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Abstract—The milestones of the history of the scientific school on cybernetics (the School),
established in 1959 by outstanding scientist V.A. Yakubovich at Leningrad State University
(LSU), are presented. The connections of the School with other Russian and foreign scientific
schools in related fields are outlined.

Keywords : history, cybernetics, control theory, St. Petersburg State University, Department of
Theoretical Cybernetics

DOI: 10.25728/arcRAS.2023.71.51.002

This paper describes the main milestones in the history of the scientific school of cybernetics
and control theory (the School), established in 1959 by outstanding scientist V.A. Yakubovich at
Leningrad State University (LSU). The School will celebrate its 65th anniversary in 2024. The
essay is partially based on the publications [1–3] on the history of the Department of Theoretical
Cybernetics, St. Petersburg State University (SPbSU), as well as its scientific directions and related
issues. The authors are not intended to provide a complete bibliographic survey of the School’s
results concerning the aspects of its activities touched upon in the paper, particularly due to its
limited scope. The authors present either key works or illustrative and sometimes subjectively
selected examples of research works on a certain topic. The authors apologize to colleagues whose
publications are not mentioned below.

The beginning of the history of cybernetics at St. Petersburg (Leningrad) University can be con-
sidered the year 1956, when Vladimir Andreevich Yakubovich, a 30-year-old candidate of physics
and mathematics, came to the Faculty of Mathematics and Mechanics. It was a time of great
changes in society and in science, the beginning of the thaw. The first electronic computing ma-
chines (ECM) and publications rehabilitating cybernetics [4, 5] appeared. Cybernetics was gaining
popularity, and lectures and discussions about it spread everywhere. The country’s first section of
cybernetics was established at the Leningrad House of Scientists; it was headed by academician and
future Nobel laureate L.V. Kantorovich. The Computing Center (CC) and research laboratories
were organized in Leningrad University to master and use the new (fantastic, as it seemed at that
time) capabilities of computers. Following the impact of the seminal book by N. Wiener [6], cyber-
netics was perceived primarily as a scientific foundation for the application of computer technology
and automatic devices. Not surprisingly, when the administration of the Faculty of Mathematics
and Mechanics proposed to V.A. Yakubovich to gather a group of researchers in the field of ad-
vanced mathematical methods of automation and control systems, the “cybernetic flag” became
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most suitable for the group. Thus, in 1959, the Laboratory of Theoretical Cybernetics (LTC, the
Laboratory) appeared in the CC of LSU.

The first years of LTC research focused on pattern recognition and machine learning. The Lab-
oratory developed and generalized Rosenblatt’s concept of perceptron, which was popular at that
time, and several approaches to the mathematical theory of pattern recognition [7–9].1 A series
of applied problems were successfully solved, including handwriting and aerial survey photo recog-
nition, extraction of useful signals from noisy material, and automatic description and analysis of
scenes [11–14]. The Laboratory’s team owns a series of original algorithmic solutions for the en-
tire problem and its individual aspects, such as B.N. Kozinets’ algorithm for memory-saving class
separation [15, § 2.6], [16, Ch. 6], A.A. Schmidt’s method of algebraic invariants in image recogni-
tion problems [16, Ch. 8], and others. Comprehension of the ideas accumulated at that stage led
V.A. Yakubovich to the general concept of an infinite a priori unknown recursive system of inequal-
ities, where inequalities are added step-by-step in real time, and finitely convergent algorithms for
solving such systems in real time [17]. Later on, this concept and related methods were repeatedly
shown to be productive in various fields. The key approach to solving such systems developed in
LTC was subsequently called the method of recursive aim inequalities [18].

The emergence of a new field— cybernetics—inevitably gave rise to a discussion of its relation-
ship with the traditional theory of automatic control. A fruitful channel for that discussion was
paved, among others, by the notion of adaptability, i.e., the autonomous capability of a system
to adjust successfully to a priori essentially uncertain conditions of its operation (external and in-
ternal). In those years, statistical approaches to adaptive control prevailed in the Moscow school.
In particular, Ya.Z. Tsypkin elaborated the theory of adaptive and learning systems based on sta-
tistical estimation and stochastic approximation methods [19, 20]. In parallel, V.A. Yakubovich
developed an original alternative (deterministic) approach without involving probability theory; a
key element of his approach is the method of recursive aim inequalities. V.A. Yakubovich gave
historically the first general mathematical definition of an adaptive system [21, 22]. The basic
material on the theory of recursive aim inequalities and adaptive control can be found in the
monographs [15, 23]; a survey of subsequent works is available in [24–26].

The results of V.A. Yakubovich’s team in the field of adaptive systems were naturally continued
in robotics research. Initially, scientists all over the world carefully avoided the term “robot” and
its derivatives, believing them to be frivolous and suitable for science fiction at most. There are
grounds to state that V.A. Yakubovich pioneered “robot” as a now generally recognized scientific
concept; see his paper [21] published in Doklady Akademii Nauk USSR. The method of recursive
aim inequalities was used therein to solve the problem of self-learning of a manipulator robot (an
“eye–arm” robot) and to prove several theorems about “the rationality of robots” in the sense of
the definition introduced.

In almost all industrialized countries, the late 1960s and early 1970s were marked by the rapidly
growing interest in production automation based on manipulator robots with elements of artificial
intelligence. On the crest of that wave, in 1973, a robotics group was formed in LTC, headed
by V.A. Yakubovich’s students—Dr. Sci. (Eng.) A.V. Timofeev [27–29], and then Cand. Sci.
(Phys.–Math.) S.V. Gusev [30, 31]. Note the main robotics achievements of LTC during that
period: a mathematical theory of adaptive robots and a theory to train them to complex rational
behavior [32–34]. The viability of this theory was first demonstrated by vivid examples of solving
prototypical problems, such as the problem of training a robot to ride a two-wheeled bicycle, as well
as training other adaptive robots. (As pets in the team they received nicknames “grasshopper,”
“hawk,” “eye–arm,” and others.) The significance of the solved problems is emphasized by the fact

1 The paper [7] was actually the first work in Russian devoted to machine learning. It was reprinted and translated
into English in 2021; see [10].
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that the corresponding results in 1972 were selected by the international organizing committee for
presentation at the IFACWorld Congress (Paris, 1972); see [35]. (It was joked that V.A. Yakubovich
went to Paris on a bicycle as a speaker.) In the future, the effectiveness of the theory developed
in the team was demonstrated by experiments (one of the first in the country) with real wheeled
robots [30], started in 1974; in 1980, they were continued using a more advanced experimental robot
developed in LTC [36]. In the 1980s, the LTC robotics group participated in the development of
a manipulator control system for Buran, the reusable space shuttle project. In the 1970s–1980s,
the LTC team also elaborated the theory of adaptive control of robotic systems described by
general Lagrange equations [37–40]; those studies were pioneering in many respects and underlie
the subsequent large-scale development of the corresponding research area in the world.

The rapid development of cybernetics and control theory in the 1960s led to the emergence of
numerous algorithms for control, adaptation, recognition, learning, estimation, and filtering. The
need arose to generalize the results obtained and to unify the algorithms proposed, i.e., to identify
their key ideological core. Probably, Ya.Z. Tsypkin was the first to feel that need [19, 20]: he pro-
posed to treat various problems of recognition, estimation, control, etc. as problems of minimizing
the mean of a certain loss function. As a result, the chaotic mass of then-existing disparate algo-
rithms was represented in the form of systematized special cases of uniform probabilistic gradient
iterative procedures for minimizing or estimating parameters. However, the basic adaptation (self-
learning) and control algorithms related to the continuous-time case did not fit into that scheme.
Following analysis attacks from different directions, it gradually became clear that the algorithms
mentioned can be unified within Ya.Z. Tsypkin’s scheme by passing from the gradient of the objec-
tive function to the gradient of the rate of its change along the trajectories of the controlled object.
Probably, the most general and complete approach to implementing that idea was proposed and
developed by A.L. Fradkov [41] and named by him the speed gradient method.

Initially, the method was mainly focused on adaptive control and identification problems. As
a result of subsequent many-year research, it was developed and applied as a universal approach
to designing various continuous dynamic systems in mathematics, physics, engineering, biology,
and other fields. For example, based on this approach, control and synchronization problems
were solved for a wide class of oscillatory, including chaotic, systems. The corresponding results
opened new perspectives in vibration engineering, laser and chemical technologies, and information
transmission systems. Due to practical simplicity and the availability of a rigorous mathematical
justification of the obtained algorithms, this method became generally recognized as a research
tool, both in the USSR (Russia) and abroad. The number of publications where the method is
applied in one form or another has been constantly growing and now reaches several hundred.
Recently, interest in the speed gradient method has increased as a tool for understanding the laws
of evolution to comprehend better the dynamics of physical, biological, and other systems. In this
form, the method is known as the speed gradient principle [42, 43].

In the early 1970s, a bionics group was established at LTC under the leadership of Dr. Sci. (Psy.)
R.M. Granovskaya. The task of the group was to study and model the phenomena of perception
and recognition, as well as memory mechanisms of living organisms, including humans [44, 45].
A considerable amount of experimental and theoretical studies was conducted, and the results
obtained were largely motivated and actively implemented by interested organizations.

In 1970, the Department of Theoretical Cybernetics (DTC, the Department) was established
on the basis of LTC. The three pioneering alumni of the Department—G.S. Aksenov, B.D. Lyuba-
chevskii, and A.L. Fradkov—graduated soon, in 1971. LTC and DTC were in fact a single team,
with common affairs and minimal influence of the formal distribution of employees between them.
The LTC staff was engaged in teaching, while DTC members conducted research on topics common
to LTC and very often in collaboration with LTC colleagues. Discussion of relevant components of

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



1020 MATVEEV

that research was systematically transferred from the Laboratory walls to the classrooms: while still
learning the professional base, students were exposed to the cutting edge of the field. For example,
the LTC-DTC staff often presented new, as yet unpublished results in lectures. Sometimes students
were given proofs of theorems that had been obtained only the day before. There were a sense of
lively participation in mathematical creativity and a feeling of being at the forefront of science.
Sometimes, students found inaccuracies in proofs or suggested ways to improve the considerations.
Such students were thanked in publications, which caused a sense of pride and a desire to move on.
Note that from long ago, the motto of the department has been Docendo discimus, which means
“learning by teaching.”

In addition to the purely cybernetic direction (recognition, machine learning, artificial intelli-
gence, adaptive systems, robots, etc.), the field of scientific interests of the team has been cov-
ering several classical branches of mathematics and control theory. They concern linear differ-
ential equations, dynamic systems and parametric resonance (V.A. Yakubovich, V.N. Fomin, and
V.I. Derguzov), stability and oscillations in nonlinear dynamic systems, including phase synchro-
nization and frequency auto-tuning systems, stability and oscillations in pulse-modulated systems
(G.A. Leonov, A.I. Shepeljavyi, A.Kh. Gelig, and A.N. Churilov), optimal control (A.S. Matveev,
A.E. Barabanov, and V.A. Yakubovich), estimation and filtering theory (V.N. Fomin and A.E. Ba-
rabanov), and others.

Even before the establishment of the Laboratory and the Department, V.A. Yakubovich ob-
tained fundamental results on the stability of linear systems of differential equations with periodic
coefficients and parametric resonance. He proved I.M. Gelfand’s hypothesis that in the functional
space of coefficients of two-dimensional Hamiltonian systems, the set of coefficients correspond-
ing to stable systems decomposes into a countable number of connected domains; moreover, he
showed that the Lyapunov criterion, popular in the subject in those years, applies to one of them
only. V.A. Yakubovich obtained stability criteria for each domain, which, like the mentioned Lya-
punov criterion, are irreducible in a certain natural sense. These results were then transferred by
V.N. Fomin and V.A. Derguzov to systems with an infinite-dimensional state space. The funda-
mental monograph [46] summarized the intermediate outcomes of this direction and is still actively
cited in the works of mathematicians, physicists, and engineers.

Among the numerous scientific results of the team, perhaps the greatest fame and influence has
been gained by the achievements related to the so-called “frequency theorem,” also known as the
Yakubovich–Kalman lemma and the Kalman–Yakubovich–Popov (KYP) lemma. It was proved by
V.A. Yakubovich and first published in 1962 [47]. This theorem gives mathematically beautiful,
transparent, and constructive conditions for the solvability of a rather complex system of relations,
which is found in a variety of problems in stability theory, automatic control, robotics, and other
fields; in turn, the solution of this system of relations is the key to solving the main problem and
its qualitative analysis. The importance and authority of the frequency theorem are the derivatives
of its productivity in a whole range of diverse fields and problems, where it has given a second
wind to the method of Lyapunov functions. For example, it allowed obtaining a whole series of new
constructive criteria for absolute stability, instability, auto-oscillations, and the existence of globally
stable periodic and almost periodic modes in a variety of nonlinear systems, as well as advancing
in the study of the so-called strange attractors of such systems and developing new optimal and
adaptive control methods; some of these results were presented in 1978 in the monograph [48]. This
book is still relevant and interesting to scientists of different countries, as evidenced, in particular,
by the publication of its English translation in 2004. Moreover, the lemma under consideration
allowed establishing a kind of exhaustive results, surely covering all the conditions of a given type
of system behavior, that can be obtained using Lyapunov functions from popular classes (e.g.,
a quadratic form, a quadratic form plus the integral of a nonlinearity, etc.).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023
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Note that the frequency theorem is sometimes called the Great Lemma of Systems Theory: it
is “officially” recognized by the international scientific community as one of the cornerstones of
modern control theory. For example, this fact is reflected by the presence of V.A. Yakubovich’s
paper on the frequency theorem [47] in Twenty Five Seminal Papers in Control (Wiley—IEEE
Press, 2000), a special collection containing 25 papers with the greatest impact on the development
of control theory in the 20th century according to the IEEE Control Systems Society.

At first, the frequency theorem was proved for control systems described by ordinary differential
equations. Subsequently, it was extended in different directions, in particular, it was transferred
to many other classes of controlled systems. Among them, note discrete-time systems, stochas-
tic systems, adaptive systems, systems with an infinite-dimensional state space (e.g., described by
partial differential equations, equations with delayed argument, differential equations in an infinite-
dimensional Hilbert space, integral equations, etc.), and systems over ordered fields [49–59]. These
achievements were overwhelmingly not an end in themselves but a road to a scattering of new
self-sufficient results pushing the boundaries of understanding of relevant fields, e.g., to the cri-
teria of absolute stability and instability for the classes of systems under consideration. In this
scientific development, the school of V.A. Yakubovich went, mutually enriching, hand in hand
with other scientific schools, e.g., with the Nizhny Novgorod school (V.A. Brusin, P.V. Pakshin,
V.A. Ugrinovskii, etc.) [60–64]. The history and current state of this direction were described in
detail in the surveys [65, 66] and the collective monograph [3].

Note that necessary and sufficient conditions for the existence of linear output-feedback of a
linear system ensuring the existence of its quadratic Lyapunov function were obtained in [55, 56].
This property of the system is equivalent to its passivity, meaning the fulfillment of some dissipation-
type inequality on the trajectories of the system. Therefore, the results [55, 56] can be termed
passification theorems for linear systems. These statements underlaid a general approach to system
design called the passification (passivation) method. Subsequently, the method was extended to
a wide class of control and estimation problems for nonlinear and adaptive systems [67–70]. The
passification method is now applied by researchers from various countries [71–73]. In Russia, it is
actively used particularly in the scientific school of ITMO University (V.O. Nikiforov, A.A. Bobtsov,
etc.) [74, 75, 141].

The wide applicability of the frequency theorem motivated V.A. Yakubovich to construct an
abstract theory of absolute stability: using the apparatus of functional analysis, such a theory
generalizes the mass of known results and also creates a comfortable basis for their extension
to all new types of equations. Note that research on the frequency theorem is related to the
now ultra-popular method of linear matrix inequalities (LMIs). Accordingly, the authors of the
book [77] called V.A. Yakubovich the “father” of the scientific direction based on this method
(in honorable company with “grandfather” A.M. Lyapunov). A lot of adherents in the world have
been successfully developing this direction for a long time in a surprisingly wide range of applied
fields.

The frequency theorem was born in the stability analysis of equilibria of nonlinear dynamic
systems as an answer to the following question: under what conditions does there exist a quadratic
Lyapunov function common for a whole class of such systems described using a quadratic form?
Subsequently, its fundamental character was manifested in the discovery and effective utilization
of its connections with a number of other fields. The theory of optimal control was among the
historically first of them. Here, the frequency theorem proved to be a powerful constructive tool
for checking the solvability of linear quadratic control problems (a combination of a linear control
system and a quadratic performance criterion) and designing their solutions in the engineeringly
attractive form of an optimal controller.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023
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The foundations of the linear quadratic theory of optimal control were laid by the classical works
of R. Kalman [78], N.N. Krasovskii [79], and A.M. Letov [80] (in the part concerning stochastic
objects, by the investigations of A.N. Kolmogorov [81], N. Wiener [82], and S. Bucy [83]); a sig-
nificant contribution to its development was made by J.C. Willems, V.I. Zubov, V.M. Kuntsevich,
A.B. Kurzhanski, J.-L. Lions, A.I. Lurie, V.I. Utkin, V.A. Yakubovich, and many other scientists.
(For the history of the linear quadratic theory of optimal control, see the surveys [84, 85].) Method-
ologically, this field has important connections with complex analysis, stability, and stabilization
theory of nonlinear dynamic systems ( [77, 86–88], etc.). First of all, it concerns the so-called uncer-
tain systems, where the epithet reflects a common situation for applications: complete information
about the system is unavailable. Starting from the late 1960s, the flow of scientific publications
on the subject has become an avalanche, with a persistent marked interest until the present time.
One reason is the generally recognized practical effect of the linear quadratic theory of optimal
control. For example, according to the plenary report of Prof. M. Morari at the Second European
Control Conference (Groningen, the Netherlands, 1993) [89], the linear quadratic theory occupies
an honorable second place in the intensity of use in civil industrial applications among all branches
of modern mathematical control theory. (The first place was given to the theory of PID controllers.)

In the theory of linear-quadratic optimization, the school of V.A. Yakubovich systematically
developed the approach based on the frequency theorem. In the works of V.A. Yakubovich,
A.I. Shepeljavyi, A.L. Likhtarnikov, A.V. Megretsky, S.G. Semenov, D.V. Plyako, A.V. Savkin,
etc., the approach was extended to a wide class of important problems and systems, including,
among others, systems with continuous and discrete time, systems with infinite-dimensional state
space, problems arising under conflict (differential games), and problems with the singularity ef-
fect [85], which may cause no solution in the conventional sense.

The frequency theorem as a criterion for the existence of a quadratic Lyapunov function is
traditionally and often supplemented by a special technique for constructing such a function, the
so-called S-procedure [90]. In [91], it was abstracted from Lyapunov functions and given the sense
of replacing (in a certain interpretation) a system of several inequalities by a single inequality with
a free parameter. The key question here consists in the following: is the replacement equivalent?
Under the affirmative answer, the S-procedure is said to be lossless, and the corresponding state-
ment is also called the S-lemma. This question is relevant to several fields of mathematics [77],
e.g., duality in extremum problems, matrix theory, and operator theory. The case of quadratic
inequalities, where the losslessness of the S-procedure adjoins the effect of hidden (non-obvious)
convexity of images of quadratic mappings [66], has proved to be particularly productive for control
theory. Classical results of this kind are the Dines theorem (two quadratic forms transform a real
linear space into a convex set) and the Toeplitz–Hausdorff theorem (two continuous Hermite forms
transform the sphere of a complex Hilbert space into a convex set).

The first studies of the School on the losslessness of the S-procedure [92, 93] started at the turn
of the 1970s and dealt with no more than three inequalities. Basically, they stayed within the
idea field of the Dines and Toeplitz–Hausdorff theorems, in which, according to P. Halmos [94],
all known proofs are based on calculations, although it is desirable to have an idea proof, at least
(or especially?) using less elementary concepts. Further research of the School on the subject can
be interpreted as a movement in the above direction, where the main goal was generalization to
an arbitrary number of forms (unattainable in the general case). A noticeable impetus to this
research was given by the students of V.A. Yakubovich and N.K. Nikol’skii in the work [95], where
the convexity of the joint image was established for an arbitrary number of forms but in a very
special situation motivated by control theory. The specialization was rather quickly overcome by
V.A. Yakubovich together with A.S. Matveev, who joined this subject a little later: they obtained a
series of general results on the losslessness of the S-procedure and the hidden convexity of quadratic
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functionals. In their works, the less elementary common reason for convexity was the invariance of
forms with respect to shift operators and the weak convergence to zero of shifted space elements
(as, e.g., in L2(0,∞) when shifted by T → ∞) [96]. Those results concerned important problems in
control theory but did not cover the classical Dines and Toeplitz–Hausdorff theorems. Subsequently,
A.S. Matveev obtained even more general criteria for the convexity of the joint image of an arbitrary
number of forms; they “automatically” covered the classical results and presented certain properties
(obviously fulfilled in the classical case) of the peripheral part of the spectrum of the operator bundle
generated by the forms as a “less elementary” reason of convexity [97–99]. In that series of papers,
the theory of approximate convexity of images of quadratic mappings with defect estimates was
also developed, the property of hyper-convexity was discovered and investigated, and the results
were extended to more general (non-quadratic) mappings. Several results in this direction were also
obtained by outstanding scientist B.T. Polyak [100, 101]. Motivated by the theory of stochastic
control, N.G. Dokuchaev (with the participation of V.A. Yakubovich) developed a parallel ideology
related to A.A. Lyapunov’s effect (the convexity of the image of an atomless vector measure).

At the turn of the 2000s, an important discovery presented the relationship and interaction of
the S-procedure and the frequency theorem in a completely new light. Namely, a new proof of
the frequency theorem was given in [102] based on the losslessness theorem of the S-procedure
(S-lemma). As a result, figuratively speaking [66], the frequency theorem and the S-procedure
lived for a long time as friendly neighbors, and now, after so many years, everyone has found out
that they are also relatives.

The work [102] stimulated research on the so-called generalized frequency theorem (generalized
KYP-lemma), establishing applications-relevant properties equivalent to the fulfillment of frequency
domain inequalities in some restricted frequency range. The corresponding results provide new sys-
tem analysis and design tools related to frequency domain inequalities satisfied in a finite frequency
range [102, 103]. As it turned out, the standard frequency domain inequality in a finite frequency
range is equivalent to some non-classical linear matrix inequalities for the pair of matrices P, Q;
in a certain sense, these inequalities are analogous to and “replace” the inequalities for a single
matrix P in the classical KYP lemma. According to [104], the frequency domain inequality in a
finite frequency range is, in turn, equivalent to definite inequalities (of the dissipation type) only
on part of the system trajectories defined by an additional integral matrix inequality (the so-called
restricted dissipativity [104]). Thus, a complete extension of the classical KYP results to the finite-
frequency case was obtained. In [105], the above results were further generalized to the case of the
“conic” S-procedure to work with an infinite number of constraints. The finite-frequency version
of the frequency theorem has already found application in several practical problems [106–108].

In the 1990s, the three main scientific directions of the School—the frequency theorem, the
S-procedure, and linear-quadratic optimization—merged in the research on nonconvex global op-
timization methods. More precisely, the matter concerns a general approach based on these direc-
tions in order to develop efficient algorithms for special problems in the field of nonconvex global
optimization in a standard way. Unlike the majority of methods in this field, which are mostly
computational, often involve heuristic ideas, and do not always converge, the algorithms mentioned
above rest on a mathematical theory, are analytical in their most essential part, and surely yield
the global optimum. The general approach was proposed by V.A. Yakubovich in 1992 [109, 110].
It was further developed in the works of V.A. Yakubovich, A.S. Matveev, and N.G. Dokuchaev.
This approach justifies the basic relations of the theory of convex duality for the nonconvex opti-
mization problems under consideration and solves them using the (Yakubovich) rule based on the
relations. The rule is not necessarily correct. It was established that the rule is correct whenever
it is effective (produces a non-empty set of answers). Despite this fact, of greatest interest are the
criteria to verify the applicability of the rule a priori (before its application) based on a (usually
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simple) check of certain properties of the initial problem data. Several such criteria were derived.
Note that in many respects, these criteria served as the main purpose of the studies of images of
quadratic mappings discussed above.

In the late 1970s, V.A. Yakubovich initiated an extensive cycle of research for his team to
elaborate the theory of the maximum principle in optimal control problems within an abstract
approach. This approach implies the choice of some abstract model described by the language
of functional analysis as the main object of study. The results obtained for the model are then
supposed to be interpreted with respect to the specific models encountered by the researcher.
Thus, when working with a variety of applications, this approach allows reducing the amount
of considerations: much of them have already been done once and for all within the abstract
theory. Another advantage of the abstract approach is a uniform procedure for deriving optimality
conditions. Methodologically, it provides a more accessible and simple presentation of the main
ideas: they are not obscured by the entourage of a particular model.

Such abstract theories were elaborated by many authors. V.A. Yakubovich proposed his own
(original) approach to constructing an abstract theory of optimal control. Its characteristic feature
consists in the apparatus of the calculus of differentials on bundles of (generally nondifferentiable)
curves. On this basis, an abstract maximum principle is established for an abstract model of an
optimal control problem. In particular, it explains why maximum principles analogous to Pontrya-
gin’s maximum principle naturally arise as necessary conditions of optimality in very seemingly
different problems, highlighting the general properties of the problem that predetermine the spec-
ified form of the answer. This approach also yielded a uniform theory of necessary conditions of
the first and higher orders in problems with constraints: all of them turn out to be parts of some
single condition [111]. The approach under discussion was developed in different directions in an
extensive series of works by V.A. Yakubovich and his students; a number of self-sufficient new
results were obtained on its basis. Some of them (e.g., concerning the optimal control of systems
described by partial differential equations) were significantly ahead of similar research results in
the world. Some outcomes of those studies were systematized in the books by A.S. Matveev and
V.A. Yakubovich [111, 112]. The textbook [112] was intended to teach the reader to independently
apply the abstract theory to new problems. The book contains 75 problems on the application of
this theory. Some of them correspond to the level of scientific publications of the recent past; at
the same time, they are successfully handled by fourth-year students of the Faculty of Mathematics
and Mechanics (SPbSU).

Since the inception of LTC and DTC, there were two assistant captains on their command
bridge: A.Kh. Gelig and V.N. Fomin. The main interests of A.Kh. Gelig were focused on analyzing
the dynamics of different types of pulse-modulated systems. In this area, he developed a new
approach based on the time-averaging of the pulse signal and the absolute stability theory of
continuous nonlinear systems. Unlike the classical averaging method, Gelig’s averaging is not
asymptotic in nature and allows estimating the required sampling frequency explicitly. Classical
theorems of the absolute stability theory of nonlinear systems (such as the famous circle criterion
and V.M. Popov’s criterion, as well as the stability criteria of periodic modes) are obtained as
limiting cases when the value of the discretization period tends to zero. Therefore, the constructed
theory has a high degree of unification. The corresponding cycle of works was summarized in the
joint monograph by A.Kh. Gelig and A.N. Churilov, first in Russian and then in English [113] (the
extended version published by Birkhauser). A.Kh. Gelig’s long-term interests also included the
analytical design of controllers for nonlinear systems. In contact with his many-year collaborators
I.E. Zuber and A.N. Churilov, he solved various stability and stabilization problems for continuous,
pulse-modulated, and discrete systems in the cases of state- and output-feedback control [114].
A.Kh. Gelig was among the pioneers investigating nonlinear dynamics of neural networks in the
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USSR [115]; together with V.A. Yakubovich and G.A. Leonov, he studied the stability of systems
with a nonunique equilibrium (stationary sets) [48].

V.N. Fomin began his scientific activity with the study of parametric resonance in Hamilto-
nian systems described by partial differential equations. Here, he managed to construct a rather
complete analog of the finite-dimensional theory based on Galerkin’s method and a variant of the
latter’s perturbation method. After defending his doctoral dissertation on this subject in 1971,
V.N. Fomin’s research interests shifted to the field of mathematical theory of cybernetic systems.
He paid special attention to topics related to machine learning and adaptive systems, demonstrating
an encyclopedic coverage of the subject. His monograph [116] and the coherent course of lectures
were among the first in the country on these very important topics and painted a broad picture
of the field, not limited to a single group or approach. In 1976, the book [116] was awarded the
first prize of LSU in the field of scientific works. The third main direction of V.N. Fomin’s work
gradually gained strength: the mathematical theory of filtering and control theory, first of all, in
its probabilistic variant [117–119]. Here, he obtained numerous results concerning, among others,
the stochastic linear-quadratic optimal control problem, spectral factorization, and optimal esti-
mation of random processes and fields; he developed methods for designing optimal filters when
processing a packet of random plane waves against the background of distributed noise. The results
of this cycle have important applications in the theory of radar and short-wave communications,
underwater acoustics, radio astronomy, seismology, geophysics, and television tracking systems.
The tendency to use the power of functional analysis in control theory, general for the school of
V.A. Yakubovich, did not pass over V.N. Fomin. In recent years, before his untimely death, he
actively and passionately developed the operator approach to filtering problems and related control
problems. In particular, he succeeded in constructing a unified theory of optimal filtering, which
effortlessly encompasses the Wiener–Kolmogorov theory of optimal filtering of stationary processes
and the Kalman–Bucy theory of recursive filtering and, moreover, has a wide scope of applicability.
Vladimir Nikolaevich’s energy, charisma, and sparkling humor made him the driver of almost any
event (seminar, lecture, etc.) with his participation, and the main claim of students who were lucky
enough to attend his lectures was that they could never fall asleep.

In 1969, a new postgraduate—G.A. Leonov—appeared in LTC. In 1971, he defended his candi-
date’s dissertation and continued his work in the Laboratory and at the Department. Gradually,
an individual scientific direction was formed under his leadership within the traditional LTC–DTC
approaches. The fundamental results on the theory of stability and synchronization of nonlinear
oscillations in phase systems [48, 51, 120, 121] were followed by pioneering works and books on the
theory of control and stabilization of linear controlled systems [122, 123] and the qualitative study
of global attractors in dynamic systems: instability, bifurcations, synchronization, and dimension
estimation [124, 125]. In 2007, G.A. Leonov became Head of the Department of Applied Cybernet-
ics, newly established at the Faculty of Mathematics and Mechanics (SPbSU), and subsequently
part of its history.

In V.A. Yakubovich and the older generation of his students, a keen interest in practical problems
was naturally combined with the I. Kant’s thesis that there is as much truth in each science as there
is substantial mathematics in it. Among the next generation, a bright adherent of this philosophy
was A.E. Barabanov, a student of V.N. Fomin. Colleagues repeatedly admired Andrei Evgen’evich’s
ability to apply deeply non-trivial mathematical moves in seemingly routine but important applied
problems. And, more significantly, it brought success, confirming the above thesis. The range
of A.E. Barabanov’s interests was vast. As an illustration, let us mention important R&D works
for the defense industry, the development of interference-proof dial-up modems for highly noisy
switched lines (together with employees of the Department of System Programming, SPbSU), and
radar signal processing systems, first for NPO Ravenstvo and then for Transas, one of the world’s
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largest suppliers of maritime navigation software. (According to experts, e.g., A.N. Terekhov2,
Transas was a monopolist of the onboard software market in the 1990s–2010s.) Note also systems
for analyzing dolphin sound signals and systems for speech analysis and synthesis, which were
developed in creative contact with the Department of Phonetics, SPbSU. On the latter topics,
A.E. Barabanov prepared and delivered advanced courses of lectures. The focus of his theoretical
research was on the design of optimal and suboptimal controllers [126, 127], where he obtained a
series of important and sometimes unexpected results. As an example, in the 1980s he designed an
optimal controller under uniformly bounded perturbations and, on this basis, constructed a new
theory of L1-optimal control. The pioneering work of A.E. Barabanov and O.N. Granichin on this
topic was far ahead of similar foreign publications. Later on, O.N. Granichin (another student of
V.N. Fomin) systematically developed approaches based on randomization in control systems and
obtained the conditions of system operability under “almost arbitrary” (unknown but bounded)
disturbances [128, 129].

At the turn of the millennium, the scientific community realized that, on the one hand, a con-
tinuous physical process interacting with a discrete (digital) control computing device is a steadily
spreading combination of the future; on the other hand, the available tools of the mathematical
theory are not ready, to the extent required, to deal with this combination. Its mathematical model
is the hybrid dynamic system (HDS), i.e., a system described by both continuous and discrete state
variables that mutually affect the evolution of each other. In the late 1990s, the interest in the
mathematical modeling and theory of such systems could be characterized as a kind of boom.

Since 1997 the students of V.A. Yakubovich—A.S. Matveev and A.V. Savkin—conducted joint
studies on the qualitative theory of HDSs. They laid the foundations of such a theory for a
rather general class of HDSs and obtained some of the first general proof results in this field.
The results were published in leading international journals, as well as in the monograph [130],
probably the first in the world on this subject. The corresponding series of works focused on
a general class of switched HDSs, i.e., systems for which the continuous state variables have no
jumps. Among other things, the outcomes include necessary and sufficient conditions of strong
determinacy of the system and invariance of a given domain, criteria for the existence and global
stability of limit cycles, analogs of the classical Poincaré–Bendixson theorem, a method for designing
distributed switching algorithms for processors ensuring excitation and global stability of given
(optimal) oscillatory processes in large-scale flow networks, etc. The effectiveness of the general
theory was demonstrated by the productive study of a number of models of information, computer,
transportation, and other networks, flexible manufacturing systems, biotechnological, and other
processes of independent interest.

Various aspects of the discretization problem of continuous systems in the general context of
constructing the theory of HDSs were actively studied by V.A. Bondarko [131, 132]. For example,
for linear time-invariant objects, he compared different discretization methods in terms of their
adequacy, interconnections, and the asymptotics of properties of discrete models when increasing
the frequency of time quantization. In parallel with refining the theory of finitely convergent algo-
rithms for solving countable systems of inequalities, V.A. Bondarko established important results
in the field of adaptive control, including the control of nonlinear systems and systems with an
infinite-dimensional state space.

Since the mid-1990s V.A. Yakubovich and his students (with a special role of A.V. Proskurnikov
among them) breathed new life into the traditional topics of the School related to linear-quadratic
optimization and the frequency theorem: a cycle of about 20 papers was published on optimal
damping of oscillations, optimal signal tracking, and invariance theory [133–138]. Within this cycle,
a number of pioneering aspects were introduced into quite classical control theory topics, including

2 https://www.rbc.ru/spb{\_}sz/22/03/2018/5ab26f809a7947027cb81160.
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the conceptualization of a “universal controller” ensuring optimality under all a priori unknown
noises and tracked signals and the invariance of the system output with respect to the exogenous
disturbance. The seminal paper [133] of the cycle won the Nauka/Interperiodica’s award for the
best publication of the year 1995; at the 1995 European Control Conference, V.A. Yakubovich
was a plenary speaker on this subject [134]. In 2008, A.V. Proskurnikov was awarded the Young
Scientists Medal and Prize of the Russian Academy of Sciences for for the cycle under discussion.

Starting from about the early 2000s, the phenomenon of swarm intelligence in complex network
systems, as it is now called, has attracted considerable interest from physicists, mathematicians,
and computer scientists in the world. Here, the main intrigue lies in how the local interactions of
uninformed and low-influence elements give birth to rational and meaningful behavior of the net-
work as a whole. The motivation for this topic is diverse and includes investigating the dynamics
of ensembles of physical particles, biological populations, and opinions in social groups, artificial
intelligence systems, networked control systems, etc. The subject of one of the most mathemat-
ically substantial (to date) sections of this field is distributed consensus algorithms. Significant
results of the school of V.A. Yakubovich in this field, unfortunately, still poorly represented in the
Russian Federation, belong to A.V. Proskurnikov (with the initial participation of A.S. Matveev);
in 2022, he defended his doctoral dissertation on this topic at SPbSU. It crowns the cycle of stud-
ies, in particular, with a remarkable advance toward a complete theory of distributed averaging
consensus algorithms and a productive original method of differential and recursive averaging in-
equalities. A.V. Proskurnikov’s contribution to the related development of mathematical sociology
was recognized by a joint publication in Science [139].

Among the examples of initiative work by V.A. Yakubovich’s students, it is necessary to mention
the development and promotion of a new and, to a large extent, pioneering direction lying at the
junction of physics and cybernetics. This direction emerged not by chance; on the contrary, at the
turn of the 1990s, there was an explosive interest in the application of cybernetics and information
and control theory methods in physics. One of its triggers was the intriguing possibility, discovered
in those years, to significantly change the properties of a system, e.g., to suppress or create chaos in
its behavior, to change its resonance characteristics, etc., through a (theoretically arbitrarily) small
impact. The books [140, 141] published in 1998 and 1999 were the first monographs in the world
in this direction, and the field of sciences on the border of cybernetics and physics was named
cybernetical physics (cyber-physics) by their coauthor A.L. Fradkov. In particular, it includes
the control of molecular and quantum systems (A.L. Fradkov, M.S. Anan’evskii), which play an
important role in the creation of promising nanotechnologies. The paper [142] reviewing research
works on chaos control3 won the Nauka/Interperiodica’s award for the best publication of the year
2003. The basic principles of cyber-physics were described in the books [42, 143]. Signs of its
international recognition are the world’s first international conferences on physics and control held
in St. Petersburg (2003–2005), as well as the International Physics and Control Society (IPACS)
established with headquarters in St. Petersburg. Cybernetics and Physics, an international journal
indexed in Scopus, is published in St. Petersburg under the auspices of this society.

Another important direction, perhaps decisive for cybernetics itself, reflects the convergence
trend of the theories of control, computation, and communication toward their unity, which took
shape at the turn of the millennium. More and more problems require close interaction of the meth-
ods of these three theories; even the aphoristic formula Control×Computation×Communication=
C3 has appeared, expressing the aspiration to return the holistic perception of information, com-
putational, and control processes, which meant so much for the successes of the “romantic” cyber-
netics of the 1960s. Some pioneering results in this direction were obtained in the early 2000s by

3 The survey is the most cited article of Avtomatika i Telemekhanika, and its second co-author is the most cited
author of the journal.
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A.S. Matveev together with A.V. Savkin, a DTC alumnus and Professor of the University of New
South Wales (Australia). The corresponding cycle of works was devoted to control and estimation
under the capacity constraints of communication channels [144–147] and was partially summarized
in the monograph [148]. In particular, it was demonstrated that an unstable linear controlled
system can be stabilized if and only if the bit rate of information arrival through the commu-
nication channel exceeds the rate of information production by the system; also, a fundamental
advance was made to determine the place of the basic concepts of C. Shannon’s information theory
(in particular, the capacity of a noisy communication channel) in the discussed topic. Subsequently,
the research switched to nonlinear systems and was carried out by A.S. Matveev in coauthorship
with Professor A.Yu. Pogromsky (the Eindhoven University of Technology) using the nonlinear
dynamics analysis methods of A.M. Lyapunov and G.A. Leonov. In particular, a new concept of
the restoration entropy of a nonlinear system was developed; in co-authorship with C. Kawan
(Ludwig-Maximilians-Universitä München) it was shown that, in a certain sense and in the ques-
tions under consideration, this entropy adequately characterizes the rate of information production
by the system [149, 150]. Sufficient conditions for the operability of nonlinear and adaptive systems
under communication constraints were also obtained by A.L. Fradkov et al. [151–156]. Some results
obtained by the team were overviewed in [157].

With all the conventionality of any rubric, it has become a kind of tradition to divide modern
robotics into two sections, industrial and mobile robotics. The first (and more developed) section
focuses on the orchestra of industrial systems, in which manipulation systems (mechanical arms)
play first fiddle. At present, the vast majority of such systems follow the hold-down arm paradigm
with a fixed operational location. At the same time, practical tasks are systematically introduced
into the agenda where the soft (non-hold-down arm) approach is needed and/or the manipulation
object is malleable, and mobile and manipulation functions interact operatively. Such tasks now
fall into an almost unexplored field; its development requires solving a number of fundamental
problems, including theoretical ones. A group of DTC graduates (A.S. Shiryaev and S.V. Gusev)
has been systematically working in this direction since the 2010s. Its asset is the development of
largely pioneering mathematical methods of dynamics analysis and controller design for solving
the corresponding problems, in particular, the method of moving Poincaré sections and trans-
verse linearization, high-speed methods for solving special matrix Riccati differential equations,
general methods for finding periodic motions implemented in complex under-actuated mechanical
systems, and other results [158–160]. The effectiveness of these R&D results was demonstrated
in 2015 by the world’s first experimentally validated solution of a complex prototypical problem
posed in 1998 by C. Lynch: stabilize the circular motion of a ball on a rotating butterfly-shaped
guide [160].4

The mobile robotics section concentrates on the autonomous navigation of mobile robots and
their motion control in a priori unknown environments with obstacles. This direction has been
systematically developed since the 2010s by the mobile robotics group of DTC (A.S. Matveev,
A.A. Semakova, and P.A. Konovalov) with the participation of A.V. Savkin (until 2017). A num-
ber of fundamental results on robot navigation algorithms in complex (particularly moving and
unpredictable) environments, including distributed control of their multi-agent ensembles, were ob-
tained here. They were partially systematized in the two monographs [161, 162], released in 2015
and 2016 by the world’s leading academic publishers. The specifics of the group’s R&D works are
resource-saving algorithms (in terms of computations, energy, sensory data about the environment,
etc.) that convert current observation into current control in a reflex-like manner (as a consequence,
with minimal requirements for onboard processors) and are nevertheless provided with mathemat-
ically rigorous guarantees of achieving the result. According to the WoS data for the year 2022,

4 https://www.youtube.com/watch?v=kyvW5sOcZHU.
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of the five most cited publications on robotics affiliated with Russia, four are related to DTC,
including the most cited paper [163] (279 citations).

Mathematical methods have long been used for the quantitative and qualitative study of pro-
cesses and systems, to a greater or lesser extent related to the field of biology and medicine. In
this direction, in the early 2000s A.S. Matveev and A.V. Savkin investigated optimal protocols for
chemotherapeutic treatment of cancer [164]. Starting from the mid-2000s, DTC (A.N. Churilov and
A.I. Shepeljavyi) together with Uppsala University (Sweden) conducted systematic studies on mod-
eling and analysis of biological rhythms and chaotic dynamics in neurohormonal systems [165, 166].
Since the 2010s the scientific directions of the School include neural control and neurofeedback based
on the mathematical study of networks of biological neurons. These R&D works lie at the junction
of cybernetics and neuroscience; here, the world expects breakthroughs in medical diagnosis, as well
as in the control of robots and other devices with the power of thought (without human muscles).
At present, under the guidance of A.L. Fradkov, a grant-supported project is being implemented on
this topic at SPbSU. The corresponding works are being carried out jointly with the Higher Nervous
Activity and Psychophysiology Department of SPbSU, the Institute of Human Brain (the Russian
Academy of Sciences), Institute for Problems of Mechanical Engineering (the Russian Academy of
Sciences), and Immanuel Kant Baltic Federal University. M. Lipkovich and S.A. Plotnikov, young
representatives of the School, actively participate in the project.

Representatives of the School have been teaching at various universities of the country. In
St. Petersburg, let us note the following persons (currently active or passed away): G.A. Leonov,
Dean of the Faculty of Mathematics and Mechanics (SPbSU), USSR State Prize Laureate, Cor-
responding Member of the Russian Academy of Sciences; N.V. Kuznetsov, Head of the Depart-
ment of Applied Cybernetics (SPbSU), Corresponding Member of the Russian Academy of Sci-
ences; O.N. Granichin, Professor of the Department of System Programming (SPbSU); Profes-
sors A.V. Timofeev (St. Petersburg State University of Aerospace Instrumentation), A.N. Churilov
(St. Petersburg State Marine Technical University), V.B. Smirnova (St. Petersburg State University
of Architecture and Civil Engineering), N.E. Barabanov (St. Petersburg Electrotechnical Univer-
sity “LETI”); Heads of laboratories of academic institutes A.V. Timofeev (St. Petersburg Institute
for Informatics and Automation, the Russian Academy of Sciences) and A.L. Fradkov (Institute
for Problems of Mechanical Engineering, the Russian Academy of Sciences). In the 1970s and
1990s, several talented graduates of the Department left the country, B.G. Pittel, M.V. Levit, and
B.D. Lyubachevskii were among them. Some of them became professors at foreign universities:
A. Megretski (Massachusetts Institute of Technology, USA), N. Barabanov (North Dakota State
University, USA), A. Savkin (University of New South Wales, Australia), A. Shiriaev (Ume̊a Uni-
versity, Sweden, and Norwegian University of Science and Technology, Trondheim, Norway)

A significant place in the School’s activities is occupied by scientific and organizational work.
For example, since 1967 V.A. Yakubovich was Deputy Chairman (Deputy of A.A. Vavilov, Rector
of Leningrad Electrotechnical University) and part-time Chairman of the Section for the The-
ory of Adaptive Control Systems, the Leningrad Territorial Group of the National Committee
on Automatic Control. A series of six Leningrad (St. Petersburg) symposia and one All-Union
Conference on the Theory of Adaptive Systems, held on the initiative of V.A. Yakubovich and
under his guidance from 1972 to 1999, occupied a notable place in the scientific and organiza-
tional landscape of the country. This series was another sign recognizing the School’s merits in
the field of adaptive systems, and its events were important milestones in the development of
the field. In those years, it was one of the main growth points of mathematical control theory and
cybernetics and attracted the interest of talented young people and venerable researchers: the num-
ber of papers and participants usually numbered in the hundreds. The symposia were attended
by leaders of domestic and, since the 1990s, foreign science. Note the following persons among
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them: Academicians Ya.Z Tsypkin, A.A. Krasovskii, E.P. Popov, and N.N. Moiseev; Doctors of
Science D.A. Pospelov, V.Yu. Rutkovskii, Yu.I. Neimark, A.A. Pervozvanskii, and R.M. Yusupov;
G. Bartolini (Italy), S. Bittanti (Italy), V. Răsvan (Romania), A. Halanay (Romania), L. Ljung
(Sweden), J. Lando (France), A. Lindqvist (Sweden), D. S̆iljak (USA), K. Furuta (Japan), and oth-
ers. In 1972, a plenary report was delivered by M.M. Botvinnik, Doctor of Engineering, former
world chess champion; he spoke about the development of a computer algorithm for chess play.
Initially, the scientific secretary of the series of events was D.P. Derevitskii, Associate Professor
of the Department of Automatic Control Systems (Leningrad Mechanical Institute); later, he was
replaced by A.L. Fradkov. In scientific and organizational activities, DTC traditionally and closely
cooperates with the Laboratory of Complex Systems Control (Institute for Problems of Mechan-
ical Engineering, the Russian Academy of Sciences). It was established in 1990 by A.L. Fradkov,
the first and present-day head. This laboratory is closely connected with the Department both in
research interests and in education.

The team conducts career-oriented work with young people in the field of cybernetics. In 1999,
a group of experts in automation and control systems from several universities of the city proposed
to organize school olympiads in cybernetics. The idea was supported by V.P. Tarasov, Head of
the department of science and technology at St. Petersburg City Palace of Youth Creativity (the
Anichkov Palace), and things got rolling: 14 Olympiads were held in 1999–2013. M.S. Anan’evskii,
A.L. Fradkov, and A.S. Matveev, representatives of the School, took an active part in their orga-
nization and holding from the very beginning. The materials of the Olympiads and some method-
ological conclusions were summarized in a series of proceedings published largely owing to the work
and energy of M.S. Anan’evskii.

In 2008, a cybernetics club was organized for junior students of DTC based on LEGO Mind-
storms NXT. While learning control theory, students had an opportunity to implement control
algorithms on physical objects and to connect their theoretical knowledge with practice. In the
class, students independently developed original designs such as a bicycle robot, a segway, a crawl-
ing robot, a predator robot, and others. The best works were presented at the Robot Show during
the Week of the Faculty of Mathematics and Mechanics (SPbSU). At the same time, creative coop-
eration began with the Robotics Center of Presidential Physics and Mathematics Lyceum (PPML)
No. 239, headed by S.A. Filippov. The results of cooperation were presented at several international
conferences [167, 168]. The enthusiasm of R.M. Luchin, a DTC member and teacher, played an
important role in organizing and leading the club. Robot soccer became one direction of his work.
The first city competitions of radio-controlled robots were held in 2012; a year later autonomous
robots were already on the field.

Experience with LEGO led a group of enthusiasts (R.M. Luchin, S.A. Filippov, and A.N. Tere-
khov) to the idea of developing their own constructor set, more advanced than LEGO. Cybernetic
Technologies LLC was founded, where the Universal Cybernetic Constructor TRIK and the nec-
essary software were developed, allowing to implement various projects, from basic educational to
modern research projects. They are used in Russian schools and universities. According to the
2018 annual analytical review of the global robotics market by Sberbank’s robotics laboratory,
the company was mentioned as one of Russia’s few unconditional successes in this market so far.
Unfortunately, R.M. Luchin passed away prematurely at a young age due to the COVID-19 pan-
demic. His work is being continued by his student, I.Yu Shirokolobov, an employee of DTC. In
2019, URoboRus, the jointly created team of robotic soccer players, was the first Russian team to
qualify for the RoboCup SSL, a kind of world championship. In 2020, URoboRus qualified again,
but the competition was canceled due to the pandemic. In 2021, the competition was carried out
online, and URoboRus managed to participate in the playoff for the first time, ranking first in
the group. The year 2022 was remarkable for another successful qualification for the RoboCup
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SSL World Championship and the first full-time participation. The event took place at the FEI
University in Sao Paolo (Brazil) during RoboCup Brazil Open, the Brazilian Open Championship.

Thanks to the efforts of the DTC team, as well as the support of PPML No. 239, the Scientific and
Educational Center (SEC) “Mathematical Robotics and Artificial Intelligence” was established at
SPbSU in 2019. Since its foundation, K.S. Amelin (a student of O.N. Granichin) and A.L. Fradkov
are Director and Scientific Supervisor of SEC, respectively. The Center is intended to integrate the
efforts of SPbSU in fundamental research on mathematical and educational robotics and intelligent
control. The directions of the Center’s work include the issues of navigation of mobile robots
and their multi-agent network ensembles, control of underactuated manipulators, computer vision,
artificial intelligence, machine learning and big data processing, neural network control, methods
and tools for programming and debugging robots, and educational and practical robotics. In
2022, the experimental park of SEC contained Geoscan Pioneer quadcopters and TRIK universal
cybernetic constructor kits. With the active participation of SPbSU students and the use of this
park, SEC has already implemented several applied projects, in particular, forrest inventory by
robotic quadcopters, search for a person lost in the forest, semi-automatic dropping of GPS beacons
on glaciers to monitor their movement, automatic overflight of protected areas, control of bridge
piers, increase of the data transmission rate in large wireless networks, etc.

Additional information about the department is available in thematic issues of Russian and in-
ternational journals [169–171] dedicated to the anniversaries of DTC employees and in the collection
of articles [3]. The scientific product of the School counts many hundreds of publications, including
over 60 books. V.A. Yakubovich’s nestlings work fruitfully in many Russian and foreign research
centers and universities; they have defended over 100 dissertations on physics, mathematics, and
engineering, including 19 doctoral dissertations.

The influence of the Department and School’s achievements is noticeable in the distribution of
university places in world rankings. For example, according to the Shanghai Academic Ranking of
World Universities (ARWU), SPbSU ranked 32nd in the direction “Automation and Control” in
2018. The number of publications by DTC employees in top journals on automation and control,
taken into account in the ARWU ranking, approximately equals 28% (24 out of 85) of all Russian
publications in such journals for 2012–2016.

Representatives of the School have been repeatedly given prestigious Russian and international
awards and titles. In 1998, V.A. Yakubovich became Honored Scientist of the Russian Federa-
tion; in 2005, he was awarded the Order of Honor. V.A. Yakubovich was Member of the Russian
Academy of Sciences and Academician of the Russian Academy of Natural Sciences. In 2006 he
was elected Honorary Professor of SPbSU. A.L. Fradkov was awarded the international honorary
titles of IFAC Fellow, IEEE Life Fellow, and AAIA Fellow. In 2015, DTC alumnus (1998) Alexey
Pavlov and colleagues from the Eindhoven University of Technology received the prestigious IEEE
Control Systems Technology award. In 2020, DTC alumnus A.V. Proskurnikov and coauthors were
awarded the IFAC and Elsevier paper prize award for the best paper published in Annual Reviews
in Control in 2017–2020. (Proskurnikov, A.V. and Tempo, R., A Tutorial on Modeling and Analy-
sis of Dynamic Social Networks. Part I, Annual Reviews in Control, 2017, vol. 43, pp. 65–79.) The
same award for the best paper of 2020–2022 was given for the survey [76]. In 2018, A.L. Fradkov
was awarded the Andronov Prize of the Russian Academy of Sciences for the series of works on
synchronization and control of nonlinear oscillations (together with I.I. Blekhman).

After the demise of Vladimir Andreyevich Yakubovich in 2012, the founder and long-term head of
DTC, the founder of the scientific school of cybernetics and artificial intelligence in St. Petersburg,
the Department was successively headed by his closest colleagues and students, A.Kh. Gelig,
A.L. Fradkov, and A.S. Matveev (since 2021 until present). Several thematic collections, publi-
cations, and speeches have been devoted to the creative biography and scientific achievements of
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V.A. Yakubovich, as well as the 1st International IFAC Conference on Modelling, Identification and
Control of Nonlinear Systems (MICNON 2015) [172–174]. The DTC staff prepared and published
a CD-ROM containing over 300 main works of V.A. Yakubovich.
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Abstract—The speed-in-action problem for a linear discrete-time system with bounded control
is considered. In the case of superellipsoidal constraints on the control, the optimal control
process is constructed explicitly on the basis of the discrete maximum principle. The prob-
lem of calculating the initial conditions for an adjoint system is reduced to solving a system
of algebraic equations. The algorithm for generating a guaranteeing solution based on the
superellipsoidal approximation method is proposed for systems with general convex control
constraints. The procedure of superellipsoidal approximation is reduced to solving a number of
convex programming problems. Examples are given.

Keywords : linear discrete-time systems, speed-in-action problem, maximum principle, superel-
lipse, ellipsoidal approximations
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1. INTRODUCTION

One of the natural control quality functions is the time spent by the system to achieve a given
terminal state. In practice, the resulting optimal control problem is called the speed-in-action
problem. It is essential that the speed-in-action problem for linear discrete-time systems has a
number of serious differences from a similar problem for continuous systems. While in the case of
continuous time, the solution obtained on the basis of the Pontryagin’s maximum principle [1] for a
linear system guarantees the relay nature of the optimal control in terms of speed, a similar result
for a system with discrete time [2, 3] is incorrect.

The direct approach based on minimizing the norm of the terminal state for all control actions
turns out to be difficult to apply for high-dimensional systems with a large time horizon and
vector control. This is due to the fact that the resulting mathematical programming problem is
characterized by a rapid increase in the number of constraints and optimization variables with an
increase in the number of steps required for the system to reach origin. At the same time, for
almost all initial states, the extremum in the speed-in-action problem is irregular [4], which also
complicates the use of known numerical methods.

Consideration of the optimality conditions of the process using various classical approaches leads
to two fundamentally different methods for solving the speed problem. Bellman’s dynamic pro-
gramming method [5] makes it possible to construct an optimal control in a positional form. In
the case when the set of admissible control values is a polyhedron, the calculation of each control
action is reduced to solving a linear programming problem [6]. Also, in [6], a method for forming
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optimal control in the case of arbitrary convex control constraints based on polyhedral approxima-
tion is demonstrated [7]. This approach has a number of disadvantages related to computational
difficulties. The accuracy of the guaranteeing solution in the speed-in-action problem is achieved
by increasing the number of vertices of the polyhedral approximation, which leads to an exponen-
tial increase in the complexity of the corresponding linear programming problems. Due to this
fact, such approach, when implemented on standard computing devices, is characterized by either
low accuracy of the solution, or a relatively small time horizon, especially for large-dimensional
systems.

On the contrary, the combination of optimality conditions in the speed-in-action problem with
the discrete maximum principle [1–3] allows optimal program control to be formed [4]. An essential
condition for the applicability of these methods is the strict convexity of the set of admissible
control values. But the relation for calculating the initial state of a conjugate system in the case
of an arbitrary structure of control constraints is difficult to solve. In [8], a special case of an
ellipsoidal structure of a set of admissible control values is presented. An analytical solution to
the speed-in-action problem based on the necessary and sufficient optimality conditions presented
in [4].

A natural approach is to combine the ideas of constructing a guaranteeing solution from [6]
on the basis of ellipsoidal approximation of the set of admissible control values in combination
with methods of forming program control according to the discrete maximum principle [4, 8].
The technique of ellipsoidal approximation is widely used in the theory of optimal control [9, 10].
However, the class of ellipsoids does not allow achieving arbitrary accuracy of the approximation of
the initial set, and consequently, the accuracy of solving the optimal control problem. The article
considers a class of superellipsoidal sets (the exact definition is given in Section 2), which allow a
higher order of the accuracy while maintaining strict convexity conditions, which guarantees the
simplicity of solving the speed-in-action problem in the same way [8].

Superellipses on the plane have been known for a long time as Lame curves [11] and have a large
number of different applications in natural science and technical disciplines. They are actively
used, for example, in geodesy and mapping tasks [12], in botany for modeling plant growth [13]
and describing natural shapes [14], designing waveguides for antenna arrays [15, 16] or for modeling
bends of various structures [17]. However, the general study of the properties of these figures is
usually limited to the two-dimensional case [12, 18]. This fact makes it relevant to study the
properties of this class of geometric bodies in a space of arbitrary dimension in terms of convex
analysis: the description of their support function, support point and normal cone, the solution of
various approximation problems.

The purpose of this work is to develop a method for generating optimal control explicitly in the
case of a superellipsoidal structure of a set of acceptable control values, as well as to describe an
approach for constructing a superellipsoidal approximation of an arbitrary convex body with the
highest possible accuracy. The fundamental difference from this paper and both classical [19–21] and
modern [22, 23] results is the consideration of arbitrary vector control, which is convex constrained,
and the lack of restrictions on the dimension of the phase space. It is a more general statement of
the problem, expanding the range of possible applications.

The article has the following structure. Section 2 presents non-standard designations and as-
sumptions that are used in the article. In Section 3, the speed-in-action problem is considered,
the maximum principle is described as the main tool for its solution, and the formulation of the
problem of superellipsoidal approximation of the set of admissible control values is formulated
in order to form a guaranteeing process. Section 4 presents an exact solution to the speed-in-
action problem in the case of a superellipsoidal structure of a set of admissible control values.
Section 5 describes a method for reducing the problem of optimal in the sense of the Lebesgue
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measure superellipsoidal approximation of a convex body to a number of convex programming
problems. Section 6 demonstrates examples of constructing a guaranteeing process in a speed-
in-action problem for systems of different dimensions based on the obtained theoretical results.
Estimates of the accuracy of the constructed processes in comparison with the optimal solution are
given.

2. DESIGNATIONS

We will assume that the phase space is a Euclidean space R
n with a scalar product defined by

the relation

(x, y) =
n∑

i=1

xiyi.

For any r ∈ [1;+∞) define on R
n norm

‖x‖r =
(

n∑
i=1

|xi|r
) 1

r

.

For r = 2 the norm ‖ · ‖2 is consistent with the scalar product. From the point of view of theory,
the value r = 1 is acceptable, but it will not be considered within the paper, which allows us to
define the number q > 1 as a Helder dual of the number r:

1

r
+

1

q
= 1.

For arbitrary sets X ,U ⊂ R
n and the matrix D ∈ R

n×n we denote the Minkowski sum by X + U

X + U = {x+ u : x ∈ X , u ∈ U},

and we denote by DU the image of the set U under the mapping D

DU = {Du : u ∈ U}.

By ∂U and int U we denote the sets of boundary and interior points of U respectively. cone {U} is
the conic hull of the set U [24, § 2 ch. I].

If the set U ⊂ R
n is a convex compact, then for an arbitrary point u ∈ U by N (u,U) we denote

the normal cone of the set U at the point u [24, § 2 ch. I]:

N (u,U) =
{
p ∈ R

n \ {0} : (p, u) = max
ũ∈U

(p, ũ)

}
.

The elements of the normal cone N (u,U) are called support vectors to U at the point u. Note that
by construction equality N (u,U) = ∅ is valid if and only if the inclusion u ∈ int U is correct. If the
inclusion of 0 ∈ int U is also true, then U will be called a convex body [25, Section 3 § 1 ch. IV]
and for an arbitrary x ∈ R

n we introduce the Minkowski functional [25, Section 3 § 2 ch. III] or
the calibration function [24, § 4 ch. I]:

M(x,U) = inf{t > 0: x ∈ tU} = inf

{
t > 0:

x

t
∈ U

}
.
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The strickly convex set U ⊂ R
n is such set that for any u1, u2 ∈ U , λ ∈ (0; 1) the inclusion

λu1 + (1− λ)u2 ∈ int U is correct.

We will call a superellipse or superellipsoidal set for some a1 > 0, . . . , an > 0, r > 1 a set of the
form

Er(a1, . . . , an) =
{
x ∈ R

n :
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r � 1

}
. (1)

We will assume shortering a = (a1, . . . , an)
T and denote the corresponding superellipse by Er(a).

By diag(a) ∈ R
n×n we denote a diagonal matrix constructed by the vector a ∈ R

n:

diag(a) =

⎛
⎜⎜⎜⎜⎝
a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

⎞
⎟⎟⎟⎟⎠ .

3. PROBLEM STATEMENT

The linear discrete-time system with limited control (A,U) is considered:

x(k + 1) = Ax(k) + u(k),

x(0) = x0, u(k) ∈ U , k ∈ N ∪ {0},
(2)

where x(k) ∈ R
n is the state vector of the system, u(k) ∈ R

n is the control action, A ∈ R
n×n is

the matrix of the system, U ⊂ R
n is the set of valid control values. It is assumed that detA �= 0,

U is a convex compact, 0 ∈ int U .
For the (2) system, the speed-in-action problem is solved, i.e. it is required to transfer the system

(A,U) from a given initial state x0 ∈ R
n to the origin in the minimum number of steps Nmin:

Nmin = min {N ∈ N ∪ {0} : ∃u(0), . . . , u(N − 1) ∈ U : x(N) = 0} .

The control process {x∗(k), u∗(k − 1), x∗(0)}Nmin
k=1 , satisfying the condition x∗(Nmin) = 0, we will

call optimal. It is assumed that the speed-in-action problem for the system (A,U) is solvable, i.e.
Nmin <∞. The issues of solvability of the speed-in-action problem for the (2) system are discussed
in detail in [26].

The construction of optimal processes is closely related to the apparatus of 0-controllable sets
[4, 6]. For an arbitrary N ∈ N ∪ {0} we denote by X (N) ⊂ R

n the 0-controllable set of the sys-
tem (2) in N steps, i.e. the set of those initial states from which the system (2) can be transferred
to 0 in N steps by acceptable control actions:

X (N) =

{
{x0 ∈ R

n : ∃u(0), . . . , u(N − 1) ∈ U : x(N) = 0}, N ∈ N,

{0}, N = 0.
(3)

Then, according to the definition of Nmin the following representation is also valid:

Nmin = min{N ∈ N ∪ {0} : x0 ∈ X (N)}. (4)

At the same time, the control, as demonstrated in [4, 6], is optimal if and only if for all k =
0, Nmin − 1 the inclusion is true

x∗(k + 1) = Ax∗(k) + u∗(k) ∈ X (Nmin − k − 1).
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In [4], a number of results were obtained for the speed-in-action problem, which can be presented
in the form of the maximum principle for a strictly convex U .

Theorem 1. Let U ⊂ R
n be a strictly convex and compact set, 0 ∈ int U , detA �= 0, a class of

sets {X (N)}∞N=0 is defined according to (3), the control process {x∗(k), u∗(k − 1), x∗(0)}Nmin
k=1 and

the trajectory of the conjugate system {ψ(k)}Nmin−1
k=0 satisfy the relations

x∗(k + 1) = Ax∗(k) + u∗(k),

u∗(k) = αarg max
u∈U

(
(A−1)Tψ(k), u

)
,

ψ(k + 1) = (A−1)Tψ(k),

x∗(0) = x0,

− ψ(0) ∈ N (x0, αX (Nmin)) ,

α =M(x0,X (Nmin)).

Then

1) {x∗(k), u∗(k − 1), x∗(0)}Nmin
k=1 is the optimal process for the system (A,U);

2) if α = 1, then the optimal process is the only one;
3) −ψ(k) ∈ N (x∗(k), αX (Nmin − k)), k = 0, Nmin − 1.

From a computational point of view, the question of applying the Theorem 1 comes down to
determining α and ψ(0) from the conditions

− ψ(0) ∈ N (x0, αX (Nmin)) ,

α =M(x0,X (Nmin)).
(5)

This problem in the case of an arbitrary strictly convex body U can be a nontrivial problem.

The main purpose of this paper is to construct effective methods for solving the conditions (5)
with respect to ψ(0) ∈ R

n \ {0} and α > 0 for the special case when U allows the representation

U = BEr(a), B ∈ R
n×n, detB �= 0, a1, . . . , an > 0, r > 1. (6)

Another goal of the paper is to develop a method for approximating an arbitrary convex body U
by a nested set Û of the form (6), that minimizes the Lebesgue measure of the difference between
two sets μ(U \ Û), in order to construct a guaranteed solution in the speed-in-action problem for
the system (A,U).

4. THE OPTIMAL PROCESS IN THE CASE OF A SUPERELLIPSOIDAL STRUCTURE
OF CONTROL CONSTRAINTS

The conditions (5) can be reduced to an equivalent system of algebraic equations in the case
of (6). To do this, we will carry out an analytical description of 0-controllable sets and some
properties of strictly convex and superellipsoidal sets.

Lemma 1 [4, Lemma 1]. Let detA �= 0, the class of sets {X (N)}∞N=0 be determined by the
relations (3). Then for any N ∈ N the representation is true

X (N) = −
N∑
k=1

A−kU .
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Lemma 2 [27, Lemma 3]. Let U ⊂ R
n be a strictly convex compact, 0 ∈ int U . Then for any

different u1, u2 ∈ U it is true that

N (u1,U) ∩ N (u2,U) = ∅.

The following statement follows from [27, Lemmas 5, 6].

Lemma 3. Let U ,X ⊂ R
n be convex compacts, u ∈ U , x ∈ X , A ∈ R

n×n, detA �= 0.

Then

1) N (u+ x,U + X ) = N (u,U) ∩ N (x,X );

2) N (Ax,AX ) = (A−1)TN (x,X ).

The Lemma 3 defines the transformation of the normal cone of convex sets with non-degenerate
linear mapping and Minkowski addition. Taking into account the Lemma 1 this makes it possible
to describe an arbitrary normal cone of any 0-controllable set in terms of the normal cones of the
set U or Er(a1, . . . , an) in the case (6). On the other hand, the Lemma 2 establishes a one-to-one
correspondence between a boundary point and its normal cone for a strictly convex set. If this
dependence is described explicitly, then it is possible to obtain algebraic equations equivalent to
the conditions (5).

We introduce for an arbitrary r > 1 the bijective operator Ir : R
n → R

n:

Ir(x) =
(
sgn(x1)|x1|r−1, . . . , sgn(xn)|xn|r−1

)
.

Lemma 4. Let the set Er(a) be defined by the relations (1). Then

1) for any x ∈ ∂Er(a) it is true that

N (x, Er(a)) =
{
γ diag(a)−1Ir

(
diag(a)−1x

)
∈ R

n : γ > 0
}
;

2) for any p ∈ R
n \ {0} there is a unique

x∗(p) = arg max
x∈Er(a)

(p, x) =
diag(a)Iq (diag(a)p)

‖diag(a)p‖q−1
q

.

The proof of the Lemma 4 and all other statements is given in the Appendix.

Lemma 5. Let U = DEr(a), where Er(a) is determined by the relations (1), D∈R
n×n, detD �=0.

Then

1) for any u ∈ ∂U

N (u,U) =
{
γ(D−1)Tdiag(a)−1Ir

(
diag(a)−1D−1u

)
∈ R

n : γ > 0
}
;

2) for any p ∈ R
n \ {0} there is only one

u∗(p) = arg max
u∈U

(p, u) =
Ddiag(a)Iq

(
diag(a)DTp

)
‖diag(a)DTp‖q−1

q

.

The Lemma 5, on the one hand, allows us to calculate the optimal control according to the
Theorem 1 in the case (6), when we choose D = B. On the other hand, the Lemma 5 in combination
with Lemmas 1 and 2 connects a point on the boundary of the 0-controllable set with an element of
its normal cone, when we choose D = −A−kB, which makes it possible to reduce the conditions (5)
to equivalent algebraic equations. We formulate this fact in the form of a theorem.
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Theorem 2. Let U be determined according to (6), x0 �= 0, ψ(0) ∈ R
n \ {0}, α > 0. Then ψ(0)

and α satisfy the conditions (5) if and only if the following equality is true:

−x0 = α
Nmin∑
k=1

A−kBdiag(a)Iq
(
diag(a)(A−kB)Tψ(0)

)
‖diag(a)(A−kB)Tψ(0)‖q−1

q

.

The system of equations presented in the Theorem 2 has not the only solution, since the right
part is invariant to the multiplication of the vector ψ(0) by any positive number. To use numerical
methods, we can propose a modification of this system, which has a single solution.

Corollary 1. Let U be determined according to (6), ψ(0)∈R
n \ {0}, α> 0. Then for any x0 �= 0

there is a unique solution of the system of equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− x0 = α
Nmin∑
k=1

A−kBdiag(a)Iq
(
diag(a)(A−kB)Tψ(0)

)
‖diag(a)(A−kB)Tψ(0)‖q−1

q

,

(ψ(0), ψ(0)) = 1,

which also satisfies the conditions (5).

Example 1. Consider the procedure for calculating ψ(0), α, Nmin based on the Corollary 1. The
parameters of the system (2) have the following values:

A =

(
3 1
1 −2

)
, B =

⎛
⎜⎜⎝

√
2

2

√
2

2

−
√
2

2

√
2

2

⎞
⎟⎟⎠ , a1 = 2, a2 = 3,

r =
4

3
, q = 4, x0 =

(
1

3
,
4

3

)T

.

Suppose that Nmin = 2, and we make up the system of equations presented in the Theorem 1:

0.20
(
0.20ψ1(0) + 0.81ψ2(0)

)3
+ 0.91

(
0.91ψ1(0)− 0.61ψ2(0)

)3
((
0.20ψ1(0) + 0.81ψ2(0)

)4
+
(
0.91ψ1(0)− 0.61ψ2(0)

)4) 3
4

+
0.17

(
0.17ψ1(0)− 0.32ψ2(0)

)3
+ 0.17

(
0.17ψ1(0) + 0.39ψ2(0)

)3
((
0.17ψ1(0) − 0.32ψ2(0)

)4
+
(
0.17ψ1(0) + 0.39ψ2(0)

)4) 3
4

= − 1

3α
,

0.81
(
0.20ψ1(0) + 0.81ψ2(0)

)3 − 0.61
(
0.91ψ1(0)− 0.61ψ2(0)

)3
((
0.20ψ1(0) + 0.81ψ2(0)

)4
+
(
0.91ψ1(0)− 0.61ψ2(0)

)4) 3
4

+
−0.32

(
0.17ψ1(0)− 0.32ψ2(0)

)3
+ 0.39

(
0.17ψ1(0) + 0.39ψ2(0)

)3
((
0.17ψ1(0) − 0.32ψ2(0)

)4
+
(
0.17ψ1(0) + 0.39ψ2(0)

)4) 3
4

= − 4

3α
.

By supplementing this system with the equivalence ψ1(0)
2 +ψ2(0)

2 = 1 according to the Corollary
of 1, we get the following solution:

ψ1(0) = −0.35, ψ2(0) = −0.94, α = 1.08.

Due to (5) it is true that α =M(x0,X (2)). It is correct that x0 �∈ X (2) since α > 1. We got a
contradiction, from which it follows that Nmin > 2.
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Assume that Nmin = 3, and make up the system of equations presented in the Theorem 1:

0.20
(
0.20ψ1(0) + 0.81ψ2(0)

)3
+ 0.91

(
0.91ψ1(0)− 0.61ψ2(0)

)3
((
0.20ψ1(0) + 0.81ψ2(0)

)4
+
(
0.91ψ1(0)− 0.61ψ2(0)

)4) 3
4

+
0.17

(
0.17ψ1(0)− 0.32ψ2(0)

)3
+ 0.17

(
0.17ψ1(0) + 0.39ψ2(0)

)3
((
0.17ψ1(0)− 0.32ψ2(0)

)4
+
(
0.17ψ1(0) + 0.39ψ2(0)

)4) 3
4

+
0.004

(
0.004ψ1(0) + 0.16ψ2(0)

)3
+ 0.11

(
0.11ψ1(0)− 0.14ψ2(0)

)3
((
0.004ψ1(0)− 0.16ψ2(0)

)4
+
(
0.11ψ1(0) − 0.14ψ2(0)

)4) 3
4

= − 1

3α
,

0.81
(
0.20ψ1(0) + 0.81ψ2(0)

)3 − 0.61
(
0.91ψ1(0)− 0.61ψ2(0)

)3
((
0.20ψ1(0) + 0.81ψ2(0)

)4
+
(
0.91ψ1(0)− 0.61ψ2(0)

)4) 3
4

+
−0.32

(
0.17ψ1(0) − 0.32ψ2(0)

)3
+ 0.39

(
0.17ψ1(0) + 0.39ψ2(0)

)3
((
0.17ψ1(0)− 0.32ψ2(0)

)4
+
(
0.17ψ1(0) + 0.39ψ2(0)

)4) 3
4

+
0.17

(
0.004ψ1(0) + 0.16ψ2(0)

)3 − 0.14
(
0.11ψ1(0) − 0.14ψ2(0)

)3
((
0.004ψ1(0) + 0.16ψ2(0)

)4
+
(
0.11ψ1(0) − 0.14ψ2(0)

)4) 3
4

= − 4

3α
.

By supplementing this system with the equivalence ψ1(0)
2 + ψ2(0)

2 = 1 according to the corollary
of 1, we get the following solution:

ψ1(0) = −0.50, ψ2(0) = −0.87, α = 0.96.

Then α =M(x0,X (3)) < 1, i.e. by definition of the Minkowski functional x0 ∈ X (3). Due to (4)
it is true that Nmin = 3.

Remark 1. In the Example 1 and everywhere else, the numerical solution of systems of algebraic
equations constructed according to the Corollary 1, is carried out in the Maple software environment
by means of built-in procedures based on the Newton method and its modifications [28].

The Theorem 2 and the Corollary 1 in conjunction with the Theorem 1 allow us to completely
solve the speed-in-action problem for a linear discrete-time system in the case of a superellipsoidal
structure of the set of admissible values of control (6). The solution of the conditions (5) according
to the Corollary 1 is equivalent to the numerical solution of a system of algebraic equations. At
the same time, the optimal process and the trajectory of the conjugate system can be calculated
from the recurrence relations presented in the Theorem 1. Optimal control is explicitly defined by
point 2 of Lemma 5.

5. INTERNAL SUPERELLIPSOIDAL APPROXIMATION
OF A CONVEX BODY

The case of (6) is quite special. It is often impossible to guarantee even the strict convexity of
the set U . In this connection, it turns out to be relevant to carry out an internal approximation
of U by a set Û of the form (6). Transition in the speed-in-action problem from the system (A,U)
to the auxiliary system (A, Û) allows us to construct a guaranteeing control in the original system
based on the methods presented in the Section 4 in relation to the auxiliary system.
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In this case, the error of the guaranteeing solution in comparison with the optimal one will be
the smaller, the larger the approximating set Û is by inclusion. This fact leads to the need to solve
the problem of optimal superellipsoidal approximation of a convex compact body U ⊂ R

n by a set
of the form (6). As an approximation quality criterion, we consider the Lebesgue measure of the
n-dimensional set μ(·) [25, Section 1 § 3 ch. V]. The resulting optimization problem will take the
form

μ(U \BEr(a1, . . . , an)) → min
a1,...,an,r,B

,

ai > 0, i = 1, n,

r > 1,

B ∈ R
n×n, detB �= 0,

Er(a1, . . . , an) ⊂ U .

This problem can be divided into two separate stages: the first stage is the selection of the ori-
entation matrix of the superellipse B ∈ Rn×nand the second stage is the selection of the numbers
a1, . . . , an > 0, r > 1, parametrizing the set (1).

5.1. Selection of the Orientation Matrix of a Superellipsoidal Set

In general, the search for the optimal value of the matrix B can be a complex optimization
problem, the solvability conditions of which are unknown due to its non-convexity. We propose a
heuristic method for choosing B in the form of an orthogonal matrix. Since the rotation transfor-
mation preserves the Lebesgue measure, then the following equalities are valid:

μ(U \BEr(a)) = μ(B−1(U \BEr(a))) = μ(B−1U \ Er(a)).

They make it possible to reduce the original approximation problem to the problem of optimal
internal approximation of an arbitrary convex compact body B−1U ⊂ R

n by the superellipse Er(a).
Due to the symmetry of the set Er(a), it is acceptable to assume that B−1 should provide such a
rotation of the set U , so that the coordinate axes coincide with any axes of “symmetry” of U , for
example, with the main axes of inertia of a convex bodie U [29, § 32 ch. VI].

In this case, B must satisfy the condition

IU = Bdiag(λ1, . . . , λn)B
−1,

where IU ∈ R
n×n is the inertia tensor of a convex body U ⊂ R

n:

IU =

⎛
⎜⎝
I11 . . . I1n
...

. . .
...

In1 . . . Inn

⎞
⎟⎠ , Iij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
U

n∑
k=1
k �=i

x2kdx1 . . . dxn, i = j,

−
∫
U

xixjdx1 . . . dxn, i �= j.

Then according to [30, Theorem 3.1.11] B is determined in a unique way up to the permutation of
its columns and its construction is reduced to calculating the eigenvectors of the matrix IU .

Example 2. Let us calculate the matrix B for the polyhedron U ⊂ R
2:

U = conv

{(
4
4

)
,

(
2
4

)
,

(
−2
2

)
,

(
−4
−4

)
,

(
−2
4

)
,

(
2
−2

)}
.
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�4 �3 �2 �1 0 1 2 3 4

2
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�4

Fig. 1. The original set U (solid line) and the set B−1U oriented along the axes of inertia (dotted line).

The inertia tensor IU and the matrix B have the following numerical values:

IU =

(
153.28 −85.03
−85.03 121.20

)
, B =

(
0.64 −0.77
0.77 0.64

)
.

Then the oriented set B−1U , for which it is necessary to carry out a further superellipsoidal ap-
proximation, has the following form:

B−1U = conv

{(
0.53
5.63

)
,

(
−1.01
4.36

)
,

(
−2.82
0.26

)
,

(
−0.53
−5.63

)
,

(
1.01
−4.36

)
,

(
2.82
−0.26

)}
.

The initial set U and the oriented set B−1U are shown in Fig. 1.

5.2. Selection of Parameters of a Superellipsoidal Set

Next, we will assume that the matrix B of the orientation of the superellipse is selected in the
form of a rotation matrix. Then the initial approximation problem is reduced to the following
optimization problem:

μ(U \ Er(a1, . . . , an)) → min
a1,...,an,r

,

ai > 0, i = 1, n,

r > 1,

Er(a1, . . . , an) ⊂ U .

(7)

We formulate a number of statements that allow us to reduce the problem (7) to an equivalent
convex programming problem that can be solved numerically.
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Lemma 6. Let Er(a) be defined by the relations (1). Then equality

μ(Er(a)) = a1 · . . . · an

(
2Γ
(
1
r + 1

))n
Γ
(n
r + 1

)
is correct.

Lemma 7. Let Er(a) be defined by the relations (1), U is the convex body.

Then the inclusion of Er(a) ⊂ U is valid if and only if the inequality

(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

�M(x,U)

is true for any x ∈ R
n.

Based on the Lemmas 6 and 7 we present the problem (7) in an equivalent form.

Theorem 3. Let Er(a) be defined by the relations (1), U is a convex body. Then the optimization
problem (7) is equivalent to the following problem:

a1 · . . . · an

(
2Γ
(
1
r + 1

))n
Γ
(n
r + 1

) → max
a1,...,an,r

,

(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

�M(x,U), for any x ∈ R
n,

ai > 0, i = 1, n,

r > 1.

(8)

Generally speaking, (8) is not a convex programming problem, which means that in general it
cannot be solved by standard optimization methods [31]. We will carry out a number of transfor-
mations that will allow us to solve (8) numerically. We will also separately consider the case when
U is a polyhedron, which will allow us to explicitly construct the Minkowski functional M(x,U).

Lemma 8. Let Er(a) be defined by the relations (1), U is a bounded polyhedron, i.e. there are
such K ∈ N, p1, . . . , pK ∈ R

n \ {0}, α1, . . . , αn > 0, which provide representation

U =
K⋂
k=1

{x ∈ R
n : (pk, x) � αk}.

Then the inclusion of Er(a) ⊂ U is equivalent to the condition∥∥∥diag(a)pk∥∥∥
q
� αk, k = 1,K.

The complexity of solving the problem (8) lies in the fact that the set of acceptable values of
the vector of optimization variables (r, a1, . . . , an)

T is not convex in R
n+1. Nevertheless, for a fixed

value of r > 1 the corresponding set of valid values of the vector (a1, . . . , an)
T is already convex.

We formulate this fact in the form of a lemma.

Lemma 9. Let Er(a) be defined by the relations (1), U is a convex and compact body, for arbi-
trary r > 1 by Pr(U) = {a ∈ R

n : Er(a) ⊂ U , ai > 0, i = 1, n} we denote the set of all valid values
of a1, . . . , an in the problems (7) and (8).

Then Pr(U) is a convex and compact set.
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The Lemma 9 allows us to approximate the equivalent problems (7) and (8) with a similar
optimization problem in which the domain of the parameter r is narrowed to a finite set:

r ∈ {r1, . . . , rM} ⊂ (1;+∞).

Then the approximation problem reduces to solving N convex programming problems of the fol-
lowing form:

a1 · . . . · an → max
a1,...,an

,

(a1, . . . , an)
T ∈ Pr(U).

(9)

The choice of the resulting superellipsoidal approximation corresponding to a specific value of
r∗ ∈ {r1, . . . , rM} may be made in accordance with the Lemma 6 and the idea of maximizing the
measure of the nested superellipse:

r∗ = arg max
r∈{r1,...,rM}

μ(Er(a∗(r))), (10)

where a∗(r) ∈ R
n is the maximum point in the problem (9).

Example 3. Let’s construct a superellipsoidal approximation for the set B−1U , calculated in the
Example 2. To use the Lemma 8 we represent B−1U as a bounded polyhedron:

B−1U =
6⋂

k=1

{
x ∈ R

2 : (pk, x) � αk

}
,

(
p1, . . . , p6

)
=

(
−1.28 −4.09 −5.90 −1.28 −4.09 −5.90
1.54 1.80 −2.29 −1.54 −1.80 2.29

)
,

(α1, . . . , α6) = (8, 12, 16, 8, 12, 16).

We describe the set Pr(U) for r ∈
{
4
3 , 2, 4

}
and solve the corresponding optimization problems (9).

P 4
3
(U) :

(
2.65a41 + 5.62a42

) 1
4 � 8,(

280.53a41 + 10.57a42

) 1
4 � 12,(

1208.13a41 + 27.48a42

) 1
4 � 16,

⎧⎪⎪⎨
⎪⎪⎩
a∗1

(
3

4

)
= 2.48,

a∗2

(
3

4

)
= 5.16.

P2(U) :
(
1.63a21 + 2.37a22

) 1
2 � 8,(

16.75a21 + 3.25a22

) 1
2 � 12,(

34.76a21 + 5.24a22

) 1
2 � 16,

{
a∗1(2) = 1.92,

a∗2(2) = 4.94.

P4(U) :
(

3
√
2.65a41 +

3
√
5.62a42

) 3
4

� 8,

(
3

√
280.53a41 +

3

√
10.57a42

) 3
4

� 12,

(
3
√
1208.13a41 +

3
√
27.48a42

) 3
4

� 16,

{
a∗1(4) = 1.61,

a∗2(4) = 4.16.
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Fig. 2. The original set U (solid line) and its superellipsoidal approximation BE 4
3

(
a∗
(
4
3

))
(dotted line).

Let us compare the obtained solutions in the sense of the Lebesgue measure of the approximating
superellipse in accordance with the Lemma 6:

μ

(
E 4

3

(
a∗
(
4

3

)))
= 32.60, μ (E2 (a∗ (2))) = 29.79, μ (E4 (a∗ (4))) = 24.86.

It follows that the best approximation of B−1U is E 4
3

(
a∗
(
4
3

))
. Therefore, for the initial set U the

most qualitative approximation of the considered ones is the set BE 4
3

(
a∗
(
4
3

))
. The results of the

approximation are shown in Fig. 2.

6. EXAMPLES OF OPTIMAL CONTROL FORMATION

We will construct a solution to the speed problem for (2) systems of various dimensions based
on the developed methods. To do this, we will use the following

Algorithm 1.

1. For a given set U ⊂ R
n construct the inertia tensor IU and calculate the orientation matrix

of the superellipsoidal set B ∈R
n×n according to the Subsection 5.1.

2. Select the set of values of the superellipsoidal approximation parameter {r1, . . . , rM} ⊂
(1;+∞).

3. For all r∈{r1, . . . , rM} construct optimization problems (9) for the set B−1U and calculate
the corresponding maximum points a∗(r).

4. Using the Lemma 10 to determine the optimal parameter of the superellipsoidal approxima-
tion r∗ according to (10).

5. For a given initial state x0 ∈R
n and various N ∈N construct the systems of equations pre-

sented in the Corollary 1.
6. Determine the value of Nmin as the smallest value of N ∈N, at which the solution of the

system of equations constructed at step 5 satisfies the condition α � 1.
7. For the value Nmin calculated at step 6 and the corresponding α > 0 and ψ(0) ∈ R

n \ {0}
construct the optimal control {u∗(k)}Nmin−1

k=0 for the system (A,BEr∗(a∗(r∗))) according to the
Theorem 1 and the Lemma 5.
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Table 1. Optimal control process for a two-dimensional system

k 0 1 2 3 4 5 6 7 8 9 10

x1(k) −4.5 2.19 −3.86 3.01 −3.36 2.95 −2.82 2.54 −1.94 1.97 0

x2(k) 8 −8.51 7.96 −7.86 7.28 −6.76 5.96 −4.95 3.70 −1.83 0

u1(k) 3.19 0.27 2.77 −1.51 2.38 −1.95 2.21 −2.07 2.15 −2.11 –

u2(k) 3.99 −2.74 3.96 −3.59 3.88 −3.75 3.83 −3.79 3.81 −3.80 –

Table 2. Results of superellipsoidal approximation for a three-dimensional system

r 6
5

4
3 2 4 6

μ (Er (a∗(r))) 57,58 61,11 57,64 41,91 35,90

a∗1(r) 5,06 5,04 4,53 3,71 3,45

a∗2(r) 2,48 2,24 1,58 1,20 1,10

a∗3(r) 2,29 2,22 1,98 1,45 1,32

Example 4. Let n = 2. As U we choose the polyhedron considered in the Examples 2 and 3, we
define the matrix of the system and the initial state as follows:

A =

(
2 1
1 −1

)
, x0 =

(
−4.5
8

)
.

We can assume that the set U is approximated by BE 4
3

(
a∗
(
4
3

))
according to the Example 3. Then

the solution of the system of equations presented in the Corollary 1, for N = 9 has the form

α = 1.019, ψ1(0) = 0.775, ψ2(0) = −0.632.

The solution obtained for N = 10, has the form

α = 0.998, ψ1(0) = 0.792, ψ2(0) = −0.610.

From where it follows that for the auxiliary system
(
A,BE 4

3

(
a∗
(
4
3

)))
due to (4) the equation

Nmin = 10 is correct.

The optimal trajectory of the system and optimal control, calculated on the basis of the Theo-
rem 1, are presented in Table 1.

Based on the exact methods described in [6], value Nmin = 9 was calculated for the original
system (A,U). Thus, from the point of view of control quality, the error of the guaranteeing
solution is one step.

Example 5. Let n = 3. The set of acceptable control values, the matrix of the system and the
initial state are defined as follows:

U = conv

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 4

4
−3

⎞
⎟⎠
⎛
⎜⎝ 2

4
−3

⎞
⎟⎠
⎛
⎜⎝−2

2
0

⎞
⎟⎠
⎛
⎜⎝−4
−4
3

⎞
⎟⎠
⎛
⎜⎝−2
−4
3

⎞
⎟⎠
⎛
⎜⎝ 2
−2
0

⎞
⎟⎠
⎛
⎜⎝00
4

⎞
⎟⎠
⎛
⎜⎝ 0

0
−4

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

A =

⎛
⎜⎝ 0.486 −0.315 0.689
−0.757 −0.202 0.442

0 −0.818 −0.375

⎞
⎟⎠ , x0 =

⎛
⎜⎝2624
30

⎞
⎟⎠ .

The inertia tensor IU and the orientation matrix B have the form

IU =

⎛
⎜⎝ 526.73 −135.75 132.41
−135.75 474.79 164.87
132.41 164.87 439.35

⎞
⎟⎠ , B =

⎛
⎜⎝ 0.49 0.73 0.48

0.59 −0.68 0.43
−0.64 −0.08 0.76

⎞
⎟⎠ .
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Fig. 3. The original set U and its super ellipsoidal approximation BE 4
3

(
a∗
(
4
3

))
.

The superellipsoidal approximation of the set B−1U is carried out for r ∈
{
6
5 ,

4
3 , 2, 4, 6

}
. Solu-

tions to problems of the form (9) are presented in Table 2. It follows that the best approxima-

tion is E 4
3

(
a∗
(
4
3

))
. Graphically, the result of the superellipsoidal approximation of U by the

set BE 4
3

(
a∗
(
4
3

))
is shown in Fig. 3. The solution of the system of equations presented in the

Corollary 1 for N = 9 has the form

α = 1.038, ψ1(0) = −0.827, ψ2(0) = −0.012, ψ3(0) = −0.563.

The solution obtained for N = 10 has the form

α = 0.890, ψ1(0) = −0.805, ψ2(0) = −0.075, ψ3(0) = −0.589.

It follows that for the auxiliary system
(
A,BE 4

3

(
a∗
(
4
3

)))
due to (4) the equality Nmin = 10 is

correct.

The optimal trajectory of the system and optimal control, calculated on the basis of the Theo-
rem 1, are presented in Table 3.

Based on the exact methods described in [6], value Nmin = 8 was calculated for the original
system (A,U). Thus, from the point of view of control quality, the error of the guaranteeing
solution is 2 steps.

Table 3. Optimal control process for a three-dimensional system

k 0 1 2 3 4 5 6 7 8 9 10

x1(k) 26 23.64 −3.16 17.65 11.14 −0.59 9.51 3.71 1.01 2.11 0

x2(k) 24 −11.76 −25.76 14.85 −10.19 −10.80 6.71 −5.75 −1.86 −0.03 0

x3(k) 30 −29.28 17.93 13.24 −16.11 11.64 4.12 −6.56 4.39 0.65 0

u1(k) −2.10 1.80 −1.28 −1.88 1.88 −1.62 −1.64 1.91 −1.99 −1.48 –

u2(k) −0.48 2.70 −0.68 0.33 2.70 −1.06 0.99 2.68 −1.59 1.30 –

u3(k) 1.60 −2.67 −1.13 1.01 −2.73 −0.36 0.48 −2.77 0.77 0.21 –
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7. CONCLUSION

The article considers the solution of the speed-in-action problem for linear discrete-time systems
with limited control. It is assumed that the set of acceptable control values is a convex compact body
containing the origin, the matrix of the system is nondegenerate. For the case of strictly convex
control constraints, sufficient conditions for the optimality of the control process are formulated in
the form of a discrete maximum principle. At the same time, from a practical point of view, the
procedure for constructing optimal control is reduced to calculating the initial conditions of the
conjugate system.

A class of superellipsoidal sets, which are a generalization of the ellipsoids for normalized space,
is studied in detail. In particular, the dependence of the normal cone on the support point is
explicitly described, the Lebesgue measure of the superellipse in n-dimensional space is calculated.
In the case when the set of admissible values of the controls of the system is a superellipsoidal set,
the definition of the initial conditions of the conjugate system in the maximum principle is reduced
to a system of algebraic equations with a single solution. It is essential that the dimensionality and,
consequently, the complexity of the solution of this system does not depend on the optimal value
of the objective function in the speed-in-action problem, but is determined only by the number
of phase variables, which ensures the effectiveness of such a method in comparison with other
approaches to the solution.

For systems with a general set of admissible values of controls, a superellipsoidal approximation
method has been developed, which consists in constructing a superellipse of maximum measure
inscribed in original convex body. The approximation procedure is divided into two stages: the
selection of the orientation matrix of the superellipse and the calculation of the parameters of the
superellipsoidal set. The first stage consists in calculating the inertia tensor of the approximated
body, the second stage can be reduced to solving a number of convex programming problems.

The developed technique makes it possible to build optimal control processes for various discrete-
time systems. Due to the general formulation of the superellipsoidal approximation problem, it is
possible to generalize the discrete maximum principle, including systems with control constraints
that are not strictly convex initially, for example, systems with linear constraints.

The obtained theoretical results are tested on numerical examples.
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APPENDIX

Proof of Lemma 4. Since the Minkowski functional of set (1) is a smooth function on all Rn:

M(x, Er(a) =
(

n∑
i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

,

then according to [24, Theorem 26.1] for an arbitrary x ∈ ∂Er(a) the representation is correct

N (x, Er(a)) = cone{∇xM(x, Er(a))} \ {0}

= cone

⎧⎨
⎩1

r

(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r
−1(

r|x1|r−1sgn(x1)

|a1|r
, . . . ,

r|xn|r−1sgn(xn)

|an|r

)T
⎫⎬
⎭ \ {0}

= cone

⎧⎨
⎩
(
|x1|r−1sgn(x1)

|a1|r
, . . . ,

|xn|r−1sgn(xn)

|an|r

)T
⎫⎬
⎭ \ {0}.

Hence follows point 1 of the Lemma 4.
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According to the definition of a normal cone, the following inclusion is true:

p ∈ N (x∗(p), Er(a)).

Then, taking into account point 1 of Lemma 4 there will be α > 0 such that

p = α

(
|x∗1(p)|r−1sgn(x∗1(p))

|a1|r
, . . . ,

|x∗n(p)|r−1sgn(x∗n(p))

|an|r

)T

,

x∗(p) =
1

α
1

r−1

(
|p1ar1|

1
r−1 sgn(p1), . . . , |pnarn|

1
r−1 sgn(pn)

)T

=
1

α
1

r−1

(
|p1|q−1aq1sgn(p1), . . . , |pn|q−1aqnsgn(pn)

)T

=
1

α
1

r−1

diag(a)Iq(diag(a)p).

The value of α can be calculated from the condition x∗(p) ∈ ∂Er(a), which is equivalent to the
equality (

n∑
i=1

∣∣∣∣x∗i (p)ai

∣∣∣∣r
) 1

r

= 1,

1 =
1

α
1

r−1

(
n∑

i=1

∣∣∣∣∣ |pi|
q−1aqi
ai

∣∣∣∣∣
r) 1

r

=
1

α
1

r−1

(
n∑

i=1

|piai|q
) 1

r

,

α
1

r−1 =

(
n∑

i=1

|piai|q
) 1

r

= ‖diag(a)p‖q−1
q .

The second point of the Lemma 4 is proved.

Proof of Lemma 5. Point 1 follows from point 1 of Lemma 4, point 2 of Lemma 3 and the
representation

N (u,U) = N (DD−1u,DEr(a)).

Point 2 follows from point 2 of the Lemma 4 and the chain of equalities

arg max
u∈U

(p, u) = Darg max
x∈Er(a)

(p,Dx) = Darg max
x∈Er(a)

(DTp, x).

Lemma 5 is proved.

Proof of Theorem 2. Since x0 �= 0, then according to the definitions of the Minkowski functional
and the normal cone, the conditions (5) are equivalent to the conditions

−ψ(0) ∈ N
(
x0
α
,X (Nmin)

)
, (A.1)

x0
α

∈ ∂X (Nmin). (A.2)

The inclusion of (A.2) due to the Lemma 1 and the representation (6) is equivalent to the condition

x0
α

∈ ∂

⎛
⎝−Nmin∑

k=1

A−kU

⎞
⎠ = ∂

Nmin∑
k=1

A−kBEr(a).
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Then, taking into account point 1 of the Lemma 3 and the definition of the algebraic sum of sets
inclusion (A.1) is equivalent to the fact that there are x1 ∈ A−1BEr(a), . . . , xNmin ∈ A−NminBEr(a),
for which the following relations are true:

x0
α

=
Nmin∑
k=1

xk,

−ψ(0) ∈ N
(
x0
α
,X (Nmin)

)
= N

⎛
⎝Nmin∑

k=1

xk,
Nmin∑
k=1

A−kBEr(a)

⎞
⎠ =

Nmin⋂
k=1

N
(
xk, A−kBEr(a)

)
.

Due to point 2 of Lemma 5 it is possible if and only if the condition

xk =
A−kBdiag(a)Iq

(
−diag(a)(A−kB)Tψ(0)

)
‖diag(a)(A−kB)Tψ(0)‖q−1

q

is correct. Since Iq(−x) = −Iq(x) for any x ∈ R
n, we obtain equivalent relations

x0
α

=
Nmin∑
k=1

xk = −
Nmin∑
k=1

A−kBdiag(a)Iq
(
diag(a)(A−kB)Tψ(0)

)
‖diag(a)(A−kB)Tψ(0)‖q−1

q

.

That is, the conditions (5) are equivalent to the equality specified in the condition of the Theorem 2.

Proof of Corollary 1. Due to the Theorem 2 the solution of the system exists and satisfies the
conditions (5). Then, due to the Lemma 1 and the symmetry of sets of the form (1) there will be
such x1 ∈ αA−1BEr(a), . . . , xNmin ∈ αA−NminBEr(a), which make true equality x0 = x1 + . . . xNmin.
From where, by point 1 of Lemma 3 it follows that any solution (ψ(0), α) satisfies inclusion

−ψ(0) ∈ N (x0, αX (Nmin)) =
Nmin⋂
k=1

N
(
xk, A−kBEr(a)

)
.

But according to point 1 of Lemma 5 for all k = 1, Nmin sets N
(
xk, A−kBEr(a)

)
are one-

dimensional rays with starting at 0, i.e. they contain a single vector −ψ(0), satisfying the equality
(ψ(0), ψ(0)) = 1. The uniqueness of the value α > 0 follows from the definition of the Minkowski
functional and the conditions (5).

The consequence 1 is proved.

Lemma 10. Let Er(a) be defined by the relations (1). Then

μ(Er(a)) = a1 · . . . · anμ(Er(1, . . . , 1)).

Proof of Lemma 10. Consider replacement of variables⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1 = a1y1,

...

xn = anyn,

the Jacobian of which has the form J = a1 · . . . · an. Then

μ(Er(a)) =
∫

n∑
i=1

∣∣∣xiai ∣∣∣r�1

1dx =

∫
n∑

i=1

|yi|r�1

|J |dy = a1 · . . . · anμ(Er(1, . . . , 1)).
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The Lemma 10 is proved.

Proof of Lemma 6. In the part of the space xi � 0, i = 1, n consider the replacement of variables⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = R(cos φ2 · cosφ3 . . . · cosφn)
2
r ,

x2 = R(sinφ2 · cosφ3 . . . · cosφn)
2
r ,

x3 = R(sinφ3 · cosφ4 . . . · cosφn)
2
r ,

...

xn = R(sinφn)
2
r .

R � 0, φj ∈
(
0;
π

2

)
, j = 2, n.

(A.3)

Construct a replacement Jacobian (A.3).

∂xi
∂R

=
xi
R
, i = 1, n,

∂xi
∂φj

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

r

cosφj
sinφj

xi, i = 2, n, j = i,

− 2

r

sinφj
cosφj

xi, i = 1, n − 1, j = i+ 1, n,

0, i = 3, n, j = 2, i− 1,

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1
R

x2
R

x3
R

. . .
xn
R

−2x1
r

tan φ2
2x2
r

cotφ2 0 . . . 0

−2x1
r

tan φ3 −2x2
r

tanφ2
2x3
r

cotφ3 . . . 0

...
...

...
. . .

...

−2x1
r

tanφn −2x2
r

tan φn −2x3
r

tanφn . . .
2xn
r

cotφn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

R

(
n∏

i=1

xi

)⎛⎝ n∏
j=2

tanφj

⎞
⎠(2

r

)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

−1 cot2φ2 0 . . . 0

−1 −1 cot2φ3 . . . 0
...

...
...

. . .
...

−1 −1 −1 . . . cot2φn

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

R

(
n∏

i=1

xi

)⎛⎝ n∏
j=2

tan φj

⎞
⎠(2

r

)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

0 cot2φ2 + 1 1 . . . 1

0 0 cot2φ3 + 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . cot2φn + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

R

(
n∏

i=1

xi

)⎛⎝ n∏
j=2

(tan φj + cotφj)

⎞
⎠(2

r

)n−1

=
1

R

(
n∏

i=1

xi

)⎛⎝ n∏
j=2

1

sinφj cosφj

⎞
⎠(2

r

)n−1

= Rn−1
(
2

r

)n−1 n∏
j=2

(sinφj)
2
r
−1(cos φj)

2
r
(j−1)−1.
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Then we can calculate the Lebesgue measure of the superellipse Er(1, . . . , 1) via the Lebesgue
integral:

μ(Er(1, . . . , 1)) =
∫

n∑
i=1

|xi|r�1

1dx = 2n
1∫

0

Rn−1
(
2

r

)n−1

dR
n∏

j=2

π
2∫

0

(sinφj)
2
r
−1(cos φj)

2
r
(j−1)−1dφj .

For each j = 2, n we calculate auxiliary integrals:

π
2∫

0

(sinφj)
2
r
−1 (cosφj)

2
r
(j−1)−1 dφj =

π
2∫

0

(sinφj)
2
r
−1 (cosφj)

2
r
(j−1)−2 d sinφj

=

π
2∫

0

(sinφj)
2
r
−1
(
1− sin2 φj

) j−1
r

−1
d sinφj =

1

2

π
2∫

0

(
sin2 φj

) 1
r
−1 (

1− sin2 φj
) j−1

r
−1
d sin2 φj

=
1

2

1∫
0

t
1
r
−1(1− t)

j−1
r

−1dt =
1

2
B

(
1

r
,
j − 1

r

)
,

where B(x, y) denotes the Euler beta function.

Then the original integral has the form

μ(Er(1, . . . , 1)) =
2n

n

(
2

r

)n−1 n∏
j=2

(
1

2
B

(
1

r
,
j − 1

r

))
=

2

n

(
2

r

)n−1 n∏
j=2

Γ
(
1
r

)
Γ
(
j−1
r

)
Γ
(
1
r +

j−1
r

)

=
2

n

(
2

r
Γ

(
1

r

))n−1 n−1∏
j=1

Γ
(
j
r

)
Γ
(
j+1
r

) =
2

n

(
2

r
Γ

(
1

r

))n−1 Γ
(
1
r

)
Γ
(n
r

) =

(
2
rΓ
(
1
r

))n
n
rΓ
(n
r

) =

(
2Γ
(
1
r + 1

))n
Γ
(n
r + 1

) .

Taking into account the Lemma 10 we finally obtain the equality

μ(Er(a)) = a1 · . . . · an

(
2Γ
(
1
r + 1

))n
Γ
(n
r + 1

) .

Lemma 6 is proved.

Lemma 11. Let U1,U2 ⊂ R
n be convex and compact bodies containing 0 as an internal point.

In this case, the inclusion U1 ⊂ U2 is true if and only if the following inequality is correct for any
x ∈ R

n:

M(x,U1) �M(x,U2).

Proof of Lemma 11. Let U1 ⊂ U2, x ∈ R
n. Then by definition of the Minkowski functional

x ∈M(x,U1)U1 ⊂M(x,U1)U2,

M(x,U1) � inf{t > 0: x ∈ tU2} =M(x,U2).

Let for all x ∈ R
n inequality be fair

M(x,U1) �M(x,U2).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



CONSTRUCTION OF THE TIME-OPTIMAL BOUNDED CONTROL 1061

Then by definition of the Minkowski functional

U1 = {x ∈ R
n : M(x,U1) � 1} ⊂ {x ∈ R

n : M(x,U2) � 1} = U2.

The Lemma 11 is proved.

Proof of Lemma 7. Lemma 7 follows directly from Lemma 11 and the fact that

M(x, Er(a)) =
(

n∑
i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

.

Lemma 7 is proved.

Proof of Theorem 3. Due to the Lemma 7 the inclusion Er(a) ⊂ U is equivalent to the condition

(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

�M(x,U) for any x ∈ R
n.

Also, due to this limitation, it is true that

μ(U \ Er(a)) = μ(U)− μ(Er(a)).

Hence, taking into account the fact that the value of μ(U) does not depend on optimization variables,
the statement of the Theorem 3 follows.

Lemma 12. Let there be p1, . . . , pK ∈ R
n \ {0} and α1, . . . , αK > 0 such that

U =
K⋂
k=1

{
u ∈ R

n : (pk, u) � αk

}
, 0 ∈ int U .

Then

M(x,U) = max
k=1,K

(pk, x)

αk
.

Proof of Lemma 12. Since for any t > 0

tU =
{
u ∈ R

n : u = tx, x ∈ U
}
=
{
u ∈ R

n : u = tx, (pk, x) � αk, k = 1, K
}

=

{
u ∈ R

n :

(
pk,

u

t

)
� αk, k = 1, K

}
=
{
u ∈ R

n : (pk, u) � tαk, k = 1, K
}

=
K⋂
k=1

{
u ∈ R

n : (pk, u) � tαk

}
,

then according to the definition of the Minkowski functional

M(x,U) = inf{t > 0: x ∈ tU} = inf
{
t > 0: (pk, x) � tαk, k = 1,K

}

= inf

{
t > 0: t � (pk, x)

αk
, k = 1, K

}
= max

k=1,K

(pk, x)

αk
.

The Lemma 12 is proved.
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Proof of Lemma 8. According to Lemmas 7 and 12, the inclusion of Er(a) ⊂ U is equivalent to
the fact that for all x ∈ R

n the following inequality is valid:(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

� max
k=1,K

(pk, x)

αk
.

For x = 0, this inequality holds trivially. Consider the case of x �= 0 and move on to equivalent
inequalities. For all k = 1,K (

n∑
i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

� (pk, x)

αk
,

αk � (pk, x)(
n∑

i=1

∣∣∣xi
ai

∣∣∣r) 1
r

.

Since these inequalities must be satisfied for any x ∈ R
n \ {0}, it is possible, taking into account

the Lemma 4, to proceed to the equivalent relation

αk � max
x∈Rn\{0}

(pk, x)(
n∑

i=1

∣∣∣xi
ai

∣∣∣r) 1
r

= max
x∈Rn\{0}

⎛
⎜⎜⎜⎜⎝pk,

x(
n∑

i=1

∣∣∣xi
ai

∣∣∣r) 1
r

⎞
⎟⎟⎟⎟⎠

= max
y∈∂Er(a)

(
pk, y

)
=
(
pk, x∗(pk)

)
=

(
pk, diag(a)Iq

(
diag(a)pk

))
‖diag(a)pk‖q−1

q

=
∥∥∥diag(a)pk∥∥∥

q
.

The Lemma 8 is fully proved.

Proof of Lemma 9. Denote for arbitrary convex sets U and p ∈ R
n \ {0} via s(p,U) support

function U :

s(p,U) = sup
x∈U

(p, x).

As demonstrated in [24, Theorem 11.5], an arbitrary convex compact set U is the intersection of
all support half-spaces:

U =
⋂

p∈Rn\{0}
{x ∈ R

n : (p, x) � s(p,U)} .

Then the inclusion Er(a) ⊂ U is equivalent to the fact that for every p ∈ R
n \ {0} the following

inequality will be satisfied

s(p, Er(a)) � s(p,U). (A.4)

Let a, b ∈ Pr(U), λ ∈ (0; 1), p ∈ R
n \ {0}. Then, due to point 2 of the Lemma 4 and the

Minkowski inequality [25, section 1 §1 ch. II] folowing relations are correct:

s(p, Er(λa+ (1− λ)b)) = max
x∈Er(λa+(1−λ)b)

(p, x) =

(
n∑

i=1

|(λai + (1− λ)bi)pi|q
) 1

q

� λ

(
n∑

i=1

|aipi|q
) 1

q

+ (1− λ)

(
n∑

i=1

|bipi|q
) 1

q

= λs(p, Er(a)) + (1− λ)s(p, Er(b)) � s(p,U).
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Then the condition Er(λa+ (1− λ)b) ⊂ U is correct, which by definition is equivalent to inclusion
λa+ (1− λ)b ∈ Pr(U). This implies the convexity of Pr(U).

Choose as p ∈ R
n \ {0} the i-th coordinate vector:

p = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0)T.

Then by construction it is correct that

s(±p, Er(a)) = ai.

Taking into account the condition (A.4), we obtain that for any a ∈ Pr(U) the following inequality
is correct:

0 � ai � min{s(p,U), s(−p,U)}.

Since U is limited, then for any p ∈ R
n \ {0} the value of the support function s(p,U) is finite.

Then Pr(U) is limited.

The closeness of Pr(U) follows from the closeness of U .
The Lemma 9 is proved.
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Abstract—The problem of static feedback design in linear discrete time-invariant control sys-
tems is considered. The desired behavior of the system is defined by a set of its output variation
laws (training examples) and by a requirement to the degree of its stability. Controller’s struc-
tural constraints are taken into account. Explicit relations are obtained and an iterative method
based on these relations is proposed to find a good initial approximation of the desired gain
matrix and to refine it sequentially. In the general case, simple-structure gain matrices are
found: in such matrices, only those components are nonzero that are necessary and sufficient to
give the system the desired properties. Some examples are provided to illustrate the method.

Keywords : linear discrete-time control systems, feedback, design
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1. INTRODUCTION

A considerable number of works are devoted to the design of static feedback in linear control
systems. As a rule, the desired behavior of the system is defined by requiring that the roots of its
characteristic polynomial belong to some value set or by minimizing an integral quadratic functional
that assesses the quality of transients. Accordingly, the problems under consideration are placing
the poles of the transfer function of a closed loop system (modal control) and designing a linear
quadratic controller (LQR). There exist [1] effective methods for solving them exactly provided
that all components of the state vector can be used in the controller and no explicit constraints are
imposed on the choice of gain coefficients. However, these problems turn out to be intractable in
the case of controller’s structural constraints [2, 3], particularly under the unavailability of some
state variables (e.g., when designing output feedback). In such a case, pole placement is an NP-
hard problem [2, 4] that often reduces to a nonsmooth and nonconvex optimization problem in
the space of controller’s parameters [2, 5]. Necessary and sufficient conditions for the existence
of a solution were established for this problem [6–9], but it was not possible to develop methods
for obtaining an exact solution [2, 3]. At the same time, algorithms were proposed to calculate
an approximate solution. A significant part of them involve Lyapunov functions for the design of
stabilizing controllers and the reduction of the original problem to nonlinear matrix inequalities
by repeatedly solving linear matrix inequalities (LMIs) during iterative refinement of the desired
solution [9–13]. The papers [14–16] investigated the possibility of using the LMI technique to
consider the sparse feedback design requirements that limit freedom in choosing the controller
structure. Along with the ones mentioned above, algorithms were proposed to design stabilizing
output-feedback controllers by minimizing the spectral abscissa of a closed loop system by its
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direct calculation and solving the corresponding nonlinear programming problem based on methods
that take into account the peculiarities of the design problem [2, 3]. The algorithms presented
in [8, 17, 18] involve external algebra methods to find an initial approximation of the desired output-
feedback gain matrix for the modal control problem; this approximation is then refined iteratively.
For the LQR problem with output feedback, necessary conditions for the existence of a solution
in the form of a system of nonlinear matrix equations were obtained [19, 20] and corresponding
iterative algorithms for the approximate solution of this problem were proposed [20–24]. Numerical
methods for solving the LQR problem with a sparse feedback matrix based on the LMI technique
were considered in [14–16, 25]; for the first time, such a problem was solved in [26] by reducing to
a nonlinear discrete programming problem. However, the algorithms mentioned do not ensure an
exact solution and are heuristic: their convergence was not proved rigorously.

The problem considered below essentially differs from classical static feedback design problems
as follows. The desired behavior of the system is defined by a set of its output variation laws,
acting as training examples. They can be trajectories corresponding, e.g., to a feedback control
law that should be simplified using a simpler controller in the designed system (in particular, a
system with state feedback can be a source of training examples for output feedback design) or to
a program control law or human control that should be implemented in the designed system based
on a feedback control law. Together with the closeness of the system trajectories to the trajectories
given as training examples, the requirement to ensure a given degree of its stability is considered.
In addition, the constraints imposed on the feedback structure are taken into account. They can be
expressed as the requirement to use output feedback, the requirement that some elements of the gain
matrix be zero, and the requirement to eliminate its structural redundancy. The latter is equivalent
to obtaining a simple-structure gain matrix [27–31]: in such matrices, only those components are
nonzero that are necessary and sufficient to give the system the desired properties. The goal of
design is to approximate the system behavior to the desired one by choosing the elements and
structure of the gain matrix. This problem statement is novel and has not been considered in the
works devoted to controller design, including those involving machine learning methods [32–35].

In this paper, we derive explicit relations and propose a corresponding iterative method to find
a good initial approximation of the desired gain matrix and to refine it sequentially. The novel
method allows designing all possible simple-structure gain matrices.

2. PROBLEM STATEMENT

Consider a control system described by the equations

xk+1 = Axk +Buk, (1)

yk = Cxk, (2)

uk = Kyk, (3)

where k denotes discrete time from the set of natural numbers; xk, yk, and uk are the state,
output, and control vectors, respectively; the components of the vectors xk, yk, and uk as well as
the elements of constant matrices A, B, C, and K are real numbers; the controller’s gain matrix K
has to be determined, the other matrices are supposed given.

Consider structural constraints imposed on the controller (3). They are usually re-
duced [2, 14, 15, 26] to requiring zero value for some elements of the gain matrix K = (ki,j). There-
fore, we introduce the condition

ki,j = 0, ∀(i, j) /∈ Š, (4)

where Š is the set of number pairs (i, j) for the elements of the gain matrix K that are not required
to be zero.
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We define the desired behavior of system (1)–(4) by specifying the corresponding desired trajec-
tories Yγ = (yγk ), k∈{1, N}, of the output (2) of system (1)–(4) for some set of initial conditions xγ0 ,
γ ∈ {1, q}.

In other words, we define a set

Q = {(xγ0 , Yγ)}, γ ∈ {1, q}, (5)

in which the pairs (xγ0 , Yγ) are training examples.

In system (1)–(4), perfectly matching the desired behavior, the equality y(xγ0 ,K)k = yγk holds
for the initial conditions x(0) = xγ0 at each time instant k ∈ {1, N}. Let us require this condition
for each pair (xγ0 , Yγ) ∈ Q, i.e.,

y(xγ0 ,K)k = yγk , ∀k ∈ {1, N}, ∀γ ∈ {1, q}. (6)

The possibility that (6) is satisfied approximately will be described as follows:

εγ−k ≤ y(xγ0 ,K)k − yγk ≤ εγ+k , ∀k ∈ {1, N}, ∀γ ∈ {1, q}, (7)

where εγ−k and εγ+k are given constant vectors.

Generally, conditions (7) do not ensure the stability of system (1)–(4). Therefore, together
with (7), we require the necessary degree of Schur stability for the matrix Ac = A+BKC of the
closed loop system (1)–(4), i.e.,

ρ(Ac(K)) ≤ 1− σ, (8)

where ρ(Ac(K)) denotes the spectral radius of the matrix Ac(K) and σ is a given degree of stability.

Let the matrix K be chosen through the best approximation of the behavior of system (1)–(4) to
the desired one by minimizing the Euclidean norm of the vector Δy(K) composed of the residuals
y(xγ0 ,K)k − yγk of all equations (6):

|Δy(K)| → min
K

. (9)

In the case of a given structure of the controller (a fixed set Š defining its structure), the problem
under consideration is to find the matrix K in system (1)–(4) that satisfies the requirements (7)–(9).

In general, we will solve the structural design problem: determine all sets Š and the correspond-
ing matricesK for which conditions (7)–(9) hold and the structure of the controller (3), (4) is simple.
This means [27–31] that only those components of the matrix K are nonzero that are necessary
and sufficient to give system (1)–(4) the desired properties. Formally, the problem of determining
a set Ω of simple structures of the controller (3), (4) consists in the following: find admissible
structures Š ∈ ζ for which a less complex admissible structure cannot be specified. (A structure Š′

is considered simpler than Š if Š′ ⊂ Š.) In other words, it is required to find

Ω =
{
Š ∈ ζ | {Š′ ∈ ζ | Š′ ⊂ Š} = ∅

}
, (10)

where ζ denotes the set of admissible structures, i.e., those for which there exists a matrix K
satisfying conditions (1)–(4) and (7)–(9). The formula {Š′ ∈ ζ | Š′ ⊂ Š} = ∅ indicates the absence
of an admissible structure Š′ simpler than a structure Š ∈ Ω.
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3. ANALYSIS OF THE PROBLEM

Given xγ0 and K, the solution of system (1)–(3) can be written [1, p. 20] as follows:

y(xγ0 ,K)k = CAkxγ0 + C
k−1∑
i=0

Ak−i−1BKy(xγ0 ,K)i, ∀k ∈ {1, N}. (11)

In view of (11), condition (6) is equivalent to the system of equations

CAkxγ0 + C
k−1∑
i=0

Ak−i−1BKy(xγ0 ,K)i = yγk , ∀k ∈ {1, N}, ∀γ ∈ {1, q}. (12)

Applying identity transformations yields the system

CAkxγ0 + C
k−1∑
i=0

(
y(xγ0 ,K)Ti ⊗Ak−i−1B

)
vec(K) = yγk , ∀k ∈ {1, N}, ∀γ ∈ {1, q}, (13)

where ⊗ denotes the Kronecker product [36, p. 83] and vec(·) is the vectorization function [36].
(It produces a column vector by the successive connection of all columns of the argument matrix.)
We write system (13) as

Y0γ +Gγ(K)vec(K) = Yγ , ∀γ ∈ {1, q}, (14)

where Y0γ , Yγ , and Gγ(K) are the column vectors composed of the blocks CAkxγ0 , y
γ
k , and Gkγ(K) =

C
∑k−1

i=0

(
y(xγ0 ,K)Ti ⊗Ak−i−1B

)
, respectively, k ∈ {1, N}.

From (14) and (4) it follows that

Gγ(K)Svec(K)S = Ŷγ , ∀γ ∈ {1, q}, (15)

where the matrix Gγ(K)S and the vector vec(K)S contain the columns of the matrix Gγ(K) and
the coordinates of the vector vec(K), respectively, whose numbers are specified in the set S. (In
accordance with the set Š, the former set determines the numbers of the coordinates of the vector
vec(K) that are not required to be zero.) In addition, Ŷγ = Yγ − Y0γ .

Let all the desired trajectories Yγ = (yγk ), k ∈ {1, N}, γ ∈ {1, q}, belong to the set of solutions
of system (1)–(4). Then y(xγ0 ,K)i in the expressions (12), (13) can be replaced by yγi ; as a result,
the matrix Gγ(K) in (15) becomes constant and independent of the desired unknown matrix K.
In this case, system (15) can be represented as

ḠγSvec(K)S = Ŷγ , ∀γ ∈ {1, q}, (16)

where Ḡγ is the column vector of the blocks Ḡkγ = C
∑k−1

i=0

(
yγTi ⊗Ak−i−1B

)
, k ∈ {1, N}.

Proposition 1. System (1)–(4) perfectly matches the desired behavior given by the set of training
examples (5), i.e., the requirement (6) holds, if and only if all the desired trajectories Yγ , γ ∈ {1, q},
belong to the set of solutions of system (1)–(4) and the matrix K given (4) is the solution of the
system of linear equations (16).

The proof of Proposition 1 is postponed to the Appendix.

According to Proposition 1, the feasibility of system (16) is a necessary and sufficient condition
for equalities (6), i.e., a condition for the exact reproduction of all training examples by the designed
system.
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Due to the equivalence of equations (6) and (15), conditions (9) and (7) are equivalent to the
requirements

q∑
γ=1

| Gγ(K)Svec(K)S − Ŷγ |2→ min
K
, (17)

Ŷγ + ε−γ ≤ Gγ(K)Svec(K)S ≤ Ŷγ + ε+γ , γ ∈ {1, q}. (18)

Proposition 2. The behavior of system (1)–(4) best approximates the desired one specified by the
set of training examples (5), i.e., the requirements (7)–(9) hold, if and only if the matrix K given (4)
is the solution of the nonlinear least-squares problem (17) with the constraints (18) and (8).

The proof of Proposition 2 is given in the Appendix.

4. THE SOLUTION METHOD

4.1. Solution of the Problem with a Given Controller Structure

Assume that the controller has a given structure, i.e., the set Š is specified. The desired matrixK
corresponding to conditions (4) and (7)–(9) can be determined by solving problem (4), (17), (18),
(8) (see Proposition 2). It will be called the statical controller training (SCT) problem. The success
in solving this problem will significantly depend on the choice of the initial approximation (on how
close the initial values of the desired unknowns are to the solution).

The solution of system (16) is a good initial approximation in the SCT problem. In general, we
can take its approximate solution, i.e., the matrix K for which the vector vec(K)S minimizes the
Euclidean norm of the difference between the left- and right-hand sides of system (16) (the normal
pseudosolution)

vec(K)S = Ḡ+
S Ŷ , (19)

where Ḡ+
S is the Moore–Penrose pseudoinverse of the matrix of system (16) and Ŷ is the right-hand

side of system (16).

The closeness of the matrix K to the desired solution can be argued as follows. Let conditions
(7)–(8) be feasible and Ǩ be the solution of the SCT problem. If the desired trajectories belong to
the set of trajectories possible in system (1)–(4), by Proposition 1 the matrix Ǩ will coincide with
the solution of system (16), i.e., Ǩ = K. A small discrepancy between the desired and possible
trajectories leads to a small discrepancy between the matrices Ǩ and K since small changes in
the parameters of system (1)–(4) correspond to small changes in its solutions and vice versa. The
feasibility of conditions (7)–(8) means the closeness of the desired and possible trajectories in
system (1)–(4); hence, if the desired solution of the SCT problem exists, it will be close to K.
(Hereinafter, we estimate the closeness of matrices by the Frobenius norm.)

Generally speaking, the matrix K differs from the desired solution because its definition does
not fully considers conditions (7)–(9). Therefore, using it as a starting point, we will find a solution
corresponding to the entire set of requirements.

The efficiency of solving the SCT problem can be improved by taking into account its pecu-
liarities. Note that this problem turns into a linear least-squares problem with linear constraints
[37, p. 225] (hereinafter, the LSL problem) when replacing, first, Gγ(K)S in (17), (18) with a fixed
matrix Gγ(K

∗)S corresponding to the fixed matrix K∗ and, second, the function ρ(Ac(K)) in (8)
with its linear approximation near of K∗. Such a linearization procedure is acceptable when seek-
ing a solution in a small neighborhood of the matrix K∗. Therefore, it is possible to approach the
solution of the SCT problem sequentially at each search step by solving the LSL problem with the
matrix K∗ found at the previous step.
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The algorithm for solving the SCT problem proposed in this paper includes the following stages.

1. Choose the normal pseudosolution of system (16) as an initial approximation of the desired
vector vec(K)S .

2. Perform an iterative search for the solution. At the 0th iteration, take vec(K(0))S = vec(K)S .
(The iteration number is specified as the superscript in brackets.)

At each jth iteration, solve the LSL problem

q∑
γ=1

| G(j−1)
γ α(j) − Ŷγ |2→ min

K
, (20)

Ŷγ + ε−γ ≤ G(j−1)
γ α(j) ≤ Ŷγ + ε+γ , γ ∈ {1, q}, (21)

r
(j−1)
0 + r

(j−1)
1 α(j) ≤ 1− σ, (22)

where α(j) ≡ vec(K(j))S is the vector of unknowns, G
(j−1)
γ is the column composed of the blocks

Gkγ(K
(j−1)) = C

∑k−1
i=0

(
y
(
xγ0 ,K

(j−1)
)T
i
⊗Ak−i−1B

)
, k ∈ {1, N}, and r

(j−1)
0 + r

(j−1)
1 α(j) is the

linear approximation of the function ρ(Ac(K)) near K(j−1). Conditions (21), (22) may fail when
solving the LSL problem (20)–(22). In this case, the search procedure is stopped with stating that
the solution of the SCT problem could not be found (because it does not exist or the algorithm is
not efficient enough).

3. The search procedure is successfully completed when the vector of unknowns α∗ = α(j)

satisfying conditions (21) and (22) is obtained and either the difference |α(j) − α(j−1) | or the
objective function (20) becomes small enough, or a given number of iterations is exhausted. Take
the matrixK = vec−1

S (α∗) as the solution, where vec−1
S (·) is the inverse of the vectorization function.

(Given (4), it reconstructs the matrix K from the argument vector.)

The method presented above is substantially similar to the Gauss–Newton iterative algorithm
for solving the unconstrained nonlinear least-squares problem. At each iteration of this algorithm,
Taylor’s theorem is applied to linearize the objective function and solve the resulting linear least-
squares problem. In contrast, the novel method essentially exploits the peculiarities of problem (17),
(18), (8) and, consequently, requires no differentiation to linearize the objective function. For this
purpose, as stated above, it suffices to fix the matrix K within the next iteration. In addition,
the novel method is a constrained optimization method: it considers conditions (18) and (8)) when
solving the nonlinear least-squares problem. At each iteration of the novel method, the LSL problem
is solved, which belongs to the class of convex programming problems [38, 39]. For such problems,
the existing effective optimization procedures yield the solution or state its absence. (For example,
we mention the lsqlin function in Matlab.)

4.2. Solution of the Structural Design Problem

Assume that the controller structure is not given: the set Š is not specified in the initial problem
data and must be determined. In this case, we have the structural design problem. Within the
adopted formalization (10), it consists in finding sets Š and corresponding matrices K for which
conditions (7)–(9) hold and the structure of the controller (3), (4) is simple [27–31]. It can be solved
using the algorithm for designing general-form simple structures [31]. The procedure proposed in
subsection 4.1 may serve to assess the acceptability of the controller structure and calculate the
corresponding parameters.
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5. EXAMPLES

Example 1. Consider the model of a two-mass system [1, p. 52, p. 125]. Assume that the output
is composed of all components of the state vector except the second one. Given a time discretization
step of 0.01, unit masses, and a stiff spring linking them, we obtain the following matrices of
system (1), (2):

A =

⎛
⎜⎜⎜⎝

1 0 0.01 0

0 1 0 0.01

−0.01 0.01 1 0

0.01 −0.01 0 1

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

0

0

0.01

0

⎞
⎟⎟⎟⎠ , C =

⎛
⎜⎝ 1 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎠ .

In (3), the desired matrix K has dimensions 1× 3. All its components are allowed to be nonzero;
therefore, Š = {(1, 1) (1, 2) (1, 3)} in (4).

We define the desired behavior of system (1)–(4) as follows. Let the desired trajectories cor-
respond to the optimal control by the minimum energy criterion that transfers the system from
the initial states x10 = (−1; 1; 1;−1) and x20 = (−10; 10;−1;−1) to the origin in time k = 250. To-
gether with the initial conditions, these trajectories Y1 = (y1k), Y2 = (y2k), k ∈ {1,500}, form the
set of training examples (5) Q = {(x10, Y1), (x20, Y2)}. They can be calculated using the known
dependencies [1, p. 128].

First, we solve the design problem without the constraints (7), (8) (i.e., the unconstrained opti-
mization problem of the objective function (9)). After three iterations, the novel method described
in Section 4.1 yields the gain matrix K = (−10.671 − 4.124 − 13.745). The corresponding degree
of stability is σ = 0.964 × 10−2, and the objective function takes a value of 37.25.

Example 2. To improve stability, we increase the value σ to 1.2×10−2 and reduce the amplitude
of oscillations on the final interval (for k ∈ {300, . . . , 500}), restricting the admissible deviation of
the output coordinates from the desired trajectories to the values ±0.5 and ±1.5 for x10 and x20,
respectively. (In Example 1, these deviations are 0.68 and 2.23.) Given the above requirements,
it is therefore necessary to solve the constrained optimization problem (9), (7), (8). Three itera-
tions of the novel method result in K = (−13.012 − 5.310 − 16.821); in addition, σ = 1.2 × 10−2,
conditions (7) and (8) hold, and the value of the objective function is 120.32.

Example 3. Consider the lateral motion model of an aircraft presented in [26, p. 182]. For a
time discretization step of 0.001, we obtain the following matrices of system (1):

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1000 0 1 0.044 0

−1.215 999 0.131 0 0

0.430 0.021 1000 0 0

0 1 0 1000 0

0 0 1 0 1000

⎞
⎟⎟⎟⎟⎟⎟⎠× 10−3, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0

−0.040 1.587

0.381 −0.067

0 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠× 10−3.

In equation (2), C is an identity matrix of dimensions 5× 5.

Solving for system (1)–(3) the LQR problem with the minimization criterion
∑∞

k=1 x
T
k xk, we

find the gain matrix of the controller (3)

KLQR = −
(

2.049 0.098 3.937 0.096 0.766

−0.110 1.100 −0.168 1.031 −0.642

)
.

Let the first component of the state vector be excluded from the controller’s variables for its
structural simplification. This can be done by writing condition (4) of the design problem as
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k1,1 = 0, k2,1 = 0 (equivalently, the design problem of an output feedback containing all components
of the state vector except the first one). Accordingly, the set Š in (4) is given and includes all number
pairs of the elements of the matrix K except (1,1) and (2,1).

The set of training examples Q consists of the trajectories Yγ = (yγk ), γ ∈ {1, 5}, k ∈ {1, 104}, of
system (1)–(3) with the LQR controller (with the gain matrix K = KLQR) corresponding to initial
conditions xγ0 where the component with number γ is 1 and the others are zero. Let the components
of the vectors εγ−

k and εγ+
k in (7) be assigned by requiring that the admissible deviation of the

trajectories yγk of system (1)–(3) from the desired ones lies within ±1% of their maximum absolute
values at each time instant k. In addition, the degree of stability of the designed system must be
not smaller than that of system (1)–(3) with the LQR controller. For this purpose, σ = 4 × 10−5

is chosen in (8).

Using the novel method, we find the gain matrix

K =

(
0 6.622 −13.519 8.180 −8.181

0 −1.420 0.621 −1.414 1.001

)
.

The solution is obtained after four iterations upon satisfying the assigned constraints without
progress in decreasing the objective function.

Example 4. We modify the problem of Example 3 as follows. Let the first component of the
state vector be excluded from the output by redefining the matrix C in equation (2) as a matrix
of dimensions 4× 5 obtained by eliminating the first row from the matrix C of Example 3. In this
case, the desired matrix K has dimensions 2 × 4. We solve the structural design problem of the
system in the statement presented in subsection 4.2. The novel method yields the sets Š and the
corresponding matrices K (see the table) for which conditions (21) and (22) are satisfied and the
controller (3), (4) has a simple structure [27–31].

Table

No. Gain matrix No. Gain matrix

1

(
4.819 −10.920 5.898 −6.696
0 −1.444 0.403 −0.184

)
3

(
5.230 −11.510 6.413 −7.030
−0.318 −0.984 0 0.0786

)

2

(
6.084 −12.742 7.500 −7.736
−0.994 0 −0.867 0.644

)
4

(
5.112 −11.344 6.268 −6.936
−0.225 −1.120 0.120 0

)

6. CONCLUSIONS

This paper has proposed a novel approach to designing static feedback in linear discrete time-
invariant control systems. Within this approach, the desired behavior of the system is defined by a
set of its output variation laws (training examples). The problem statement and solution method
can be generalized to the case dynamic controllers based on the known procedure [3] for reducing
dynamic feedback design to an equivalent static feedback design.

The algorithm for solving the static controller learning problem (see subsection 4.1) is heuristic:
its convergence has been confirmed by computational experiments without rigorous proof.

APPENDIX

Proof of Statement 1. Let the matrix K be the solution of system (16). Equations (16) and (6)
are equivalent if all the desired trajectories Yγ , γ ∈ {1, q}, belong to the set of solutions of sys-
tem (1)–(4); see the considerations above. Hence, under all other hypotheses of the proposition,
choosing the matrix K based on equalities (16) ensures the requirements (6). This proves the
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sufficiency part of Proposition 1. If the matrix K is not the solution of system (16), violating
equations (16) will also violate conditions (6). If some of the desired trajectories Yγ , γ ∈ {1, q}, do
not belong to the set of solutions of system (1)–(4), the equality yk = yγk will not hold for them at
each time instant k ∈ {1, N}. Therefore, conditions (6) will fail as well. This proves the necessity
part of Proposition 1.

Proof of Statement 2. This result follows from the equivalence of conditions (1)–(4) and (7)–(9)
(on the one hand) and conditions (4), (8), (17), and (18) (on the other hand).
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16. Lin, F., Fardad, M., and Jovanović, M.R., Design of Optimal Sparse Feedback Gains via the Alternating
Direction Method, IEEE Trans. Autom. Control, 2013, vol. 58, no. 9, pp. 2426–2431.

17. Belozyorov, V.Y., New Solution Method of Linear Static Output Feedback Design Problem for Linear
Control Systems, Linear Algebra Appl., 2016, vol. 504, pp. 204–227.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



1074 MOZZHECHKOV

18. Blumthaler, I. and Oberst, U., Design, Parametrization, and Pole Placement of Stabilizing Output
Feedback Compensators via Injective Cogenerator Quotient Signal Modules, Linear Algebra Appl., 2012,
vol. 436, pp. 963–1000.

19. Johnson, T. and Athans, M., On the Design of Optimal Constrained Dynamic Compensators for Linear
Constant Systems, IEEE Trans. Autom. Control, 1970, vol. 15, pp. 658–660.

20. Moerder, D. and Calise, A., Convergence of a Numerical Algorithm for Calculating Optimal Output
Feedback Gains, IEEE Trans. Autom. Control, 1985, vol. 30, pp. 900–903.

21. Choi, S. and Sirisena, H., Computation of Optimal Output Feedback Gains for Linear Multivariable
Systems, IEEE Trans. Autom. Control, 1974, vol. 19, pp. 254–258.

22. Kreisselmeier, G., Stabilization of Linear Systems by Constant Output Feedback Using the Riccati
Equation, IEEE Trans. Autom. Control, 1975, vol. 20, pp. 556–557.

23. Toivonen, H.T., A Globally Convergent Algorithm for the Optimal Constant Output Feedback Problem,
Int. J. Control, 1985, vol. 41, no. 6, pp. 1589–1599.

24. Geromel, J., Peres, P., and Souza, S., Convex Analysis of Output Feedback Structural Constraints, Proc.
IEEE Conf. on Decision and Control, San Antonio, 1993, pp. 1363–1364.

25. Iwasaki, T. and Skelton, R., All Controllers for the General H∞ Control Problem: LMI Existence
Conditions and State Space Formulas, Automatica, 1994, vol. 30, pp. 1307–1317.

26. Paraev, Yu.I. and Smagina, V.I., Problems of Simplifying the Structure of Optimal Controllers, Avtomat.
i Telemekh., 1975, no. 6, pp. 180–183.

27. Mozzhechkov, V.A., Prostye struktury v teorii upravleniya (Simple Structures in Control Theory), Tula:
Tula State University, 2000.

28. Mozzhechkov, V.A., Design of Simple-Structure Linear Controllers, Autom. Remote Control, 2003,
vol. 64, no. 1, pp. 23–36.

29. Mozzhechkov, V.A., Design of Simple Robust Controllers for Time-Invariant Dynamic Systems, J. Com-
put. Syst. Sci. Int., 2021, vol. 60, pp. 353–363.

30. Mozzhechkov, V.A., Synthesis of Simple Relay Controllers in Self-oscillating Control Systems, Autom.
Remote Control, 2022, vol. 83, no. 9, pp. 1393–1403.

31. Mozzhechkov, V.A., Simple Structures in Problems of Control Theory: Formalization and Synthesis, J.
Comput. Syst. Sci. Int., 2022, vol. 61, pp. 295–312.

32. Vapnik, V.N., An Overview of Statistical Learning Theory, Transactions on Neural Networks, 1999,
vol. 10, no. 5, pp. 988–999.

33. Vorontsov, K.V., Combinatorial Bounds for the Quality of Learning by Precedents, Dokl. Akad. Nauk,
2004, vol. 394, no. 2, pp. 175–178.

34. Mohri, M., Rostamizadeh, A., and Talwalkar, A., Foundations of Machine Learning, Massachusetts:
MIT Press, 2012.

35. Schmidhuber, J., Deep Learning in Neural Networks, Neural Networks, 2015, vol. 61, pp. 85–117.

36. Ikramov, Kh.D., Chislennoe reshenie matrichnykh uravnenii (Numerical Solution of Matrix Equations),
Moscow: Nauka, 1984.

37. Gill, Ph.E., Murray, W., Wright, M.H., Practical Optimization, London: Academic Press, 1981.

38. Bertsekas, D.P., Convex Optimization Algorithms, Belmont: Athena Scientific, 2015.

39. Polyak, B., Introduction to Optimization, Optimization Software, 1987.

This paper was recommended for publication by P.V. Pakshin, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 9, pp. 1075–1084.
c© The Author(s), 2023 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c© The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 9, pp. 82–94.

NONLINEAR SYSTEMS

Fault Identification:

An Approach Based on Optimal Control Methods

A. A. Kabanov∗,a, A. V. Zuev∗∗,∗∗∗,b, A. N. Zhirabok∗∗,∗∗∗,c, and V. F. Filaretov∗∗∗∗,d

∗Sevastopol State University, Sevastopol, Russia
∗∗Far Eastern Federal University, Vladivostok, Russia

∗∗∗Institute of Marine Technology Problems, Far Eastern Branch,
Russian Academy of Sciences, Vladivostok, Russia

∗∗∗∗Institute of Automation and Control Processes, Far Eastern Branch,
Russian Academy of Sciences, Vladivostok, Russia

e-mail: akabanovaleksey@gmail.com, balvzuev@yandex.ru, czhirabok@mail.ru, dfilaretov@inbox.ru

Received January 11, 2023

Revised April 11, 2023

Accepted June 9, 2023

Abstract—This paper considers the problem of identifying (estimating) faults in systems de-
scribed by linear models under exogenous disturbances. It is solved using optimal control
methods; in comparison with sliding mode observers, they avoid high-frequency switching. The
solution method proposed below involves a reduced model of the original system that is sen-
sitive to faults and insensitive to disturbances. The corresponding theory is illustrated by an
example.
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1. INTRODUCTION

For the last two decades, the problem of fault identification has been solved based on sliding
mode observers [1–7]. In the works cited, certain constraints were imposed on the system under
consideration. The most typical ones include the matching condition and the minimum phase
property of the system. This restricts the class of systems for which such observers can be con-
structed. In addition, the implementation of such observers implies high-frequency switching and,
consequently, high-frequency data exchange in the control system, which is not always practicable.
The method based on the optimal control theory proposed below is free from this disadvantage.

Consider control systems described by the linear model

ẋ(t) = Ax(t) +Bu(t) +Dd(t) + Lρ(t), x(t0) = x0,

y(t) = Cx(t)
(1.1)

with the following notations: x ∈ R
n is the state vector, u ∈ R

m is the control vector, and y ∈ R
l

is the output; A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n, D ∈ R

n×q, and L ∈ R
n×s are known constant

matrices; the vector function d(t) ∈ R
q describes faults, i.e., d(t) = 0 if there are no faults, and d(t)

becomes an unknown time-varying function otherwise; finally, ρ(t) ∈ R
s is an unknown time-varying

function of exogenous disturbances affecting the system.

In this paper, the problem is to design an observer for estimating the function d(t). In contrast
to the conventional approach, the solution proposed below is based on optimal control methods.
By analogy with [5–7], the problem is solved not for the original system but for its reduced model
insensitive to disturbances. Such a model has a smaller dimension than the original system.
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2. BUILDING THE REDUCED MODEL

The reduced model has the form

ẋ∗(t) = A∗x∗(t) +B∗u(t) + J∗y(t) +D∗d(t),

y∗(t) = C∗x∗(t),
(2.1)

where x∗(t) ∈ R
k is the state vector; A∗, B∗, J∗, C∗, and D∗ are matrices of compatible dimensions

to be determined. By analogy with [5–7], the matrices A∗ and C∗ are found in the canonical form

A∗ =

⎛
⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0

⎞
⎟⎟⎟⎠ , C∗ = ( 1 0 0 . . . 0 ). (2.2)

Also following [5–7], we suppose the existence of matrices Φ and R∗ such that x∗(t) = Φx(t),
y∗(t) = R∗y(t), and

ΦA = A∗Φ+ J∗C, R∗C = C∗Φ, ΦB = B∗, ΦD = D∗. (2.3)

In view of the canonical form (2.2), equations (2.3) imply [5–7] the equations

Φ1 = R∗C, ΦiA = Φi+1 + J∗iC, i = 2, . . . , k − 1,

ΦkA = J∗kC,
(2.4)

where Φi and J∗i are the ith rows of the matrices Φ and J∗, respectively, i = 1, . . . , k. The matrix R∗
must be chosen so that D∗ �= 0. The corresponding procedure will be given below.

Assumption 1. Im(D) �⊂Ker(V (n)), where

V (n) =

⎛
⎜⎜⎜⎝

C
CA
. . .

CAn−l

⎞
⎟⎟⎟⎠

is the observability matrix.

Assumption 1 holds if system (1.1) is observable: in this case, Ker(V (n)) = 0 and, consequently,
V (n)D �= 0. Let p be the smallest integer satisfying CApD �= 0 and j be an integer for which
CjA

pD �= 0. It can be demonstrated that (2.4) implies Φ = QV (n) for some matrix Q, and then
we obtain D∗ = ΦD �= 0 from CjA

pD �= 0. According to the aforesaid, the pth derivative of the
variable yj is sensitive to faults: this derivative will change value if a fault occurs. Also, obviously,
if the jth position of the matrix R∗ is nonzero, model (2.1) with this matrix will be sensitive to
faults.

As was shown in [5–7], insensitivity to exogenous disturbances holds if ΦL = 0. Together
with (2.4), this condition can be reduced to the equation

( R∗ −J∗1 . . . −J∗k )(W (k) L(k)) = 0, (2.5)

where

W (k) =

⎛
⎜⎜⎜⎝

CAk

CAk−1

. . .
C

⎞
⎟⎟⎟⎠ , L(k) =

⎛
⎜⎜⎜⎝
CL CAL . . . CAk−1L
0 CL . . . CAk−2L

. . .
0 0 . . . 0

⎞
⎟⎟⎟⎠ .

Equation (2.5) has a solution under

rank (W (k) L(k)) < l(k + 1).
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This inequality serves to determine the minimal dimension k > p; equation (2.5), to determine the
row ( R∗ −J∗1 . . . −J∗k ). If the jth position of the matrix R∗ is nonzero, then the matrices Φ,
B∗, and D∗ are obtained using (2.3) and (2.4). Otherwise, it is necessary to find another solution
of equation (2.5).

The stability of the model is ensured by feedback on the residual signal r∗(t) = R∗y(t)− y∗(t):

ẋ∗(t) = A∗x∗(t) +B∗u(t) + J∗y(t) +D∗d(t) +Kr∗(t), (2.6)

where the matrix K has the form K = ( k1 k2 . . . kk )T. The coefficients k1, k2, . . . , kk are de-
termined from given eigenvalues λ1, λ2, . . . , λk:

k1 = −(λ1 + λ2 + . . .+ λk),

k2 = λ1λ2 + λ1λ3 + . . .+ λk−1λk,

. . . ,

kk = (−1)kλ1λ2 . . . λk.

Consider the expression for the residual r∗(t), equation (2.6) can be transformed into

ẋ∗(t) = (A∗ −KC∗)x∗(t) +B∗u(t) + (J∗ +KR∗)y(t) +D∗d(t).

3. AN AUXILIARY OPTIMAL CONTROL PROBLEM

As has been emphasized, the problem of fault identification is solved using optimal control
methods. Consider the corresponding problem for the system

ż(t) = (A∗ −KC∗)z(t) +B∗u(t) + (J∗ +KR∗)y(t) +D∗w(t), z(t0) = Φx0,
(3.1)

yz(t) = C∗z(t),

where the auxiliary control variable w(t) plays the role of the unknown function d(t). It is chosen
to transfer system (3.1) from the state z(t0) to a target state with the output yz(tf ) such that
yz(tf ) → y∗(tf ) as tf → ∞ and

J =
1

2

∞∫
t0

(
eTyQey + wTRw

)
dt → min

v
. (3.2)

Here, ey(t) = yz(t)− y∗(t) denotes the residual, and Q and R ∈ R
q×q are a positive number and

a positive definite matrix, respectively. The relation yz(tf ) → y∗(tf ), tf → ∞, is understood as
convergence in the Euclidean norm: ‖yz(tf )− y∗(tf )‖ → 0 as tf → ∞. The convergence of other
time-varying functions in this paper is interpreted by analogy.

The identification problem is to construct the optimal control w(t) in the sense of the perfor-
mance criterion (3.2) such that yz(t) → y∗(t) and w(t) → d(t) as t→ ∞. The criterion (3.2) must
be minimized for a sufficiently large value of the constant Q, in particular, Q = 1020 in the example
below. This practically ensures the property ey(t) → 0 as t→ ∞. With this in mind, we denote
by ey∗ the asymptote for ey(t). According to the previous considerations, ey∗ = 0 can be taken with
a sufficient degree of accuracy.

Introducing the error vector e(t) = z(t)− x∗(t) ∈ Rk, we write the corresponding equation

ė(t) = A∗e(t) +D∗(w(t) − d(t))−Key(t)

= (A∗ −KC∗)e(t) +D∗(w(t) − d(t)), e(t0) = 0,

ey(t) = C∗e(t).

(3.3)
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Assumption 2. System (3.3) is strongly observable.

Strong observability means the absence of invariant zeros. In other words, there exist no s for
which

rank (R(s)) < k + rank

(
−D∗
0

)
,

where R(s) is the Rosenbrock matrix [8, 9]:

R(s) =

(
sI − (A∗ −KC∗) −D∗

C∗ 0

)
.

Theorem 1. If system (3.3) is strongly observable, then ey(t) → 0 implies w(t) → d(t) as t→ ∞.

Proof. Let H(s) be the transfer function of system (3.3):

Ey(s) = H(s)(W (s)−D(s)), (3.4)

where Ey(s), W (s), and D(s) are the Laplace images of the functions ey, w(t), and d(t), and
s denotes the complex variable. Since ey∗ = 0, it follows that Ey(s) = 0. System (3.3) has no
invariant zeroes; hence, for all s, the function H(s) is nonzero and, consequently, W (s) = D(s).
According to [10], functions with identical images coincide for all t > 0 except a set of measure
zero. Therefore, w(t) and d(t) coincide for all t > 0 except a set of measure zero. The asymptotic
convergence of the function ey(t) will be written as w(t) → d(t).

Clearly, the converse is true: if the system is not strongly observable, its transfer function will
have a zero, H(s) = 0 for some s. Then equality (3.4) will hold for d(t) + eat with s = a. In this
case, the fault will be reconstructed within the exponent.

4. SOLUTION OF THE AUXILIARY PROBLEM

Here is its solution. For problem (3.1) and (3.2), the Hamiltonian has the form

H =
1

2
(z − x∗)

TCT
∗ QC∗(z − x∗) +

1

2
wTRw + λT(A∗z + J∗y +D∗w +B∗u),

where A∗ = A∗ −KC∗ and J∗ = J∗ +KR∗. The optimal control law is given by

∂H

∂w
= 0 ⇒ Rw +DT

∗ λ = 0 ⇒ w = −R−1DT
∗ λ. (4.1)

The state and conjugate variables satisfy the equations

ż(t) =
∂H

∂λ
= A∗z + J∗y +D∗w +B∗u = A∗z + J∗y −D∗R

−1DT
∗ λ+B∗u,

z(t0) = Φx0,

λ̇(t) =
∂H

∂z
= −AT

∗ λ− CT
∗ QC∗z + CT

∗ Qy∗.

We write the latter relations in matrix form:(
ż(t)

λ̇(t)

)
=

(
A∗ −D∗R−1DT

∗
−CT

∗ QC∗ −AT
∗

)(
z(t)
λ(t)

)
+

(
B∗
0

)
u(t) +

(
J∗y(t)

CT
∗ Qy∗(t)

)
,

z(t0) = Φx0.

(4.2)

Equation (4.2) can be considered a diagnostic observer. By integrating (4.2) in forward time, it
is possible to find and then reconstruct based on (4.1) the function describing the fault:

w(t) = −R−1DT
∗ λ(t) → d(t). (4.3)
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An open issue is the choice of initial conditions for the conjugate variable when integrating (4.2).
Since the initial conditions are unknown, we introduce the following Riccati transformation [10] to
find the control law:

z(t) =M(t)λ(t) + g(t), (4.4)

where M(t) and g(t) are a nonsingular matrix and some vector function, respectively. Differenti-
ating (4.4) and performing several transformations yield(

−Ṁ(t) +A∗M(t) +M(t)A
T
∗ −D∗R

−1DT
∗ +M(t)CT

∗ QC∗M(t)
)
λ(t)

= ġ(t)−A∗g(t)− J∗y(t)−B∗u(t)−M(t)CT
∗ QC∗g(t) +M(t)CT

∗ Qy∗(t).

This relation must hold for any λ(t); hence, we obtain the equations

Ṁ(t) = A∗M(t) +M(t)A
T
∗ −D∗R

−1DT
∗ +M(t)CT

∗ QC∗M(t),

ġ(t) = A∗g(t) + J∗y(t) +B∗u(t) +M(t)CT
∗ QC∗g(t) −M(t)CT

∗ Qy∗(t).
(4.5)

For t = t0, it follows from (4.4) that z(t0) =M(t0)λ(t0) + g(t0). Since λ(t0) is unknown, the initial
conditions will be satisfied by letting M(t0) = 0 and z(t0) = g(t0). Substituting (4.4) into (4.3)
finally gives

w(t) = −R−1DT
∗M

−1(t)(z(t) − g(t)). (4.6)

The ultimate expression for the desired observer has the form

ż(t) = A∗z(t)−D∗R
−1DT

∗M
−1(t)(z(t) − g(t)) + J∗y(t) +B∗u(t),

z(t0) = Φx(t0),

yz(t) = C∗z(t).

(4.7)

Here, M(t) and g(t) are determined from equations (4.5) with the initial conditions M(t0) = 0 and
z(t0) = g(t0). On an infinite time interval, when system (3.1) is controllable and observable, the
solution of equation (4.5) will tend to the steady-state value M as t→ ∞, which is the solution of
the algebraic equation [11–13]

A∗M +MA
T
∗ −D∗R

−1DT
∗ +MCT

∗ QC∗M = 0;

the function g(t) from the second equation in (4.5) will tend to the bounded solution g(t) of the
differential equation

ġ(t) = (A∗ +MCT
∗ QC∗)g(t) + J∗y(t) +B∗u(t)−MCT

∗ Qy∗(t) (4.8)

with the initial conditions g(t0) = z(t0). The desired observer on an infinite time interval takes the
form (4.7), where M(t) and g(t) are replaced by M and g(t).

The convergence of g(t) to the bounded solution g(t) is immediate from the following consider-
ations. Multiplying the equation for M (4.5) by −1 on the left and right and denoting P = −M ,
we obtain the Riccati equation, which typically arises in optimal estimation problems [14]. Under
the conditions R > 0, Q > 0, and the observability of system (3.1), the solution of this equation is
known to converge to the steady-state solution P representing the unique positive definite solution

of the algebraic Riccati equation A∗P + PA
T
∗ +D∗R−1DT

∗ − PCT
∗ QC∗P = 0, and A∗ − PCT

∗ QC∗
is a Hurwitz matrix. Thus, due to P > 0, P → P , and P = −M, we obtain M →M , M < 0, and
the matrix A∗ +MCT

∗ QC∗ will be Hurwitz as well. With the error eg(t) = g(t) − g(t), from (4.5)
and (4.8) it follows that ėg(t) = (A∗ +MCT

∗ QC∗)eg(t). Since A∗ +MCT
∗ QC∗ is a Hurwitz matrix,

we have eg(t) →0 and g(t) → g(t) as t→ ∞.
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5. SIMULATION RESULTS

Let us construct an observer for a two-wheeled inverted pendulum (TWIP) robot with self-
balancing [15]. The kinematic diagram of this robot is shown in Fig. 1. The mathematical model
of the TWIP robot linearized at the equilibrium takes the form (1.1) with the following notations:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 a2 0 0 0
0 0 0 1 0 0
0 0 a4 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
b2 b2
0 0
b4 b4
0 0
b6 −b6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
b2
0
b4
0

−b6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, C =

⎛
⎜⎝ 1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎟⎠ ;

x = (xl ẋl ϑ ϑ̇ ψ ψ̇) and u = (TL TR) are the state and control vectors, respectively; TL and TR
are the left and right wheel torques, respectively; xl is the linear displacement; ϑ and ψ are the
pitch and heading angles, respectively; y = (xl ϑ ψ) is the system output; d(t) = T̃L is an unknown
additional torque applied to the left wheel to be determined; ρ(t) = T̃R is an unknown additional
torque applied to the right wheel. The coefficients a2, a4, b2, b4, and b6 can be found using the
expressions below [15]:

a2 = −m2
Bgl

2/μ1, a4 =

(
mB + 2mW +

2J

r2

)
mBgl/μ1,

b2 =
(
(I2 +mBl

2)/r +mBl
)
/μ1, b4 = −

(
mBl

r
+mB + 2mW +

2J

r2

)
/μ2,

b6 = − d

rμ2
,

μ1 =

(
mB + 2mW +

2J

r2

)
(I2 +mBl

2)−m2
Bl2,

μ2 = I3 + 2K∗ + 2

(
mW +

J

r2

)
d2.

The parameter values of the robot are combined in the table.

b3(I3)ˆ

c1

K
K

J

d

ˆ
c2̂

c3̂

xl
l

b1(I1)ˆ

b2(I2)

{B}

{C}

mW g

mW g

mB g

r xl
.

�
.

	
.

z

	

ˆ

Fig. 1. The kinematic configuration of a TWIP robot.
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Table

Notation Description Value

mB Weight of the pendulum body 45 kg

mW Wheel weight 2 kg

l Pendulum length 0.135 m

r Wheel radius 8 in

d Wheel-to-wheel spacing 0.6 m

I1, I2, I3 The moments of inertia of the pendulum body relative
to the axes X,Y, Z

1.9; 2.1; 1.6 kg*m2

K∗, J The moments of inertia of the pendulum wheels rela-
tive to the vertical axis and the wheel rotation axis

0.04; 0.02 kg*m2

To find the matrices of the reduced model (2.1), it is necessary to solve equation (2.5). For
k = 1, it takes the form

(−j1 r1 − j2 r2 − j3 r3 0) = 0,

where ji are elements of the vector J∗ = (j1 j2 j3) and ri are elements of the vector r = (r1 r2 r3).
Obviously, this equation possesses the trivial solution only. For k = 2, equation (2.5) takes the
form

(−j21 − j11 a2r1 − j22 + a4r2 − j12 − j23 − j31 0 b2r1 + b4r2 − b6r3) = 0,

where jik are elements of the matrix J∗ of dimensions 2× 3. In this case, the vector R∗ can be
chosen as R = (0 b6 b4); then the matrix J∗ becomes

J∗ =

(
0 0 0
0 a4b6 0

)
.

The next step is to find the matrices Φ and B∗ using the expressions (2.4) and (2.3):

Φ =

(
0 0 b6 0 b4 0

0 0 0 b6 0 b4

)
, B∗ = ΦB =

(
0 0

2a4b6 0

)
.

Thus, the reduced robot model (2.6), sensitive to the function d(t) and insensitive to the function
ρ(t), has the form

ẋ∗1(t) = x∗2(t) + k1r∗(t),

ẋ∗2(t) = a4b6y2(t) + 2a4b6TL(t) + k2r∗(t),

r∗(t) = b6y2(t) + b4y3(t)− x∗1(t).

The diagnostic observer for fault identification is given by (4.6)–(4.8), where R = 10−2, Q = 1020,
and K = (1 1)T . Figure 2 shows the structural diagram of this observer.

Assume that the fault (an additional moment applied to the left wheel) is a rectangular pulse
with a duration of 4 s that appears at t = 2.

Having adjusted the observer parameters, we obtain the identification result in Fig. 3. Clearly,
the observer design approach provides an acceptable result. In addition, the graphs of the model
state and observer states and observation errors can be found in Figs. 4 and 5, respectively.

Note that the quality of identification based on the optimal observer (4.6)–(4.8) depends on the
choice of the penalty matrices Q and R and the matrix K. When selecting them, it is recommended
to use the following considerations. The cross relations between the output and fault variables are
reflected in the off-diagonal elements of these matrices. In the absence of information on such
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Fig. 2. Structural diagram.
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Fig. 3. Operation of the observer under a rectangular pulse fault.

relations, the diagonal form of the matrix R is recommended. The same recommendation applies
to the matrix Q in the case of no cross relations between the observed outputs. If the resulting
fault estimate has a large value, it is required to reduce the corresponding diagonal elements of the
matrix R. Given large values of the residual e(t) = x∗(t)− z(t), the elements of the matrix Q must
be increased. The coefficients of the matrix K are assigned to ensure a higher performance of the
observer.
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Fig. 4. The graphs of system state and diagnostic observer.
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Fig. 5. The graphs of observation errors e(t) = x∗(t)− z(t).

6. CONCLUSIONS

In this paper, we have estimated (identified) faults in systems described by linear models with
constant coefficients under exogenous disturbances. In contrast to well-known methods based on
sliding mode observers, the approach developed above expands the class of systems for which iden-
tification can be performed: the method of constructing sliding mode observers imposes restrictions
on the systems for fault identification.
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Abstract—Stability of an affine switching system is studied. The system comes to existence
when stabilizing a chain of two integrators by means of a feedback in the form of nested
saturators. The use of such a feedback allows one to easily take into account boundedness
of the control resource, to constrain the maximum velocity of approaching the equilibrium
state, which is especially important in the case of large initial deviations, and to ensure desired
characteristics of the transient process, such as a given exponential rate of the deviation decrease
near the equilibrium state. It is proved that the closed-loop system is globally stable.

Keywords : stabilizing a chain of two integrators, affine switching system, global stability, nested
saturators
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1. INTRODUCTION

Hybrid systems are dynamical systems that exhibit both continuous-time and discrete-time
behavior; i.e., systems whose states vary continuously but may also jump [1]. A switching system
is a hybrid dynamical system consisting of a number of subsystems and a switching law determining
which subsystem is active at a current moment of time [2]. Systems of this kind are encountered in
many control problems in various fields of science and technology [1, 2]. One of the most important
problems in study of switching systems is that of stability [2–4]. It is stability of the switching
system under consideration that is discussed in this work.

The affine switching system under study comes to existence when stabilizing a chain of two
integrators by means of a feedback in the form of nested saturators. The problem of stabilizing
chains of integrators was widely discussed in the literature during last several decades (see, e.g., [5–7]
and references therein). The interest to this problem is motivated by the fact that many real-
life systems in applications (e.g., mechanical planar ones) are modeled by chains of integrators;
moreover, controls developed for chains of integrators can be easily extended to larger classes of
systems.

Feedbacks in the form of nested saturators were studied and used for stabilizing integrators in
many publications (see, e.g., [5, 6, 8–11] and references therein). However, the author is not aware
of the works the results of which could be used for establishing stability of the system closed by
the feedback considered in the paper. The general case of the nth-order integrator was discussed,
for example, in [5, 6]. However, global stability of the system closed by a feedback in the form
of n nested saturators was proved only for the special case where the limits of the saturation
functions satisfy certain inequalities [5, Theorem 2.1], which are not fulfilled for the feedback used
in this study. Global stability of the second-order integrator stabilized by a feedback in the form
of nested saturators, but with the reversed order of the arguments (see the next section for more
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detail), was proved in [8, 9]. However, the approach employed in these works is not applicable to
the case of the feedback considered in this paper.

The feedback of the form considered in the paper was studied earlier in some works. For example,
in [10, 11], optimization problems of selecting the feedback coefficients were discussed; in [12–14],
it was used in the synthesis of controllers for stabilizing higher-order integrators. In these works,
stability of the system closed by such a feedback was implied but was not proved. The goal of this
study is to prove global stability of the system discussed filling thus this gap. The interest in the
feedback in the form of nested saturators is explained by a number of remarkable features of the
closed-loop system obtained, which is discussed in the next section.

2. PROBLEM STATEMENT

Consider the problem of stabilizing a chain of two integrators:

ẋ1 = x2, ẋ2 = U(x), (1)

where x ≡ [x1, x2]
T, by means of a continuous feedback with a constrained control resource

Umax = k4 : U(x) =−k3(x2+k2sat(k1x1)) for |U(x)|� k4 and U(x) =−k4sign(k3(x2+k2sat(k1x1)))
for |U(x)|>k4. In the compact form, control U(x) is written as

U(x) = −k4sat
(
k3
k4

(x2 + k2sat(k1x1))

)
, (2)

where sat(·) is the nonsmooth saturation function: sat(w) = w for |w| � 1 and sat(w) = sign(w)
for |w| > 1. The advantage of the feedback in the form of nested saturators is that not only
the control constraint is automatically satisfied but also the maximum speed of approaching the
equilibrium is limited: if we set k2 = Vmax, then, for any initial deviation, ẋ1(t) � Vmax as long
as x2(0) � Vmax [11]. Moreover, any desired type of the equilibrium (node, pole, or center) and
any desired value of the exponential rate of deviation decrease near the origin can be ensured by
appropriate choice of the coefficients k1 and k3 [11].

As noted in the Introduction, in [8, 9], a feedback of form (2) with the reverse compared to (2)
order of arguments, where the argument of the internal saturator is velocity x2 and that of the
external saturator is deviation x1, was considered (in [9], the argument of the external saturator
depends additionally on the velocity squared x22), and it was proved that the second-order integrator
closed by such a feedback is globally stable. The proof in both works is based on the existence of a
Lyapunov function in the form of the sum of a quadratic and integral terms. For system (1), (2),
however, this expedient is not applicable, since no Lyapunov function is available.

2.1. Equivalent Representation in the Form of an Affine Switching System

Let us first show that system (1), (2) is an affine switching one. Consider partitioning of
plane (x1, x2) into five sets (Fig. 1). In the set D1, we include all points where both saturators are
not saturated:

D1 = {(x1, x2) : |x1| < 1/k1, |x2 + k1x1| < k4/k3}
(the inclined strip bounded by the dashed lines in Fig. 1). The set D2 consists of all points where
the internal saturator reaches saturation, while the external one does not:

D2 = {(x1, x2) : |x1| � 1/k1, |x2 + k2sgn(x1)| < k4/k3}.

As can be seen from the figure, D2 consists of the two disjoint sets D−
2 and D+

2 belonging to the
left and right half-planes, respectively (two disjoint horizontal strips in Fig. 1). The set

D3 = {(x1, x2) : |x2 + k2sat(k1x1))| > k4/k3}
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includes all points where the external saturator reaches saturation. Like D2, D3 consists of two
nonintersecting sets D−

3 and D+
3 lying above and below the line x2 = −sat(k1x1) (the solid broken

line in Fig. 1), in which U1(x) ≡ −k4 and U1(x) ≡ +k4, respectively.

From formula (2), it can be seen that U(x) is a piecewise continuous function:

U(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−k3x2 − k1k2k3x1, (x1, x2) ∈ D1,

−k3(x2 − k2), (x1, x2) ∈ D−
2 ,

−k3(x2 + k2), (x1, x2) ∈ D+
2 ,

−k4, (x1, x2) ∈ D−
3 ,

+k4, (x1, x2) ∈ D+
3 ,

(3)

and the closed-loop system (1), (2) includes five linear systems, with the switching between them
being state dependent according to equation (3). The goal of this study is to prove global stability
of this system.

The standard method of proving stability of linear switching systems—determining a common
Lyapunov function for all systems—is not applicable in this case, since the origin is an equilibrium
point for only the first system with the domain D1. The other four systems, although linear ones,
have no equilibria at all; i.e., we deal with an affine switching system. The standard method of
proving stability of general-form nonlinear systems with the help of a Lyapunov function (like, e.g.,
in [9]) cannot be applied either since we failed to find one for the system under consideration.

2.2. Representation in Dimensionless Form

To begin with, we simplify the task by reducing the number of the system parameters. Clearly,
stability of the system does not depend on particular values of the control resource k4 and maximum
velocity k2, so that we can set them equal to one. Indeed, turning to dimensionless variables
x̃1 = k4x1/k

2
2 , x̃2 = x2/k2 and time t̃ = k4t/k2, we reduce system (1), (2) to the form

dx̃1

dt̃
= x̃2,

dx̃2

dt̃
= −sat(k̃3(x̃2 + sat(k̃1x̃1))), (4)

where k̃1 = k1k
2
2/k4 and k̃3 = k2k3/k4, with unitary dimensionless control resource k̃4 = 1 and uni-

tary maximum velocity k̃2 = 1. In what follows, all variables and constants are assumed dimension-
less and are denoted by the same symbols (without tilde) as dimensional ones. As before, we use the
dot notation to denote the derivatives with respect to the dimensionless time. Moreover, without
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loss of generality, we will select coefficients k1 and k3 from a one-parameter family parameterized
by the exponential rate λ of the deviation decrease near the origin:

k1 = λ/2, k3 = 2λ, λ > 0. (5)

With these coefficients, system (1) closed by the feedback (2) takes the form

ẋ1 = x2, ẋ2 = −sat(2λ(x2 + sat(λx1/2))). (6)

In D1, we have linear system
ẋ1 = x2, ẋ2 = −λ2x1 − 2λx2, (7)

the characteristic equation of which has two identical roots λ1 = λ2 = −λ; i.e., the origin is a stable
degenerate node. In other domains, we have the following systems:

ẋ1 = x2, ẋ2 = −2λ(x2 − 1), (x1, x2) ∈ D−
2 , (8)

ẋ1 = x2, ẋ2 = −2λ(x2 + 1), (x1, x2) ∈ D+
2 , (9)

ẋ1 = x2, ẋ2 = −1, (x1, x2) ∈ D−
3 , (10)

ẋ1 = x2, ẋ2 = 1, (x1, x2) ∈ D+
3 . (11)

Equation (6) is an equivalent representation of the switching system (7)–(11).

3. PROOF OF GLOBAL STABILITY

First, we prove that, in the study of stability of the system. we can confine ourselves to the
consideration of the trajectories beginning in the set D1.

Proposition. System (7)–(11) is globally asymptotically stable if and only if any trajectory
beginning in the set D1 asymptotically tends to the origin.

The necessity of the assertion is evident. The sufficiency is proved by showing that any trajectory
with arbitrary initial conditions occurs in the set D1 in a finite time. Let us prove this. Indeed,
from equations (10) and (11), it is seen that trajectories of the system in D−

3 and D+
3 are parabolas

x1 = ∓1

2
x22 + C. (12)

Since any parabola cannot lie entirely in D−
3 or D+

3 (see Fig. 1) and the system moves with the
constant acceleration, it inevitably occurs in a finite time in either D1 or D2. Further, from
equations (8) and (9), it is seen that, in D−

2 (D+
2 ), the system moves in the positive (negative)

direction of x1 and x2(t) → 1 (x2(t) → −1). Then, it follows that the system inevitably enters D1

in a finite time. Thus, for any initial conditions, after at most two switchings, the system occurs
in the set D1. Further, only trajectories beginning in D1 are considered.

Theorem 1. System (6) is globally asymptotically stable for any λ > 0.

Proof. Let us find out whether the system can enter D2 from D1. For definiteness, consider
the boundary between D1 and D+

2 . From the first equation in (9), it is seen that the trajectory
can intersect the boundary only if x2 is positive, i.e., when the half-width 1/2λ of the strip D2

is greater than one, like in the case shown in Fig. 2, which takes place only when λ < 1/2. Since
the right-hand side of the second equation in (9) in this case is negative, x2(t) will change sign in
a finite time, This, in turn, will change the direction of motion along x1-axis, bringing thus the
system to D1 again. Note that the segment of the asymptote x2 = −λx1 (the bold line in Fig. 2) of
the linear system (7) for which |x1| � 2/λ lies completely in D1. Since no trajectory of the system
can intersect the asymptote in D1, all trajectories asymptotically tend to the origin. The case of
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negative x1 is considered similarly. Thus, for small λ < 1/2, the system is globally stable. Note
that, in this case, any trajectory beginning in the set D1 can intersect the boundary between the
sets (D1 and D2) not more than twice.

Let us determine conditions under which the system can switch from D1 to D3. The boundary
between the sets (dashed lines in Fig. 1) is given by the equations

x2 = −λ
2
x1 ±

1

2λ
, − 2

λ
� x1 �

2

λ
, (13)

where the plus sign before the second addend corresponds to the upper boundary (the boundary
between D1 and D−

3 ), and the minus sign, to the lower boundary. A trajectory can intersect the
boundary only if its slope is less than that of the boundary, which is λ/2. From equations (10)
and (11), we find that the slope of the trajectory on the boundary is 1/x2, from which it follows
that the trajectory can intersect the upper (lower) boundary only at the points with ordinates
satisfying the inequality x2 > 2/λ (x2 < −2/λ), i.e., in the region

|x2| > 2/λ. (14)

Since the maximum value of |x2| in D1 is achieved in two angular points with ordinates
±(1 + 1/(2λ)), trajectories cannot intersect the boundary when λ � 3/2.

Thus, global stability of the system is proved for all λ � 3/2. Moreover, we proved the following
nontrivial assertion.

Lemma 1. Let 1/2 � λ � 3/2. Then, D1 is an invariant set of the switching system (6).

Note that D1 in this case is an invariant set of the linear system (7) either. Now, let us prove that
the system is globally stable for any greater values of λ. From the above calculations, it follows
that, for λ > 3/2, the system can pass from D1 to only D3. Consider, for definiteness, the upper
part of the phase plane, where U(x) < 0. Constant C on the right-hand side of (12) depends on the
coordinates of the point where the system passes from D1 to D−

3 . Let x2∗ denote the ordinate of
the point where the trajectory intersects the boundary (the abscissa is uniquely determined from
the equation of the boundary (13)). Then,

C ≡ C(x2∗) =
1

2

(
x22∗ −

4x2∗
λ

+
2

λ2

)
.

Substituting the right-hand side of this formula for C in (12) and solving the quadratic equation
obtained, we find the ordinate (denote it as x2∗∗) of the second intersection point of the parabola
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and the boundary (13), where the system switches from (10) to (7):

x2∗∗ =
4

λ
− x2∗. (15)

With regard to the inequalities
2

λ
< x2∗ � 1 +

1

2λ
,

it follows from (15) that x2∗∗ satisfies the inequalities

2

λ
> x2∗∗ � −1 +

7

2λ
> −1 +

1

2λ
;

i.e., the second intersection point of the parabola and the line (13) belongs to the boundary between
D−

3 and D1, and, hence, the trajectory passing from D1 to D3 cannot occur in D2. Thus, when
λ > 3/2, switchings are possible only between the three systems with the domains D1, D

−
3 , and D

+
3 .

Similarly, two successive points of intersection of the boundry between D1 and D+
3 are found to be

x2∗∗ = − 4

λ
− x2∗, − 2

λ
< x2∗ � −1− 1

2λ
. (16)

Since any trajectory cannot have self-intersections and does not go to infinity, it will suffice to prove
that no closed trajectory (cycle) exists [15]. Let us assume the contrary: suppose that there exists
a closed trajectory. From the above discussions, it follows that such a trajectory consists of four
segments: two segments in D1, one segment in D+

3 , and one segment in D−
3 , with the motion along

the trajectory being clockwise.

Let us show that there exists a positive definite function that decreases on all segments of the
cycle, from which it follows that the trajectory cannot be closed. Note that we do not mean a
Lyapunov function, since we do not require negativeness of its derivative by virtue of system (6)
at all points of the trajectory. We seek for a function the total variation of which ater passing the
entire segment completely lying in one of the regions D1, D

−
3 , or D

+
3 is negative. For a candidate

of the desired function, we take a quadratic Lyapunov function F = λ3xTPx (the multiplier λ3 is
introduced for the convenience of notation) of the linear system (7). Here, P is a positive definite
matrix of order two satisfying the linear matrix inequality (LMI) ATP + PA < 0 [16], and A is the
matrix of the linear system (7):

A =

(
0 1

−λ2 −2λ

)
.

In [17], it was shown that matrix P can be represented in the form

P =

(
λ q1/2
q1/2 q2/λ

)
, (17)

where q1, q2 > 0 belong to the ellipse Ω (Fig. 3) defined by the inequality

(q2 − q1 − 1)2 + (q1 − 2)2 � 4. (18)

Let us find out whether there exist (q1, q2) ∈ Ω such that function F decreases on each of the four
segments.

The derivative of function F by virtue of system (7) is negative by definition, which guarantees
that function F decreases on two trajectory segments lying in D1. On the segments lying in D3,
negativeness of the derivative of F is not guaranteed; however, we prove further that the integral
variation of F on each of these segments is negative; i.e., the value of the function at the boundary
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point where the system passes from D1 to D3 is greater than that at the point where it returns
from D3 to D1.

Substituting the right-hand side of (17) into F , we get F (x) = λ2(λ2x21 + λq1x1x2 + q2x
2
2). Ex-

pressing x1 in terms of x2 from the equation of boundary (13) and substituting it into the right-hand
side of the formula for function F , we obtain the value of F on the upper boundary of D1:

F (x2) = c1x
2
2 − c2x2 + 1, (19)

where c1 = λ2(q2 − 2q1 + 4) and c2 = λ(4− q1). It follows from inequality (18) that q1 < 4 and,
hence, c2 > 0 ∀q1, q2 ∈Ω. It is easy to show that ellipse (18) has no intersections with the straight
line q2 − 2q1 − 4 = 0 (the dashed line in Fig. 3) and lies above it; hence, c1 > 0 ∀q1, q2 ∈Ω. Let us
find the variation ΔF of function F on the trajectory segment lying in D−

3 . With regard to (19)
and (15), at the beginning and end points of the segment, the function takes values

F (x2∗) = c1x
2
2∗ − c2x2∗ + 1, F (x2∗∗) = c1(4/λ − x2∗)

2 − c2(4/λ − x2∗) + 1.

Then, it follows that

ΔF = F (x2∗∗)− F (x2∗) = c1(16/λ
2 − 8x2∗/λ) + 2c2x2∗ − 4c2/λ

= (2c2 − 8c1/λ)x2∗ + 16c1/λ
2 − 4c2/λ = −(8q2 − 14q1 + 24)(λx2∗ − 2).

It is easy to verify that the straight line 8q2 − 14q1 + 24 = 0 (solid line in Fig. 3) touches ellipse Ω
and lies below it, so that the first multiplier is positive. Since, according to (14), x2∗ > 2/λ, the
second multiplier is positive either, so that ΔF < 0 for any (q1, q2) ∈ Ω.

Repeating these calculations for the lower boundary of set D1 and taking into account (16), we
find

F (x2) = c1x
2
2 + c2x2 + 1 (20)

and

ΔF = c1(4/λ + x2∗)
2 − c2(4/λ+ x2∗)− c1x

2
2∗ − c2x2∗

= (8q2 − 14q1 + 24)(λx2∗ + 2). (21)
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According to (14), on the lower boundary, x2∗ < −2/λ, the second multiplier in (21) is negative;
hence, the variation of function F on the trajectory segment lying in D+

3 is also negative. Thus, for
any (q1, q2) ∈ Ω, the value of the quadratic Lyapunov function of the linear system (7) decreases
after passing each trajectory segment, from which it follows that the trajectory cannot be a closed
curve. The theorem is proved.

Numerical examples illustrating behavior of the trajectories of integrator (1) stabilized by means
of feedback (2) can be found in [10, 11].

4. CONCLUSIONS

The problem of stabilizing a second-order affine system consisting of five subsystems, of which
only one has a stable equilibrium, with a state-depending switching law has been considered. The
system under study comes to existence when applying a feedback in the form of nested saturators for
stabilizing a chain of two integrators. The advantages of the considered feedback are its continuity
and boundedness, as well as the possibility to ensure desired characteristics of the transient process.
By means of an appropriate selection of the four feedback coefficients, it is easy to ensure a desired
type of the equilibrium and a desired exponential rate of the deviation decrease near the equilibrium
state, as well as to constrain the maximum speed of approaching the equilibrium state, which is
especially important in the case of large initial deviations. The main result of the study is the proof
of global stability of the considered affine switching system.
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Abstract—A system is studied such that this system belongs to the class of dynamical systems
called the Buslaev nets. This class has been developed for the purpose of creating traffic models
on network structures such that, for these models, analytical results can be obtained. There
may be other network applications of Buslaev nets. The considered system is called an open
chain of contours. Segments called clusters move along circumferences (contours) according
to prescribed rules. For each contour (except the leftmost and rightmost contours) there are
two adjacent contours. Each of the leftmost and rightmost contours has one adjacent contour.
There is a common point (node) for any two adjacent contours. Results have been obtained
on the average velocity of cluster movement, taking into account delays during the passage
through nodes. These results generalize the results obtained previously for a particular case of
the system under consideration.

Keywords : dynamical systems, mathematical traffic models, Buslaev nets
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1. INTRODUCTION

A class of mathematical traffic models consists of models in which particles move in a one-
dimensional or two-dimensional lattice. These models can be interpreted as cellular automata [1]
or exclusion processes [2]. In [3], the Nagel-Schreckenberg traffic model has been introduced. This
model were studied by a number of authors. In this model, an infinite or closed lattice is a sequence
of cells, and particles move along the lattice according to prescribed rules. Analytical results for
simple versions of models of this class have been obtained, e.g., in [4–10]. Models with network
structures, belonging to this class of models, were studied mainly by simulation.

The paper [7] (a preprint of this paper was published in 1999), the movement of particles along
closed lattice is considered. It is assumed that, at each step, each particle moves onto one cell
forward if the cell ahead is vacant, and the particle does not move if this cell is occupied. Suppose
a cellular automaton corresponds to the system. If a cell of the automaton is in the state 1, then the
cell corresponds to an occupied cell of the system, and, if a cell of the automaton is in the state 0,
then the cell corresponds to a vacant cell. As it noted in [7], this automaton is the elementary
cellular automaton 184 in terms of S Wolfram classification [1]. According to the results obtained
in [7], if the ratio of the number of particles to the number of cells (particle density) does not
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exceed 1/2, then, for any initial state, from a certain point in time, all particles move at each
moment without delays (free movement, self-organization). If the density is greater than 1/2,
then the average velocity of particles (the ratio of average number of moving particles per a time
unit) is equal to (1− ρ)/ρ where ρ is the density. Analogous results were obtained independently
in [5], where moreover an upper bound for the time it takes for the system to reach limit mode.
In [6], analytical results were obtained for more general model. In this model, with prescribed
probability, a particle moves from the cell i to the cell i+ 1 provided that the cell i+ 1 is vacant.
This probability depends on the states of cells i− 1 and i+ 2 (cells are numbered in the direction
of movement). The behavior of the system was studied in [6] for particular cases. In [8], a formula
has been obtained for the average velocity of particles in the stochastic traffic model such that,
in this model, at any step, with prescribed probability, each particle moves onto one cell forward
if the cell ahead is vacant. Some generalisations of results found in [5, 7, 8] were obtained in [9]
where a dynamical system with continuous state space was studied. In particular cases, this system
is equivalent to systems considered in [5, 7, 8]. In [10], a stochastic traffic model is studied. In
this model, particles move along a not closed lattice containing a finite number of cells. Particles
appear at one end of the lattice and move in the direction to the opposite end. After reaching this
end, the particles leave the lattice. In [10], a matrix approach has been developed to analyze the
system.

In [11], a two-dimensional traffic model was proposed (the Biham–Middleton–Levine model,
BML model). In this model, particles move along two-dimensional lattice in orthogonal directions.
Particles of the first type move along rows, and particles of the second type move along columns.
The rule of particle movement is a two-dimensional counterpart of the elementary automaton 184.
This analogy is noted in [11]. In [11–18], different versions of BML model was considered, and
analytical results have obtained mainly regarding conditions for self-organization and conditions
for jam).

In [19], a graph with a variable configuration of particles has been introduced. The developed
approach makes it possible to simulate phenomena that arise in complex networks (for example, in
transport and social network).

The book [20] is a monograph on mathematical modeling of traffic flows. Based on the material
presented in the book, one can see that quite few approaches are known to analytical study of traffic
flows with network structure. This determines that it is relevant to develop new such approaches.
One of these approaches is the development of models based on Buslaev nets.

In [21], the concept of cluster movement in transport models was introduced. In discrete version,
clusters are groups of particles located in adjacent cells and moving simultaneously. In this case,
the movement of particles corresponds to the rule of an elementary cellular automaton 240. In the
continuous version, clusters are moving segments and are called clusters by analogy with a discrete
version.

A.P. Buslaev has developed a class of dynamical systems, which now are called Buslaev nets [22].
A Buslaev net is a dynamic system containing a system of contours. Adjacent contours have
common points, called nodes. In the discrete version, a contour is a closed sequence of particles.
In the continuous version, the contour is represented as a circumference. Segments called clusters
move along contours according to prescribed rules. As particles pass through nodes, delays occur
due to the fact that more than one particle cannot pass through a node at the same time. The main
problems in study of Buslaev nets are to find the average velocity of particles (clusters), conditions
for the system to enter a state of free movement (starting from a certain moment, all clusters
move without delay at the current moment and in the future) or collapse (from a certain moment
no particle moves). Analytical results have been obtained for two-contour nets with one [23] or
two [24] common nodes and Buslaev nets with regular periodic structures [25–30].
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In [26], a Buslaev net called an open chain of contours is considered. In [26], a version of open
chain is studied such that this net is an open chain with continuous time scale. There is a common
point (node) for a contour and each adjacent contour except for the leftmost and rightmost contours.
Each of two later contours have one adjacent contour. There is a common node for two adjacent
contours. In each contour, there is a cluster. The length of each contour is the same. Each contour
is divided by two nodes into parts of the same length. It has been proved that if the length of
cluster is not greater than half the length of the contour, then the system from a certain moment
is in a state free movement, i.e., all clusters move without delay, and if the cluster length is greater
than half contour length, then all clusters move with the same average velocity, which is less than
the velocity of free movement and independent of the initial state of the system. A formula for the
average velocity of clusters was obtained. In [27], the average velocity of clusters has been obtained
for a version of open chain with discrete state space and discrete time provided that the length of
each contour is the same (the same number of cells in contour) and each contour is divided by nodes
into two parts of the same length. Examples are given showing that, in the general case, clusters
can move with unequal average velocities, and the average velocity can depend on the initial state
of the system. In [30], the limit distribution (invariant measure) has been found for an open chain
with contours of the same length and clusters of unequal length.

In [23], an asymmetrical two-contour system with one node was considered. This system is a
particular case of a heterogeneous open chain of contours, for which the number of contours is equal
to two. The following example of a possible application of the results on contour networks is given.
Let, during the working day, raw materials or fuel are constantly delivered to two departments of
the enterprise from the warehouse. The cargo is delivered by vehicles such as trucks along narrow-
gauge tracks. The warehouse is located at the intersection of these paths. A vehicle that arrives to
a warehouse while another vehicle is loading waits for service to complete and then begins loading.
Suppose that the ith vehicle travels from the warehouse to the department and back in time ci − li,
taking into account the unloading time in the department, and loading time for the vehicle at the
warehouse lasts li units of time, i = 1, 2. Then the process of vehicles movement is modeled by a
system of the type under consideration with contour lengths equal to c1 and c2 and cluster lengths
equal to l1 and l2, respectively, under the assumption that, in the absence of delays, each cluster
moves at unit velocity.

This example can be generalized. Let us assume that there are three departments of the en-
terprise, two warehouses and three vehicles, each of which delivers cargo to the department to
which the vehicle is related. Cargo is delivered to the department 1 from the warehouse 1. Cargo
is delivered to the department 3 from the warehouse 2. Cargo is delivered to the department 2
alternately from both warehouses. The transport work process may be modeled by a heterogeneous
three-contour open chain of contours. Each contour corresponds to a vehicle path. Each of the two
nodes corresponds to one of the warehouses.

In this paper, we prove a theorem regarding the behavior of the system in the case when the
length of the contour and the length of moving cluster depend on the contour number, and contours
can be divided by the nodes into parts of unequal lengths. It is assumed that the clusters have
sufficiently large lengths. The formula is obtained for the cluster velocity. This formula is a
generalization of the formula obtained in the paper [27] for the particular case considered in that
paper.

2. DESCRIPTION OF SYSTEM

Suppose a dynamical system, Fig. 1. The system contains N circumferences called contours.
The length of the cluster i is equal to ci, i = 1, . . . , N . The coordinate system [0, ci) is given for
the contour i, i = 1, . . . , N. There is a common point of the nodes i and i+ 1 called the node
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C1 C2 C3 C4 C5

Fig. 1. An open chain of contours, N = 5, ci is the length of the contour i, li is the length of the cluster i,
i = 1, . . . , 5.

C1 C3
C2

Fig. 2. The cluster 2 occupies the node (1, 2), l2 + d2 < c2. A delay of the cluster 1 at the node (1,2).

C1 C3C2

Fig. 3. The cluster 2 occupies the node (1, 2), l2 + d2 > c2. A delay of the cluster 1 at the node (1,2).

C1 C3
C2

Fig. 4. A competition of the clusters 2 and 3.

(i, i + 1), i = 1, . . . , N − 1. For the contour i, the coordinate of the node (i, i+ 1) is equal to 0,
and, for the contour i+1, the coordinate of the node (i, i+ 1) is equal to di+1 > 0, i = 1, . . . , N − 2.
Suppose the coordinate of the node (N − 1, N) is equal to 0 in both the contour N − 1 and the
contour N. There is a moving segment of the length li, i = 1, . . . , N. The segment is called a
cluster. The direction of the coordinate axis i is the same as the direction of the cluster movement,
i = 1, . . . , N. If delays of a cluster do not occur, then the cluster moves with velocity 1, i.e., the
cluster i makes a full revolution in ci units of time, i = 1, . . . , N. If, at time t ≥ 0, the coordinate i
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is equal to xi(t), then the cluster i is located on the arc (xi(t)− li, xi(t)) (subtraction modulo ci),
i = 1, . . . , N. The state of the system at time t is the vector x(t) = (x1(t), . . . , xN (t)), where xi(t) is
the coordinate of the leading point of the cluster i, i = 1, . . . , N.We say that, at time t, the cluster i
occupies the node (i, i + 1) if 0 < xi(t) < li, i = 1, . . . , N − 1. We say that, at time t, the cluster i
occupies the node (i− 1, i) if di < xi(t) < di + li (for di + li < ci), Fig. 2, or 0 ≤ xi(t) < di + li − ci
(for di + li ≥ ci), Fig. 3, i = 2, . . . , N − 1, Fig. 4, 0 < xi(t) < li, i = N. We say that, at time t, the
cluster i is at the node (i, i + 1) if xi(t) = 0, i = 1, . . . , N − 1.We say that, at time t, the cluster i is
at the node (i− 1, i) if xi(t) = di, i = 2, . . . , N − 1; xN (t) = 0. The state is admissible if no node is
occupied by two clusters. The system state at time t = 0 (the initial state) prescribed and must be
admissible. A delay of cluster is at a node such that, at the moment, this node is occupied by the
cluster of adjacent contour. The delay ends when this node stops being busy. If clusters i and i+ 1
are simultaneously located at node (i, i+ 1), then competition between these clusters occurs (Fig. 4)
and the cluster passes through the node first, chosen in accordance with deterministic or stochastic
competition resolution rule. If the conditions of Theorem 1, which is proved in Section 4, hold,
then, for any competition resolution rule, and the cycle is implemented such that no competitions
occur, and the cycle is independent of the initial state.

3. LIMIT CYCLES. THE AVERAGE VELOCITY

The system is deterministic, and its behavior in the future is determined by its state at present.
Therefore, if at some moment a state is repeated, then from the moment the states of the system
will be periodically repeated, forming a cycle (limit cycle).

Let Hi(t) be a total distance traveled by the cluster i in the time interval (0, t). Then, if there
exists the limit

vi = lim
t→∞

Hi(t)

t
,

then this limit is called the average velocity of the cluster i, i = 1, . . . , N. It is obvious that, if a
cycle is implemented, then this limit exists, and the limit equals the ratio of the distance traveled
by the cluster during the cycle to the period.

4. BEHAVIOR OF THE SYSTEM

In Section 4, statements about the behavior of the system are proved.

Lemma 1. If

li
ci

+
li+1

ci+1
> 1 (1)

i and i+ 1 (1 ≤ i ≤ N − 1), then the average velocity of at least one of the clusters i and i+ 1 is
less than 1.

Proof. Suppose there exists i such that vi = vi+1 = 1, and therefore the clusters i and i+ 1
(1 ≤ i ≤ N − 1) move without delays. Then the first term in the left side of the inequality (1) is
the limit of the ratio of the total time in the interval (0, t) during that the node (i, i+ 1) is occupied
by the cluster i to t as t→ ∞, and the second term is the limit of the ratio of the total time in
the interval (0, t) during that the node (i, i + 1) is occupied by the cluster i + 1 to t as t→ ∞.
Therefore the sum of these terms is not greater than 1 since the node cannot be occupied by two
clusters simultaneously. The contradiction proves Lemma 1.

The following theorem characterizes the behavior of the system for sufficiently large cluster
lengths (heavy load).
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Theorem 1. Suppose the following conditions hold

li > max(di, ci − di), i = 2, . . . , N − 1, (2)

l1 + li > ci, i = 2, . . . , N, (3)

li + lN > ci, i = 1, . . . , N − 1, (4)

and at least one of two conditions holds

l1
c1

+
l2
c2
> 1, (5)

lN−1

cN−1
+
lN
cN

> 1. (6)

Then, for any deterministic or stochastic competition resolution rule, the same limit cycle is im-
plemented, in which no competitions occur. The period of the cycle is equal to

T = l1 + lN + 2
N−1∑
j=2

lj −
N−1∑
j=2

cj . (7)

The average velocity of the cluster i equals

vi =
ci

l1 + lN + 2
N−1∑
j=2

lj −
N−1∑
i=2

ci

, i = 1, . . . , N. (8)

Proof. Suppose the conditions (2)–(5) hold. According to Lemma 1, a delay of at least one of
the clusters 1 and 2 occur.

Suppose, at time t1, a delay of the cluster 2 begins at the node (1, 2). Then we have
0 < x1(t1) < l1, and the movement of cluster 2 resumes at time t0 = t1 + l1 − x1(t1), and

x1(t0) = l1, x2(t0) = d2. (9)

Suppose, at time t1, a delay of the cluster 1 at the node (1, 2). If, at time t2 > t1, this delay ends,
then x1(t2) = 0, x2(t2) = d2 + l2 − c2. For t3 = t2 + c2 − l2, we have x2(t3) = d2. According to (3),
we have c2 − l2 < l1. Therefore, at time t2, the cluster 1 occupies the node (1, 2), and a delay of
the cluster 2 begins at the node (1, 2). Let us make sure that the delay of the cluster 1, starting at
time t1, will end. If the delay of the cluster 1 never ends, then, from time t, the cluster 1 is at the
node (1, 2). We can prove by induction that, for 2 ≤ i ≤ N − 1, from some moment, the cluster i is,
at the node (i, i + 1) at present and in the future. There exists t such that, at time t, the system is
in the state such that xN−1(t) = 0, xN (t) = lN − cN

2 . After this moment, the cluster N − 1 begins
to move. Hence there exists a moment such that the movement of a cluster is resumed. Let t4 be
the minimum value t4 > t0 such that, at time t4, the movement of the cluster 1 ≤ i0 ≤ N − 1 is
resumed, and the clusters 1, 2, . . . , i0 − 1 do not move. Then, at time

t4 +
i0−j−1∑
k=0

(di0−k + li0−j − ci0−k),

the movement of the cluster j = 1, . . . , i0 − 1 is resumed. In particular, the movement of the
cluster 1 is resumed.

Thus, there exists t0 such that (9) holds.
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At time t0 − l1, the cluster 2 was at the node (1, 2), and, from this time, the cluster occupied
this node. If (2) holds, then at least each of the clusters i = 2, . . . , N − 1 occupies at least one
node. Hence, at time t0 − l1, the cluster 2 occupies the node (2, 3). At time t0 − l1, each of the
clusters i = 2, . . . , N − 1 occupies the node (i, i+ 1). The proof is by induction. Therefore,

di + li − ci � xi(t0) � di, i = 3, . . . , N − 1. (10)

Combining (2), (3), (9), (10), we get that, at time t0, the system is in the state

x(t0) = (l1, d2, . . . , dN−1, 0).

At time t0, the movement of the cluster 2 begins and the movement of the cluster 1 continues.
The movement of the cluster i is resumed at time

t(i) = t0 +
i−1∑
j=2

(lj − dj), i = 3, . . . , N.

The cluster this cluster finds the node occupied and waits for it to become free. According to (2),
(4), each of the clusters i = 1, . . . , N , approaching the node (i, i + 1), waits for its release. At time
u0 + a

a = lN +
N−1∑
j=2

(lj − dj), (11)

the system is in the state
x(t0 + a) = (0, . . . , 0, lN ).

The movement of the cluster i is resumed at time

u(i) = t0 + a+
N−1∑
j=i+1

(dj + lj − cj), i = 2, . . . , N − 1.

According (2), (3), at time

u(1) = t0 +
N−1∑
i=2

(di + li − ci),

the movement of the cluster 1 is resumed at time u0 = t0 + a+ b, the system enters the state

x(u0) = x(t0 + a+ b) = (l1, d2, . . . , dN−1, 0) = u(t0), (12)

b = l1 +
N−1∑
i=2

(di + li − ci). (13)

Combining (11), (13), we obtain

a+ b = l1 + lN + 2
N−1∑
j=2

li −
N−1∑
i=2

ci. (14)

Therefore a cycle with period a+ b is implemented. During the cycle, there is no competition
between clusters simultaneously located at the same node. Each cluster makes one revolution
during the cycle. Using (14), we obtain the theorem under the conditions (2)–(5).

The proof does not take into account the competition resolution rule. Therefore, due to sym-
metry, condition (5) should be replaced by condition (6). The theorem has been proved.
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Corollary 1. Under the conditions of the theorem, the period (7) of the implemented cycle and
the average velocities (8) of the clusters do not depend on d2, . . . , dN−1.

The statement follows from Theorem 1.

Suppose

c1 = · · · = cN = 1, d2 = · · · = dN−1 =
1

2
, (15)

li >
1

2
, i = 1, . . . , N,

i.e., the length of each contours is the same(without loss of generality, we assume that this length
equals 1), the nodes divide the contour into two equal parts, and the length of each cluster is greater
than half the length of the contour. If (15) holds, then (7), (8) has form [21]

T = l1 + lN + 2
N−1∑
i=2

li −N + 2, (16)

vi =
1

l1 + lN + 2
N−1∑
i=2

li −N + 2

, i = 1, . . . , N. (17)

Note that, in this case, the average velocity of any cluster is the same. In [22], it has been shown
by examples that, for a discrete open chain with the contours of the same length and the clusters
of different lengths, among which there can be clusters of lengths greater than half the length of
the contours, and clusters of lengths not greater than half the length of the contours the average
velocity can depend on the initial state, and the average velocities of clusters can be different for
the same initial state of the system. Let us give an example for the considered continuous chain.

Example 1. Suppose the conditions (15), N = 3, l1 = l3 = 0.75, l2 = 25 hold. Let (0.75, 0.5, 0.25)
be the initial state. Then any cluster comes to a node when the node is not occupied. Indeed,
we have x(0) = (0.75, 0.5, 0.75), x(0, 5) = (0.25, 0, 0.25), x(1) = (0.75, 0.5, 0.75) = x(0). Hence the
initial state belongs to the cycle with the velocity 1. If the initial state is (0.25, 0.5, 0.75), then we
have x(0) = (0.25, 0.5, 0.75), x(0.5) = (0.75, 0.5, 0.25), x(1) = (0.25, 0, 0.75), x(1.5) = (0.75, 0, 0.25),
x(2) = (0.25, 0.5, 0.75) = x(0). Hence, during the cycle with period 2, the clusters 1 and 3 move
without delays and make two revolutions, and the cluster 2 makes only one revolution. Therefore,
v1 = 1, v2 = 1/2, v3 = 1. Hence, there exists an initial state such that the velocity of any cluster
is equal to 1, and there exists an initial state such that the velocity of the clusters 1 and 3 is equal
to 1, and the average velocity of the cluster 2 is equal to 1/2.

If the conditions (15) and l1 = · · · = ln = l > 1/2 hold, then (16), (17) have the form [18]

T = 2(N − 1)l −N + 2,

vi =
1

2(N − 1)l −N + 2
, i = 1, . . . , N.

Under the conditions (15) and l1 = · · · = lN = l ≤ 1/2, it has been proved in [19] that the system
results in the state of free movement from any initial state.

Thus, for an open chain with contours of the same length and clusters of the same length, the
average velocity is the same for all clusters and does not depend on the initial state of the system
in contrast to a closed chain with contours of equal length and clusters of different lengths [27],
for which the average velocity of clusters depends on the initial state. In [23], the limit state
distribution (invariant measure) for an open chain with contours of the same length and clusters
with the same length under the condition l > 1/2 has been found.
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5. CONCLUSION

A theorem has been proved about the behavior of a dynamical system called an open chain of
contours. The system belongs to the class of Buslaev nets. Previously, the system was considered
under the assumption that all contours have the same length and the nodes divide the contours
into parts of the same length. In this paper, it is supposed that the lengths of the contours may
be different. Each contour can be divided into parts of different lengths. The system is considered
under the assumption that clusters located in the contours have sufficiently large lengths. It has
been proved that under the considered assumptions the limit cycle of the system is unique. The
average cluster velocities and the period of the limit cycle are found. The results of the work can
be used in traffic modeling, and also have other applications, in particular, in infocommunication
systems modeling.

FUNDING

The work was carried out with financial support as part of a government assignment Ministry
of Science and Higher Education of the Russian Federation (FSFM-2023-0003).

REFERENCES

1. Wolfram, S., Statistical mechanics of cellular automata, Rev. Mod. Phys., 1983, vol. 55, pp. 601–644.
https://doi.org/10.1103/RevModPhys.55.601

2. Spitzer, F., Interaction of Markov processes, Advances in Mathematics, 1970, vol. 5, no. 2, pp. 246–290.

3. Nagel, K. and Schreckenberg, M., A cellular automaton model for freeway traffic, J. Phys. I, 1992, vol. 2,
no. 12, pp. 2221–2229. https://doi.org/10.1051/jp1:1992277

4. Schreckenberg, M., Schadschneider, A., Nagel, K., and Ito, N., Discrete stochastic models for traffic
flow, Phys. Rev. E, 1995, vol. 51, pp. 2939–2949. https://doi.org/10.1103/PhysRevE.51.2939

5. Blank, M.L., Exact analysis of dynamical systems arising in models of traffic flow, Russian Mathematical
Surveys, 2000, vol. 55, no. 3, pp. 562–563. https://doi.org/10.1070/RM2000v055n03ABEH000295

6. Gray, L. and Griffeath, D., The ergodic theory of traffic jams, J. Stat. Phys., 2001, vol. 105, no. 3/4,
pp. 413–452.

7. Belitsky, V. and Ferrari, P.A., Invariant measures and convergence properties for cellular automa-
tion 184 and related processes, J. Stat. Phys., 2005, vol. 118, no. 3/4, pp. 589–623. https://doi.org/
10.1007/s10955-004-8822-4

8. Kanai, M., Nishinari, K., and Tokihiro, T., Exact solution and asymptotic behaviour of the asymmetric
simple exclusion process on a ring, J. Phys. A: Mathematical and General, 2006, vol. 39, no. 29, 9071.
https://doi.org/10.1088/0305-4470/39/29/004

9. Blank, M., Metric properties of discrete time exclusion type processes in continuum, J. Stat. Phys., 2010,
vol. 140, no. 1, pp. 170–197. https://doi.org/10.1007/s10955-010-9983-y

10. Evans, M.R., Rajewsky, N., and Speer, E.R., Exact solution of a cellular automaton for traffic, J. Stat.
Phys., 2010, vol. 95, pp. 45–56. https://doi.org/10.1023/A:1004521326456

11. Biham, O., Middleton, A.A., and Levine, D., Self-organization and a dynamic transition in traffic-flow
models, Phys. Rev. A, 1992, vol. 46, no. 10, pp. R6124–6127. https://doi.org/10.1103/PhysRevA.46.
R6124

12. Angel, O., Holroyd, A.E., and Martin, J.B., The Jammed Phase of the Biham-Middleton-Levine Traffic
Model, Electronic Communications in Probability, 2005, vol. 10, paper 17, pp. 167–178. https://doi.org/
10.48550/arXiv.math/0504001

13. D’Souza, R.M., Coexisting phases and lattice dependence of a cellular automata model for traffic flow,
Physical Review E, 2005, vol. 71, 0066112.

14. D’Souza, R.M., BML revisited: Statistical physics, computer simulation and probability, Complexity,
2006, vol. 12, no. 2, pp. 30–39.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



VELOCITY OF FLOW ON REGULAR . . . 1103

15. Austin, T. and Benjamini, I., For what number must self organization occur in the Biham-Middleton-
Levine traffic model from any possible starting configuration?, arXiv preprint math/0607759, 2006.

16. Pan Wei, Xue Yu, Zhao Rui, and Lu Wei-Zhen, Biham–Middleton–Levine model in consideration of
cooperative willingness, Chin. Phys. B, 2014, vol. 23, no. 5, 058902. https://doi.org/10.1088/1674-
1056/23/5/058902

17. Wenbin Hu, Liping Yan, Huan Wang, Bo Du, and Dacheng Tao, Real-time traffic jams predic-
tion inspired by Biham, Middeleton and Levine (BML), Information Sciences, 2017, pp. 209–228.
https://doi.org/10.1016/j.ins.2016.11.023

18. Moradi, H.R., Zardadi, A., and Heydarbeygi, Z., The number of collisions in Biham–Middleton–Levine
model on a square lattice with limited number of cars, Appl. Math. E-Notes, 2019, vol. 19, pp. 243–249.

19. Malecky, K., Graph cellular automata with relation-based neighbourhoods of cells for complex systems
modelling: A case of traffic simulation, Symmetry, 2017, vol. 9, 322. https://doi.org/10.3390/sym9120322

20. Gasnikov, A.V. et al., Introduction to mathematical modeling of traffic flows, 2nd ed., Gasnikov, A.V.,
Ed., Moscow: MTsNMO, 2013.

21. Bugaev, A.S., Buslaev, A.P., Kozlov, V.V., and Yashina, M.V., Distributed problems of monitoring
and modern approaches to traffic modeling, 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), Washington, USA, 5–7 October 2011, pp. 477–481. https://doi.org/
10.1109/ITSC.2011.6082805

22. Kozlov, V.V., Buslaev, A.P., and Tatashev, A.G., On synergy of totally connected flows on chainmails,
Proc. of the 13th International Conference of Computational and Applied Methods in Science and En-
gineering, Almeria, Spain, 24–27 June 2013, vol. 3, pp. 861–874.

23. Myshkis, P.A., Tatashev, A.G., and Yashina, M.V., Cluster motion in a two-contour system with priority
rule for conflict resolution, Journal of Computer and Systems Sciences International, 2020, vol. 59,
no. 3, pp. 311–321. Translated from Izvestiya RAN. Teoriya i Sistemy Upravleniya, 2020, vol. 20, no. 3,
pp. 3–13. https://doi.org/10.1134/S1064230730030119

24. Yashina, M. and Tatashev, A., Spectral cycles and average velocity of clusters in discrete two-contours
system with two nodes, Math. Meth. Appl. Sci., 2020, vol. 43, no. 7, pp. 4303–4316. https://doi.org/
10.1002/mma.6194

25. Buslaev, A.P., Tatashev, A.G., and Yashina, M.V., Qualitative properties of dynamical system on
toroidal chainmails, AIP Conference Proceedings, 2013, vol. 1558, pp. 1144–1147. https://doi.org/
10.1063/1.4825710

26. Buslaev, A.P. and Tatashev, A.G., Spectra of local cluster flows on open chain of contours, Eur. J. Pure
Appl. Math., 2018, vol. 11, no. 3, pp. 628–641. https://doi.org/10.29020/nybg.ejpam.11i3.3292

27. Yashina, M. and Tatashev, A., Discrete open Buslaev chain with heterogeneous loading, 2019 7th In-
ternational Conference on Control, Mechatronics and Automation (ICCMA), 6–8 Nov. 2019, Delft,
Netherlands, pp. 283–288. https://doi.org/10.1109/ICCMA46720.2019.8988654

28. Bugaev, A.S., Yashina, M.V., Tatashev, A.G., and Fomina, M.Yu., On velocity spectrum for saturated
flows on a regular open one-dimensional network, XI All-Russian Multiconference on Management Prob-
lems MKPU-2021, Material of the XIV Multiconference: in 4 volumes, Rostov-on-Don, 2021, pp. 41–44.

29. Bugaev, A.S., Tatashev, A.G., and Yashina, M., Spectrum of a continuous closed symmetric chain
with an arbitrary number of contours, Mathematical Models and Computer Simulation, 2021, vol. 13,
no. 6, pp. 1014–1027. Translated from Matematicheskoe Modelirovanie, 2021, vol. 33, no. 14, pp. 21–44.
https://doi.org/10.1134/S207004822106003X

30. Yashina, M.V. and Tatashev, A.G., Invariant measure for continuous open chain of contours with dis-
crete time, Computational and Mathematical Methods. e1197, First published: 28 September 2021.
https://doi.org/10.1002/cmm4.1197

This paper was recommended for publication by O.N. Granichin, a member of the Editorial
Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 9, pp. 1104–1114.
c© The Author(s), 2023 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c© The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 9, pp. 120–134.

CONTROL IN TECHNICAL SYSTEMS

An Indirect Single-Position Coordinate Determination

Method Considering Motion Invariants under Singular

Measurement Errors

Yu. G. Bulychev

JSC Concern Radioelectronic Technologies, Moscow, Russia
e-mail: profbulychev@yandex.ru

Received May 18, 2022

Revised March 22, 2023

Accepted June 9, 2023

Abstract—The problem of indirect single-position coordinate determination based on the
smoothed measurements of bearing and the radial velocity of an object is solved considering mo-
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1. INTRODUCTION

Nowadays, the issues of single-position (active and passive) coordinate determination are still
topical in a wide range of location and navigation problems. As a rule, these methods are im-
plemented based on direct and indirect measurements of bearing, phase differences, Doppler fre-
quencies, relative signal powers, and their derivatives. Also, additional information from various
illumination sources, reflectors (of natural and artificial origin), external control systems, as well
as a priori data on the structure and some parameters of the emitted signal, object speed, the
initial or final point of its route, the presence of barrage and maneuvering areas, etc. are used.
(For example, we refer to the publications [1–33].)

The solution of single-position coordinate determination problems under various types of inter-
ference fits well into the optimal Kalman estimation scheme in a stochastic formulation (as a rule,
with state space expansion) with direct and pseudo measurements [9, 10, 17–26, 30, 36]. In prac-
tice, however, rather simple suboptimal indirect coordinate determination methods with smoothed
measurements are often used for a wide class of problems (e.g., those related to express and post-
processing of trajectory and telemetry data in range command and measurement complexes, real-
time tracking of maneuvering objects, etc. [2, 7, 8, 11]). These methods are based on simple de-
terministic motion models (linear, piecewise linear, polynomial, piecewise polynomial, differential,
piecewise differential, group, piecewise group, and many others), known analytical relationships be-
tween the estimated and measured parameters, and simple procedures for smoothing observations
based on the least squares method (LSM) and its various modifications. Being inferior to optimal
(linear and nonlinear) filtering methods in terms of potential accuracy, they are easy to implement
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in practice in real time under high-quality smoothed measurements. Furthermore, their numeri-
cal implementation causes no problems related to transients, convergence, and strict requirements
for the volume and quality of initial a priori information (which is often characteristic of opti-
mal methods, e.g., when considering the effects of “smearing accuracy” or “rigidity” [9, 32]). For
instance, the complexes mentioned above traditionally involve multistage information processing;
indirect methods are applied therein at the stage of express processing whereas optimal methods
are usually implemented at the stage of post-processing.

Some indirect single-position coordinate determination methods do not use bearing but operate
with periodic pulse radio signals and are oriented to measuring the continuous frequency bias of the
received signal at the observation point due to the movement of either the radiation source or the
observer [3, 7]. The fundamental disadvantage of these methods is the necessity to consider a priori
information about the speed of the object (or that of the source, or that of the observer), which
is often unacceptable in practice. In addition, the coordinate determination problem is limited
to finding the range and heading angle within the uniform rectilinear motion model; hence, it is
impossible to estimate all object location parameters for an arbitrary time instant. An attempt
to eliminate the speed-related limitation was undertaken in [27]; but in this case, it is required to
track the evolution of the Doppler frequency considering the continuous accumulation (counting)
of pulses of the received signal at the observation point. Obviously, the matter concerns only high-
speed objects and severe constraints on observation conditions, and the uniform rectilinear motion
model is also used. The general drawback of the indirect methods discussed in [3, 7, 27] is the
technical complexity of their practical implementation.

There are goniometric Doppler methods for the single-position determination of motion parame-
ters (e.g., see [3, 4, 7, 9, 29]) with direct (radial velocity and bearing) and indirect (the derivatives of
different orders) measurements without the a priori information mentioned above. These methods
are focused on the simplest motion models (e.g., orbital) and neglect the possibility of constructing
several independent coordinate determination channels and the appearance of singular primary
measurement errors that devalue the information contained in indirect measurements (the deriva-
tives of radial velocity and bearing).

Note the method [29], which operates with derivatives up to the second order inclusive and forms
adaptive coordinate determination algorithms based on several parallel algorithms corresponding
to the invariants of object motion. However, according to the analysis, the explicit-form relations
and the corresponding algorithms obtained in [29] are dependent and redundant; they are also
focused on the uniform rectilinear motion model only.

This paper develops an indirect single-position coordinate determination method invariant with
respect to singular errors of a given class. (Such errors are represented as an appropriate linear
combination with unknown spectral coefficients in a given finite-dimensional functional space.)
Based on a complete set of invariants (for a wide class of motion models), the method forms a family
of independent quasi-optimal solutions and the resulting estimate of object motion parameters using
these solutions. The comparative computational gain is demonstrated.

According to [8, 11, 33, 37], invariants can effectively serve to solve a whole class of applied
target problems of single- and multi-position location and navigation based on indirect methods.
Here, we show the possibility of decentralization, parallelization, and reduction of computational
cost in processing measurements in various-type systems based on invariants of continuous groups
of Lie transformations (CGLT) and first integrals used to describe the motion of various objects.

2. PROBLEM STATEMENT

Consider an object whose motion in a separate observation area is described in the Cartesian
rectangular frame by some operator equation (e.g., in the vector-algebraic or vector-differential
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form)
G (t,ρ,η) = 0 ∀ t ∈ [0, T ] , (2.1)

where ρ = [x, y, z]T (x = x(t), y = y(t), z = z(t)) denotes the object’s coordinate vector and η is
the vector of unknown real-valued parameters.

Assume that the coordinates x, y, z are smooth and differential functions (a required number of
times) and the vector ρ is assigned the vector of spherical coordinates ς = [r, λ, ϕ]T, where r, λ,

and ϕ are inclined range, longitude, and latitude, respectively. Let X =
[
r(1), λ, ϕ

]T
be the vector

of direct measurements, where r(1) = dr/dt), and let Y be the vector of indirect measurements,
whose coordinates are the derivatives of r(1), λ, ϕ of different orders, necessary to implement a
version of the method developed below. We choose a grid (sliding window, further termed the
window for simplicity) {tn+i, i = −m,m}, where n ≥ m, m ∈ {1, 2, . . .}, tn+i ∈ [0, T ], and 2m+ 1

is the window size. Introducing the notation μ ∈
{
r(1), λ, ϕ

}
, we adopt the additive observation

equation
Hμ = μ+ sμ + ξμ, (2.2)

where

μ = [μn+i, i = −m,m]T, sμ = [sμ,n+i, i = −m,m]T,

ξμ = [ξμ,n+i, i = −m,m]T, μn+i = μ (tn+i),

sμ,n+i = sμ (tn+i), ξμ,n+i = ξμ (tn+i).

In (2.2), sμ(t) means the singular error

sμ(t) = DT
μΘμ(t), (2.3)

where

Dμ =
[
dμk, k = 0,K

]T
is the vector of unknown spectral coefficients and

Θμ(t) =
[
θμk(t), k = 0,K

]T
is the vector of given basis functions.

The function μ = μ(t) has the spectral representation

μ(t) = AT
μΨμ(t), (2.4)

where

Aμ =
[
aμb, b = 0, B

]T
is the vector of unknown coefficients and

Ψμ(t) =
[
ψμb(t), b = 0, B

]T
is the vector of given basis functions.

The vector ξμ consists of random errors with zero and the correlation matrix Kμ =
[kμ,n+i,n+j , i, j = −m,m].

Models (2.1)–(2.4) are widely used in various localization and navigation problems. Complex
trajectories (e.g., those of maneuvering objects) can be described by applying a separate model (2.1)
for each observation area. In particular, a very promising approach is to describe such trajectories
via the simplest groups of Lie transformations (e.g., shift, rotation, and stretching [8, 11, 31,
33–37]).

Based on the set of invariants of equation (2.1) (in particular, the first integrals of motion or the
invariants of CGLT), it is required to develop an indirect coordinate determination method con-
sidering (2.2)–(2.4) and the accepted constraints with the following features: the method involves
no state space expansion; the method is robust to the singular error; the method allows estimat-
ing the object’s motion parameters from the extended vector of direct and indirect measurements

Z =
[
XT,YT

]T
, whose coordinates are estimated with minimum posterior variances.
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3. THE PRINCIPLE OF DETERMINING MOTION PARAMETERS
BASED ON INVARIANTS

Let us associate with equation (2.1) a scalar invariant I = I (t,ρ,γI), where the vector γI

consists of some derivatives of the coordinates of the vector ρ. On the solutions ρ(t) and γI(t) of
equation (2.1), this invariant satisfies the condition

I (t,ρ(t),γI(t)) = C = const ∀ t ∈ [0, T ] . (3.1)

Passing to spherical coordinates in (3.1) gives

Q
(
t, ς(t),γQ(t)

)
= C = const ∀ t ∈ [0, T ] , (3.2)

where the vector γQ consists of some derivatives of the coordinates of the vector ς.

The way to find the invariants is entirely determined by the kind of equation (2.1).

We calculate the total derivative of the left- and right-hand sides of equation (3.2):

∂Q

∂t
+
∂Q

∂ς

(
dς

dt

)T

+
∂Q

∂γQ

(
dγQ

dt

)T

= 0 ∀ t ∈ [0, T ] . (3.3)

Expanding all derivatives in (3.3) yields the equation

W (t, ς,γW ) = 0 ∀ t ∈ [0, T ] , (3.4)

where the vector γW consists of all possible derivatives of r, λ, ϕ.

Solving this equation for r, we determine the inclined range (distance to the object):

r =W−1 (t,Z) . (3.5)

Associating with equation (2.1) the set of independent invariants Il = Il (t,ρ,γI), l = 1, L, by
analogy with (3.1)–(3.5), we obtain the set of formulas

r [l] =W−1
[l]

(
t,Z[l]

)
, l = 1, L. (3.6)

This set can be used in an adaptive version of the inclined range estimation procedure in order
to improve the accuracy of estimation considering measurement errors. For example, if for a fixed
time instant t, the vector Z[l] is estimated with an error characterized by zero mean the correlation
matrix KZ, then the variance of the inclined range estimate is given by

σ2r[l] = HT
[l]KZ[l]H[l], l = 1, L, (3.7)

where the column vector H[l] consists of the partial derivatives of (3.6) with respect to the elements
of the vector Z[l] calculated on their mathematical expectations.

As an optimal version of the inclined range estimation procedure we select the one for which

l∗ = argmin
l
σ2r[l], l∗ ∈ {1, 2, . . . , L} . (3.8)

The Cartesian coordinates of the object can be determined using the dependencies

x [l∗] = r [l∗] cosϕ cos λ, y [l∗] = r [l∗] cosϕ sin λ, z [l∗] = r [l∗] sinϕ, (3.9)

where the angular coordinates λ and ϕ are replaced by either direct measurements or their smoothed
values.
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Generally, we can use the set of probable models Gk (t,ρ,η) = 0, k = 0,K, for a given observa-
tion area instead of (2.1). In this case, the algorithm (3.7)–(3.9) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2r[k,l] = HT
[k,l]KZ[k,l]H[k,l], k = 1,K, l = 1, Lk,

[k∗, l∗] = argmin
[k,l]

σ2r[k,l], k∗ ∈ {1, 2, . . . ,K} , l∗ ∈ {1, 2, . . . , Lk} ,

x [k∗, l∗] = r [k∗, l∗] cosϕ cos λ,

y [k∗, l∗] = r [k∗, l∗] cosϕ sin λ,

z [k∗, l∗] = r [k∗, l∗] sinϕ.

(3.10)

The algorithm (3.10) parallelizes the computational process considering the number of invariants
used and adapts the estimation procedure of the object motion parameters to the observation
conditions.

4. DESIGN AND USE OF INVARIANTS: SOME EXAMPLES

Consider a separate observation area in which the following general CGLT [32–34] corresponds
to equation (2.1):

Ta : ρ′ = f (a,ρ0,η0) ∀ a ∈ Δa ⊂ R1, (4.1)

where ρ′ = [x′, y′, z′]T, f (a,ρ0,η0) = [fx, fy, fz]
T, η0 is the vector of numerical parameters of the

group and a is a real-valued group parameter such that f (a0,ρ,η0) = ρ for a = a0, a0 ∈ Δa.

Model (4.1) describes the object’s trajectory; when treating the group parameter as a time-
varying function a = a (t,χ0), where χ0 is the vector of generally unknown numerical parameters,
we can describe the time law of motion along this trajectory. With the change of coordinates
ρ′ = ρ, ρ = ρ0, due to (2.1), it follows that ρ− f (a,ρ0,η0) = G (t,ρ,η) , η = [ρ0,η0,χ0]

T .

The invariants I = I (ρ,η0) of model (4.1), independent of the parameters t, ρ0, and χ0, are
found by solving the linear partial differential equation

XI (ρ,η0) = φx
∂I

∂x
+ φy

∂I

∂y
+ φz

∂I

∂z
= 0, (4.2)

where X = φx∂/∂x+ φy∂/∂y + φz∂/∂z denotes the infinitesimal CGLT operator. Its coordinates
are given by φx = ∂fx/∂a, φy = ∂fy/∂a, and φz = ∂fz/∂a at the point a = a0.

In view of (4.2), an extended operator and the corresponding partial differential equation are
constructed to find invariants considering the temporal nature of motion along the trajectory (4.1)
and various derivatives of the vector ρ; for details, see [8, 11, 31–34].

This method will be demonstrated on an example of a shift group. Let

Ta=t : ρ
′ = ρ+ η0t ∀ a = t ∈ Δa = [0, T ] ⊂ R1,

where η0 = V0 = [Vx0, Vy0, Vz0]
T is the velocity vector of an object moving straight and uniformly.

In this case, we have φx = Vx0, φy = Vy0, φz = Vz0, and two independent invariants, I[1] = xVy0−
yVx0 = xy(1) − yx(1) and I[2] = xVz0zVx0 = xz(1) − zx(1). In addition, due to (3.1), γI[1](t) = γI[1] =[
x(1), y(1)

]T
and γI[2](t) = γI[2] =

[
x(1), z(1)

]T
. Using (3.2) and straightforward but cumbersome

transformations, we obtain

Q[1]

(
t, ς(t),γQ[1](t)

)
= r2λ(1) cos2 ϕ,

Q[2]

(
t, ς(t),γQ[2](t)

)
= r2

(
ϕ(1) cos λ+ λ(1) sinλ sinϕ cosϕ

)
,
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where

γQ[1] =
[
ϕ(1)

]
and γQ[2] =

[
λ(1), ϕ(1)

]T
.

In view of (3.3) and (3.4), it follows that

W[1] = 2r(1)λ(1) + r
(
λ(2) − 2λ(1)ϕ(1) tanϕ

)
,

W[2] = 2r(1)ϕ(1) + r

(
ϕ(2) +

(
λ(1)
)2

sinϕ cosϕ

)
,

where

γW [1] =
[
r(1), λ(1), λ(2), ϕ(1)

]T
and γW [1] =

[
r(1), λ(1), ϕ(1), ϕ(2)

]T
.

Finally, concretizing (3.5) and (3.6) yields two independent formulas for the inclined range:

r [1] =
2r(1)λ(1) cosϕ

2λ(1)ϕ(1) sinϕ− λ(2) cosϕ
, (4.3)

r [2] = − 2r(1)ϕ(1)

ϕ(2) +
(
λ(1)
)2

sinϕ cosϕ
. (4.4)

In the special cases ϕ = ϕ(1) = ϕ(2) = 0 and λ = λ(1) = λ(2) = 0, the expressions (4.3) and (4.4)
directly imply the well-known ranging formulas

r [1] = −2r(1)λ(1)/λ(2), r [2] = −2r(1)ϕ(1)/ϕ(2).

(For example, see the differential-geometrical method [4].)

Other ranging formulas can be derived using three new invariants, I[3] = x(1) = Vx0, I[4] =

y(1) = Vy0, and I[5] = z(1) = Vz0. They lead to the independent ranging formulas

r [3] =
r(2) cosϕ− 2r(1)ϕ(1) sinϕ

ϕ(2) sinϕ+
[(
λ(1)

)2
+
(
ϕ(1)

)2]
cosϕ

, (4.5)

r [4] =
r(2) sinϕ+ 2r(1)ϕ(1) cosϕ(
ϕ(1)

)2
sinϕ− ϕ(2) cosϕ

, (4.6)

r [5] =
r(2)(

ϕ(1)
)2

+
(
λ(1)
)2

cos2 ϕ
. (4.7)

In contrast to [29], the set of formulas (4.3)–(4.7) is necessary and sufficient for constructing
a parallel independent adaptive ranging algorithm, and the resulting relations are written in a
compact (nonredundant) form.

Remark 1. There is no complete coincidence of the sets of measured parameters in all formu-
las (4.3)–(4.7). In view of (3.7)–(3.10), it is therefore possible to organize five independent channels
for range calculation and adaptation to variable observation conditions.

Remark 2. The longitude λ is not explicitly included in any of the formulas; hence, the constant
systematic errors in the measurements of the coordinate λ can be effectively dealt with. The
latitude ϕ explicitly figures in all the formulas.

Remark 3. For more complex motion models with general CGLT, all possible invariants corre-
sponding to the trajectory and the object’s motion law along this trajectory, as well as independent
expressions for determining the inclined range, can be found similar to the shift group.
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Remark 4. For a maneuvering object, it is necessary to use a compound model based on an
admissible set of a particular CGLT (e.g., shift, rotation, and stretching). An appropriate particular
CGLT in some observation area is chosen by solving the identification problem with minimizing
a decision function (e.g., the residual of the least squares method). Such an approach using the
rotation group was considered in [31]; the object trajectory was approximated by pieces of circles
of different radii.

If model (2.1) is some differential equation, then all possible invariants in the dynamic case
can be found within the well-known theory of group analysis [34–36]. In practice, however, it
often suffices to use particular invariants of motion, i.e., the so-called first integrals of the dif-
ferential equation. We will demonstrate this approach on an example of circular orbital motion:
G (t,ρ,η) = ρ(2) + η0R

−3
0 ρ = 0, where η = [R0, η0]

T and R0 and η0 are the radius and gravita-
tional parameter of the Earth, respectively. As is well known, the invariants (first integrals) of
this motion are I[1] = xy(1) − yx(1) and I[2] = xz(1) − zx(1), identical in form to the shift group

invariants discussed above. However, the derivatives x(1), y(1), and z(1) here are not constants
and the invariants I[3] = x(1) = Vx0, I[4] = y(1) = Vy0, and I[5] = z(1) = Vz0 used previously become
inapplicable. With this fact in mind, we accept only the expressions (4.3) and (4.4) as ranging
formulas in the dynamic case.

Remark 5. The single-position indirect method developed in this paper can be generalized to
the class of stochastic models, for which the application of classical invariants is often very limited.
At the same time, it is possible to use the so-called ε-invariants [37]. Within this approach, the
invariance condition holds approximately (with accuracy up to ε), and the coordinate determination
problem can be solved approximately as well.

5. CONSIDERATION OF FLUCTUATING MEASUREMENT ERRORS

We take an example of the shift group and the condition ϕ = ϕ(1) = ϕ(2) = 0 to demonstrate
the implementation of the algorithm (3.7), (3.8). Clearly, in this particular case, the entire set of
formulas (4.3)–(4.7) reduces to the two informative ones:

r [1] = −2r(1)λ(1)/λ(2), r [2] = −r(2)/
(
λ(1)
)2
.

Accordingly, we have two vectors of measured parameters: Z[1] =
[
r(1), λ(1), λ(2)

]T
and Z[2] =[

r(2), λ(1)
]T

. Let the matrices KZ[1] and KZ[2] be diagonal, i.e.,

KZ[1] = diag
[
σ2r(1) , σ

2
λ(1) , σ

2
λ(2)

]
and KZ[2] = diag

[
σ2r(2), σ

2
λ(1)

]
.

(With this supposition, the presentation below will be less cumbersome.) Due to x = r cos λ,
y = r sinλ, and (3.7), we find

σ2r[1] = 4
(
λ(2)

)−2
{(
λ(1)

)2
σ2r(1) +

(
r(1)
)2 [

σ2λ(1) +
(
λ(1)/λ(2)

)2
σ2λ(2)

]}
, (5.1)

σ2r[2] =
(
λ(1)
)−4

[
σ2r(2) + 4

(
r(2)
)2 (

λ(1)
)−4

σ2λ(1)

]
. (5.2)

The priority is given to the ranging formula for which

l∗ = argmin
l
σ2r[l], l∗ ∈ {1, 2} . (5.3)
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According to (5.1)–(5.3), the method involves derivatives up to the second order inclusive and
can be effectively applied only on smoothed measurements. In addition, the class of high-speed
objects is considered: the necessary increment of angular coordinates and radial velocity on a given
observation interval must be provided [29].

6. AN AUTO-COMPENSATION ALGORITHM FOR SMOOTHING
PRIMARY MEASUREMENTS

In view of (2.1)–(2.4), we consider an auto-compensation unbiased smoothing algorithm for

the parameter μ ∈
{
r(1), λ, ϕ

}
and its derivatives μ(q), q ∈ {0, 1, 2}, at a point tn using the window

{tn+i, i = −m,m}. Let us rest on the general approach to estimating the values of linear functionals;
for details, see [38, 39].

Within this approach, the estimate μ(q)∗ of μ(q) has the form

μ(q)∗ = PT
μqHμ, (6.1)

where Pμq = [pμq,n+i, i = −m,m]T is the vector of unknown weight coefficients assigned by mini-
mizing the variance σ2μq of the estimate μ(q)∗.

This estimate belongs to the linear class; therefore,

σ2μq = PT
μqKμPμq. (6.2)

Furthermore, we require the unbiasedness conditions of the estimate (μ(q) −PT
μqμ = 0) and its

invariance with respect to the singular error (PT
μqsμ = 0). The constrained optimization problem

is solved using Lagrange’s multiplier method with the decision function

J
(
Pμq, ζμq,ωμq

)
= PT

μqKμPμq + ζTμqΘ
T
μPμq +

[(
ΨT

μ

)(q)
−PT

μqΨμ

]
ωμq, (6.3)

where ζμq andωμq are the column vectors of the Lagrange multipliers, Θμ = [θμk(tn+i), i = −m,m,
k = 0,K ] is the basis matrix of the singular error, and Ψμ =

[
ψμb (tn+i) , i = −m,m, b = 0, B

]
is

the basis matrix of the parameter μ = μ(t).

The vector Pμq minimizing σ2μq subject to the unbiasedness and invariance conditions has the
form

Pμq = ΛμK
−1
μ Ψμ

(
ΨT

μΛμK
−1
μ Ψμ

)−1
Ψ(q)

μn , (6.4)

where Λμ = E2m+1 −K−1
μ Θμ

(
ΘT

μK
−1
μ Θμ

)−1
ΘT

μ , E2m+1 is an identity matrix of dimensions

(2m+ 1)× (2m+ 1), and Ψ
(q)
μn = dqΨμ(t)/dt

q|t=tn
.

The variance of the estimate μ(q)∗ is given by

σ2μq =
(
Ψ(q)

μn

)T [(
K−1

μ Ψμ

)T
(Λμ)

TΨμ

]−1

Hμ

(
ΨT

μΛμK
−1
μ Ψμ

)−1
Ψ(q)

μn , (6.5)

where

Hμ =
(
K−1

μ Ψμ

)T
(Λμ)

TKμΛμK
−1
μ Ψμ.

Clearly, the methodological error due to neglecting the tail of the series (2.4) has the mathe-
matical expectation

εμq = Δ(q)
μn −PT

μqΔμn, (6.6)
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where Δμ = Δμ(t) is the series tail and Δ
(q)
μn denotes its qth derivative at the point t = tn, Δμn =

[Δμ (tn+i) , i = −m,m]T.

According to [38, p. 62], with increasing the number of spectral coefficients in the singular
error model (2.3), the algorithm (6.1)–(6.6) reduces computational cost by 47% compared to the
traditional extended least-squares method. As a result, the smoothing problem is solved faster.

Considering (6.1)–(6.6), we can construct the desired estimates of the object motion parameters
invariant to singular measurement errors. For example, formulas (4.3) and (4.4) yield the following
robust estimates of the inclined range for two invariants:

r [1] =
2
(
PT

r1Hr

) (
PT

λ1Hλ

)
cos
(
PT

ϕ0Hϕ

)
2
(
PT

λ1Hλ

) (
PT

ϕ1Hϕ

)
sin
(
PT

ϕ0Hϕ

)
−
(
PT

λ2Hλ

)
cos
(
PT
ϕ0Hϕ

) , (6.7)

r [2] = −
2
(
PT

r1Hr

) (
PT

ϕ1Hϕ

)
(
PT
ϕ2Hϕ

)
+
(
PT

λ1Hλ

)2
sin
(
PT

ϕ0Hϕ

)
cos
(
PT

ϕ0Hϕ

) . (6.8)

The ranges for the variants (4.5)–(4.7) and the Cartesian coordinates (3.9) of the observed object
are determined by analogy with (6.7) and (6.8).

According to the results of computational experiments [38, 39], the auto-compensation smooth-
ing algorithm demonstrates high effectiveness in anomalous measurement conditions. Hence, it is
possible to form stable estimates of the derivatives of the radial velocity and angular coordinates
necessary for the successful application of the single-position indirect coordinate determination
method. Simulation results for the adaptive algorithm (3.7), (3.8) in the case of rectilinear uniform
object motion were presented in [29]. They show that the method is applicable to high-precision
measurements, while the reliability of coordinate determination significantly depends on the ob-
ject’s dynamics and observation conditions.

7. CONCLUSIONS

The method developed above considerably expands the scope of quasi-optimal indirect fast
estimation methods robust to singular measurement errors and observation conditions of high-
speed objects for their single-position coordinate determination. This method can be effectively
used as a tool for intelligent and analytical improvement of the existing and next-generation single-
position systems of active and passive location and navigation, independently or in combination
with traditional statistical methods (e.g., least squares, maximum likelihood, maximum posterior
probability density, and dynamic filtering).

The method has limitations on the classes of single-position systems in terms of measurement
accuracy, observation conditions, and the types of objects to be tracked.
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Abstract—The problem of cargoes transportation scheduling in the transport network repre-
sented by an undirected multigraph is considered. Transportations between vertices are pro-
vided at predefined time intervals. The iterative algorithm to search for a solution approximate
to the optimal one by criterion value is proposed in the problem under consideration. The al-
gorithm is constructed on the base of solutions of mixed integer linear programming problems.
The applicability of the algorithm is tested by the example with more than 90 million binary
variables.
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1. INTRODUCTION

The scheduling problem (of cargoes, trains, locomotives) is a widespread problem both in the-
ory and in practice. Publications on this topic can be divided into several groups: by the pres-
ence of movement time in the problem, by the fixedness of the movement time between vertices,
by the fixedness of the movement route at optimization, by structure of the transport network
(multi)graph. For example, [1] used only duration of movement time along transport network graph
arcs, the graph of the special structure (one-way railway) is considered in [2, 3]. The scheduling
problem for the railway network of general structure with a fixed set of routes for trains is re-
searched in [4, 5]. The problem to construct train routes and their movement times along the
railway network is solved simultaneously in [6, 7]. Time in [6, 7] is set to be discrete, that may
cause to the huge dimension of the problem. The simultaneous problem of scheduling and routing
for general structure railway networks is researched in [8–11]. Transportations between vertices
in [8–11] are carried out at only predetermined time intervals.

Difference of problem statements with fixed movement time between vertices from problem
statements with arbitrary time is very principal. In the latter there is supposed that some transport
is able for the carriage at any interval of time. But it is not always physically realizable. The
principal difference [11] from other researches is in possibility to not come in the arrival vertex
before the end of time interval for which the timetable is scheduling (hereinafter referred as planning
horizon). Such possibility is relevant when there is a cargo that needs to be departed shortly before
the end of the planning horizon. But such possibility complicates not only the mathematical model
of carriages but also increases the computation time [11]. That’s why it is relevant to construct a
faster algorithm than the algorithm from [11]. Such algorithm is being constructed in the present
paper.

Within the framework of the transportation model under consideration time of readiness for de-
parture, starting and ending times of movement of any vehicle carrying out transportation between
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vertices are fixed. These characteristics are real numbers. Optimization in the future will be carried
out with the goal to find a particular vehicle for a particular cargo. Other optimization variables
will also be considered. For example it will be the parking time of cargo at various vertices, the
expected quantity of time before delivery after the end of the final planning horizon, delivery of
cargo to the destination vertex.

A system from linear equalities and inequalities is formed to construct the algorithm. This
system contains binary and continuous variables and sets a mathematical model for the carriage of
cargoes along a transport network of general structure. The transport network is represented by
an undirected multigraph. The algorithm performs a decomposition of a set of cargoes, as well as
a decomposition of the planning horizon to reduce the computation time. The algorithm contains
one more possibility to accelerate the computation time. This possibility is based on the cut out
of transportations that are unlikely to be used by cargoes due to the beginning time of these
transportations is earlier than expected arrival time in the respective to these transportations
vertices. The developed algorithm is tested on a meaningful example with millions of binary
variables.

2. BASIC DESIGNATIONS AND ASSUMPTIONS

Let us consider a transport network represented by an undirected multigraph G =< V,E >,
where V is a set of vertices (cities, railway stations, plants, airports, seaports) and E is a set of
edges (highways, railway tracks, seaways, airways), connecting these vertices. Let |V | =M � 2. By
renumbering vertices of multigraph G from 1 toM , we compose a set of indices V ′ = {1, 2, . . . ,M}.
Each element of this set uniquely determines the vertex of multigraph G. Note that the need in
multigraphs for modelling transport systems follows from applications. Namely, oncoming traffic
between two railway stations in the same period of time, for safety reasons, should be separated
along different railway tracks. Therefore for modelling of transportations, it is necessary to sepa-
rately consider all railway tracks (edges) from one vertex (station) to another (station).

We will count the time in minutes relative to a certain moment of reference. By the planning
horizon we mean the time interval [0, Tmax), for which the timetable is scheduling. If the timetable
is scheduled on a day (1440 minutes), then Tmax = 1440.

We divide the planning horizon into P non-overlapping intervals (half-open intervals) T1, . . . ,TP ,
i.e., [0, Tmax) =

⋃P
p=1 Tp, where ∀p1, p2 ∈ {1, . . . , P} : p1 �= p2 Tp1

⋂ Tp2 = ∅. These intervals we

will name as partition intervals. Let us introduce auxiliary variables T p
def
= inf Tp, T p

def
= supTp,

p = 1, P . We construct sets T1, . . . ,TP in such manner that

T 1 = 0, T P = Tmax, T p+1 = T p, p = 1, P − 1.

Let us have I cargoes (parcels, containers, trains), for each of that there are given:

• index of departure vertex vdepi ∈ V ′;
• index of arrival (destination) vertex varri ∈ V ′;

• time of readiness for departure tdepi ∈ [0, Tmax);
• maximal amount of time di during which the cargo is allowed to be at the departure vertex

from the moment of readiness;
• cargo travel time Ti, i.e. maximal amount of time during which the cargo is allowed to be on

the transport network (excluding time at the departure vertex) computed in minutes;
• mass of the cargo wi ∈ R+,

i = 1, I . The cargo is assumed to be indivisible in sense that it can not be sent in parts.

Cargoes carriages between vertices can only be carried out at certain intervals. Let K move-
ments/transportations (by aircrafts, sea ships, trains, trucks) between vertices are available. Pa-
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rameters of transportation mathematically can be represented by 7-element row zk
def
= (vbegk , vendk ,

nk, t
beg
k , tendk ,Wk, Ck), where v

beg
k ∈ V ′ is the index of starting vertex of movement, vendk ∈ V ′ is the

index of ending vertex of movement, moreover vbegk and vendk are indices of adjacent vertices in

multigraph G, nk is the number of the track (edge), connecting vertices with indices vbegk and vendk ,

tbegk ∈ [0, Tmax) is starting time of movement, tendk is ending time of movement, Wk is maximum
transportable mass during transportation, Ck is the transportation cost of unit mass, k = 1,K .
Let us designate using Z the set of all vectors zk, k = 1,K . We renumber elements of set Z from 1
to K. Thus number from 1 to K determines the transportation and its transportation uniquely

In the future, as timetable of cargo we will understand the chain of transportation numbers that
are used by it. One can easily determine by transportation numbers the vertices visited by the
cargo, the time of visiting these vertices, edges of the multigraph used for movement, as well as
other characteristics of the movement.

According to introduced partition intervals T1, . . . ,TP we split the set of transportations for

several parts, namely {1, . . . ,K} = K1
⋃K2

⋃
. . .
⋃KP , where Kp

def
= {k ∈ N : k � K, tbegk ∈ Tp},

p = 1, P .

When transportations are carried out, the warehouses in which goods are stored can be filled.
In addition some operations may be performed with cargoes, for example, repacking. Therefore we
introduce minimal and maximal possible duration of stay at the vertex with index vendk after using
of transportation with number k by cargo with number i: tst min

i,k and tst max
i,k , i = 1, I , k = 1,K .

Obviously, ∀i = 1, I , k = 1,K 0 � tst min
i,k � tst max

i,k .

Let τm1,m2 is expected duration (starting from the moment of readiness for departure) of a
cargo carriage from vertex with index m1 to vertex with index m2, m1,m2 = 1,M . Obviously that
τm1,m1 = 0, m1 = 1,M . If historical observations on carriages from vertex with index m1 to vertex
with index m2 are available then as τm1,m2 one can select sample mean by existing observations,
m1,m2 = 1,M . If this data is unavailable then the indicated value can be estimated by an expert.
Also we introduce value ηm1,m2 that designates expected duration from the moment of readiness
for departure to departure from vertex with index m1 to vertex with index m2. This value is set
by analogy with τm1,m2 , m1,m2 = 1,M .

As the route of cargo with number i we will understand the chain from transportations numbers
used in series by this cargo, i = 1, I . As consequence one can determine the chain of vertices
traversed in series by this cargo using the route. We limit the maximal quantity of transportations
in the route during the planning horizon by some predetermined value J . As jth phase of the
route of ith train we will mean movement of this train when there is used jth transportation in
the route, i = 1, I , j = 1, J + 1. Phase J + 1 is technical, movement in that is not provided, it is
needed for accuracy in the mathematical model formulation. We will name the vertex intermediate
for ith cargo if it’s neither the vertex of departure nor the vertex of arrival for that, i = 1, I .

We also introduce value Di, characterizing the denial in carriage to ith cargo: 0, when cargo is
denied to carriage, 1 is otherwise, i = 1, I . The denial in carriage may be caused by there are not
enough transportations to achieve the destination vertex with restrictions on travel time and other
physical limitations. In the ideal case any of values Di is equal to one, i = 1, I , but it is not always
realizable or it was not successful to find schedule that leads to this result,

3. AUXILIARY RESULTS TO CONSTRUCT THE ALGORITHM

3.1. Mathematical Model of Movements Along Transport Network

We divide set of cargoes numbers I into S non-overlapping subsets Is, i.e. I def
= {1, . . . , I} =⋃S

s=1 Is, and besides ∀s1, s2 ∈ {1, . . . , S} : s1 �= s2 Is1
⋂ Is2 = ∅. In [10–12] there was a proposal to

divide set I by principle of having cargo numbers with the same departure and destination vertices
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in subsets. In addition one can only construct as many subsets as quantity of cargoes. In this case,
in the subset with index 1 there will be a cargo number with the earliest/latest time of readiness
for departure, with index 2—the second/penultimate time, etc.

We suppose that for every cargo with number from sets I1, . . . ,Is̃−1 there is the denial in carriage
or a timetable, i.e. the chain from transportations numbers. If there is the denial in carriage for
cargo with number î∈ ⋃s̃−1

s=1 Is then we assign δ̂̂i,j,k = 0, j = 1, J + 1, k = 1,K, and Dî = 0. If cargo

with number î∈ ⋃s̃−1
s=1 Is is permitted to carriage, then value δ̂̂i,j,k is equal to one, if this cargo uses

transportation with number k at the jth phase, and to zero, otherwise, j = 1, J + 1, k = 1,K. At
the same time we assign Dî = 1.

Initially we will construct the timetable for time interval [0,T 1) to reduce the dimension of
optimization problems to be solved in the future. To construct the timetable for time interval
[0,T 2) = [0,T 1)

⋃ T2 we will take into account (freeze) the timetable for time interval [0,T 1), To
construct the timetable for time interval [0,T 3) = [0,T 2)

⋃ T3 we will take into account (freeze)
the timetable for time interval [0,T 2) and so on.

For this reason we consider only transportations from the beginning of the planning horizon
until end of the interval Tp̃, where p̃ is an arbitrary number from set {1, . . . , P}. Let us formulate
a set of constraints stating movements along the multigraph for cargoes with numbers from set Is̃
in this time, i.e. in the planning subhorizon [0,T p̃). Let us suppose initially, that a timetable for
cargoes with numbers from set Is̃ for subhorizon [0,T p̃−1) (p̃ > 1) is not available.

By Ks̃,p̃ we will mean some non-empty set of transportations set
⋃p̃

p=1Kp, selected for cargoes
with numbers from set Is̃.

For this purpose we introduce auxiliary δp̃i,j,k, characterizing the usage of kth transportation by

cargo with number i at jth phase when timetable is formed for the planning subhorizon [0,T p̃),

i ∈ Is̃, j = 1, J + 1, k ∈ Ks̃,p̃. Variable δp̃i,j,k is equal to one, if transportation with number k is used
by ith cargo at jth phase, and to zero, otherwise.

We have by defnition of variables δp̃i,j,k

δp̃i,j,k ∈ {0, 1}, i ∈ Is̃, j = 1, J + 1, k ∈ Ks̃,p̃. (1)

Movements of cargoes along multigraph G can be performed only along adjacent vertices

∑
k∈Ks̃,p̃

δp̃i,j,kv
end
k �

∑
k∈Ks̃,p̃

δp̃i,j+1,kv
beg
k +

⎛
⎝1− ∑

k∈Ks̃,p̃

δp̃i,j+1,k

⎞
⎠M3, i ∈ Is̃, j = 1, J − 1, (2)

∑
k∈Ks̃,p̃

δp̃i,j,kv
end
k �

∑
k∈Ks̃,p̃

δp̃i,j+1,kv
beg
k −

⎛
⎝1− ∑

k∈Ks̃,p̃

δp̃i,j+1,k

⎞
⎠M, i ∈ Is̃, j = 1, J − 1. (3)

Let us remind that M is quantity of vertices in multigraph G. Constraints (2), (3) cause [10]
to the fact that if for some ĩ ∈ Is̃ and some j̃ ∈ {1, . . . , J} it is true

∑
k∈Ks̃,p̃ δ

p̃

ĩ,j̃,k
= 0, then∑

k∈Ks̃,p̃ δ
p̃

ĩ,j+1,k
= 0, j = j̃, J . If

∑
k∈Ks̃,p̃ δ

p̃

ĩ,j̃,k
= 1, then

∑
k∈Ks̃,p̃ δ

p̃

ĩ,j̃+1,k
= 0 or

∑
k∈Ks̃,p̃ δ

p̃

ĩ,j̃+1,k
= 1.

Constraints (2), (3) are identical to [10, 11] taking into account that the mathematical model is
constructed for the planning subhorizon. Let us note that the third power of M in (2) ensures
correctness of the mathematical model of movements along the multigraph [10].

Arrival at the destination vertex is possible in no more than J phases. Therefore we introduce
constraints ∑

i∈Is̃

∑
k∈Ks̃,p̃

δp̃i,J+1,k = 0. (4)
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Due to indivisibility of cargoes one can use no more than one transportation at any phase
(including the first one) ∑

k∈Ks̃,p̃

δp̃i,1,k � 1, i ∈ Is̃. (5)

If carriage is begun then it must be performed from the respective departure vertex∑
k∈Ks̃,p̃

δp̃i,1,kv
beg
k = vdepi

∑
k∈Ks̃,p̃

δp̃i,1,k, i ∈ Is̃. (6)

If cargo readiness to depart happens after the upper bound of interval Tp̃, then for this cargo
usage of transportations are prohibited until the end of Tp̃, i.e.

J∑
j=1

∑
k∈Ks̃,p̃

δp̃i,j,k = 0, ∀i ∈ Is̃ : tdepi � T p̃. (7)

Cargoes must be departed not earlier than the respective moments of readiness taking into
account maximal duration of stay in departure vertices. At the same time it is possible to not
depart cargo in interval [0,T p̃), if it is admissible, taking into account maximal duration of stay in
departure vertex. That’s why we have constraints

tdepi �
∑

k∈Ks̃,p̃

δp̃i,1,kt
beg
k +

⎛
⎝1− ∑

k∈Ks̃,p̃

δp̃i,1,k

⎞
⎠ T p̃ � tdepi + di, ∀i ∈ Is̃ : tdepi < T p̃. (8)

Let us comment constraints (8). For this reason we consider cargo with number ĩ ∈ Is̃ : tdepĩ
< T p̃.

Due to constraints (1) and (5) there are only two possible variants:
∑

k∈Ks̃,p̃ δ
p̃

ĩ,1,k
is equal to zero

or one. At the same time equality of this sum to zero (i.e. cargo with number ĩ is not departed)

causes to the fact that the following must be true: T p̃ � tdep
ĩ

+ dĩ. If this sum is equal to one, then
according to (5) only one transportation can be used and its beginning time will be in the interval

[tdep
ĩ
, tdep

ĩ
+ dĩ]. It corresponds to the sense of constraints (8) introduced above.

From the same vertex cargo can only be departed once 1

J+1∑
j=1

∑
k∈Ks̃,p̃:vbeg

k
=m

δp̃i,j,k � 1, i ∈ Is̃, m = 1,M. (9)

Arriving in the same vertex for cargo more than once is prohibited

J+1∑
j=1

∑
k∈Ks̃,p̃:vend

k
=m

δp̃i,j,k � 1, i ∈ Is̃, m = 1,M. (10)

Departure from intermediate vertices of the route must not be earlier than arrival in these ver-
tices. Therefore we have, taking into account minimal and maximal duration of stay, the following∑

k∈Ks̃,p̃

δp̃i,j,k(t
end
k + tst min

i,k ) �
∑

k∈Ks̃,p̃

δp̃i,j+1,kt
end
k

+

⎛
⎝1− ∑

k∈Ks̃,p̃

δp̃i,j+1,k

⎞
⎠T , i ∈ Is̃, j = 1, J − 1,

(11)

1 Here and below it is assumed that the sum of any variables over an empty set is equal to zero.
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where

T = max
i∈{1,...,I},k∈{1,...,K}

tendk + tst min
i,k ,

∑
k∈Ks̃,p̃

δp̃i,j,k(t
end
k + tst max

i,k ) �
∑

k∈Ks̃,p̃

δp̃i,j+1,kt
end
k , i ∈ Is̃, j = 1, J − 1. (12)

Constraints (11) and (12) are identical to the respective ones from [11].

To ensure allowability of parking (if it takes place) after the end of subhorizon [0,T p̃) we impose
constraints∑

k∈Ks̃,p̃:vend
k

�=varri

δp̃i,j,k

(
tendk + tst max

i,k − T p̃

)
+ T p̃

∑
k∈Ks̃,p̃

δp̃i,j+1,k � 0, i ∈ Is̃, j = 1, J . (13)

To prohibit carriages after arrival in the destination vertex we use constraints

∑
k∈Ks̃,p̃:vend

k
=varri

δp̃i,j,k � 2

⎛
⎝1− ∑

k∈Ks̃,p̃

δp̃i,j+1,k

⎞
⎠ , i ∈ Is̃, j = 1, J . (14)

Let us comment constraints (14). For this reason we consider cargo with number ĩ ∈ Is̃. If this
cargo arrived in the destination vertex after some phase then left part of (14) is equal to one.
Therefore for compatibility of (14) it is needed that right side would be equal to zero. It means
due to constraints (1) and (5) that the next after arrival phase will not be used as other phases. If
cargo did not arrive in the destination vertex then left side of (14) is equal to zero. In this case the
constraint is satisfied, because at any phase it is possible to use not more than one transportation.
It means that right side will be equal to zero or one.

Let us introduce variable T̂ p̃
i,j that means duration spent by cargo with number i at jth (by order

of traversing) intermediate vertex of its route during the planning subhorizon

T̂ p̃
i,j =

∑
k∈Ks̃,p̃

δp̃i,j+1,k(t
beg
k − T p̃) +

∑
k∈Ks̃,p̃:vend

k
�=varri ,tend

k
<T p̃

δp̃i,j,k(T p̃ − tendk ), i ∈ Is̃, j = 1, J . (15)

We also assign T̂ p̃
i,J+1 = 0 for convenience of modelling.

Further we introduce new variables F p̃
i , characterizing the expected duration of time needed

until arrival in the destination vertex for cargo with number i after the end of the planning sub-
horizon [0,T p̃):

F p̃
i = τ

vdepi ,varri
+

J∑
j=1

∑
k∈Ks̃,p̃

δi,j,k

(
τvend

k
,varri

− τ
vbeg
k

,varri

)

+
J∑

j=1

∑
k∈Ks̃,p̃:tend

k
�T p̃

δi,j,k(t
end
k − T p), i ∈ Is̃.

(16)

Next constraints are needed to not exceed cargo travel time

F p̃
i +

J∑
j=1

∑
k∈Ks̃,p̃:tend

k
<T p,vendk

=varri

δp̃i,j,k

(
tendk − T p

)
+
∑

k∈Ks̃,p̃

δp̃i,1,k(T p − tbegk )

(17)

� Ti +

⎛
⎝1− ∑

k∈Ks̃,p̃

δp̃i,1,k

⎞
⎠ η

vdepi ,varri
, ∀i ∈ Is̃ : tdepi < T p.

Constraints (17) are identical to the respective ones from [11].

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



ON THE ALGORITHM OF CARGOES TRANSPORTATION SCHEDULING 1121

We introduce variables ωp̃
i , characterizing arrival of cargo with number i in the respective

destination vertex on the base of used transportations during the planning subhorizon [0,T p̃):
0—arrived, 1—did not arrive:

ωp̃
i = 1−

J∑
j=1

∑
k∈Ks̃,p̃:tend

k
<T p,vendk

=varri

δp̃i,j,k, i ∈ Is̃. (18)

Next constraints are caused by the need in not exceeding maximal allowable mass at transporta-
tion with number k

∑
i∈Is̃

J+1∑
j=1

δp̃i,j,kwi �Wk −
∑

i∈
s̃−1⋃
s=1

Is

J+1∑
j=1

δ̂i,j,kwi, k ∈ Ks̃,p̃. (19)

3.2. Optimality Criterion

Potentially system of equalities and inequalities (1)–(19) may not have a unique solution. There-
fore a criterion is required to select among solutions. Let us compose from all δp̃i,j,k vector δs̃,p̃,

i ∈ Is̃, j = 1, J + 1, k ∈ Ks̃,p̃. Also we compose from all F p̃
i vector F s̃,p̃, from ωp̃

i vector ωs̃,p̃, i ∈ Is̃.
We unite all T̂ p̃

i,j in vector T̂ s̃,p̃, i ∈ Is̃, j = 1, J + 1.

Let us choose the criterial function of the following form

J p̃
s̃

(
δs̃,p̃,F s̃,p̃, ωs̃,p̃, T̂ s̃,p̃

)
= c1

∑
i∈Is

J+1∑
j=1

∑
k∈Ks̃,p̃

δp̃i,j,k(min{tendk ,T p̃} − tbegk )

︸ ︷︷ ︸
the total time in movement

during the planning subhorizon[0,T p̃)

+c2
∑
i∈Is

J+1∑
j=1

T̂ p̃
i,j︸ ︷︷ ︸

the total parking
time in

intermediate
vertices

+ c3
∑
i∈Is

⎛
⎝ ∑

k∈Ks̃,p̃

δp̃i,1,kt
beg
k +

(
1−

K∑
k=1

δp̃i,1,k

)
T p̃ − tdepi

⎞
⎠

︸ ︷︷ ︸
the total parking time in departure vertices
from the time of readiness for departure

until the end of the planning subhorizon[0,T p̃)

+ c4
∑
i∈Is

J+1∑
j=1

∑
k∈Ks̃,p̃

δp̃i,j,kwiCk

︸ ︷︷ ︸
the total cost

of transportations

+ c5
∑
i∈Is

F p̃
i︸ ︷︷ ︸

the total
expected
time until
delivery

+ c6
∑
i∈Is

ωp̃
i︸ ︷︷ ︸

the total
quantity

of undelivered
cargoes during
the planning
subhorizon

,

(20)

where c1, . . . , c6 are non-negative values chosen by a decision-maker. The choice of c1, . . . , c6 im-
pacts on the sense of optimization. When c1 = c2 = c3 = c5 = c6 = 0, c4 = 1 there is a problem
to minimize the total cost of transportations. When c1 = c2 = c3 = c5 = 1, c4 = c6 = 0 there is a
problem to minimize the sum of already spent time by cargoes in the transport network within the
planning subhorizon and the expected time to delivery after the end of the planning subhorizon.
We will mean as rth criterion component multiplier of cr in (20), r = 1, 6. It should be noted
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that not all criterion components are homogeneous. The first, second, third and fifth are mea-
sured in minutes, the fourth is in units of cost, and the sixth is in pieces. If optimization problem
is connected only with homogeneous components, then dimension of coefficients c1, . . . , c6 is not
important. If it is needed for optimization to take into account heterogeneous components then
problem to minimize the total cost should be considered, i.e. values c1, c2, c3, c5 will be measured
in units of cost/minute, and c6 in units of cost/piece.

If one takes p̃ = P , then the planning subhorizon will coincide with [0,T p̃). If we do not split
cargoes numbers set, i.e. I = Is̃ and Ks̃,P =

⋃P
p=1Kp, then criterion (20) and system of constraints

(1)–(19) will be precisely the same as criterion and system of constraints in [11]. But for this
split (more accurately—for the absence of the split) of cargoes numbers set and value of p̃, that is
suitable to decrease quantity elements in transportation set, used for scheduling, direct optimization
of criterion (20) with the purpose to find a timetable on the entire planning horizon may be very
prolonged. That’s why we will form the algorithm to search although not optimal but relatively
fast solution on the base of obtained in the paper constraints.

The presence of linear on optimization variables constraints (2)–(19) and linear criterion (20),
binary variables vectors δs̃,p̃ and ωs̃,p̃, real variable vectors F s̃,p̃ and T̂ s̃,p̃ makes problem (20) with
constraints (1)–(19) mixed integer linear programming problem.

4. THE ALGORITHM FOR SCHEDULING

At formation of the algorithm we will take into account the possibility of more fast computation
time by cut out of transportations that are unlikely to be used by cargoes.

It makes no sense at scheduling for a given subhorizon to take into account transportations from
vertices to which none of the cargo in this subhorizon will arrive. Generally speaking, in order to
determine whether a particular cargo will vertex a specific vertex in a given time, it is necessary
to solve the corresponding optimization problem. However, solving these types of problems takes
time. Therefore, to establish the fact that the loads will not arrive a certain vertex, we will use the
values τm1,m2 , m1 = 1,M , m2 = 1,M . Of course, the conclusion on possibility to arrive at a certain
vertex based on the values τm1,m2 is not always true, m1 = 1,M , m2 = 1,M . This is because these
values are based on past transportation history rather than the transportation currently available.
Nevertheless, this significantly reduces the computation time, although with a deterioration in the
value of the criterion function/inability to accept some cargoes for transportation. We will compare
values τm1,m2 with the ratio of the length of the corresponding partition interval to an acceleration
parameter, m1 = 1,M , m2 = 1,M . The acceleration parameter, which is dimensionless, will be
denoted by A. The lower A the less transportations will be crossed out, but the more cargoes will
likely be accepted for carriage. And, on the contrary, the larger A the faster computation time will
be, but the quality (in terms of cargoes accepted for carriage) of obtained solution will be worse.
If A = 0 there will be no strikeouts. When solving optimization problems, it seems most rational
to set A equal to one. In this case, the expected time before arrival at a certain vertex will be
compared with the duration of the corresponding partition interval, i.e. a period of time in which
the timetable has not yet been frozen and is being searched.

1. Values c1, . . . , c6 ∈R+ are initialized. Numbers P , J ∈N are stated. The number A∈R+

is set.

2. Set of cargoes numbers is divided into S ∈N non-overlapping subsets Is, i.e. {1, . . . , I} =⋃S
s=1 Is, and besides ∀s1, s2 ∈{1, . . . , S} : s1 �= s2 Is1

⋂ Is2 = ∅.

3. Partition intervals T1, . . . ,TP are formed in such manner, that [0, Tmax) =
⋃P

p=1 Tp, where

∀p1, p2 ∈{1, . . . , P} : p1 �= p2 Tp1
⋂Tp2 =∅, and besides T 1 =0, T P = Tmax, T p+1 = T p, p=1, P −1.

4. Sets Kp = {k ∈N : k � K, tbegk ∈Tp} are formed, p = 1, P .
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5. Parameter s̃ = 1 is initialized by 1.

6. Parameter p̃ = 1 is initialized by 1.

7. If p̃ is equal to one, then set Vs̃,p̃ =
⋃

i∈Is̃ v
dep
i is formed. If p̃ is greater than one, then

Vs̃,p̃ =
⋃

i∈Is̃

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vdepi ,
J+1∑
j=1

∑
k∈Ks̃,p̃−1

δ
p̃−1
i,j,k = 0,

∑
k∈Ks̃,p̃−1

δ
p̃−1
i,ji,kv

end
k ,

J+1∑
j=1

∑
k∈Ks̃,p̃−1

δ
p̃−1
i,j,k > 0,

where

ji =
J+1∑
j=1

∑
k ∈Ks̃,p̃−1

δ
p̃−1
i,j,k, i∈Is̃.

Set Vs̃,p̃ consists of departure vertices indices for those cargoes that have not been in movement
yet and from indices of last (on the current moment) vertices for those cargoes that had at least
one transportation.

8. If A = 0, then Ks̃,p̃ = Kp̃. If A > 0, then set Ks̃,p̃ =

{
k ∈Kp̃ : min

m∈Vs̃,p̃
τ
m,vbeg

k
� (T p̃ − T p̃)/A,

min
i∈Is̃

tdepi � tbegk

}
is formed.

9. If p̃ > 1, then set Ks̃,p̃ =
⋃p̃−1

p=1Ks̃,p⋃Ks̃,p̃ is formed. If p̃ = 1, then Ks̃,p̃ = Ks̃,p̃.

10. If set Ks̃,p̃ is empty and p̃ < P , then value p̃ is increased by 1, go to step 7.

If set Ks̃,p̃ is empty and p̃ = P , then δ̂i,j,k = 0, Di = 0, i∈Is̃, j = 1, J + 1, k = 1,K. If s̃ = S,
then the algorithm is finished. If s̃ < S, then value s̃ is increased by 1, go to step 6.

If set Ks̃,p̃ is not empty, go to step 11.

11. The problem

J p̃
s̃ (δ

s̃,p̃,F s̃,p̃, ωs̃,p̃, T̂ s̃,p̃) → min
δs̃,p̃,F s̃,p̃,ωs̃,p̃,T̂ s̃,p̃

with constraints (1)–(19), and also (when p̃ > 1) constraint

δp̃i,j,k = δ
p̃−1
i,j,k, i∈Is̃, j = 1, J + 1, k ∈Ks̃,p̃−1 (21)

is solved.

If a solution of this problem does not exist then δ̂i,j,k = 0, Di = 0, i∈Is̃, j = 1, J + 1, k = 1,K .
If s̃ = S, then the algorithm is finished. If s̃ < S, then value s̃ is increased by 1, go to step 6.

If a solution was found and p̃ < P , then values δ
p̃
i,j,k are set: δ

p̃
i,j,k is equal to one, if cargo with

number i at jth phase uses transportation with number k, and is equal to zero, otherwise, i∈Is̃,
j = 1, J + 1, k ∈Ks̃,p̃. Value p̃ is increased by 1, go to step 7.

If a solution was found and p̃ = P , then Di = 1, values δ̂i,j,k are set: δ̂i,j,k is equal to one, if cargo
with number i at jth phase uses transportation with number k, and is equal to zero, otherwise,
i∈Is̃, j = 1, J + 1, k = 1,K. If s̃ = S, then the algorithm is finished. If s̃ < S, then value s̃ is
increased by 1, go to step 6.

Is should be noted that constraint (21) allows to freeze the timetable for time interval [0,T 1)
when the timetable for interval [0,T 2) is searched, the timetable for time interval [0,T 2) when the
timetable for interval [0,T 3) is searched and so on.
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As the minimal/maximal time algorithm we will name such version of the proposed above
algorithm when at step 2 the split is carried out in ascending and descending order of cargoes
readiness moments for departure. Namely, set I1 consists of cargo number with the earliest/latest
time of readiness for departure, set I2—with the second/penultimate and so on.

5. THE EXAMPLE

Let us consider a model example.

Let the multigraph of the transport network has the form shown in figure. For greater clarity
the second track (the second edge) between adjacent vertices is omitted. The graph shows tracks
with number 1. Some edges are indicated by a dashed line to show the multilevel intersection of
edges in the transport network.

Suppose that some point of reference is chosen and Tmax = 1440 minutes. Starting from the
point of reference: 5 cargoes of the same mass in 1 unit appear every 60 minutes at the vertex
with index 1, these cargoes need to be transported to the vertex with index 97; 5 cargoes of the
same mass in 1 unit appear every 60 minutes at the vertex with index 10, these cargoes need to be
transported to the vertex with index 94.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Multigraph G of the transport network (by orange color departure and destination vertices
are highlighted, by blue color the most frequent path of delivered cargoes for the one of the
obtained results are highlighted).
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Table 1. Properties of an approximate solution found by minimal time algorithm in the format:
the total carriages time/the quantity of cargoes accepted for delivery/the quantity of delivered
cargoes/the total cost of carriages/the computation time in minutes for various P and J

J
P

9 12 15

6 147 960/192/68/21550/75 183 855/240/122/28840/91 183 600/240/122/28840/99

12 141 675/182/60/19720/45 186 435/240/117/28520/52 186 435/240/117/28520/58

24 170 230/220/94/25200/54 195 590/240/96/28160/59 195 590/240/96/28160/64

Table 2. Properties of an approximate solution found by minimal time algorithm in the format:
the total carriages time/the quantity of cargoes accepted for delivery/the quantity of delivered
cargoes/the total cost of carriages/the computation time in minutes for various P and J

J
P

9 12 15

6 148 475/192/64/21530/73 183 580/240/122/29040/88 183 580/240/122/29040/107

12 124 245/156/26/15560/50 187 870/236/106/28060/54 191 685/240/110/28770/62

24 171 470/222/96/25760/55 171 470/222/96/25760/57 171 470/222/96/25760/62

Tranportations between vertices with an index difference equal to 1 or 10 by the absolute value
are carried out every 30 minutes, cost of such transportations is 10 per unit of mass, maximal mass
to transport is 2 units, duration of transportation is 60 minutes. Tranportations between vertices
with an index difference equal to 9 or 11 by the absolute value are carried out every 30 minutes,
cost of such transportations is 20 per unit of mass, maximal mass to transport is 2 units, duration
of transportation is 85 minutes. Thus I = 240, K = 32832, M = 100.

Suppose also that di = 180, Ti = 960, tst min
i,k = 0, tst max

i,k = 120, i = 1, I , k = 1,K.

Suppose ηm1,m2 = 0, m1,m2 = 1, 100. Let

τm1+1,m2+1 =

⎧⎨
⎩90, |m1%10−m2%10| = 1 and |�m1/10� − �m2/10�| = 1

60|m1%10−m2%10|+ 60|�m1/10� − �m2/10�|, otherwise,

where x%y is remainder of x divided by y, �x� is the integer part of x, m1,m2 = 0, 99. Such choice
of values τm1,m2 provides that expected carriage duration from one adjacent vertex to another
(if they are connected diagonally) is 90 minutes. In all other cases the expected carriage duration
is proportional to the minimum number of edges when travelling from one vertex to another is
carried out without using diagonal edges.

We consider the case where c1 = c2 = c3 = c5 = 1, c4 = c6 = 0. We set A = 1. Let us ana-
lyze, how results of applying proposed algorithms depend on P and J . The duration of intervals
T1, . . . ,TP will be the same. Let us preliminarily note that with available transportations, direct
carriage from the vertex with index 1 to the vertex with index 12 costs the same as carriage through
the intermediate vertex with index 2 (or index 11), while carriage directly takes less time. However,
the fastest carriage from departure vertices–diagonally–due to the declared maximal mass and the
frequency of transportations is not available for every cargo, so the optimization problem, generally
speaking, is non-trivial.

In Tables 1 and 2 by bold font there are highlighted cases where all cargoes were accepted for
delivery. As follows from Tables 1 and 2 the best result was obtained for maximal time algorithm
with P = 6, J = 12. This solution we will name basic. For the basic solution the most frequent
chain of vertices indices traversed at movement by delivered cargoes is

1 → 11 → 21 → 32 → 43 → 53 → 64 → 75 → 86 → 97.
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Table 3. Further improve of obtained solution by maximal time algorithm

Parameters of
the algorithm

The total time
of carriages

The quantity
of cargoes accepted

for delivery

The quantity
of delivered
cargoes

The total cost
of carriages

The computation
time, minutes

A = 1, P = 4,
J = 12

182 455 240 122 28 830 222

A = 0,5, P = 6,
J = 12

183 165 240 124 29 000 187

This chain appeared for 8 cargoes. Among delivered during the planning horizon cargoes: for
74 cargoes there were used 9 transportations, for 41 cargoes there were used 10 transportations,
for 7 cargoes there were used 11 transportations. Exactly half of delivered cargoes was sent from
the vertex with index 1.

Another result of the study is the fact that for cases when all cargoes are accepted for delivery,
with a fixed J with decreasing P the computation time (as expected) increases, since mathematical
programming problems of higher dimension are solved. Decreasing in the criterion is also observed.
The growth of J at a fixed P causes to the fact that more cargoes are accepted for delivery. However,
an increase in J from 12 to 15 in this problem did not allow us to decrease the criterion value always.
This observation can be caused by the fact that Ti is relatively small, i = 1, I . Therefore, routes
with a large number of transportations and travel time from the moment of readiness can not
be used. In addition, the goal of optimization is to minimize the total travel time, and diagonal
movement, as noted earlier, faster.

Note that even at J = 12 taking into account constraint (4) there are I ·J ·K = 94556 160 binary
variables in the problem under study. At the same time the solution search time is about an hour,
which can be considered as an acceptable speed. To speed up the search for a solution, one can, for
example, fix a certain set of vertices through which this or that cargo must travel. If a timetable
is found for this set in such manner, then it is possible not to search for a timetable for this set of
cargoes on the entire set of transportations. It is also possible to reduce the number of elements
in the set Ks̃,p̃, formed at the 8th step of the proposed algorithm, s̃ = 1, S, p̃ = 1, P . For example,
one can exclude transportations with starting or ending vertices that have already been visited by
all cargoes from the set Is̃, s̃ = 1, S. However, such (and similar) modifications, leading to the
increasing of the obtaining solution speed, may degrade the solution in terms of quality.

Let us investigate the question about quality of basic solution. For this purpose we reduce P
or A.

As follows from Table 3 decreasing A and P allowed to find a bit better (around 0.5 %) solution
by criterion value than basic solution. But the search time for any of improved solutions has
increased several times. Increasing computation time was caused by increasing dimension of solved
problems at the algorithm work.

Note that the proposed algorithm can potentially be used not only for strategic but also op-
erational planning. Operational planning is possible in situations with fewer transports/fewer
multigraph vertices than those considered in this example [11]. The question of the maximum di-
mension of the problem being solved, at which operational planning is possible using the developed
algorithm, is of separate scientific interest. It must be said that it is possible to speed up the work
of the proposed algorithm with a new/different version of the mixed integer linear programming
problem solver.

All results were obtained using ILOG CPLEX 12.5.1 mathematical package on the personal
computer (Intel Core i5 4690, 3.5 GHz, 8 GB DDR3 RAM).
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6. CONCLUSION

In this paper we have studied the problem of cargoes transportation scheduling in the transport
network represented by the undirected multigraph. Transportation between vertices were carried
out at predetermined time intervals. To solve this problem the mathematical model of carriages
along a multigraph was proposed. This model was constructed using linear equalities and inequal-
ities containing binary and continuous variables. The optimization criterion was formulated. The
algorithm to find an approximate solution was proposed due to possible high dimension of the
obtained problem. The algorithm is based on the decomposition of the cargoes set and the plan-
ning horizon. Additionally, a parameter is introduced into the algorithm for the acceleration of its
work. This parameter controls the number of transportations on which the timetable is built at
one or another step of the algorithm. A study of the quality of decomposition was carried out on
a meaningful example with millions of binary variables.
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Abstract—A single machine scheduling problem with a given partial order of jobs is considered.
There are subsets of jobs called courses. It is necessary to schedule jobs in such a way that the
total weighted duration of all courses is minimal. We consider the case when the initial job and
the final one of each course are uniquely determined. The NP-hardness of the problem under
consideration is proved. We propose an algorithm for solving the problem, the complexity of
which depends polynomially on the total number of jobs, but exponentially on the number of
courses, which makes it possible to use it efficiently with a fixed small number of courses and
an arbitrary number of jobs.
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minimization
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1. INTRODUCTION

We consider a set of jobs that need to be executed on one machine and a precedence graph that
sets a partial order of jobs. Some of the jobs are combined into subsets, which we will call courses.
It is necessary to build a schedule in which the total weighted duration of all courses is minimal.
The duration of a course is the length of the time interval between the start of processing the initial
job from this course and the end of processing its final one. The article considers the case when
the initial and the final jobs of each course are uniquely determined.

Single machine problems are comprehensively investigated in scheduling theory [1, 2]. At the
same time, the single machine problem of minimizing the weighted total duration of courses has
not been considered before.

The need to minimize the total duration of courses arises in different areas of production, edu-
cation and services. In [3], a resource-constrained project scheduling problem with such objective
function is considered in relation to constructing a schedule for preparing cosmonauts to work at the
International Space Station. It is necessary to minimize the length of each course (or an on-board
system in the terminology of the Gagarin Cosmonaut Training Centre). If too much time passes
from the beginning of a course to the exam, the cosmonauts’ skills are considered lost and they
have to add additional hours to the preparatory process, which leads to large time and financial
losses. In that publication, a heuristic algorithm for solving the problem is proposed.

We can also interpret such a problem as a problem of minimizing the total downtime of resources.
Suppose that all jobs of each course requires their own specific resource (for example, processing
on additional equipment). This resource is taken on a temporary lease, which begins to be paid
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simultaneously with the start of the first job from the course and ends with the completion of the
last job from this course. Then the duration of a course can be associated with the total payment
for the resource, and the objective function characterizes the total payments for all leased resources.
In addition to payments for additional resources, this goal function can be considered as a fee for
storage and rental of premises.

For the first time, the question of the duration of courses was considered in [4]. Here, along with
the usual concept of “activity”, the concept of “hammock activity” is introduced. The duration of a
hammock activity is determined by the beginning and the end of some fixed activities. This article
discusses project scheduling without resource constraints and provides methods for calculating the
duration of hammock activities. Note that in the case when the first and the last jobs of a course
are uniquely defined, the concepts of hammock activity and course coincide.

The concept of hammock activity was developed in [5]. The authors of that article consider
the problem of minimizing the total cost of several hammock activities in a project both in the
presence of resource constraints (Resource-Constrained Hammock Cost Problem, RCHCP) and
without them. The cost of a hammock activity means its weighted duration. In the absence of
resource constraints, the problem is reduced to a linear programming problem. In case of resource
constraints, the formulation of the problem in the form of a mixed integer linear programming
problem is proposed. In the dissertation [6] the research of the RCHCP is continued. The au-
thor suggests metaheuristics for solving this problem, and also provides an extensive review of
publications on problems of the RCHCP type.

Some studies use terms other than “hammock activity” to describe a similar objective function.
So in theory of scheduling repetitive jobs (see, for example, [7]), such problems are known as project
scheduling problems with work continuity constraints. For example, in [8] the following project
scheduling problem with repetitive jobs is considered. There is some basic precedence graph, which
is duplicated k times. Some of the repetitive jobs requires additional resources (equipment, teams
of workers, etc.), and it is necessary to complete the project by the specified directive deadline
with minimizing the duration of these repetitive jobs. Examples of practical applications are
given for construction of multi-storey buildings, where identical jobs are performed on each storey,
construction of bridges, roads, etc. In [9] the terms used are “minimizing crew idle time” and
“minimizing resource idle time”. The authors describe a practical use of algorithms developed for
such a problem during the construction of the Westerschelde Tunnel in the Netherlands. Crews
of workers and freezing machines were selected as resources whose total duration of use had to be
minimized.

Thus, if we talk about minimizing the total duration of courses, the major attention in the
literature is paid to project scheduling problems either with or without resource constraints. In the
first case, we have to deal with an NP-hard problem [5] and the emphasis in such studies is on the
development of heuristic algorithms, whereas in the second case polynomial algorithms are built.

Our article discusses a single machine problem that can be interpreted as a project scheduling
problem with single resource available in the amount of one unit at any given time, provided
that each job also requires one unit of the resource. It is shown that this problem is NP-hard.
We propose an algorithm which allows to find an exact solution in the case of a large number
of jobs, but a small fixed number of courses. Section 2 provides a formulation of the problem.
Section 3 proves NP-hardness of the problem under consideration, as well as some of its properties.
Section 4 is devoted to solving an auxiliary problem, and in section 5 an algorithm for solving the
original problem based on solving an auxiliary problem is described and the results of a numerical
experiment are presented.
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2. PROBLEM STATEMENT

There is a set of jobs I = {1, . . . , n} that need to be executed on one machine. For each job
i ∈ I, its processing time is equal to pi > 0. All jobs are available at zero time. The processing of
any job cannot be interrupted.

A directed acyclic precedence graph G(I,E) is given, where I is a set of vertices, and E is a
set of arcs. We say that for a pair of jobs i, j ∈ I, job i precedes job j, denoting by i→ j, if there
exists a directed path from vertex i to vertex j in the graph G(I,E). Denote by A(i) the set of all
jobs preceding job i and by D(i) the set of jobs preceded by job i. Each job i must be executed
after all jobs from set A(i) and before all jobs from D(i).

In addition, there are sets Ik ⊂ I, |Ik| > 1, k ∈ {1, . . . ,K}, called courses. Figure 1 gives an
example of a precedence graph for a problem with three courses. Each course Ik, k ∈ {1, . . . ,K},
has its own weight wk > 0. Depending on the interpretation, the weight is either a price of a leased
resource per unit of time or an index of importance (significance) of the course. For each job i ∈ I,
a schedule π determines its processing sequence number on the machine, which we will denote
by π(i), a start time of processing Si(π) and a completion time of processing Ci(π) = Si(π) + pi.
We will call a schedule feasible if it does not contradict the precedence relations of jobs and the
machine does not serve more than one job at any given time. The problem of minimizing the total
weighted duration of all courses implies minimizing the following objective function:

H(π) =
K∑
k=1

wk

(
max
i ∈ Ik

Ci(π)− min
i ∈ Ik

Si(π)

)
. (1)

The article considers the case when the first and the last jobs of each course are uniquely
determined, i.e. the following assumption is true.

Assumption 1. For each course Ik, k ∈ {1, . . . ,K}, there are jobs iak and idk, such that iak ∈ A(j)
for any j ∈ Ik \ {iak} and idk ∈ D(j) for any j ∈ Ik \ {idk}.
This condition is often fulfilled in practice. For example, in an educational process, the first lesson
is usually introductory, and the last one implies a general knowledge test, while the sequence of

– a job of course 1, – a job of course 2, – a job of course 3,

– a job which is not included in any course.

Fig. 1. A precedence graph and courses.
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other classes in the course may vary. In this case, the objective function can be written as

H(π) =
K∑
k=1

wk

(
Cid

k
(π)− Siak(π)

)
=

K∑
k=1

wk

(
Cid

k
(π)−Ciak

(π) + piak

)
. (2)

We will call iak and idk extreme jobs (vertices) of course k, k ∈ {1, . . . ,K}. The set of all extreme
jobs of courses is denoted by Iad, and their number—by e. Since some jobs from Iad can be extreme
in several courses, e � 2K.

The minimization of function (2) exactly coincides with the minimization of the hammock ac-
tivities cost described in the introduction. In the standard scheduling theory notation [10] this
problem can be classified as 1|prec|H, where 1 means one machine, prec—the presence of prece-
dence constraints, and H—the objective function (2).

3. PROBLEM PROPERTIES

Remark 1. Since all jobs in problem 1|prec|H are available at the same time and downtime does
not improve the value of the objective function, we can only consider schedules without breaks
between jobs, with the start of the first job at zero time. Indeed, let there exist an optimal
schedule π1, in which there are machine downtimes or the first job does not start at zero time.
Then we can consider the schedule π2, in which all jobs are performed in the same order as in π1,
but the first job starts from zero time and there are no breaks between jobs. Schedule π2 is also
optimal.

Let’s show that even with the same processing time of all jobs, the problem under consideration
is NP-hard.

Theorem 1. Problem 1|prec, pi = 1|H is strongly NP-hard.

Proof. Let’s consider the classical single machine problem of minimizing the weighted total flow
time 1|prec, pi = 1|∑wiCi. The problem is formulated as follows. One machine and a set of jobs
I ′ = {1, . . . , n′} are given, each job i has weight w′

i and processing time p′i = 1, i ∈ {1, . . . , n′}. Let
there also be given a directed precedence graph G′(I ′, E′). It is necessary to find a schedule π′ that
minimizes the objective function

∑n′
i=1w

′
cC

′
i(π

′), where C ′
i(π

′) is the completion time of the ith job
in the schedule π′.

This problem is strongly NP-hard [11]. Let’s reduce it to the following problem 1|prec, pi = 1|H.
There is a set of jobs I = {1, . . . , n}, n = 2n′. Each job i has processing time pi = 1. Graph G(I,E)
has the following structure. There are |E′| arcs defined by the following rule: if in graph G′(I ′, E′)
there is an arc (j, k), then in graph G(I,E) there is also arc (j, k). In addition, there are n′−1 arcs
of the form (i, i + 1) for i ∈ {n′ + 1, . . . , 2n′ − 1} and |L| arcs of the form (2n′, l), where L is the
set of root vertices (sources) in graph G′, l ∈ L. The structure of graph G(I,E) is shown in Fig. 2.

Fig. 2. The structure of graph G(I, E) from the proof of theorem 1.
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Let’s set the courses as follows: jobs n′ + 1 and 1 belong to the first course, which has weight
w′
1, jobs n

′ + 2 and 2 belong to the second course, which has weight w′
2, . . . , jobs 2n

′ and n′ refer
to the n′th course, which has weight w′

n′ , i.e. each course consists of two jobs, the first of which
lies in set {n′ + 1, . . . , 2n′}, and the final—in set I ′. Let π be an arbitrary optimal schedule for this
problem. The value of the objective function is

H(π) =
n′∑
i=1

w′
i (Ci(π)−Ci+n′(π) + 1) =

n′∑
i=1

w′
iCi(π)−

n′∑
i=1

w′
iCi+n′(π) +

n′∑
i=1

w′
i. (3)

Due to the structure of the precedence graph, job n′ + 1 will be processed first. Then taking
into account Remark 1 we have Cn′+1(π) = 1. Since there are arcs (i, i+ 1) in the graph G for
i ∈ {n′ + 1, . . . , 2n′ − 1}, and all jobs from {1, . . . , n′} are processed after job 2n′, the order of jobs
n′ + 2, . . . , 2n′ is known, moreover,

Ci(π) = i− n′, i ∈ {n′ + 2, . . . , 2n′}, (4)

that is, all these jobs are processed one after another without breaks. Thus, in schedule π, the
execution of jobs n′ + 1, . . . , 2n′ is predetermined and will end at time n′. But then, taking into
account (3), schedule π is optimal if and only if (4) is executed and the minimum of the function∑n′

i=1 w
′
iCi(π) is reached with schedule π, i.e. when in the schedule π jobs 1, . . . , n′ are executed

starting from the moment n′ in a way minimizing their weighted total flow time. As a result,
the optimal schedule π′ in the problem 1|pres, pi = 1|∑wiCi can be obtained from the optimal
schedule π of the described problem 1|prec, pi = 1|H. Completion times of the jobs in the problem
1|prec, pi = 1|∑wiCi are as follows:

C ′
i(π

′) = Ci(π)− n′, i ∈ {1, . . . , n′}.

The theorem is proven.

Remark 2. Similarly, it is possible to prove NP-hardness in the strong sense of the one-machine
problem of minimizing the total (unweighted) duration of courses with different jobs processing
times, using a reduction from the NP-hard problem 1|prec|∑Ci to it.

As noted earlier, due to Remark 1 next, we will consider only schedules without breaks between
jobs, with the start of the first job at time zero. In this case, for each job j ∈ I its sequence
number π(j) in the schedule π uniquely sets the start time and the end of the job. Note also that
only completion times of extreme jobs of courses are included in the definition of the objective
function (2), moreover, only differences, and not absolute values, are decisive. Since in the absence
of breaks the duration of a course is determined by the jobs started after the first job of the course
and completed before the completion of the last job of the course, let’s rewrite objective function (2)
in a different form, without using the job completion times :

H(π) =
K∑
k=1

wk

⎛
⎜⎝ ∑

j:π(ia
k
)�π(j)�π(id

k
)

pj

⎞
⎟⎠ . (5)

Then we can write

H(π) =
n∑

j=1

Wj(π)pj , (6)

where

Wj(π) =
∑

k ∈ K:
π(j)�π(ia

k
)

wk −
∑

k ∈ K:
π(j)>π(id

k
)

wk. (7)
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So the contribution Wj(π) of each job j ∈ I to the objective function depends on the mutual order
of extreme jobs of courses and its place among the extreme jobs. In this regard, the following
idea of solving the problem arises: for each feasible permutation of extreme jobs of courses, it is
necessary to find an optimal order of jobs relative to the extreme jobs. The next section will present
a polynomial algorithm for constructing an optimal schedule for a given order of extreme jobs of
courses.

4. SOLVING AN AUXILIARY PROBLEM

As it was shown in the previous section, the value of the objective function of the initial prob-
lem depends on the mutual order of extreme jobs of courses. Denote by Λ = (λ1, . . . , λe) an ar-
bitrary permutation of extreme jobs that does not contradict the precedence relations given by
graph G(I,E), and introduce a directed acyclic graph G′(I,E′) such that E ⊂ E′ and for the set
of extreme jobs, the following condition is fulfilled:

λ1 → λ2 → . . . λe−1 → λe. (8)

The graph G′(I,E′) is obtained from G(I,E) by sequentially connecting extreme vertices λ1, . . . , λe
by arcs in accordance with the order given by Λ. If such order does not contradict the precedence
constraints of the problem, the resulting graph G′(I,E′) will be acyclic. Due to the acyclicity of
the original graph G(I,E), there is always at least one sequence of extreme jobs Λ that does not
contradict the precedence constraints. Then in any schedule π for the graph G′(I,E′) we will have

π(λ1) < π(λ2) < . . . < π(λe−1) < π(λe).

The problem is to minimize function (6)–(7) relative to the new graph G′(I,E′). We will denote
the auxiliary problem by PΛ.

For all jobs that are not extreme, it is necessary to determine their places in the sequence
λ1, λ2, . . . , λe. For each job, there are no more than e + 1 options (the job is processed before λ1,
between λ1 and λ2, etc.). Say that job j is placed in cell q, q ∈ {1, . . . , e− 1} if it is executed after
extreme job λq and before extreme job λq+1. Assume that q = 0 if job j is executed before λ1, and
q = e if j is executed after λe.

Consider for each extreme job λi ∈ Iad the sets A(λi) and D(λi) in the graph G′(I,E′). Note
several obvious statements that will be used later and the proof of which follows directly from (8).

Lemma 1. a) If j ∈ A(λi), then j ∈ A(λk) for all k � i.

b) If j ∈ D(λi), then j ∈ D(λk) for all k � i.

c) If j /∈ D(λi), then j /∈ D(λk) for all k � i.

d) If j /∈ A(λi), then j /∈ A(λk) for all k � i.

To determine boundaries of the possible location of the non-extreme jobs by cells in the row of
extreme jobs, we introduce the following notation:

q1(j) =

{
0, if j /∈ D(λ1),

max{g ∈ {1, . . . , e} | j ∈ D(λg)}, otherwise;

q2(j) =

{
e, if j /∈ A(λe),
min{g ∈ {1, . . . , e} | j ∈ A(λg)} − 1, otherwise.

Lemma 2. For each job j ∈ I \ Iad the inequality q1(j) � q2(j) is satisfied.

Proof. If either j /∈ D(λ1) or j /∈ A(λe), the statement is obvious. For a proof in the other cases,
we assume the opposite. Let q1(j) > q2(j). By definition of q1(j) we have j ∈ D(λq1(j)). On the
other hand, by definition of q2(j) we have j ∈ A(λq2(j)+1). But then by lemma 1 we get j ∈ A(λk)
for all k � q2(j) + 1, which means j ∈ A(λq1(j)). The resulting contradiction proves the lemma.
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Lemma 3. If in a feasible solution of problem Pλ job j is placed into cell q, then q1(j) � q � q2(j).

Proof. Assume the opposite. Let’s suppose that in some feasible schedule job j is placed into
cell q, for which either q < q1(j) or q > q2(j) is holds. Let q < q1(j). Then q1(j) > 0 and by
definition j ∈ D(λq1(j)), which means that job j cannot be executed before λq1(j), which contradicts
the choice of cell q. Let q > q2(j). Then q2(j) < e and by definition j ∈ A(λq2(j)+1), which means
that the job cannot be executed after λq2(j)+1, which contradicts the choice of cell q. The lemma
is proven.

For each cell q ∈ {0, . . . , e} let’s introduce its price f(q) according to the following rule:

f(q) =
∑

k ∈ K:
x(iak)�q

wk −
∑

k ∈ K:
x(idk)�q

wk,

where x(iak) and x(i
d
k) are the numbers of extreme jobs of course k in permutation Λ = (λ1, . . . , λe).

This value determines the “contribution” of a job in the original objective function (6) if this job
is placed into cell q. Denote by q∗(j) the first number from q1(j) to q2(j) for which the minimum
of f is reached:

q∗(j) = min

{
t | f(t) = min

q1(j)�q�q2(j)
f(q)

}
. (9)

We will call q∗(j) the optimal cell for job j, j ∈ I. The following lemma shows that if one job
should precede another one in a schedule, then its optimal cell is not greater than the optimal cell
for another job.

Lemma 4. If j → g in graph G′(I,E′) for two non-extreme jobs j and g, then

a) q1(j) � q1(g);

b) q2(j) � q2(g);

c) q∗(j) � q∗(g).

Proof. a) Since j → g, then g ∈ D(j). If q1(j) = 0, then the statement is obvious. If q1(j) > 0,
then j ∈ D(λq1(j)). It means that g ∈ D(λq1(j)). Then by definition of q1(g) we get q1(g) � q1(j).

b) Since j → g, then j ∈ A(g). If q2(g) = e, then the statement is obvious. If q2(g) < e, then
g ∈ A(λq2(g)). It means that j ∈ A(λq2(g)). Then by definition of q2(j) we get q2(j) � q2(g).

c) Let q∗(j) > q∗(g). Taking into account a) and b), we obtain

q1(j) � q1(g) � q∗(g) < q∗(j) � q2(j) � q2(g).

This means that both cells q∗(j) and q∗(g) are available for jobs j and g. This contradicts cell
selection rule (9). Indeed, if f(q∗(j)) = f(q∗(g)), then cell q∗(g) should be selected for both jobs
as the earlier one. If f(q∗(j)) �= f(q∗(g)), then the cell with the minimum value of f should be
selected for both jobs. The lemma is proven.

For each cell q ∈ {0, . . . , e} we introduce a set of jobs Iq for which this cell is optimal:

Iq = {j ∈ I \ Iad : q∗(j) = q}, q ∈ {0, . . . , e}.

Let Eq ⊂ E be the set of arcs connecting the vertices of Iq, q ∈ {0, . . . , e}. Denote by π̄(Iq, Eq)
an arbitrary topological sorting of the graph Gq(Iq, Eq), i.e. some permutation of jobs from Iq
satisfying the partial order given by the set of arcs Eq. Due to acyclicity of the original graph
G(I,E), a topological sorting of any of its subgraphs Gq(Iq, Eq) exists. The following theorem
shows that, by ordering jobs in each cell separately, we can get an optimal schedule for problem PΛ

as follows: first we need to complete all jobs from set I0, then complete the extreme job λ1, then—all
jobs from set I1, the extreme job λ2, etc.
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Theorem 2. The schedule πΛ = (π̄(I0, E0), λ1, π̄(I1, E1), λ2, . . . , λe, π̄(Ie, Ee)) is an optimal so-
lution of problem PΛ.

Proof. The schedule πΛ is feasible in problem PΛ. Indeed, consider any two jobs i, j ∈ I \ Iad
such that i → j. If these jobs are in the same cell, then the precedence constraint is satisfied due
to the construction of the topological sorting of all jobs from this cell. If i and j are in different
cells, then by virtue of lemma 4 we have q∗(i) < q∗(j), which means that in schedule πΛ job i will
be executed before job j. The precedence constraints between extreme jobs and all other jobs are
satisfied by virtue of the rule of constructing optimal cells.

The optimality of the solution follows from the definition of an optimal cell. Indeed,

∑
j ∈ I\Iad

f(q∗(j))pj =
∑

j ∈ I\Iad

min
q1(j)�q�q2(j)

⎛
⎜⎜⎜⎝ ∑

k ∈ K:
x(iak)�q

wk −
∑

k ∈ K:
x(idk)�q

wk

⎞
⎟⎟⎟⎠ pj = min

π

∑
j ∈ I\Iad

Wj(π)pj .

Since for the given order Λ, the contribution to the objective function of extreme jobs is fixed and
equal to

∑
j ∈ Iad

⎛
⎜⎜⎜⎝ ∑

k ∈ K:
x(j)�x(iak)

wk −
∑

k ∈ K:
x(j)>x(idk)

wk

⎞
⎟⎟⎟⎠ pj ,

this means that the schedule πΛ, which corresponds to the distribution of jobs across cells, delivers
the minimum of objective function (6)–(7). The theorem is proven.

Thus, solving problem PΛ can be reduced to calculating the optimal cell for each job and ordering
jobs in each cell separately. A general scheme of finding a solution to the auxiliary problem is
described by Algorithm 1. Let’s evaluate the complexity of this approach. It is necessary to
construct sets A(λ), D(λ) for each extreme job λ, which in total will require O(nK) operations.
Next, for each job j, it is necessary to define the boundaries q1(j), q2(j) and the optimal cell q∗(j)
that will required O(nK) operations. Building partial schedules in each cell needs no more than
O(n+ |E|) operations [12].

Algorithm 1 Procedure Solv(Λ)

1: πΛ := ()
2: for all q ∈ {0, 1, . . . , e} do
3: Iq := ∅
4: end for
5: Generate graph G′(I, E′) by permutation Λ = (λ1, . . . , λe)
6: for all j ∈ I \ Iad do
7: Calculate q∗(j)
8: Iq∗(j) := Iq∗(j) ∪ {j}
9: end for

10: Build π̄(I0, E0)
11: πΛ := π̄(I0, E0)
12: for all q ∈ {1, . . . , e} do
13: Build π̄(Iq , Eq)
14: πΛ := πΛ ∪ (λq, π̄(Iq, Eq))

15: end for
16: Return πΛ
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5. AN ALGORITHM FOR SOLVING PROBLEM 1|prec|H

Denote by B the set of all possible permutations of extreme jobs Λ that do not contradict
the precedence constraints of the original problem. If the number of courses in the problem is
small, or due to the structure of graph G(I,E), the mutual order of extreme jobs does not allow
a large number of options, an efficient search for a solution to the problem is possible. It is
based on iterating through permutations of extreme jobs and solving an auxiliary problem for each
permutation. Thus, the scheme of solving the problem can be represented as Algorithm 2, where
H∗

Λ is the optimal value of the objective function in the auxiliary problem PΛ, and H
∗, π∗ are the

optimal value and optimal the schedule of the original problem 1|prec|H, respectively. Note that in
Algorithm 2 there is no need to find a schedule for each permutation Λ under consideration, since
to calculate the value of H∗

Λ, it is enough to know the optimal cells for each job.

Algorithm 2 Solving problem 1|prec|H
1: H∗ := +∞
2: for all Λ ∈ B do
3: Calculate H∗

Λ

4: if H∗
Λ < H∗ then

5: H∗ := H∗
Λ

6: Λ∗ := Λ
7: end if
8: end for
9: π∗ := Solv(Λ∗)

10: Return π∗

The algorithm for solving the problem has the complexity O(|B|(nK+ |E|)), where n is the total
number of jobs, K is the number of courses, |E| is the number of edges in the precedence graph
and |B| is the number of feasible permutations of the extreme jobs of the courses. The largest
contribution to the complexity is given by the value |B|. The maximum possible value of |B|
is (2K)!

2K
, when all possible permutations of extreme jobs of courses are considered without taking

into account their precedence relations. However, in the case of, for example, dense precedence
graphs, the value |B| may be acceptable for using Algorithm 2 even with a large number of courses.

During computational experiments, the proposed algorithm was compared with the optimization
solver IBM ILOG CPLEX 22.1.0.0 [13]. To apply this solver, the following formulation of the
problem was used in the form of an integer linear programming problem:

∑
k∈K

∑
j∈I,j �=ia

k

wkpjxiak,j +
∑
k∈K

∑
j∈I,j �=id

k

wkpjxj,id
k

+
∑
k∈K

(
pia

k
+ pid

k
−
∑
i∈I

pi

)
→ min,

xi,j + xj,i = 1 ∀i, j ∈ I;

xi,j + xj,k + xk,i � 1 ∀i, j, k ∈ I;

xi,j = 1 ∀(i, j) ∈ E;

xi,j ∈ {0, 1} ∀i, j ∈ I,

where variable xi,j , i �= j ∈ I, takes the value 1 if job i is executed before job j, and the value 0
otherwise. Such variables and constraints are standard for integer formulations of single machine
problems with precedence constraints (see, for example, [14]).
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Table 1. Test results for sparse graphs

n K |E| |B| Algorithm 2 CPLEX

100 3 481 6 0.007 13.218
5 467 4299 5.124 13.436
7 525 26 244 35.191 12.774

200 3 1864 6 0.034 106.282
5 1942 150 0.516 105.152
7 1990 870 3.169 102.967

300 3 4550 5 0.050 426.563
5 4423 10 0.069 404.386
7 4410 950 6.834 396.179

400 3 7765 1 0.022 >10 min
5 7662 4 0.051 >10 min
7 7746 280 3.362 >10 min

500 3 12 241 2 0.037 >10 min
5 12 118 2 0.065 >10 min
7 12 194 96 1.854 >10 min

Table 2. Test results for dense graphs

n K |E| —B— Algorithm 2 CPLEX

100 3 2514 2 0.009 11.144
5 2541 4 0.054 10.717
7 2515 3 0.025 10.777
9 2487 8 0.048 10.668

200 3 10 103 1 0.028 94.987
5 10 194 2 0.071 95.790
7 10 199 2 0.043 99.734
9 10 123 4 0.165 94.775

300 3 22 846 1 0.034 386.899
5 22 943 1 0.039 398.339
7 22 933 6 0.225 378.841
9 22 845 4 0.156 400.153

400 3 40 862 1 0.062 ¿10 min
5 40 692 2 0.135 ¿10 min
7 40 779 1 0.094 ¿10 min
9 40 806 2 0.147 ¿10 min

500 3 63 657 1 0.090 ¿10 min
5 63 424 1 0.098 ¿10 min
7 63 676 1 0.136 ¿10 min
9 63 802 3 0.316 ¿10 min

The calculations were performed on a personal computer (Intel Core i7-7700K, 4.2 GHz,
32.0 GB), the algorithm was implemented in Python using NetworkX library for working with
graphs. In Tables 1 and 2 the results of solving randomly generated problems are given. Random
integers from range [1; 10] were chosen for weights of courses and processing times of jobs. Random
vertices of graphs were chosen as extreme jobs of courses in such a way that precedence constraints
between the first and the last vertices of each course were not violated. The running time of the
algorithm and the CPLEX solver was limited to 10 minutes.

Notations n, K, |E|, |B| used in the tables coincide with the notations adopted earlier in the
article, and columns “Algorithm 2” and “CPLEX” indicate the time of solving problems in seconds
by the algorithm proposed in the article and by CPLEX, respectively.
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We can see from Table 1 that running time of the algorithm depends on the cardinality of set B
more than on the total number of jobs. So, the algorithm gives an exact solution to the problems
of high dimension in a fraction of a second, if the number of feasible permutations of extreme jobs
is small. In the case of large value of |B| (see, for example, the problem with n = 100, K = 7),
the running time of the algorithm increases significantly. CPLEX, on the contrary, is insensitive to
changes of |B| and K, but with an increase of n, its running time increases greatly.

In Table 2 results of solving problems with denser graphs are presented. Here, as expected,
the number of feasible permutations of extreme jobs is less, so the algorithm found solutions in all
problems in less than a second.

Thus, the results of the computational experiment confirm the theoretical estimation of the
complexity of the developed algorithm and show that the algorithm can be efficiently applied to
problems with a small set B, which corresponds to the case of either problems with dense precedence
graphs, or problems with a small number of courses, or problems in which the positions of extreme
jobs are fixed relative to each other. In these cases, the algorithm allows us to quickly solve
high-dimensional problems.

6. CONCLUSION

The article considers the single machine problem with precedence constraints, in which it is
necessary to minimize the total weighted duration of courses (some subsets of jobs). The NP-hard-
ness of the problem under consideration is proved. An exact algorithm for its solving is proposed.
This algorithm depends polynomially on the total number of jobs and allows solving problems
efficiently, if there is a small number of options for the relative location of extreme jobs of courses.
The direction of further research may concern a general formulation of the problem, when extreme
jobs of courses are not clearly defined. Resources constrained project scheduling problem with the
considered goal function can also be considered.
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