IEEE 5-bus
scheme. The possibility of determining of the boundary preceding the loss of the power system
mode stability is shown. The appendix provides the derivation of the theoretical expressions used
in the article.

2. STATEMENT OF THE PROBLEM OF DETERMINING OF THE REGION BOUNDARY
PRECEDING THE LIMITING POWER SYSTEM STEADY STATES

WITH AN ARBITRARY NUMBER OF BUSES

Let’s consider a power system with a known electrical network topology, nominal voltage classes,
and a number of buses n. Let’s introduce the variable v (v = 0, n) to indicate the node numbers.
Electricity consumption in load nodes is specified by complex power values ṗloadv = pload

Re
v + jpload

Im
v

(v ∈PQ), where PQ is the set of load nodes with active pload
Re
v and reactive pload

Im
v powers. Elec-

tricity enters the system through generating units. Nodes with given complex values of powers
ṗgenv = pgen

Re
v + jpgen

Im
v are called generator nodes of PQ-type (v ∈PQ). Nodes with given values

of active pgen
Re
v powers and adjustable voltage modules Uv are called PV -type nodes (v ∈PV ).
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Also, when calculating modes in the power system, one of the nodes is assumed to be balancing
(v = 0), it represents an infinite power bus with a given complex voltage U̇0.

Next, we make the following assumptions.

1. Electricity transmission is carried out using lines, which are represented by π-shaped equiv-
alent circuits with lumped parameters.

2. The parameters of all electrical network lines are known and are represented by longitudinal
active Rline

v,k and reactive X line
v,k resistances, transverse capacitive Bline

v,k conductivities to ground,
where v and k are the numbers of nodes between which the line is connected.

The equations necessary to calculate the steady state of the power system are written in complex
form according to the nodal voltage method, taking into account the presence of PV -type nodes:

U̇*
v
˙̂
Iv = ṗ* gen

v − ṗ* load
v , v ∈PQ, v = 1, n, (1)

Re

[
U̇*
v
˙̂
Iv

]
= ṗRe

v ,
∣∣∣U̇v

∣∣∣ = const, v ∈PV, v = 1, n,

in which

˙̂
Iv = U̇vY v,v −

∑
k∈Ag

v

U̇kY v,k − U̇0Y 0,v,

where U̇*
v is the conjugate voltage complex U̇v; Y v,v – self-conductance of all branches connected to

node v; Ag
v – nodes directly connected to node v; U̇k – voltage of node k; Y v,k – mutual conductance

between nodes v and k; U̇0 – the known complex voltage of the balancing (v = 0) node; Y 0,v –

conductivity of all branches directly connecting node v and balancing; ṗ* gen
v , ṗ* load

v – conjugate
complexes ṗ gen

v and ṗloadv .

The conductivities Y v,v, Y v,k and Y 0,v are defined as follows:

Y v,v =
∑

m∈Ab
v

1

Rm + jXm
+

∑
m∈Ab

v

jBm, v = 1, n, (2)

Y v,k =
∑

k∈Ag
v

1

Rv,k + jXv,k
, v �= k, Y 0,v =

1

R0,v + jX0,v
,

where Rm, Xm – active and inductive resistance; Bm – the capacitive conductivity of one branch
m from the set of nodes Ab

v connected to node v; Rv,k, Xv,k – active and inductive resistance of the
branch between nodes v and k; R0,v, X0,v – active and inductive resistance of the branch between
the balancing node and node v.

The solution of nonlinear equations system (1) is the complex voltages of all nodes U̇v (v = 1, n),
which can be found by various numerical iterative methods.

The procedure of searching of limiting modes is performed by selecting nodes and incremental
step of their power to critical values, beyond which leads to an imbalance of power in the system.

The problem solved in the presented article is to determine the boundary within the region of
existence of the steady state of the power system that precedes the emergence of the limiting mode
in terms of static stability.

3. CONSUMPTION EQUATIONS FOR A LOAD FED THROUGH A LINE
FROM AN INFINITE POWER BUS AND APPLICATION

OF TROPICAL MULTIPOLE ANALYSIS TO THIS SYSTEM

First let’s consider consumption and the appearance of the limiting (critical) mode in the simplest
scheme (Fig. 1). The load ṗ = pRe + jpIm, where R, X – active and inductive resistance of the line,

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



76 DANILOV, ROMANENKO

Fig. 1. Power supply circuit through the load line from the infinite power bus.

(a) (b)

Fig. 2. Dependences of the (a) modulus and (b) angle of the load node voltage on pRe: 1 and 2 – respec-
tively, the first U1(p

Re), ΨU1(p
Re) and the second U2(p

Re), ΨU2(p
Re) roots (4) and (5); 3 –

∣∣U1,2(p
Re)

∣∣; 4 –

Re
[
U1,2(p

Re)
]
.

pRe, pIm – active and reactive power consumption, is connected to a generator (infinite power bus)
with a known complex voltage Ė = EejΨE through a power line Z = R+ jX .

The equation for determining the steady state of the presented circuit is written in the following
form:

U̇ +
pRe − jpIm

U̇*
(R+ jX) = Ė, (3)

in which U̇ = UejΨU , U̇* = Ue−jΨU , where U is the module voltage of the node (bus) with load ṗ,
ΨU is the angle of complex voltage U̇ , measured from the generator voltage vector Ė.

Nonlinear equation (3) has an analytical solution, which roots (modules U1,2(p
Re, pIm) and angles

(arguments) ΨU1,2(p
Re, pIm) voltages) are determined according to the expressions:

(U1,2)
2 =

E2

2
− pReR− pImX ±

√
(2(pReR+ pImX)− E2)2 − 4(R2 +X2)((pRe)2 + (pIm)2)

2
, (4)

ΨU1,2 = − arg
[
(U1,2)

2 + pReR+ pImX + j(pReX − pImR)
]
. (5)

Assuming as known and constant power factor (cosφ) of the node load with an increase in
active power pRe, we determine the component pIm = pRe tanφ. Let’s build (Fig. 2) dependencies
(2) and (3). The angle ΨUmax is determined by the expression

ΨUmax = −atan

[
X −R tan φ

R+X tan φ

]
. (6)

At pRe > pRe
max the voltage modulus U takes complex values, and therefore, in the specified range

the curves 1 and 2 are missing. The value pRe
max corresponds to the regime existence boundary.

Dependencies 3 and 4 are the modulus and real part of the voltage U at pRe > pRe
max, respectively.
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(a) (b)

Fig. 3. Dependencies of parameters SU , ln |SU | and lnMAX(U ) from pRe: on (a) 1 and 2 – SU (p
Re) for the

first and second roots, respectively, while 1, 1a and 2, 2a according to the left side of (7), and 1, 1b and 2,
2b according to the right side (7); on (b) – for the first roots 1 and 2 – ln |SU | and lnMAX(U ), respectively,
according to the data of the left and right sides of (7), 3 – lnMAX(U ).

For the diagram in Fig. 1, we apply the approach proposed in [8] for determining the proximity
of a regime to the region of its existence. The expression for the parameter SU , written from the
condition of the balance of nodes active power, has the form

U2

2

(
1

R+ jX
+

1

R− jX

)
+Re(ṗ) = SU =

1

2

(
ĖU̇*

R+ jX
+

Ė*U̇

R− jX

)
. (7)

The dependences of SU from zero to pRe
max are the same for the left and right expressions (7) and

differ for pRe > pRe
max (see Fig. 3). From Fig. 3 it is clear that ln |SU | < ln

(
EU√

R2+X2

)
for pRe from

zero to pRe
max. Tropical equations used for the diagram in Fig. 1, have the form

ln |SU | ⊕ ln

(
EU√

R2 +X2

)
. (8)

The parameter MAX(U ) denotes the component EU√
R2+X2

. It must be noted that the curve 1 in

Fig. 3b (inset) has a maximum near the value pRe
max, explained by the restructuring of the tropical

set of solutions, which may be an additional criterion for the proximity of the limiting regime. In
this case, in the entire range of pRe from zero to pRe

max the condition

|SU | � max
U

(
EU√

R2 +X2

)
, (9)

which is used in [8] to determine the proximity of a regime to the boundary of the region of its
existence is not violated. Thus, it is not possible to apply (9), as proposed in [8], to the diagram
in Fig. 1 to identify the region preceding the onset of the limiting regime.

4. EXAMPLES OF POWER SYSTEM CALCULATIONS

Let’s consider an example of the calculation presented by the authors of [8] to demonstrate their
proposed approach. A four-node power system (Fig. 4) with two generators is being studied.

The first generator is specified by an infinite power bus with the known voltage U̇1, the second
one – by the voltage module U3 and active power pRe

3 . With this formulation of the problem, it is
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Fig. 4. Calculation scheme of a four-node electrical power system.

impossible to solve the nonlinear equations [14] of the power system state analytically:

U̇2

(
1

z12
+

1

z23
+

1

z24

)
− U̇3

(
1

z23

)
− U̇4

(
1

z24

)
= U̇1

(
1

z12

)
, (10)

Re

[
U̇*
3

(
U̇3

1

z23
− U̇2

1

z12

)]
= ṗRe

3 ,
∣∣∣U̇3

∣∣∣ = const,

U̇4
1

z24
− U̇2

1

z24
= − ṗ*4

U̇*
4

,

where

— branch resistances z12 = 8.91 + j80.91; z23 = 4.45 + j40.46; z24 = 6.68 + j60.68;

— balancing node voltage U̇1 = 500;

— active power pRe
3 = 400 and voltage modulus U3 = 500 in the third node;

— conjugate complex of fourth node power ṗ*4 = pRe
4 −jpIm4 for different modes; it must be noted

that the condition is accepted pIm4 = 0.

The solution of system (10) was carried out in the Mathcad package by the Levenberg–Marquardt
method with increasing load in the 4 node until the limiting mode was obtained (Table 1). There
was no imbalance in the active power of the power system in all existing modes, i.e. it was equal
to zero (with an accuracy of 10−307). At pRe

4 > pRe
4max the power balance in the power system

was disturbed and it could be simply identified by the calculated value of the voltage modulus U3,
which became different from the specified value U3 = 500 in the indicated modes. It should be noted
that in [8] the limiting mode corresponded to the value of 1243.8 obtained at step 10 of Table 1,
although the presented calculation results show the limiting mode at 1250.1993. In the case of
pRe
4 = 1250.1994, the voltage U3, taking into account fifteen decimal places, is 500.000000000000170,

and the unbalance is 454.7474 · 10−15 .

The results of calculation (Table 2) of mode parameters in a logarithmic scale over a complex
multipole for each step pRe

4 are given. The parameters S2, S3 and S4 are determined from the active
power balances of nodes as follows [8]:

1

2

⎛⎝ U̇*
2 U̇1

z12
+
U̇2U̇*

1

z∗12
+
U̇*
2 U̇3

z23
+
U̇2U̇*

3

z∗23
+
U̇*
2 U̇4

z24
+
U̇2U̇*

4

z∗24
+

⎞⎠ = S2,

1

2

⎛⎝ U̇*
3 U̇2

z23
+
U̇3U̇

*
2

z∗23

⎞⎠ = S3 =
(U3)

2

2

(
1

z23
+

1

z∗23

)
− pRe

3 ,

1

2

⎛⎝ U̇*
4 U̇2

z24
+
U̇4U̇*

2

z∗24

⎞⎠ = S4 =
(U4)

2

2

(
1

z24
+

1

z∗24

)
− pRe

4 ,

where

S2 =
(U2)

2

2

(
1

z12
+

1

z∗12
+

1

z23
+

1

z∗23
+

1

z24
+

1

z∗24

)
.
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Table 1. Four-node power system mode parameters

Step pRe
4 U2 Ψ2 Ψ3 U4 Ψ4

0 500 492,5637 −2,0083 1,6966 481,5826 −9,3567

1 600 489,8857 −3,9833 −0,2924 475,4331 −12,9766

2 700 486,5099 −6,0115 −2,3386 467,9762 −16,7639

3 800 482,2942 −8,1121 −4,4620 458,9055 −20,7819

4 900 477,0080 −10,313 −6,6920 447,7206 −25,1289

5 1000 470,2383 −12,6602 −9,0775 433,5139 −29,9775

6 1100 461,0926 −15,2455 −11,7162 414,2925 −35,6971

7 1200 446,5674 −18,3529 −14,9131 383,2047 −43,5358

8 1225 440,4618 −19,3571 −15,9566 369,7892 −46,5104

9 1237,5 436,0835 −19,9756 −16,6041 359,9997 −48,5514

10 1243,8 432,9471 −20,3673 −17,0168 352,8867 −49,9711

11 1245 432,1875 −20,4557 −17,1103 351,1503 −50,3099

12 1250 426,5797 −21,0298 −17,7230 338,1517 −52,7538

13 1250,1993 425,2433 −21,1460 −17,8485 335,0037 −53,3220

Table 2. Mode parameters on a logarithmic scale

step pRe
4 lnMAX(2) ln |S2| lnMAX(3) ln |S3| lnMAX(4) ln |S4|

0 500 8.7079 7.2533 8.7079 5.6038 8.2651 6.8197

1 600 8.7025 7.2424 8.7025 5.6038 8.2468 6.9129

2 700 8.6955 7.2286 8.6955 5.6038 8.2240 6.9963

3 800 8.6868 7.2112 8.6868 5.6038 8.1958 7.0711

4 900 8.6758 7.1891 8.6758 5.6038 8.1601 7.1383

5 1000 8.6615 7.1606 8.6615 5.6038 8.1135 7.1981

6 1100 8.6419 7.1213 8.6419 5.6038 8.0485 7.2497

7 1200 8.6099 7.0573 8.6099 5.6038 7.9385 7.2884

8 1225 8.5961 7.0297 8.5961 5.6038 7.8891 7.2931

9 1237.5 8.5861 7.0097 8.5861 5.6038 7.8523 7.2929

10 1243.8 8.5789 6.9953 8.5789 5.6038 7.8251 7.2910

11 1245 8.5771 6.9918 8.5771 5.6038 7.8184 7.2903

12 1250 8.5641 6.9657 8.5641 5.6038 7.7677 7.2827

13 1250.1993 8.5609 6.9594 8.5609 5.6038 7.7552 7.2803

Parameters lnMAX(2), lnMAX(3) and lnMAX(4) at each step pRe
4 corresponded to the same

branches and were determined by the formulas:

lnMAX(2) = lnMAX(3) =

(
U2U3

|z23|
)
,

lnMAX(4) =

(
U2U4

|z24|
)
.

It must be noted that for all nodes v of the power system (Table 2) the condition is satisfied

lnMAX(v) > ln |Sv|,
and accordingly, given in [8]

|SU | � max
k

(
UvUk

|zvk|
)
. (11)
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Fig. 5. Parameter dependencies ln |S| from pRe: 1 – ln |S2|; 2 – ln |S4|.

Fig. 6. Scheme a IEEE 5 buses and dependencies b 1 – ln |S5| from k
∑
ṗ; 2 – ṗmax.

At the same time, in [8] in the range from pRe
4 = 1200 to pRe

4max (1243.8) condition (11) is
violated, that makes it possible to identify a subregion within the region of existence of the regime,
the exit of which precedes the limit regime.

It should be noted that compliance with condition (11) in the existence region of the regime is
consistent with the qualitative results obtained for the circuit in Fig. 1. In addition, we can segregate
the node 4, in which the dependence ln |S4| has a maximum (Fig. 5 and Table 2, cell with fill),
similar to that shown in Fig. 3b (see box). To check the conditions (11) and the possibility of using
the ln |S| dependencies when identifying the region preceding the limiting mode, the calculations
were carried out on the IEEE 5-bus test circuit (Fig. 6a) with standard initial data presented in
Table 3. The parameter values in the table are given in relative units at basic power values of
100 MBA and voltage of 100 kV. The circuit takes into account the capacitive conductivity B of
the network lines and a PV -type generator is connected to the 2 bus.

As the power system mode became heavier, the load of all nodes
∑
ṗ = ṗ3+ ṗ4+ ṗ5 was increased

simultaneously, by multiplying by coefficient k. As a result of the calculations, it was established
that for all nodes (buses) of the power system, conditions (11) are met, and for node 5 the maximum
of dependence ln |S5| from k

∑
ṗ, preceding the limiting mode ṗmax (see Fig. 6b) was observed. It

should be noted that for arbitrary values of node loads and line resistances conditions (11) are met
and there is the indicated maximums.

Studies out of the scalability of the proposed method and criterion on circuits with a large number
of buses (standard IEEE 30-bus circuit), in which only PQ nodes of loads and generators were
specified, as well as in the presence of PV generators were carried. For all the cases considered, only
some (several) nodes connected to generators exhibit growth and maxima in the dependencies ln |S|,
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Table 3. IEEE 5-Bus Power System Test Circuit Source Data

Information on network nodes Information on network branches

no. Node type
V ,
o.e..

pRe,
o.e.

pIm,
o.e.

Branches
Resistance

and conductivity

R, o.e. X , o.e. B, o.e.

1 Slack bus 1.20 – –
1 2 0.02 0.06 0.06

1 3 0.08 0.24 0.05

2 Generator (PV) 1.20 0.40 –
2 3 0.06 0.18 0.04

2 4 0.06 0.18 0.04

3 Load – 0.45 0.15 2 5 0.04 0.12 0.03

4 Load – 0.60 0.10 3 4 0.01 0.03 0.02

5 Load – 0.40 0.05 4 5 0.08 0.24 0.05

which can be used to determine the approach to the region boundary of the permissible power
system modes. For other nodes and branches of the power system, these dependencies decrease
with increasing load, as shown in Fig. 5, curve 1.

Thus, studies show that as the regime becomes heavier, the maximum of dependence ln |S| for
power system nodes can be used to determine the boundary beyond which precedes the regime
reaching the boundary of its domain of existence.

5. CONCLUSION

1. It is possible to identify the lack of balance in the power system, and, accordingly, whether
the mode under consideration belongs to the region of an unstable state, by monitoring the value
of the specified voltage of the PV -type generating unit (bus) during calculations.

2. In the region where the mode exists, conditions (11) are satisfied for each node (bus) of the
power system; they cannot be used to identify the subregion, the exit beyond which precedes the
limit mode.

3. It is possible to identify the boundary within the existence region of the regime, the exit
beyond which precedes the limiting regime, by determining the maximum of the values of ln |S|
node (bus) of the power system. This will make it possible, at a low cost of computational resources,
to determine the nodes that are critical in terms of weighting and to obtain additional information
to enter the regime into a more stable region.
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APPENDIX

Expressions (4) and (5) are obtained from (3) as follows:

U2 +
(
pRe − jpIm

)
(R+ jX) = EUe−jΨU ,

U2 + pReR+ pImX + j
(
pReX + pImR

)
= EUe−jΨU . (A.1)
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The balance of modules of expression (A.1) is reduced to a quadratic equation for the unknown
Û = U2:

aÛ2 + bÛ + c = 0, (A.2)

where

a = 1, b = 2
(
pReR+ pImX

)
− E2, c =

(
R2 +X2

) [(
pRe

)2
+
(
pIm

)2]
.

The solution to (A.2) is expression (4). The angle ΨU in expression (5) is determined by
substituting the found expression (4) for U into equation (A.1).

Expression (6) of the article is obtained from the load bus power equation:

ṗ = pRe + jpIm = U̇

(
Ė − U̇

R+ jX

)∗
. (A.3)

From (A.3) we obtain

pIm

pRe
= tanφ =

EX cosΨU − UX + ER sinΨU

ER cosΨU − UR− EX sinΨU
. (A.4)

Let’s express the voltage modulus U of the load bus from (A.4)

U = E

(
cosΨU + sinΨU

(
R+X tan φ

X −R tan φ

))
and put it into the expression for active power obtained from (A.3):

pRe =
U

(R2 +X2)
[R (E cosΨU − U)− EX sinΨU ] . (A.5)

Taking the derivative of (A.5) with respect to the angle ΨU and equating it to zero, we obtain the
expression

d pRe

dΨU
=

sin (2ΨU ) (R+X tanφ)− cos (2ΨU ) (R tanφ−X)

(X −R tanφ)2
= 0 (A.6)

from which we determine

tan (2ΨU ) =
R tanφ−X

R+X tan φ
. (A.7)

The resulting expression (A.7) is equivalent to equation (6).
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Abstract—Models with selective convexity are an important class of data envelopment anal-
ysis (DEA) models. This type of model allows managers to consider variables such as ratios,
averages, percentages, etc. The paper proposes algorithms for constructing input and output
isoquants using volume variables in models with selective convexity. These algorithms help
investigate the relationship between any volume variables in the model. Computational exper-
iments confirm the reliability and efficiency of the proposed methods.

Keywords : data envelopment analysis, production possibility set, selective convexity, efficient
frontier, isoquant
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1. INTRODUCTION

The data envelopment analysis (DEA) approach arose as a generalization of simple indicators of
units behavior to a multidimensional case. Mathematically, this approach leads to solving a large
family of optimization problems. The founders of this approach were famous American scientists
A. Charnes, W. Cooper, E. Rhodes and R. Banker [1, 2]. The FDH (free disposal hull) models
appeared almost simultaneously with VRS formulation of DEA in the works of D. Deprins, L. Simar
and G. Tulkens [3] in the end of last century. Constraints sets of the DEA models are convex, so
optimization methods are widely used for DEA models. Production possibility set of the FDH
models are non-convex. For this reason, the development of visualization methods for FDH models
slows down.

The notion of selective convexity was proposed in [4]. This notion considers a range of new DEA
models, where DEA and FDH models are two extreme cases. Such models expands the possibilities
of DEA and FDH models, since problems with selective convexity include such variables into models
as ratios, percentages, averages, etc.

The DEA and FDH models aim to develop models and instruments for analyzing the behavior of
complex socio-economic systems, such as regions, banks, universities, hospitals, industrial facilities,
etc. For developing and applying these models it was necessary to develop new approaches.

Visualization techniques are utilized in various fields of human activity, including the study of the
behavior of large-scale socio-economic systems. It enables managers to construct the trajectories
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of units’ development, to obtain unknown dependencies between model components, detect and
correct incorrectness in models, to explore the problem of units’ separation and merging, as noted
in [5]. In general, visualization enhances a manager’s intuition in making strategic decisions.

However, there exist a few works [5–7] in the scientific papers devoted to the visualization of
multidimensional production possibility sets and dispositions of production units in such figures.
In [7], the methods for multidimensional visualization of convex DEA models were presented. In [5]
a review of visualization methods in DEA is presented. Visualization means the construction of in-
tersections of multidimensional polyhedral production possibility set with two- or three-dimensional
hyperplanes. This approach reduces the efficiency analysis of production units to the investigation
of well-known functions in economics, such as production function, isoquant, isocost, isoprofit,
etc. [8, 9].

In paper [10], visualization methods were proposed for models with selective convexity, in which
some of the variables are ratios. For such models, solution and visualization methods were proposed
and for any two ratio input or output variables. The new methods have shown their efficiency on
real-life problems.

Moreover, it was shown in paper [10] that not taking into account specifics of the task leads
to significant distortions of the result. In this paper, algorithms are considered for construction of
input and output isoquants in models with selective convexity with the use of volume variables.

2. BACKGROUND

Consider a set of production units (Xj , Yj), j = 1, . . . , n, where the vector of outputs Yj =
(y1j , . . . , yrj) � 0 is produced from the vector of inputs Xj = (x1j , . . . , xmj) � 0. All data are
assumed to be nonnegative, but at least one component of every input and output vector is positive.

Now consider the notion of selective convexity [4]. Let the input and output sets I and O have
the following partition

I = IC ∪ INC , O = OC ∪ONC ,

where the subsets IC and INC , and OC and ONC , are mutually disjoint.

Subsets IC and OC are called the subsets of volume inputs and outputs (volume measures). The
complementary subsets INC = I \ IC and ONC = O \OC are marked as ratio inputs and outputs
(ratio measures).

Let us assume that the set IC contains the inputs from 1 to m′, at the same time the set INC

contains the inputs from (m′+1) to m. Then it is evident that any vector of inputs can be written
in the form X = (XC ,XNC), where XC is the vector of the first m′ components of X, and XNC

is the vector of the last components of X.

In the same way, let us assume that the set OC contains the output components from 1 to r′,
and the set ONC contains the output components from (r′ + 1) to r. Hence any vector of outputs
can be written in the form Y = (Y C , Y NC).

The production possibility set T of the technology with selective convexity is determined by the
following postulates [4].

(A1) Feasibility of observed data. Unit (Xj , Yj) ∈ T for any j = 1, . . . , n.

(A2) Free disposability. (X,Y ) ∈ T , and Y � Y ′ � 0 and X ′ � X implies (X ′, Y ′) ∈ T .
(A3) Selective convexity. Let (X ′, Y ′) ∈ T and (X ′′, Y ′′) ∈ T . Assume that (X ′)i = (X ′′)i for all

i ∈ INC , and (Y ′)r = (Y ′′)r for all r ∈ ONC . Then, for any λ ∈ [0, 1], the unit λ(X ′, Y ′)+
(1− λ)(X ′′, Y ′′) ∈ T .
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The production possibility set T , which satisfies (A1)–(A3) can be written in the following form:

T =

{
(XC ,XNC , Y C , Y NC) � 0

∣∣∣∣∣
n∑

j=1

XC
j λj � XC ,

n∑
j=1

Y C
j λj � Y C , if λj � 0,

then XNC
j � XNC and Y NC

j � Y NC ,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n

}
. (1)

The selective convexity model combines two well-known DEA models. So if INC = ONC = ∅
(all variables are volume), then set (1) determines the BCC model. If set (1) contains only ratios,
i.e., IC = OC = ∅, then the selective convexity model becomes the FDH model.

Podinovski [4] used binary variables δj to transform set T to a mixed integer linear constraints.
However, for construction of isoquants for variables from IC and OC , ratio variables INC and ONC

do not change. So the mixed integer constraints in this case can be replaced by the equivalent
constraints (XNC

j −XNC)λj � 0 and (Y NC
j − Y NC)λj � 0; see [11, 12] and Remark 3 in [4].

3. ALGORITHM FOR CONSTRUCTION OF THE INPUT ISOQUANT

Input two-dimensional section of set T for unit (Xo, Yo) is determined by the following formula

I1(Xo, Yo) =
{
(X,Y )

∣∣ X = Xo + αd1 + βd2, Y = Yo, α, β ∈ E1}, (2)

where d1, d2 ∈ Em, (Xo, Yo) ∈ T , vectors d1 and d2 are directional vectors, and d1 is perpendicular
to d2.

Next, define the input two-dimensional isoquant as the intersection of the frontier and two-
dimensional plane I1.

SecI(Xo, Yo) =
{
(X,Y )

∣∣ (X,Y ) ∈ WEffPT ∩ I1
}
, (3)

where WEffPT is a set of weakly Pareto efficient points of set T .

Output two-dimensional section of set T for unit (XoYo) is written as

I2(Xo, Yo) =
{
(X,Y )

∣∣ X = Xo, Y = Yo + αg1 + βg2, α, β ∈ E1}, (4)

where g1, g2 ∈ Er, (Xo, Yo) ∈ T , g1 is perpendicular to g2.

Now, define the output two-dimensional isoquant as the intersection of the frontier and two-
dimensional plane I2.

SecO(Xo, Yo) =
{
(X,Y )

∣∣ (X,Y ) ∈ WEffPT ∩ I2
}
. (5)

Consider an optimization algorithm for construction of the input isoquant for unit (XoYo). The
isoquant is determined by directions ep ∈ Em′

and es ∈ Em′
, where ep and es are unity vectors with

ones in positions p and s, correspondingly. In addition, the inputs p and s belong to the set IC .

Algorithm 1 (construction of the input isoquant).

Step 1. Find a leftmost point on the input isoquant going through unit (Xo, Yo) and associated
with directions ep ∈ Em′

and es ∈ Em′
.
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Step 1a. Solve the following optimization problem.

max θ1

n∑
j=1

xCsjλj + θ1 � xso,

n∑
j=1

xCpjλj + τ1 � xpo,

n∑
j=1

xCijλj � xio, i �= p, s,

n∑
j=1

Y C
j λj � Yo

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,

n∑
j=1

λj = 1, λj � 0, j = 1, . . . , n,

(6)

where τ1 and θ1 are free variables.

Step 1b. Let θ∗1 be optimal objective of (6). Solve the following problem.

max τ1

n∑
j=1

xCsjλj + θ∗1 � xso,

n∑
j=1

xCpjλj + τ1 � xpo,

n∑
j=1

xCijλj � xio, i �= p, s,

n∑
j=1

Y C
j λj � Yo,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,

n∑
j=1

λj = 1, λj � 0, j = 1, . . . , n,

(7)

where τ1 is a free variable.

Let Z̃1
1 = (XC

o − θ∗1es − τ∗1 ep,XNC
o , Y C

o , Y
NC
o ), where θ∗1 and τ∗1 are optimal objectives of prob-

lems (6) and (7), respectively.

Step 2. Find the second point on the input isoquant going through unit (Xo, Yo) and determined
by directions ep ∈ Em′

and es ∈ Em′
.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 1 2024



CONVEX ISOQUANTS IN DEA MODELS 89

Step 2a. Solve the following optimization problem.
max τ2
n∑

j=1

xCsjλj + θ2 � xso,

n∑
j=1

xCpjλj + τ2 � xpo,

n∑
j=1

xCijλj � xio, i �= p, s,

n∑
j=1

Y C
j λj � Yo,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n,

(8)

where τ2 and θ2 are free variables.

Step 2b. Let τ∗2 be optimal objective of (8). Solve the following problem.

max θ2
n∑

j=1

xCsjλj + θ2 � xso,

n∑
j=1

xCpjλj + τ∗2 � xpo,

n∑
j=1

xCijλj � xio, i �= p, s,

n∑
j=1

Y C
j λj � Yo,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n,

(9)

where τ2 is a free variable.

Let Z̃1
2 = (XC

o − θ∗2es − τ∗2 ep,XNC
o , Y C

o , Y
NC
o ), where θ∗2 and τ∗2 are optimal objectives of prob-

lems (8) and (9), respectively.

Step 3. Set l := 1, k := 1, i1 := 1, i2 := 2. Create flow F l
k with points Z l

i1 = Z1
1 , Z

l
i2 = Z1

2 of
production possibility set T . Define set M = {Z1

1 , Z
1
2}.

Step 4. Perform the following operations. Take any unprocessed flow F l
k, solve optimization

problem of the following type
max β1

(Z l
i1 + Z l

i2)/2 + β1d1 + τd2 ∈ T,
(10)

where β1 and τ are scalar variables, vector d1 is perpendicular to the vector d2, it lies in the plane of
the section, and is directed to the low left corner of a two-dimensional section, vector d2 = Z l

i1−Z l
i2 .
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Fig. 1. Construction of input isoquant.

If optimal objective value of problem (10) β∗1 > 0, then start new flows F l+1
k1

and F l+1
k2

and solve
optimization sub-problems.

Flow F l+1
k1

contains points

Z l+1
i1

= Z l
i1 , Z l+1

i2
= (Z l

i1 + Z l
i2)/2 + β∗1d1 + τ∗d2,

where β∗1 and τ∗ are optimal values of variables in (10).

Flow F l+1
k2

contains points

Z l+1
i3

= Z l+1
i2

, Z l+1
i4

= Z l
i2 , d2 = Z l+1

i4
− Z l+1

i3
,

where d1 is perpendicular to the vector d2.

If optimal solution value in (10) β∗1 � 0, then points Z l
i1

and Z l
i2

are angular points of the
segment of input isoquant. Include these points to the set of corner points M . Flow F l

k is deleted
from the list of flow tasks.

Step 5. Set l:=l+ 1. If exist unprocessed flows F l
k, then go to the Step 4, else go to the Step 6.

Step 6. Points of set M are angular points of input isoquant. Connect adjacent pair points by
line segments. At last, add a vertical line after the first point, and a horizontal line starting from
the last point. This completes construction of the input isoquant.

Figure 1 illustrates the construction of isoquant with the help of the algorithm. At first, the
angular points Z1

1 and Z1
2 are found by solving models (6)–(9). Then the flow F 1

1 containing
these two points is started. At the next steps, point Z2

2 will be found with the help of solving
problem (10); and the flow F 1

1 will be split into two flows F 2
1 and F 2

2 , that will have vertices Z1
1

and Z2
2 for flow F 2

1 and vertices Z2
2 and Z1

2 for flow F 2
2 .

After this, the computations are repeated until all segments of the isoquant are found.

For the algorithm presented above the following assertion is valid.

Assertion 1. Algorithm constructs an input isoquant for production possibility set (1) in a finite
number of steps.

Proof. An input isoquant of the two-dimensional set (2) envelops this set or, in other words,
it is a boundary of this set. At Steps 1 and 2 the algorithm founds two points Z1

1 and Z2
1 of the

isoquant and determines segment [Z1
1 , Z

2
1 ] belonging to the set (2). This initial approximation of

the set (3) is found. After this, two optimization problems of the type (10) are solved. If β∗1 > 0 for
at least one of this problem, then the algorithm starts new flows. The approximation of the set (3)
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is expanded. If β∗1 � 0, then flow F l
k is deleted from the list of flow tasks. Iterations continued if

there exist unprocessed flows. However, all approximations of the set (3) belong to this set and
they are expanded during the iterations. The last approximation coincides with set (3). Since the
number of boundary segments is finite and the directions of the objective functions differ from each
other at every iteration. This completes the proof.

4. ALGORITHM FOR CONSTRUCTION OF THE OUTPUT ISOQUANT

The algorithm for construction of the output isoquant can be written in a similar way. Next, we
will focus only on the main differences. Let (Xo, Yo) be a production unit for which the isoquant
is being constructed, and let p and s be two outputs that determined that isoquant. At the first
step, we find a rightmost vertex Z1

1 of isoquant by solving the following optimization problems.

max θ1
n∑

j=1

XC
j λj � Xo,

n∑
j=1

yCsjλj − θ1 � yso,

n∑
j=1

yCpjλj − τ1 � ypo,

n∑
j=1

yCijλj � yio, i �= p, s,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n,

(11)

where τ1 and θ1 are free variables.

max τ1
n∑

j=1

XC
j λj � Xo,

n∑
j=1

yCsjλj − θ∗1 � yso,

n∑
j=1

yCpjλj − τ1 � ypo,

n∑
j=1

yCijλj � yio, i �= p, s,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,
n∑

j=1

λj = 1, λj � 0, j = 1, . . . , n,

(12)

where τ1 is a free variable.
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Point Z1
1 is expressed as:

Z1
1 = (XC

o ,X
NC
o , Y C

o + θ∗1es + τ∗1 ep, Y
NC
o ),

where ep ∈ Er′ and es ∈ Er′ are direction vectors of isoquant, θ∗1 and τ∗1 are optimal objectives of
problems (11) and (12), respectively.

Second vertex Z1
2 of the output isoquant is determined using following problems.

max τ2

n∑
j=1

XC
j λj � Xo,

n∑
j=1

yCsjλj − θ2 � yso,

n∑
j=1

yCpjλj − τ2 � ypo,

n∑
j=1

yCijλj � yio, i �= p, s,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,

n∑
j=1

λj = 1, λj � 0, j = 1, . . . , n,

(13)

where τ2 and θ2 are free variables.

max θ2

n∑
j=1

XC
j λj � Xo,

n∑
j=1

yCsjλj − θ2 � yso,

n∑
j=1

yCpjλj − τ∗2 � ypo,

n∑
j=1

yCijλj � yio, i �= p, s,

(XNC
j −XNC

o )λj � 0, j = 1, . . . , n,

(Y NC
j − Y NC

o )λj � 0, j = 1, . . . , n,

n∑
j=1

λj = 1, λj � 0, j = 1, . . . , n,

(14)

where τ2 is a free variable.
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Thus we have Z1
2 = (XC

o ,X
NC
o , Y C

o + θ∗2es + τ∗2 ep, Y NC
o ), where θ∗2 and τ∗2 are optimal objective

values of problems (13) and (14), respectively.

Steps 3–6 of the algorithm for output isoquant coincide with the algorithm for the input isoquant.
The only difference is that vector d1 in model (10) must have positive p and s coordinates to secure
the correct shape of the output isoquant.

Assertion 2. Algorithm constructs an output isoquant for production possibility set (1) in a finite
number of steps.

The proof of this assertion is similar to the input isoquant case and hence omitted.

5. COMPUTATIONAL EXPERIMENTS

To perform the computational experiments we use a dataset with artificially generated DMUs.
It contains 100 units with 6 variables (3 inputs and 3 outputs). The variables were generated
randomly in a range from 5 to 95. Figure 2 shows three isoquants constructed for unit 78 (depicted
by point Z0) using three different models.

Curve 1 corresponds to the isoquant of BCC model, where all variables are from the set IC∪OC ,
i.e., INC ∪ONC = ∅. Curve 2 is associated with the model with selective convexity, where all
variables are volume except two outputs y2 and y3 that are ratio variables. Third model differs
from the previous only in inputs x1 and x2. In this model they belong to INC . The isoquant for
this model is depicted as curve 3. Input isoquant for FDH model looks exactly the same as curve 3;
it so happened that the two curves coincided. We see from Fig. 2 that BCC and FDH models are
two extreme cases, and curve 2 lies between them. Points Z1, Z2, and Z3 are radial projections of
unit Z0 onto the frontier of models 1, 2, and 3, respectively.

Figure 3 shows three output isoquants constructed for unit 78 (point Z0 in the figure) using
three different models. Curve 1 is associated with the output isoquant of the BCC model. Curve 2
corresponds to the model with one ratio output y3. Curve 3 is obtained for the model with two ratio
variables x3 and y3, and the rest are volume. Recall that the distances from the point Z0 to the
points Z1, Z2 and Z3 in relative units are measures of efficiency in models 1, 2 and 3, respectively.
This confirms the fact that the choice of the model significantly affects the accuracy of the analysis
of the production units’ behavior.

Fig. 2. Input isoquants for BCC model (curve 1), model with selective convexity (curve 2), and FDH model
(curve 3) for unit 78.
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Fig. 3. Output isoquants for BCC model (curve 1), model with one ratio variable (curve 2), and model with
two ratio variables (curve 3) for unit 78.

6. CONCLUSION

Visualization plays a huge role in the science and practice of mankind. Indeed, the invention of
the telescope by Giordano Bruno at the beginning of the 17th century allowed Newton at the end
of this century to discover the laws of planetary motion and formulate as a result world-famous
laws, without which it is impossible to create the modern development of science and technology.
Visualization methods are used in many areas of human activity, no captain goes on a long trip
without detailed maps, no doctor will start operation without a set of patient images, and no
engineer will start construction without detailed drawings. However, the leaders of large-scale
socio-economic systems often do not have all this instruments and rely on their intuition. However,
the cost of an error may be quite huge.

The DEA and FDH technologies do not embrace all possible model cases for production units
descriptions. In paper [4], the concept of selective convexity was proposed, which provides the
development of a range of new DEA models [13–16], where FDH and DEA models are two extreme
cases. Such modifications allow one to explain the class of model’s variables and include the
averages, percentages, ratios, etc. into DEA models.

In paper [10], algorithms were developed for the construction of input isoquants in DEA models
with selective convexity with the use of ratio variables.

In this paper, algorithms are developed for construction of two-dimensional input and output
isoquants with the use of volume input and output variables. The proposed algorithm requires
considerably fewer computations than the algorithm [10] for ratio variables since it involves only
linear problems, whereas the second uses mixed-integer programs.

Computational experiments documented that the proposed algorithms are reliable and efficient.
The proposed algorithm allows parallel and distributed implementation similar to the approach
proposed in [7]. The development of efficient parallel and distributed implementations [17–19] to
speed up computations and conducting computational experiments with large-scale datasets we
consider as a direction of our future research.
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OBITUARY

Mikhail M. Khrustalev
(1938–2023)

Doctor of Physics and Mathematics, Professor Mikhail Khrustalev passed away on August 11,
2023, at the age of 86. He was an outstanding researcher, a wise teacher, and a reliable friend.

Mikhail Khrustalev, in full Mikhail Mikhailovich Khrustalev, was born on May 2, 1938, in
Vologda. In 1963, he graduated from Kazan Aviation Institute with a degree in the dynamics
of aircraft. Mikhail began his career in the ballistics department of V.N. Chelomei’s Design Bu-
reau (nowadays Military-Industrial Corporation “Research and Industrial Association of Machine
Building” (MIC NPO Mashinostroyenia), Reutov). In 1970, Khrustalev defended his candidate’s
dissertation at Moscow State University. Mikhail’s doctoral dissertation was defended in a special-
ized council of Moscow Aviation Institute (MAI) in 1984. Three years later, he was conferred the
title of professor.

A lecturer of the highest level and a scientist in the field of optimal control, Khrustalev taught
MAI’s students to mathematical analysis, differential equations, and the theory of functions of a
complex variable as well as a course on the modern theory of optimal control. He was able to explain
the most complex mathematical constructs simply and understandably, which was appreciated by
both students and colleagues: Mikhail thought in terms of the world known to him and was able
to explain it to all his friends. He was a lifelong learner of new things and perfectly selfless in
sharing his knowledge. Many young researchers became candidates of physics and mathematics
under Khrustalev’s supervision. It was a good school of attitude to life.

In addition to teaching, Mikhail devoted much time to organizational and administrative work.
In different years, he served as Deputy Director for Science at the Moscow branch of the Institute
of Transport Problems, the Russian Academy of Sciences (RAS), and then at the Research Center
for Stability and Nonlinear Dynamics, Mechanical Engineering Research Institute RAS. Simulta-
neously, he worked at the Institute of Applied Mechanics and Electrodynamics (MAI) to create
mathematical models of working fluid flows in plasma engines. Numerous colleagues and friends
have recognized Mikhail as “one of the few who equally well understands both mathematics and
the way aircraft moves.”
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Khrustalev’s scientific accomplishments are quite extensive. He proposed and rigorously justified
sufficient and necessary conditions of global optimality for systems described by ordinary differential
equations. In particular, these conditions are applicable to optimal control problems with state
constraints. His works formulated global optimality conditions for stochastic diffusion systems
with incomplete information about the state, as well as conditions of Nash equilibrium in stochastic
differential n-person games.

Mikhail considered necessary and sufficient conditions of terminal invariance to be one of his
most striking results. Even when working in the ballistics department, he noticed that this problem
has a much higher applied significance compared to the classical invariance problem: it admits a
solution much more often and, as a rule, essentially nonunique ones. Khrustalev proposed to use
the available freedom of choice in terminally invariant control for the parallel solution of additional
problems regularly encountered in practice. In particular, he introduced the concept of absolute
invariance as the property where the terminal criterion is independent of both current disturbances
and the initial state of the system. He formulated sufficient conditions for this problem.

Khrustalev always maintained close ties with the Institute of Control Sciences (ICS), especially
with the Laboratory of Optimal Controlled Systems headed by V.F. Krotov, at whose invitation he
came to the Institute in 2014. After Krotov’s decease, Mikhail headed the Laboratory from 2015
to 2019. Led by him, employees of the Laboratory obtained necessary optimality conditions and
effective numerical optimization algorithms for control processes of nonlinear stochastic diffusion
systems and jump diffusion systems on finite and infinite horizons.

During his work at ICS RAS, Khrustalev returned to terminal invariance and advanced bril-
liantly in this area of research. In particular, he posed a new problem of terminal invariance for
stochastic diffusion systems and jump diffusion systems and established sufficient conditions of
terminal invariance for both classes of systems.

Khrustalev’s last scientific results were connected with the development of Krotov’s theory
of space-time continuum, a generalization extending the well-known Einstein’s general relativity
theory and the Poincaré gauge theory of gravity. He investigated the elastic properties of the space
continuum and proposed a space-time analog of the Hubble redshift theory and the hypothesis of
the distribution of dark matter across the universe. In Khrustalev’s theory, the effects attributed
to dark matter and dark energy arise by themselves due to time deformation.

Mikhail actively practiced yoga and was well-versed in Eastern philosophy and religion. As
destined in his well-studied Buddhism, Mikhail will stay with us, passing into the next form of
existence of an enlightened person. He was interesting, non-conflicted, able to defend his point
of view, persistent, and hardworking; appreciated simplicity and beauty, and understood and ac-
cepted the complexity of our unimaginable world. A pleasant, warm, and peaceful kindness always
emanated from that marvelous man. He was as pure as rock crystal, khrustal’ in Russian. The
brightest feelings about him will remain in our memory.
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