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Abstract—A novel approach is proposed to suppress bounded exogenous disturbances in linear
control systems using a PI controller. The approach is based on reducing the original problem
to a nonconvex matrix optimization problem. A gradient method for finding the controller’s
parameters is derived and its justification is provided. The corresponding recurrence procedure
is rather effective and yields quite satisfactory controllers in terms of engineering performance
criteria. This paper continues a series of the author’s research works devoted to the design of
feedback control laws from an optimization point of view.
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1. INTRODUCTION

The recent paper [1] introduced a novel (optimization-based) approach to the classical problem
of suppressing bounded nonrandom exogenous disturbances. This problem is posed as follows.
Consider a linear control system described by

ẋ = Ax+Bu+Dw, x(0) = x0,

y = C1x,

z = C2x+B1u

with the state vector x(t)∈R
n, the measured output y(t)∈R

l, the controlled output z(t)∈R
r,

the control vector u(t)∈R
p, and a measured disturbance w(t)∈R

m that is bounded at each time
instant t :

|w(t)| � 1 for all t � 0. (1)

It is required to choose a stabilizing state-feedback u = Kx or output-feedback u = Ky control
(if it exists) to reduce the “peak” of the output z(t), i.e., the value maxt |z(t)|.

Within the approach presented in [1], the original problem was reduced to a nonconvex matrix
optimization problem. A gradient method for finding a static state-feedback or output-feedback
control law of the system was developed, and its justification was given.

On the other hand, in [2], an optimization approach going back to [3] was applied to design a PID
controller. The regular approach proposed therein involves solving a nonconvex matrix optimization
problem to find the controller’s parameters. The quality of this controller was evaluated by a
quadratic criterion of the system output: the controller was tuned against the uncertainty in the
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902 KHLEBNIKOV

initial conditions to make the system output uniformly small. As it turned out, the corresponding
recurrence procedure is rather effective and yields controllers that are quite satisfactory in terms
of engineering performance criteria.

This paper continues both of the research lines mentioned above: we design a PI controller for
suppressing bounded exogenous disturbances in linear control systems by solving an optimization
problem.

From this point onwards, the following notations are adopted: | · | is the Euclidean norm of a
vector, ‖ · ‖ is the spectral norm of a matrix, ‖ · ‖F is the Frobenius norm of a matrix, T stands
for the transpose operation, tr means the matrix trace, I is an identity matrix of appropriate
dimensions, and λi(A) are the eigenvalues of a matrix A.

2. PROBLEM STATEMENT. THE METHOD OF INVARIANT ELLIPSOIDS

Consider a linear continuous-time control system described by

ẋ = Ax+ bu+Dw, x(0) = x0,

y = cTx,

z = Cx,

(2)

where A∈R
n×n, b∈R

n, D∈R
n×m, and c∈R

n, C ∈R
r×n, with the state vector x(t)∈R

n, the
observed output y(t)∈R, the controlled output z(t)∈R

r, an exogenous disturbance w(t)∈R
m

that satisfies the constraint (1), and the control vector u(t)∈R in the form of a PI controller

u(t) = −kPy(t) − kI

t∫
0

y(τ)dτ. (3)

The objective is to find the numerical parameters kP and kI of the controller (3) that stabilizes
the closed loop system and suppresses the exogenous disturbances w by minimizing the bounding
ellipsoid for the output z.

Let us conceptually recall the method of invariant ellipsoids; for details, see [4, 5]. Consider a
linear continuous time-invariant dynamic system described by

ẋ = Ax+Dw, x(0) = x0,

z = Cx
(4)

with the state vector x(t)∈R
n, the output z(t)∈R

r, and an exogenous disturbance w(t)∈R
l that

satisfies the constraint (1). Assume that system (4) is stable (i.e., the matrix A is Hurwitz) and
the pair (A,D) is controllable.

An ellipsoid centered at the origin is said to be invariant for system (4) if any of its trajectories
evolving from a point inside the ellipsoid remains in this ellipsoid at any time instant under all
admissible exogenous disturbances of the system.

When evaluating the effect of exogenous disturbances on the system output, it is natural to
consider the minimal ellipsoids containing the system output (in a certain sense). Clearly, if an
ellipsoid

Ex =
{
x∈R

n : xTP−1x � 1
}
, P � 0, (5)

is invariant, then the output of system (4) with x0 ∈Ex belongs to the so-called bounding ellipsoid

Ez =
{
z ∈R

p : zT(CPCT)−1z � 1
}
. (6)
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PI CONTROLLER DESIGN FOR SUPPRESSING EXOGENOUS DISTURBANCES 903

In the literature, the linear function f(P ) = trCPCT (the sum of the squares of the semi-axes of
the bounding ellipsoid) is often considered a minimality criterion.

The paper [6] established an invariance criterion for ellipsoids in terms of linear matrix inequal-
ities (LMIs). Let us formulate it as follows (see [4]).

Theorem 1. Assume that the matrix A is Hurwitz, the pair (A,D) is controllable, and the matrix
P (α) � 0 satisfies the Lyapunov equation(

A+
α

2
I

)
P + P

(
A+

α

2
I
)T

+
1

α
DDT = 0

on the interval 0 < α < 2σ(A).

Then the minimal bounding ellipsoid is obtained by minimizing the univariate function f(α) =
trCP (α)CT on the interval 0 < α < 2σ(A); if α∗ is the minimum point and x0 satisfies the con-
dition xT0 P

−1(α∗)x0 � 1, then the uniform estimate

|z(t)| �
√
f(α∗), 0 � t <∞,

holds.

3. SOLUTION APPROACH

Let us introduce an auxiliary scalar variable ξ as follows:

ξ̇ = y, ξ(0) = 0.

With the extended state vector

g =

(
x
ξ

)
∈R

n+1,

system (2) can be written as

ġ =

(
A 0
cT 0

)
g +

(
b
0

)
u+

(
D
0

)
w, g(0) =

(
x0
0

)
,

y =
(
cT 0

)
g.

(7)

According to (2) and (3), we have

u = −kP y(t) − kI

t∫
0

y(τ)dτ = −kP cTx− kIξ

= −kP cTx− kIξ = −kP
(
cT 0

)
g − kI

(
0 1

)
g.

(8)

The expression (8) with the more convenient notations k1 = kP and k2 = kI takes the form

u = −
(
k1c

T k2
)
g. (9)

Thus, system (7) with the feedback control law (9) is described by

ġ =

(
A− k1bc

T −k2b
cT 0

)
g +

(
D
0

)
w, g(0) =

(
x0
0

)
.
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904 KHLEBNIKOV

It can be represented as

ġ = (A0 + k1A1 + k2A2)g +

(
D
0

)
w, g(0) =

(
x0
0

)
,

where

A0 =

(
A 0
cT 0

)
, A1 =

(
−bcT 0

0 0

)
, A2 =

(
0 −b
0 0

)
.

Following the method of invariant ellipsoids, let the state g of system (7) belong to the invariant
ellipsoid (5) generated by a matrix P ∈ R

(n+1)×(n+1). We will minimize the size of the corresponding
bounding ellipsoid (6) with respect to the output

z = Cx =
(
C 0

)
g.

Due to Theorem 1, the associated problem is to minimize tr(C 0)P (C 0)T subject to the constraint

(
A0 + k1A1 + k2A2 +

α

2
I

)
P + P

(
A0 + k1A1 + k2A2 +

α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0 (10)

with respect to the matrix variables P = PT ∈R
n×n, the scalar variables k1 and k2, and the scalar

parameter α > 0. Given k1, k2, and α, the matrix P is found from equation (10); therefore, the
independent variables are k1, k2, and α.

Consider the vector

k =

(
k1
k2

)
∈R

2

and the value

tr
(
C 0

)
P
(
C 0

)T
+ ρ|k|2, ρ� 1

as the performance criterion. Here, the second component is a control penalty (the coefficient ρ > 0
adjusts its significance) and ensures the coercivity of the objective function in k. (For details, see
Section 5.)

Thus, the original problem (the design of a PI controller to suppress exogenous disturbances)
has been reduced to the matrix optimization problem

min f(k, α), f(k, α) = trP
(
C 0

)T (
C 0

)
+ ρ|k|2 (11)

subject to the constraint (10).

4. OPTIMIZATION OF THE FUNCTION f(α)

Consider the problem
min f(α), f(α) = trPCTC,

subject to the constraint (
A+

α

2
I

)
P + P

(
A+

α

2
I

)T

+
1

α
DDT = 0

with respect to the matrix variable P = PT ∈R
n×n and the scalar parameter α > 0. Assume that

the matrix A is stable (Hurwitz).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



PI CONTROLLER DESIGN FOR SUPPRESSING EXOGENOUS DISTURBANCES 905

As was shown in [1], minimization with respect to α can be effectively performed using Newton’s
method. Let us choose an initial approximation 0 < α0 < 2σ(A) and apply the iterative process

αj+1 = αj − f ′(αj)
f ′′(αj)

,

where

f ′(α) = trY

(
P − 1

α2
DDT

)
,

f ′′(α) = 2 tr Y

(
X +

1

α3
DDT

)
,

and Y and X are the solutions of the Lyapunov equations(
A+

α

2
I

)T

Y + Y

(
A+

α

2
I

)
+ CTC = 0

and (
A+

α

2
I

)
X +X

(
A+

α

2
I

)T

+ P − 1

α2
DDT = 0,

respectively.

According to [1], the method converges globally (faster than the geometric progression with
a coefficient of 1/2), with quadratic convergence in the neighborhood of the solution. It really
requires at most 3–4 iterations to obtain a solution with high accuracy, unless the initial point is
too close to the limits of the interval (0, 2σ(A)).

Thus, we have an efficient algorithm to perform minimization with respect to α in prob-

lem (11), (10): it suffices to replace the matrix A by A0 + k1A1 + k2A2, the matrix C by
(
C 0

)
,

and the matrix D by

(
D
0

)
.

5. OPTIMIZATION OF THE FUNCTION f(k)

Introducing the convenient notation

{A, k} = k1A1 + k2A2,

we accept the following hypothesis.

Assumption. Let k0 =

(
k01
k02

)
be a known stabilizing controller, i.e., the matrix A0 + {A, k0} is

Hurwitz.

We will investigate the properties of the function

f(k) = min
α
f(k, α).

Lemma 1. The function f(k) is well-defined and positive on the set S of stabilizing controllers.

The proofs of this and all subsequent results are given in Appendix 2.

Note that the set S can be nonconvex and disconnected whereas its boundaries can be nons-
mooth.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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Lemma 2. The function f(k, α) is well-defined on the set of stabilizing feedback control laws k
and for 0 < α < 2σ(A0 + {A, k}). It is differentiable on this set, and the gradient is given by

1

2
∇kf(k, α) =

(
trPYA1

trPYA2

)
+ ρk, (12)

∇αf(k, α) = trY

⎡⎣P − 1

α2

(
D
0

)(
D
0

)T
⎤⎦ , (13)

where the matrices P and Y are the solutions of the Lyapunov equations

(
A0 + {A, k} +

α

2
I

)
P + P

(
A0 + {A, k} +

α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0

and (
A0 + {A, k} +

α

2
I

)T

Y + Y

(
A0 + {A, k} +

α

2
I

)
+
(
C 0

)T (
C 0

)
= 0, (14)

respectively.

The function f(k, α) achieves minimum at an inner point of the admissible set that is determined
by the conditions

∇kf(k, α) = 0, ∇αf(k, α) = 0.

In addition, f(k, α) as a function of α is strictly convex on 0 < α < 2σ(A0 + {A, k}) and achieves
minimum at an inner point of this interval.

The Hessian of the function f(k) has the following properties.

Lemma 3. The function f(k) is twice differentiable, and the action of its Hessian on an arbitrary
vector1 e∈R

2 is given by

1

2

(
∇2
kkf(k)e, e

)
= ρ(e, e) + 2 trP ′Y {A, e}, (15)

where P ′ is the solution of the Lyapunov equation(
A0 + {A, k} +

α

2
I

)
P ′ + P ′

(
A0 + {A, k} +

α

2
I

)T

+ {A, e}P + P{A, e}T = 0. (16)

Remark 1. To obtain simple quantitative estimates in Lemmas 4 and 5 below, we incorporate
the regularizing terms ε1 and ε2 into the optimization problem (11), (10) as follows:

min f(k, α), f(k, α) = trP

((
C 0

)T (
C 0

)
+ ε1I

)
+ ρ|k|2, ε1 � 1

subject to the constraint

(
A0 + {A, k} +

α

2
I

)
P + P

(
A0 + {A, k} +

α

2
I

)T

+
1

α

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦ = 0, ε2 � 1. (17)

The requirement of their introduction can be significantly weakened, but the current aim is to
obtain the simplest and most obvious results.

1 In the sense of the second derivative in a direction (the second directional derivative).
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Lemma 4. The function f(k) is coercive on the set S (i.e., tends to infinity on its boundary)
and, moreover,

f(k) � ε1
4σ(A0 + {A, k}) (‖A0 + {A, k}‖ + σ(A0 + {A, k}))

‖D‖2F , (18)

f(k) � ρ|k|2.

Corollary 1. The level set

S0 =
{
k ∈S : f(k) � f(k0)

}
is bounded for any controller k0 ∈S.

Corollary 2. There exists a minimum point k∗ on the set S and ∇f(k∗) = 0.

The gradient of the function f(k) is not Lipschitz on the entire set S, but it has this property
on its subset S0. The corresponding result is presented below.

Lemma 5. On the set S0, the gradient of the function f(k) is Lipschitz with the constant

L = ρ+
8
√

2nf2(k0)

ε1ε22

(
‖A0‖ + max

i
‖Ai‖

√
2

ρ
f(k0)

)2 (
f2(k0)

ε21
+ 2 max

i
‖Ai‖2

)
max ‖Ai‖F . (19)

These properties of the function f(k) and its derivatives allow constructing a minimization
method and justifying its convergence.

6. OPTIMIZATION ALGORITHM

We propose an iterative approach to solve problem (11). This approach is based on the appli-
cation of the gradient method with respect to the variable k and Newton’s method with respect to
the variable α. The algorithm includes several steps as follows.

Algorithm 1 to minimize f(k, α):

1. Choose some values of the parameters ε > 0, γ > 0, 0 < τ < 1, and the initial stabilizing
approximation k0. Calculate α0 = σ(A0 + {A, k0}).

2. On the jth iteration, the values kj and αj are given.

Calculate the matrix A0 + {A, kj}, solve the Lyapunov equations

(
A0 + {A, kj} +

αj
2
I

)
P + P

(
A0 + {A, kj} +

αj
2
I

)T

+
1

αj

(
D
0

)(
D
0

)T

= 0,

(
A0 + {A, kj} +

αj
2
I

)T

Y + Y

(
A0 + {A, kj} +

αj
2
I

)
+
(
C 0

)T (
C 0

)
= 0,

and find the matrices P and Y .

Calculate the gradient

Hj = ∇kf(kj, αj)

from the relation
1

2
∇kf(k, α) =

(
trPYA1

trPYA2

)
+ ρk.

If |Hj| � ε, then take kj as the approximate solution.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



908 KHLEBNIKOV

3. Perform the gradient method step:

kj+1 = kj − γjHj.

Adjust the step length γj > 0 by fractionating γ until the following conditions are satisfied:

a. kj+1 is a stabilizing controller.

b. f(kj+1) � f(kj) − τγj |Hj|2.

4. Minimize f(kj+1, α) with respect to α (see Section 4) and find αj+1. Revert to Step 2.

This method converges in the following sense.

Theorem 2. In Algorithm 1, only a finite number of fractions are realized for γj at each iteration,
the function f(kj) is monotonically decreasing, and its gradient vanishes with an exponential rate
(like a geometric progression):

lim
j→∞

|Hj | = 0.

Indeed, Algorithm 1 is well-defined at the initial point since k0 is a stabilizing controller by
the assumption. For sufficiently small γj, the function f(k) monotonically decreases (moves in the
direction of its antigradient); with this step adjustment, the values of kj remain in the domain S0,
where Lemma 5 ensures the Lipschitz property of the gradient. Thus, the gradient method for
unconstrained minimization is convergent [7]. In particular, condition b) at Step 3 of Algorithm 1
will be satisfied after a finite number of fractions, and the gradient method will have gradient
convergence with a linear rate.

Naturally, it is difficult to expect convergence to a global minimum: the domain of definition
of f(k) may even be disconnected.

7. EXAMPLE

Consider an illustrative example from the paper [8]. The transfer function has the form

G(s) =
1

(1 + s)(1 + αs)(1 + α2s)(1 + α3s)
, α = 0.5.

Matlab’s procedure tf2ss gives the following matrices of system (4) in the state space:

A =

⎛⎜⎜⎜⎝
−15 −70 −120 −64

1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎠ , c =

⎛⎜⎜⎜⎝
0
0
0
64

⎞⎟⎟⎟⎠ .

Let us choose the matrix

D =

⎛⎜⎜⎜⎝
1 0
0 1
0 0
0 0

⎞⎟⎟⎟⎠
and the controlled output matrix

C =

(
1 0 0 0
0 1 0 0

)
.

We assign ρ = 0.001 and the stabilizing controller

k0 =

(
1.7366
0.7734

)
as an initial one.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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Fig. 1. Optimization procedure.
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Fig. 2. Bounding ellipses.

The dynamics of the criterion f(k) are demonstrated in Fig. 1. The process terminates with the
PI controller with the gains

k∗ =

(
0.2956
0.3514

)
and the corresponding bounding ellipse with the matrix

P∗ =

(
5.1763 −0.7885
−0.7885 0.5635

)
, trP∗ = 5.7398.

In Fig. 2, the solid line indicates the bounding ellipse and the trajectory of the closed loop
system with the PI controller k∗ under some admissible exogenous disturbance. Here, the dashed
line shows the bounding ellipse for the closed loop system with the dynamic controller (see [4])

u = Kx̂,

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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Fig. 3. The logarithmic amplitude-phase frequency response of the closed loop system.

where x̂ is an observer
˙̂x = Ax̂+ bu+ L(y − cTx̂), x̂(0) = 0

with the matrices

K =
(
−0.5154 −2.6143 −4.3786 −2.4252

)
× 106, L =

⎛⎜⎜⎜⎝
0.0075
−0.0225
−0.0002
0.0189

⎞⎟⎟⎟⎠ .

Finally, the dotted line in Fig. 2 presents the bounding ellipse for the closed loop system with
the linear dynamic controller (see [4])

ẋr = Arxr +Bry, xr(0) = 0,

u = Crxr +Dry

with the matrices

Ar =

⎛⎜⎜⎜⎝
−0.1373 −0.6748 −1.0932 −0.1035
0.0140 0.0688 0.1114 −1.7096
0.0004 0.0019 0.0031 −0.0509
0.0000 0.0000 0.0001 −0.0007

⎞⎟⎟⎟⎠× 105, Br =

⎛⎜⎜⎜⎝
−0.7528
2.7644
0.0821
0.0011

⎞⎟⎟⎟⎠× 103,

Cr =
(
−0.1135 −0.5579 −0.9037 −2.9271

)
× 105, Dr = 3.8176 × 103.

Clearly, the PI controller leads to quite comparable results, being advantageous by simplicity and
convenience of practical implementation. In addition, the PI controller has satisfactory character-
istics.

The transfer function of the PI controller with the coefficients k∗ has the form

GPID(s) = 0.2956 +
0.3514

s
.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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The closed loop system with the PI controller k∗ is stable by the Nyquist criterion; its minimal
gain and phase margins are 20.6 dB and 70.3◦, respectively (Fig. 3).

For comparison, choosing the initial stabilizing controller

k̃0 =

(
0.8882
0.6153

)
,

we obtain the PI controller with the gains

k̃∗ =

(
0.3277
0.3662

)

and the corresponding bounding ellipse with the matrix

P̃∗ =

(
5.0890 −0.7854
−0.7854 0.5721

)
, tr P̃∗ = 5.6611.

The norms of the resulting controllers differ by 6.5% only whereas the bounding ellipses by less
than 1.5% (in terms of the trace criterion).

All the calculations were carried out in Matlab using CVX [9], a free package.

8. DISCUSSION

This paper has proposed a novel approach to designing a PI controller that optimally suppresses
bounded exogenous disturbances in a linear control system. The approach is based on reducing
the original problem to a nonconvex matrix optimization problem, which is further solved by the
gradient method. Its justification has been provided as well.

Note that Theorem 2 establishes the convergence of this method only in the norm of the gradient
of the objective function. However, according to numerical simulations, the method yields quite
satisfactory PI controllers from an engineering point of view. At the same time, it seems important
to consider meaningful particular formulations of the problem where the function f(k) satisfies on
the level set S0 the Polyak– �Lojasiewicz condition [7]

1

2
|∇f(k)|2 � μ (f(k) − f(k∗))

with a constant μ > 0 depending only on k0 and the parameters of system (2). In this case, one
could also speak of strong pointwise convergence, similar to what was shown in [3] for the linear
quadratic problem with state-feedback control.

Finally, it would be interesting to extend this approach to the design of PID controllers, which
will be the subject of subsequent publications.

APPENDIX A

The lemmas below contain well-known results necessary for the further presentation.

Lemma A.1 [1]. Let X and Y be the solutions of the dual Lyapunov equations with a Hurwitz
matrix A:

ATX +XA+W = 0 and AY + Y AT + V = 0.

Then
tr (XV ) = tr (YW ).
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Lemma A.2 [10].

1. Matrices A and B of compatible dimensions satisfy the relations

‖AB‖F � ‖A‖F ‖B‖,
| trAB| � ‖A‖F ‖B‖F ,

‖A‖ � ‖A‖F ,
AB +BTAT � εAAT +

1

ε
BTB for any ε > 0.

2. Nonnegative definite matrices A and B satisfy the relations

0 � λmin(A)λmax(B) � λmin(A) trB � trAB � λmax(A) trB � trA trB.

Lemma A.3 [1]. The solution P of the Lyapunov equation

AP + PAT +Q = 0

with a Hurwitz matrix A and Q � 0 obey the bounds

λmax(P ) � λmin(Q)

2σ
, λmin(P ) � λmin(Q)

2‖A‖ ,

where σ = −max
i

Reλi(A).

If Q = DDT and the pair (A,D) is controllable, then

λmax(P ) � ‖u∗D‖2
2σ

> 0,

where

u∗A = λu∗, Reλ = −σ, ‖u‖ = 1,

i.e., u is the left eigenvector of the matrix A corresponding to the eigenvalue λ of the matrix A with
the greatest real part. The vector u and the number λ can be complex-valued; here, u∗ denotes the
Hermitian conjugate.

APPENDIX B

Proof of Lemma 1. Indeed, if the matrix A0 + {A, k} is Hurwitz, then σ(A0 + {A, k}) > 0 and
there exists the solution P � 0 of the Lyapunov equation (10) for 0 < α < 2σ(A0 + {A, k}). Thus,
the function f(k, α) > 0 is well-defined and f(k) > 0 by Theorem 1. The proof of Lemma 1 is
complete.

Proof of Lemma 2. The optimization problem has the form

min f(k, α), f(k, α) = trP
(
C 0

)T (
C 0

)
+ ρ|k|2

subject to the constraint described by the Lyapunov equation

(
A0 + {A, k} +

α

2
I

)
P + P

(
A0 + {A, k} +

α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0.
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To differentiate with respect to k, we add the increment Δk and denote the corresponding
increment of P by ΔP : (

A0 + {A, k + Δk} +
α

2
I

)
(P + ΔP )

+ (P + ΔP )

(
A0 + {A, k + Δk} +

α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0.

Let us apply linearization and subtract this and the previous equations to obtain(
A0 + {A, k} +

α

2
I

)
ΔP + ΔP

(
A0 + {A, k} +

α

2
I

)T

+ {A,Δk}P + P{A,Δk}T = 0.

(B.1)

The increment of f(k) is calculated by linearizing the corresponding terms:

Δf(k) = tr (P + ΔP )
(
C 0

)T (
C 0

)
+ ρ|k + Δk|2

−
(

trP
(
C 0

)T (
C 0

)
+ ρ|k|2

)
= tr ΔP

(
C 0

)T (
C 0

)
+ 2ρkTΔk.

Consider equation (14), dual to (B.1). Due to Lemma A.1, from equations (B.1) and (14) it
follows that

Δf(k) = 2 tr Y {A,Δk}P + 2ρkTΔk.

Thus,

df(k) = 2 trPY
2∑
i=1

Aidki + 2ρ
2∑
i=1

kidki,

which leads to (12).

The validity of (13) is demonstrated by analogy with [1, Lemma 1]. The proof of Lemma 2 is
complete.

Proof of Lemma 3. The value
(∇2

kkf(k)e, e
)

is calculated by differentiating ∇kf(k) in the
direction e∈R

2. For this purpose, linearizing the corresponding terms and using the convenient
notation

[ trPYA] =

(
trPYA1

trPYA2

)
,

we calculate the increment of ∇kf(k) in the direction e:

1

2
Δ∇kf(k)e = ρ(k + δe) + [ tr (P + ΔP )(Y + ΔY )A] − (ρk + [ trPYA])

= ρ(k + δe) +
[
tr

(
P + δP ′(k)e

) (
Y + δY ′(k)e

)A]− (ρk + [ trPYA])

= δ
(
ρe+

[
tr

(
PY ′(k)e+ P ′(k)eY

)A])
,

where

ΔP = P (k + δe) − P (k) = δP ′(k)e,

ΔY = Y (k + δe) − Y (k) = δY ′(k)e.
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Thus, with P ′ = P ′(k)e and Y ′ = Y ′(k)e, we have

1

2

(
∇2
kkf(k)e, e

)
=

(
ρe+ [ tr (PY ′ + P ′Y )A], e

)
.

Furthermore, P = P (k) is the solution of equation (17). We write it in increments in the
direction e : (

A0 + {A, k + δe} +
α

2
I

)
(P + δP ′)

+ (P + δP ′)
(
A0 + {A, k + δe} +

α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0

or (
A0 + {A, k} +

α

2
I

)
(P + δP ′) + (P + δP ′)

(
A0 + {A, k} +

α

2
I

)T

+ δ
(
{A, e}P + P{A, e}T

)
+

1

α

(
D
0

)(
D
0

)T

= 0.

Subtracting equation (17) from this expression gives equation (16).

Similarly, Y = Y (k) is the solution of the Lyapunov equation (14). We write it in increments in
the direction e : (

A0 + {A, k + δe} +
α

2
I

)T

(Y + δY ′)

+ (Y + δY ′)
(
A0 + {A, k + δe} +

α

2
I

)
+
(
C 0

)T (
C 0

)
= 0,

or (
A0 + {A, k} +

α

2
I

)T

(Y + δY ′) + (Y + δY ′)
(
A0 + {A, k + δe} +

α

2
I

)
+ δ

(
{A, e}TY + Y {A, e}

)
+
(
C 0

)T (
C 0

)
= 0.

Subtracting equation (14) from this expression yields(
A0 + {A, k} +

α

2
I

)T

Y ′ + Y ′
(
A0 + {A, k} +

α

2
I

)
+ {A, e}TY + Y {A, e} = 0. (B.2)

From (16) and (B.2) it follows that

trP ′Y {A, e} = trPY ′{A, e},
so

1

2

(
∇2
kkf(k)e, e

)
= ρ(e, e) +

(
[ tr (PY ′ + P ′Y )A], e

)
= ρ(e, e) + 2 trP ′Y {A, e}.

The proof of Lemma 3 is complete.

Proof of Lemma 4. Consider a sequence of stabilizing controllers {kj}∈S such that kj → k∈ ∂S,
i.e., σ (A0 + {A, k}) = 0. In other words, for any ε > 0 there exists a number N = N(ε) such that

|σ (A0 + {A, kj}) − σ (A0 + {A, k}) | = σ (A0 + {A, kj}) < ε

for all j � N(ε).
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Let Pj be the solution of the Lyapunov equation (10) associated with the controller kj :

(
A0 +{A, kj}+

αj
2
I

)
Pj +Pj

(
A0 +{A, kj}+

αj
2
I

)T
+

1

αj

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦= 0.

Also, let Yj be the solution of the dual Lyapunov equation(
A0 +{A, kj}+

αj
2
I

)T

Yj +Yj

(
A0 +{A, kj}+

αj
2
I

)
+
(
C 0

)T(
C 0

)
+ ε1I = 0.

Using Lemma A.3, we have

f(kj) = trPj

((
C 0

)T (
C 0

)
+ ε1I

)
+ ρ|kj |2 � trPj

((
C 0

)T (
C 0

)
+ ε1I

)

= trYj
1

αj

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦ � 1

αj
λmin(Yj) tr

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦

� 1

αj
λmin(Yj)

∥∥∥∥∥
(
D
0

)∥∥∥∥∥
2

F

� 1

αj

λmin

((
C 0

)T (
C 0

)
+ ε1I

)
2
∥∥A0 + {A, kj} +

αj

2 I
∥∥ ‖D‖2F

� ε1
4σ (A0 + {A, kj})

∥∥A0 + {A, kj} +
αj

2 I
∥∥‖D‖2F

� ε1
4ε (‖A0 + {A, kj}‖ + ε)

‖D‖2F −−→
ε→0

+∞

since
0 < αj < 2σ (A0 + {A, kj})

and ∥∥∥∥A0 + {A, kj} +
αj
2
I

∥∥∥∥ � ‖A0 + {A, kj}‖ +
αj
2
< ‖A0 + {A, kj}‖ + σ (A0 + {A, kj}) .

On the other hand,

f(kj) = trPj

((
C 0

)T (
C 0

)
+ ε1I

)
+ ρ|kj |2 � ρ|kj |2 −−−−−−→|kj |→+∞

+∞.

The proof of Lemma 4 is complete.

Proof of Corollary 2. The function f(k) has a minimum point on the set S0 (as a continuous
function on a compact set), but the set S0 shares no points with the boundary S due to (18). Finally,
the function f(k) is differentiable on S0 by Lemma 2, which concludes the proof of Corollary 2.

Proof of Lemma 5. Applying Lemma A.2 to (15) gives

1

2
‖∇2

kkf(k)‖ =
1

2
sup
|e|=1

|
(
∇2
kkf(k)e, e

)
| � sup

|e|=1
ρ(e, e) + 2 sup

|e|=1
| trP ′Y {A, e}|

= ρ+ 2 sup
|e|=1

‖P ′‖F ‖Y {A, e}‖F � ρ+ 2‖P ′‖F sup
|e|=1

‖Y ‖‖{A, e}‖F

� ρ+ 2
√

2‖P ′‖F ‖Y ‖max
i

‖Ai‖F
since

‖{A, e}‖F =

∥∥∥∥∥∑
i

Aiei

∥∥∥∥∥
F

�
∑
i

‖Ai‖F |ei| � max
i

‖Ai‖F |e|1 �
√

2 max
i

‖Ai‖F |e|.
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Thus, it is necessary to estimate from above the value

ρ+ 2
√

2 max
i

‖Ai‖F ‖P ′‖F ‖Y ‖.

For ‖Y ‖ we have the upper bound

ε2
α
‖Y ‖ � 1

α
λmin

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦ trY � tr Y
1

α

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦
= trP

((
C 0

)T (
C 0

)
+ ε1I

)
= f(k) − ρ|k|2 � f(k) � f(k0),

and consequently,

‖Y ‖ � α

ε2
f(k0). (B.3)

An upper bound for α is established as follows:

α < 2σ (A0 + {A, k}) � 2 ‖A0 + {A, k}‖

� 2

(
‖A0‖ +

∑
i

‖Ai‖|ki|
)

� 2

(
‖A0‖ + max

i
‖Ai‖|k|1

)

� 2

(
‖A0‖ + max

i
‖Ai‖

√
2|k|

)
� 2

(
‖A0‖ + max

i
‖Ai‖

√
2

ρ
f(k)

)

� 2

(
‖A0‖ + max

i
‖Ai‖

√
2

ρ
f(k0)

)
,

so

‖Y ‖ � 2

ε2

(
‖A0‖ + max

i
‖Ai‖

√
2

ρ
f(k0)

)
f(k0).

Now, let us estimate ‖P‖ from above:

ε1‖P‖ � λmin

((
C 0

)T (
C 0

)
+ ε1I

)
‖P‖

� trP

((
C 0

)T (
C 0

)
+ ε1I

)
= f(k) − ρ|k|2 � f(k) � f(k0),

which yields

‖P‖ � f(k0)

ε1
.

It remains to estimate from above the value ‖P ′‖F . In view of Lemma A.2,

λmax

(
{A, e}P + P{A, e}T

)
=

∥∥∥{A, e}P + P{A, e}T
∥∥∥ �

∥∥∥P 2 + {A, e}{A, e}T
∥∥∥

� ‖P‖2 + ‖{A, e}‖2 � f2(k0)

ε21
+ 2 max

i
‖Ai‖2 � ξ

ε2
α

� ξ
1

α
λmin

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦
for

ξ =
α

ε2

(
f2(k0)

ε21
+ 2 max

i
‖Ai‖2

)
.
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Therefore, the solution P ′ of the Lyapunov equation (16) satisfies the inequality

P ′ � ξP � α

ε2

(
f2(k0)

ε21
+ 2 max

i
‖Ai‖2

)
f(k0)

ε1
I

� 2f(k0)

ε1ε2

(
‖A0‖ + max

i
‖Ai‖

√
2

ρ
f(k0)

)(
f2(k0)

ε21
+ 2 max

i
‖Ai‖2

)
I.

Hence, it follows that

‖P ′‖F � 2
√
nf(k0)

ε1ε2

(
‖A0‖ + max

i
‖Ai‖

√
2

ρ
f(k0)

)(
f2(k0)

ε21
+ 2 max

i
‖Ai‖2

)
. (B.4)

Considering the bounds (B.3) and (B.4), we arrive at the relation (19). The proof of Lemma 5
is complete.
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8. Åström, K.J. and Hägglund, T., Benchmark Systems for PID Control, IFAC Proceedings Volumes, 2000,
vol. 33, iss. 4, pp. 165–166.

9. Grant, M. and Boyd, S., CVX: Matlab Software for Disciplined Convex Programming, version 2.1. URL
http://cvxr.com/cvx

10. Horn, R.A. and Johnson, Ch.R., Matrix Analysis, Cambridge University Press, 2012.

This paper was recommended for publication by L.B. Rapoport, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 8, pp. 918–932.
c© The Author(s), 2023 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c© The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 8, pp. 24–42.

LINEAR SYSTEMS

Design of Suboptimal Robust Controllers

Based on A Priori and Experimental Data

M. M. Kogan∗,a and A. V. Stepanov∗,b
∗Nizhny Novgorod State University of Architecture and Civil Engineering,

Nizhny Novgorod, Russia
e-mail: amkogan@nngasu.ru, bandrey8st@yahoo.com

Received March 21, 2023

Revised May 2, 2023

Accepted June 9, 2023

Abstract—This paper develops a novel unified approach to designing suboptimal robust control
laws for uncertain objects with different criteria based on a priori information and experimental
data. The guaranteed estimates of the γ0, generalizedH2, andH∞ norms of a closed loop system
and the corresponding suboptimal robust control laws are expressed in terms of solutions of
linear matrix inequalities considering a priori knowledge and object modeling data. A numerical
example demonstrates the improved quality of control systems when a priori and experimental
data are used together.

Keywords : robust control, a priori data, experimental data, γ0 norm, generalized H2 norm,
H∞ norm, linear matrix inequalities
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1. INTRODUCTION

In a rich variety of control design approaches for objects with an incomplete mathematical model,
there exist two main ones as follows. Within one approach, the controller’s parameters are found
from a priori information about the possible ranges of the object’s uncertain parameters. Following
the other approach, the controller’s parameters are tuned recursively using current information
or are calculated based on experimental data. Traditionally, the former approach is associated
with robust control (see [1] and the survey [2]); the latter approach, with adaptive control (see the
surveys [3, 4]).

In recent years, researchers have been actively developing the data-driven design of control
systems without any explicit mathematical model of the object [5–9]. The paper [10] was pioneering
in this area: it was discovered that a single trajectory can be used to fully characterize a linear
time-invariant dynamic system under the so-called persistency of excitation. If this condition holds,
linear quadratic control of objects without disturbances and without measurement noises can be
implemented without knowledge of the object’s mathematical model directly from input and output
measurement data [5]. According to [6], it suffices to fulfill the less restrictive condition of data
informativity for the property of interest in order to construct control laws from experimental data.
(Examples of such properties are stabilizability by linear state feedback control or linear quadratic
control with a given performance criterion). In [7], the state feedback parameters were derived
from open-loop measurements of the input and output of an uncertain object subjected to an
unmeasured disturbance from a definite class. For a fully uncertain object, H2- and H∞-optimal
control laws were constructed based on input and output measurements using a matrix version of
S-lemma [11] in the publication [8] and using Petersen’s lemma [12] in the publication [9].
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This paper develops a novel robust control design approach for uncertain dynamic objects based
on the joint use of a priori information about the structure of the uncertain object parameter matrix
and the upper bound of its norm (on the one hand) and experimental data obtained by observing
the object on some time interval (on the other hand). The quality of robust control is evaluated by
upper bounds for one of the three performance indices: the γ0 norm (the damping level of stochastic
disturbances in the closed-loop uncertain system or the maximum value of the quadratic functional
of the target output under a pulse disturbance), the generalized H2 norm (the time-maximum
deviation of the Euclidean norm of the system’s target output under all deterministic disturbances
bounded in the l2 norm), and the H∞ norm (the maximum value of the ratio of the l2 norms of
the target output and the exogenous disturbance).

The design procedure includes several basic steps. First, the set of unknown matrices consistent
with a priori information is characterized by a quadratic inequality. Then, an experiment is con-
ducted to measure the system trajectory under given initial conditions and controls and an unknown
exogenous disturbance with known bounds of its components. This step yields another quadratic
inequality satisfied by all unknown matrices consistent with the experimental results. Next, an
extended and completely defined system with additional artificial input and output satisfying the
two quadratic inequalities is determined; this system “incorporates” the original uncertain system.
Finally, upper bounds are found for the damping levels of the disturbances of the original uncertain
system as those of the disturbances of the extended system under all additional inputs satisfying
the two quadratic inequalities.

This paper is organized as follows. After the Introduction, Section 2 gives the general problem
statement; in particular, two quadratic inequalities for the unknown object parameter matrix are
derived from a priori information and experimental data. In Section 3, necessary background is
provided on the γ0, generalized H2, and H∞ norms as well as their relations in the primal and dual
systems. Section 4 describes the robust control design procedure, including the main theorem and
its proof. Several experiments with an uncertain third-order system are presented in Section 5;
they show the advantages of robust control laws based on a priori information and experimental
data over the counterparts designed using a priori information or experimental data only. Section 6
summarizes the results and draws conclusions.

2. ROBUST CONTROL BASED ON A PRIORI AND EXPERIMENTAL DATA:
PROBLEM STATEMENT

Consider an uncertain system described by

x(t + 1) = (A+BΔΔCΔ)x(t) + (Bu +BΔΔDΔ)u(t) +Bw(t),

z(t) = Cx(t) +Du(t)
(2.1)

with the following notations: x(t) ∈ Rnx is the state vector, z(t) ∈ Rnz is the target output,
w(t) ∈ Rnw is an exogenous disturbance, and u(t) ∈ Rnu is the control vector (input). All ma-
trices except the unknown parameter matrix Δ are given. In general, it is required to design linear
state-feedback control laws based on information about the unknown parameters of the system
so that the damping levels of the exogenous disturbances from different classes in the closed loop
system do not exceed specified values.

The information about the unknown matrix Δ is divided into a priori one and the one obtained
by a preliminary experiment. Assume that the matrix Δ has a block-diagonal structure and

Δ = diag (Δ1, . . . ,Δl) =
l∑
i=1

LiΔiR
T
i , ΔiΔ

T
i � η2i I, (2.2)
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where Δi ∈ Rmi×ni is a complete matrix block or a diagonal square matrix block Δi = δiIni ;
Li and Ri are matrices composed of unit column vectors corresponding to the location of the
ith matrix block such that LT

i Lj = 0 and RT
i Rj = 0, i 
= j, and ηi are given values. In accordance

with the structure of the matrix Δ, the matrix BΔ can be written as BΔ = (B1 . . . Bl), where
Bi = BΔLi. With the notation Δ̂ = BΔΔ, we have

Δ̂ = BΔ

l∑
i=1

LiΔiR
T
i =

l∑
i=1

BiΔiR
T
i . (2.3)

Since Δ̂Rj = BjΔj, j = 1, . . . , l, it follows that Δ̂ =
(
Δ̂1 Δ̂2 · · · Δ̂l

)
, where Δ̂i = BiΔi.

In particular, if the state and control matrices in the object’s equation are completely unknown,
then

A = 0, Bu = 0, BΔ = I, CΔ = (I 0)T, DΔ = (0 I)T (2.4)

in (2.1); in this case, Δ̂ = Δ = (A(real) B
(real)
u ), where A(real) and B

(real)
u are the unknown state

and control matrices, respectively. This case without using a priori information was studied in the
papers [5, 6, 8, 9]).

Next we express the a priori information about the matrix Δ in terms of the matrix Δ̂. Following
the well-known robust control design approach under structured uncertainty [13, 14], let us define
the set Λ = diag (Λ1, . . . ,Λl) consisting of all Λ = diag (Λ1, . . . ,Λl) for which Λi = λiIni , λi � 0,
if the matrix block Δi is complete and all symmetric nonnegative definite matrices Λi ∈ Rni×ni

if Δi = δiIni . Due to (2.2), the inequality λiΔiΔ
T
i � λiη

2
i I holds for a complete matrix block

Δi ∈ Rni×ni for all λi � 0 and the inequality ΔiΛiΔ
T
i � η2i Λi holds for a block Δi = δiIni for all

symmetric nonnegative definite matrices Λi ∈ Rni×ni . Hence, as is easily verified,

ΔΛΔT − ηΛηT � 0 ∀Λ ∈ Λ (2.5)

with η = diag (η1In1 , . . . , ηlInl
) for all the matrices Δ satisfying (2.2).

Multiplying this inequality by the matrices BΔ and BT
Δ on the left and right, respectively, yields

Δ̂ΛΔ̂T −BΔηΛηTBT
Δ � 0 ∀Λ ∈ Λ. (2.6)

This condition can be written as(
Δ̂ I

)
Υ
(
Δ̂ I

)T
� 0 ∀Λ ∈ Λ, (2.7)

where Υ = diag(Λ,−BΔηΛηTBT
Δ). Let Δ denote the set of given-structure matrices Δ satisfy-

ing (2.5) and Δ̂a denote the set of matrices Δ̂ = (Δ̂1, . . . , Δ̂l) satisfying inequality (2.6). Clearly,
for any Δ ∈ Δ there exists Δ̂ = BΔΔ ∈ Δ̂a. The converse is also true as follows.

Lemma 2.1. If matrices Bi = BΔLi, i = 1, . . . , l, have full column rank, then for any Δ̂ ∈ Δ̂a

there exists Δ ∈ Δ such that Δ̂ = BΔΔ.

Proof of Lemma. Assume that Δ̂ ∈ Δ̂a. Due to (2.6), we have Δ̂Ta = 0 for any vector a 
= 0 with
BT

Δa = 0. This means that the columns of the matrix Δ̂ belong to the image of the matrix BΔ.
Hence, the linear matrix equation BΔΔ = Δ̂ is solvable in the matrix Δ. It remains to show
inequality (2.5) for this solution. From (2.6) it follows that

Bi(ΔiΛiΔ
T
i − η2i Λi)B

T
i � 0

for each block. Since the matrices Bi have full column rank, ΔiΛiΔ
T
i − η2i Λi � 0 holds for all i,

i.e., Δ ∈ Δ, and the desired result is established.
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According to this lemma, there is no loss of information when passing from the matrix Δ that
satisfies inequality (2.5) to the matrix Δ̂ that satisfies inequality (2.7). In view of this fact, we
write the original uncertain system (2.1) as

x(t + 1) = (A+ Δ̂CΔ)x(t) + (Bu + Δ̂DΔ)u(t) +Bw(t),

z(t) = Cx(t) +Du(t),
(2.8)

where the unknown parameter matrix Δ̂ = (Δ̂1, . . . , Δ̂l) of the corresponding structure satisfies
inequality (2.7).

Additional information about the unknown parameters of system (2.8) is extracted from a fi-
nite set of its trajectory measurements. More precisely put, it is possible to measure the system
states x0, x1, . . . , xN under given controls u0, . . . , uN−1 and some unknown disturbance w(t) whose
components satisfy the constraint

|wi(t)| � d, t = 0, . . . , N − 1, i = 1, . . . , nw (2.9)

for some given d (the disturbance level), i.e., max0�t�N−1 ‖w(t)‖∞ � d. Following conventional
notations (e.g., see [6]), we compile the matrices

Φ = (x0 x1 · · · xN−1) , Φ+ = (x1 x2 · · · xN ) ,

W = (w0 w1 · · · wN−1) , U = (u0 u1 · · · uN−1)

and introduce

CΔΦ +DΔU = Φ̂.

Due to the object’s equation,

Φ̃ = Δ̂(real)Φ̂ +BW, (2.10)

where Φ̃ = Φ+ −AΦ −BuU and Δ̂(real) is the real unknown parameter matrix of the object (2.8).
According to (2.9) and (2.10),

(Φ̃ − Δ̂Φ̂)(Φ̃ − Δ̂Φ̂)T = BWWTBT � d2nwNBB
T

for Δ̂ = Δ̂(real).

Let Δ̂p denote the set of given-structure matrices Δ̂ satisfying this inequality. Obviously,

Δ̂(real) ∈ Δ̂p. Introducing the matrix

Ψ =

(
Ψ11 ∗
ΨT

12 Ψ22

)
=

(
Φ̂Φ̂T ∗
−Φ̃Φ̂T Φ̃Φ̃T − d2nwNBB

T

)
, (2.11)

we write this inequality as (
Δ̂ I

)
Ψ
(
Δ̂ I

)T
� 0. (2.12)

Let Δ̂ = Δ̂a
⋂
Δ̂p denote the set of matrices Δ̂ satisfying the constraints (2.7) and (2.12).

The quality of the closed-loop uncertain system (2.8) with a linear state-feedback control law
will be evaluated by its response to stochastic and deterministic disturbances under zero initial
state, measured by three performance indices: the guaranteed estimates of the γ0, generalized H2,
and H∞ norms. The guaranteed estimate of the γ0 norm is defined as the damping level of a
stochastic disturbance from the class Gnw of vector Gaussian white noises of dimension nw, equal
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to the maximum value of the square root of the ratio of the steady-state time-averaged variances
of the output z and input w under all nonzero covariance matrices Kw of the input [15]:

γ0 = sup
Δ̂ ∈ Δ̂

γ0(Δ̂), γ0(Δ̂) = ess sup
w ∈ Gnw

‖z‖P
‖w‖P ,

where ‖s‖2P = lim
N→∞

(1/N)
∑N−1
t=0 |s(t)|2 and ess stands for essential supremum (the least upper

bound with probability 1). The guaranteed estimates of the generalized H2 and H∞ norms charac-
terize, respectively, the relative maximum values of the time-maximal deviation and the quadratic
functional of the target output under deterministic disturbances from the class l2. They are defined
as

γg2 = sup
Δ̂ ∈ Δ̂

γg2(Δ̂), γg2(Δ̂) = sup
w(t)	=0

supt�0 |z(t)|
‖w‖ ,

γ∞ = sup
Δ̂ ∈ Δ̂

γ∞(Δ̂), γ∞(Δ̂) = sup
w(t)	=0

‖z‖
‖w‖ ,

where ‖s‖2 =
∑∞
t=0 |s(t)|2. The problem is to obtain upper bounds for these norms and finally

design control laws ensuring the required system quality estimates.

3. NECESSARY BACKGROUND ON THE γ0, GENERALIZED H2, AND H∞ NORMS

Before deriving the guaranteed estimates of the above norms, we clarify the calculation of the
norms γ0(Δ̂), γg2(Δ̂), and γ∞(Δ̂) for the closed loop system (2.8), u(t) = Θx(t) under a fixed
matrix Δ̂ given by the equations

x(t + 1) = [A+BuΘ + Δ̂(CΔ +DΔΘ)]x(t) +Bw(t),

z(t) = (C +DΘ)x(t).
(3.1)

With the notations

AΘ = A+BuΘ, CΔΘ = CΔ +DΔΘ, AΔ = AΘ + Δ̂CΔΘ, CΘ = C +DΘ,

these equations can be written as

x(t+ 1) = AΔx(t) +Bw(t),

z(t) = CΘx(t).
(3.2)

The damping level of the stochastic disturbance, i.e., the γ0 norm of this system, is found by solving
a semidefinite programming problem in the covariance matrices Kw = KT

w � 0 (the disturbance)
and Kx = KT

x � 0 (the state) [15]:

γ20(Δ̂) = max trCΘKxC
T
Θ : AΔKxA

T
Δ −Kx +BKwB

T = 0, trKw � 1. (3.3)

Here, we need the following auxiliary result, proved in the Appendix.

Lemma 3.1. Problem (3.3) is Lagrange dual to the problem

γ20(Δ̂) = min γ2 : AT
ΔPAΔ − P + CT

ΘCΘ � 0, BTPB � γ2I. (3.4)
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According to problem (3.4), the increment of the function V (x) = xTPx along the trajectories
of (3.2) with the initial disturbance w(0) = w0, w(t) ≡ 0, t > 0, and zero initial conditions satisfies
the inequalities

�V + |z|2 � 0, t � 1, V (x1) = wT
0 B

TPBw0 � γ2|w0|2 ∀x ∈ Rnx , ∀w0 ∈ Rnw . (3.5)

In other words, the damping level of stochastic disturbances coincides with that of a deterministic
initial disturbance, understood as the maximum value of the ratio of the l2 norm of the output under
the “pulse” disturbance w(0) = w0, w(t) ≡ 0, t � 1, and zero initial conditions to the Euclidean
norm of the disturbance:

γ20(Δ̂) = max
w0 	=0

‖z‖2
|w0|2 .

The next characteristic—the maximum deviation of the output (the generalized H2 norm
[16, 17])—is found by solving the problem

γ2g2(Δ̂) = min γ2 : AΔQA
T
Δ −Q+BBT � 0, CΘQC

T
Θ � γ2I. (3.6)

With the change of variables P = Q−1, it can be written as

γ2g2(Δ̂) = min γ2 :

(
AT

ΔPAΔ − P ∗
BTPAΔ BTPB − I

)
� 0,

(
P ∗
CΘ γ2I

)
� 0.

This means that the increment of the function V (x) = xTPx along the trajectories of (3.2) with
zero initial conditions satisfies the inequality

�V − |w|2 � 0, ∀x ∈ Rnx , ∀w ∈ Rnw , P � γ−2CT
ΘCΘ. (3.7)

As is well known, the system under consideration has the H∞ norm below γ if and only if the
linear matrix inequality (LMI)

⎛⎜⎜⎝
AT

ΔPAΔ − P ∗ ∗
BTPAΔ BTPB − γ2I ∗
CΘ 0 −I

⎞⎟⎟⎠ < 0 (3.8)

is solvable in the matrix P = PT > 0. According to this LMI, the increment of the positive definite
function V (x) = xTPx along the trajectories of (3.2) satisfies the inequality

�V + |z|2 − γ2|w|2 < 0 (3.9)

for all x and w.

Direct comparison of problems (3.4) and (3.6) shows that the γ0 and generalized H2 norms of
system (3.1), respectively, coincide with the generalized H2 and γ0 norms of the dual system

x̂(t + 1) = (AΘ + Δ̂CΔΘ)Tx̂(t) + CT
Θŵ(t), x̂(0) = 0,

ẑ(t) = BTx̂(t).
(3.10)

In addition, the dual systems (3.1) and (3.10) obviously have the same H∞ norm.
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4. ROBUST γ0-, GENERALIZED H2-, AND H∞-SUBOPTIMAL CONTROL LAWS

Now we present the main steps to obtain the guaranteed estimates of the γ0, γg2, and γ∞ norms
of the uncertain system (3.1) and to find the parameters of the corresponding suboptimal robust
control laws. Let γ̂0, γ̂g2, and γ̂∞ denote the corresponding guaranteed estimates of the norms of
the dual system (3.10). According to the previous section,

γ0 = γ̂g2, γg2 = γ̂0, γ∞ = γ̂∞.

Consider an extended system with the additional artificial input wΔ(t) and output zΔ(t) described
by

xa(t+ 1) = AT
Θxa(t) + CT

ΔΘwΔ(t) + CT
Θwa(t), xa(0) = 0,

za(t) = BTxa(t), zΔ(t) = xa(t),
(4.1)

where xa(t), wa(t), and za(t) are the state, disturbance, and target output, respectively. Suppose
that for all t � 0, the additional input signal wΔ(t) in system (4.1) satisfies the two inequalities(

wΔ(t)

zΔ(t)

)T

Ψ

(
wΔ(t)

zΔ(t)

)
� 0,

(
wΔ(t)

zΔ(t)

)T

Υ

(
wΔ(t)

zΔ(t)

)
� 0, (4.2)

where the matrices Ψ and Υ are given by (2.11) and (2.7). The set of all such signals will be denoted
by WΔ. System (3.10) is “immersed” in system (4.1), (4.2): for wΔ(t) = Δ̂TzΔ(t), equations (4.1)
turn into equations (3.10); as follows from (2.12) and (2.7), for all Δ̂ ∈ Δ̂ we have(

wΔ(t)
zΔ(t)

)T

Ψ

(
wΔ(t)
zΔ(t)

)
= zTΔ(t)

(
Δ̂T

I

)T

Ψ

(
Δ̂T

I

)
zΔ(t) � 0,

(
wΔ(t)
zΔ(t)

)T

Υ

(
wΔ(t)
zΔ(t)

)
= zTΔ(t)

(
Δ̂T

I

)T

Υ

(
Δ̂T

I

)
zΔ(t) � 0,

i.e., wΔ(t) = Δ̂TzΔ(t) ∈ WΔ.

For the extended system (4.1), (4.2), we define the γ0, generalized H2, and H∞ norms with
respect to the input wa and output za under all admissible inputs wΔ as

γ̃0 = sup
wΔ(t) ∈ WΔ

ess sup
wa ∈ Gnw

‖za‖P
‖wa‖P ,

γ̃g2 = sup
wΔ(t) ∈ WΔ

sup
wa(t)	=0

supt�0 |za(t)|
‖wa‖ ,

γ̃∞ = sup
wΔ(t) ∈ WΔ

sup
wa(t)	=0

‖za‖
‖wa‖ .

(4.3)

They obviously restrict from above the guaranteed estimates of the corresponding norms of sys-
tem (3.10). In view of the relations between the norms of dual systems (see above), the guaranteed
estimates of the norms of the original uncertain system (3.1) satisfy the inequalities

γ0 � γ̃g2, γg2 � γ̃0, γ∞ � γ̃∞.

The performance indices (4.3) will be below a given value γ if there exists a positive definite
quadratic function V (xa) = xTa Pxa whose increment along the trajectories of (4.1) satisfies the
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following conditions for each norm (similar to conditions (3.5), (3.7), and (3.9) for system (3.2)):

(AT
Θxa + CT

ΔΘwΔ)TP (AT
Θxa +CT

ΔΘwΔ) − xTa Pxa + |za|2 � 0, CΘPC
T
Θ < γ2I;

(AT
Θxa + CT

ΔΘwΔ + CT
Θwa)

TP (AT
Θxa +CT

ΔΘwΔ + CT
Θwa) − xTa Pxa − |wa|2 � 0,(

P ∗
BT γ2I

)
> 0;

(AT
Θxa + CT

ΔΘwΔ + CT
Θwa)

TP (AT
Θxa + CT

ΔΘwΔ + CT
Θwa) − xTa Pxa + |za|2 − γ2|wa|2 < 0

for all xa, wa, and all wΔ ∈ WΔ, i.e., those obeying the constraints (4.2). A sufficient condition
for this is the existence of a matrix P = PT > 0 and nonnegative numbers μ � 0 and ν � 0 such
that, for all xa, wa, and wΔ,

�V + |za|2 −
(
wΔ

zΔ

)T

(μΨ + νΥ)

(
wΔ

zΔ

)
� 0, CΘPC

T
Θ < γ2I;

�V − |wa|2 −
(
wΔ

zΔ

)T

(μΨ + νΥ)

(
wΔ

zΔ

)
� 0,

(
P ∗
BT γ2I

)
> 0;

�V + |za|2 − γ2|wa|2 −
(
wΔ

zΔ

)T

(μΨ + νΥ)

(
wΔ

zΔ

)
< 0,

where the increment of the function V (x) in the first inequality is taken along the trajectory of
system (4.1) with wa(t) ≡ 0. We write these inequalities in matrix form and introduce the new
matrix variable Z = ΘP . Then replacing the matrix νΛ with the matrix Λ without notational
change and applying Schur’s complement lemma lead to an important result.

Theorem 4.1. The guaranteed estimates of the γ0, generalized H2, and H∞ norms of the un-
certain system (2.1), (2.2) with the control law u(t) = Θx(t), where Θ = ZP−1, are below γ if the
following LMIs are solvable in P > 0, Z, Λ ∈ Λ, and μ � 0:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P ∗ ∗ ∗ ∗
FA −P − μΨ22 ∗ ∗ ∗
FCΔ

−μΨ12 −μΨ11 − Λ ∗ ∗
FC 0 0 −I ∗
0 ΛηTBT

Δ 0 0 −Λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0,

(
P ∗
BT γ2I

)
> 0; (4.4)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P ∗ ∗ ∗ ∗
FA −P − μΨ22 ∗ ∗ ∗
0 BT −I ∗

FCΔ
−μΨ12 0 −μΨ11 − Λ ∗

0 ΛηTBT
Δ 0 0 −Λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0,

(
P ∗
FC γ2I

)
> 0 (4.5)
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and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P ∗ ∗ ∗ ∗ ∗
FA −P − μΨ22 ∗ ∗ ∗ ∗
0 BT −I ∗ ∗ ∗

FCΔ
−μΨ12 0 −μΨ11 − Λ ∗ ∗

FC 0 0 0 −γ2I ∗
0 ΛηTBT

Δ 0 0 0 −Λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0, (4.6)

where FA = AP +BuZ, FC = CP +DZ, FCΔ
= CΔP +DΔZ, the elements of the matrices Ψ are

given by (2.11), and the matrix η = diag (η1In1 , . . . , ηlInl
) is given by (2.2).

The minimum values of γ2 obtained using this theorem will be denoted by γ2(Δ̂,Θ), where the
arguments are the corresponding system parameter matrix (Δ̂ for the uncertain system and Δ̂(real)

for the real system) and the corresponding feedback parameter matrix (Θ(ab) for the robust control
law based on a priori and experimental data, Θ(a) for the robust control law based on a priori
data only, and Θ(b) for the robust control law based on experimental data only). If only a priori
data are used, then the guaranteed estimates of the norms γ2(Δ̂,Θ(a)) are found by solving these
inequalities with μ = 0; if only experimental data are used, then γ2(Δ̂,Θ(b)) are found by solving
these inequalities with Λ = 0. It is clear that γ2(Δ̂,Θ(ab)) � min{γ2(Δ̂,Θ(a)), γ2(Δ̂,Θ(b))}.

In the case of completely unknown state and control matrices of the system with the matrices
of equation (2.1) given by (2.4) and ΔΔT � η2I, Theorem 4.1 provides the guaranteed estimates
of the corresponding norms for Λ = {λI : λ � 0}.

The inequalities in Theorem 4.1 serve for calculating the parameters of control laws and the
norms in different scenarios by choosing appropriate blocks FA, FC , and FCΔ

and variables Λ
and μ. In the next section, some of these scenarios will be implemented for an illustrative example.
Also, the corresponding blocks FA, FC , and FCΔ

and variables Λ and μ in inequalities (4.4)–(4.6)
will be presented.

5. ILLUSTRATIVE EXAMPLE

Consider the results of several experiments with one system of the form (2.1):

x(t+ 1) =

⎛⎜⎝ 0.3 0.8 −0.3
−0.2 + δ 0.6 + Δ11 −0.1 + Δ12

0.5 −0.2 + Δ21 0.9 + Δ22

⎞⎟⎠x(t) +

⎛⎜⎝ 0.2
1 + δ
0.5

⎞⎟⎠u(t) + w(t),

z(t) =

(
I3
0

)
x(t) +

(
03×1

0.2

)
u(t),

where

BΔ =

⎛⎜⎝ 0 0 0
1 1 0
0 0 1

⎞⎟⎠ , CΔ = I3, DΔ =

⎛⎜⎝ 1
0
0

⎞⎟⎠ , Δ =

(
Δ1 0
0 Δ2

)
,

Δ1 = δ, Δ2 =

(
Δ11 Δ12

Δ21 Δ22

)
, |δ| � 0.12; Δ2ΔT

2 � 0.19.

1. Based on a priori information only, we calculate the guaranteed estimates of the norms and
parameter matrix of the corresponding robust control laws using the formula Θ(a) = ZP−1 by
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solving inequalities (4.4)–(4.6) with FA = AP +BuZ, FC = CP +DZ, FCΔ
= CΔP +DΔZ,

η = diag (0.12; 0.19I2), μ = 0, and the unknown variable Λ � 0:

γ20(Δ̂,Θ
(a)
0 ) = 12.8095; Θ

(a)
0 = (−0.4356; −0.6420; −0.3125),

γ2g2(Δ̂,Θ
(a)
g2 ) = 10.5935; Θ

(a)
g2 = (−0.8498; −0.7996; −0.6503),

γ2∞(Δ̂,Θ(a)
∞ ) = 49.2653; Θ(a)

∞ = (−1.2373; −0.8204; −0.9710).

Suppose that the real system is described by the uncertain parameters δ(real) = −0.05,

Δ
(real)
11 = 0.2, Δ

(real)
12 = Δ

(real)
21 = 0, and Δ

(real)
22 = −0.1 so that

Δ̂ = Δ̂(real) =

⎛⎜⎝ 0 0 0
−0.05 0.2 0

0 0 −0.1

⎞⎟⎠ , (5.1)

whereas the state and control matrices of the real object are

A(real) = A+ Δ̂(real)CΔ, B(real)
u = Bu + Δ̂(real)DΔ.

Let us calculate the three norms of the closed loop system (the real object with the robust
feedback control with the parameter matrix Θ(a)) by solving inequalities (4.4)–(4.6) with

FA = (A(real) +B(real)
u Θ(a))P, FC = (C +DΘ(a))P, FCΔ

= 0,

Λ = 0, and μ = 0:

γ20(Δ̂(real),Θ
(a)
0 ) = 4.8319;

γ2g2(Δ̂
(real),Θ

(a)
g2 ) = 5.1373;

γ2∞(Δ̂(real),Θ(a)
∞ ) = 23.5459.

For comparison, here are the optimal values of these norms and parameter matrices of the
optimal feedback control laws for the real system (if it were known), calculated using the for-

mula Θ(real) = ZP−1 by solving inequalities (4.4)–(4.6) with FA = A(real)P +B
(real)
u Z, FC =

CP +DZ, FCΔ
= 0, Λ = 0, and μ = 0:

γ20(Δ̂(real),Θ
(real)
0 ) = 3.9569; Θ

(real)
0 = (−0.0765; −0.9379; 0.0064),

γ2g2(Δ̂(real),Θ
(real)
g2 ) = 4.4024; Θ

(real)
g2 = (−0.1369; −0.9249; −0.0741),

γ2∞(Δ̂(real),Θ(real)
∞ ) = 10.4651; Θ(real)

∞ = (−1.2547; −1.3605; −0.3919).

2. Consider the case of no a priori information about the possible range of unknown parameters
of the object: experimental data are used instead. We calculate the guaranteed estimates
of the norms and find the parameter matrices of the suboptimal robust feedback control
laws using the formula Θ(b) = ZP−1 by solving inequalities (4.4)–(4.6) with FA = AP +BuZ,
FC = CP +DZ, FCΔ

= CΔP +DΔZ, Λ = 0, and the unknown variable μ � 0. To obtain
experimental data, we model equation (2.8) with the initial conditions x0 = (9; 5;−7)T under

the uncertainties δ(real) = −0.05, Δ
(real)
11 = 0.2, Δ

(real)
12 = Δ

(real)
21 = 0, and Δ

(real)
22 = −0.1 so

that Δ̂ = Δ̂(real). The components of the control u(t) and disturbance w(t) vectors in the
experiment are chosen as random variables with the uniform distribution on the intervals [−1, 1]
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and [−d, d], respectively, from a random-number generator. For d = 0.1 and N = 100, the
results were as follows:

γ20(Δ̂,Θ
(b)
0 ) = 9.2104; Θ

(b)
0 = (−0.1087; −0.8626; −0.0074),

γ2g2(Δ̂,Θ
(b)
g2 ) = 11.0614; Θ

(b)
g2 = (−0.1745; −1.0321; −0.0257),

γ2∞(Δ̂,Θ(b)
∞ ) = 56.6811; Θ(b)

∞ = (−0.6556; −1.3677; −0.0644).

For the real system with robust feedback control laws with the corresponding parameter ma-
trices Θ(b), solving inequalities (4.4)–(4.6) with

FA = (A(real) +B(real)
u Θ(b))P, FC = (C +DΘ(b))P, FCΔ

= 0,

Λ = 0, and μ = 0 yielded the following values of the norms:

γ20(Δ̂(real),Θ
(b)
0 ) = 3.9640;

γ2g2(Δ̂(real),Θ
(b)
g2 ) = 4.4416;

γ2∞(Δ̂(real),Θ(b)
∞ ) = 12.2661.

3. We design the suboptimal robust control law based on a priori information and the same
experimental data for the real system (see above). For this purpose, we calculate the guaran-
teed estimates of the norms and find the parameter matrices of the robust feedback control
laws using the formula Θ(ab) = ZP−1 by solving inequalities (4.4)–(4.6) with FA = AP +BuZ,
FC = CP +DZ, FCΔ

= CΔP +DΔZ, and the unknown variables Λ � 0 and μ � 0:

γ20(Δ̂,Θ
(ab)
0 ) = 8.2265; Θ

(ab)
0 = (−0.1613; −0.7716; −0.0661),

γ2g2(Δ̂,Θ
(ab)
g2 ) = 8.9113; Θ

(ab)
g2 = (−0.4617; −0.8835; −0.2449),

γ2∞(Δ̂,Θ(ab)
∞ ) = 35.2885; Θ(ab)

∞ = (−0.9790; −1.0324; −0.5212).

For the real system with robust feedback control laws with the parameter matrices Θ(ab), the
three norms calculated by solving inequalities (4.4)–(4.6) with

FA = (A(real) +B(real)
u Θ(ab))P, FC = (C +DΘ(ab))P, FCΔ

= 0,

Λ = 0, and μ = 0 took the following values:

γ20(Δ̂(real),Θ
(ab)
0 ) = 4.0280;

γ2g2(Δ̂
(real),Θ

(ab)
g2 ) = 4.5248;

γ2∞(Δ̂(real),Θ(ab)
∞ ) = 14.3512.

Figures 1–3 show the guaranteed estimates of the γ0, generalized H2, and H∞ norms, respec-
tively, based on a priori information only, experimental data only, and a priori information together
with experimental data, depending on the disturbance level d in the experiment; the lower hori-
zontal lines correspond to the values of these norms for the real object whereas the upper ones to
their values under robust control laws designed from a priori information only. Figure 4 plots the
guaranteed estimate of the H∞ norm obtained by the joint use of a priori information and experi-
mental data with the disturbance level d = 0.05 as a function of the number of measurements N ;
the horizontal lines correspond to the H∞ norm of the real object and the guaranteed estimate of
the H∞ norm obtained using a priori information only.
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Fig. 1. The guaranteed estimates of the γ0 norm as a function of the disturbance level in experimental data
for different types of information used.
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Fig. 2. The guaranteed estimates of the generalized H2 norm as a function of the disturbance level in experi-
mental data for different types of information used.

According to these results, if the disturbance level in the experiment is relatively small, then
the guaranteed estimates of the norms of the closed-loop uncertain system designed using both a
priori and experimental data are much smaller than their counterparts under the robust control
laws designed using only a priori data or only experimental data. For example, the guaranteed
estimates of the H∞ norms of the closed-loop system with control laws designed using only a pri-

ori or only experimental data with the disturbance level d = 0.1 are γ2∞(Δ̂,Θ
(a)
∞ ) = 49.2653 and
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Fig. 3. The guaranteed estimates of the H∞ norm as a function of the disturbance level in experimental data
for different types of information used.
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Fig. 4. The guaranteed estimate of the H∞ norm with a given disturbance level in experimental data depending
on the number of measurements.

γ2∞(Δ̂,Θ
(b)
∞ ) = 56.6811, respectively; when these a priori and experimental data are used together,

the guaranteed estimate of the H∞ norm equals γ2∞(Δ̂,Θ
(ab)
∞ ) = 35.2885. Note the effect of in-

creasing the guaranteed estimates of the norms obtained from experimental data only. This effect
can be explained as follows: the set of admissible models of the object consistent with the ex-
perimental data expands as the disturbance level increases, and the maximum value of the norm
on this set grows accordingly. We emphasize another important feature: the range of disturbance
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levels in which the guaranteed estimate of the norm when using a priori and experimental data
together is smaller than that when using a priori data only depends on the initial conditions and
the chosen controls in the experiment; therefore, this range can be varied and even (apparently)
planned. Furthermore, a large number of measurements are not required to obtain acceptable
results (see Fig. 4).

6. CONCLUSIONS

This paper has proposed a novel design method for suboptimal robust control laws considering
a priori information about the mathematical model of the object and, moreover, experimental data
of modeling the object over a small time interval. When obtaining experimental data, neither
the persistency of excitation (which ensures the identifiability of unknown parameters) nor data
informativity for the corresponding control law is required. In this method, the use of additional
information about the unknown parameters of the object obtained from experimental data signif-
icantly reduces the guaranteed estimates of the γ0, generalized H2, and H∞ norms of the closed
loop system.

APPENDIX

Proof of Lemma 3.1. We write the Lagrange function for this problem and express the optimal
value of its dual function as

min
P0�0,γ2�0

max
Kx�0,Kw�0

[
trCΘKxC

T
Θ + trP0(AΔKxA

T
Δ −Kx +BKwB

T) + γ2(1 − trKw)
]

= min
P0�0,γ2�0

max
Kx�0,Kw�0

[
γ2 + trKx(AT

ΔP0AΔ − P0 +CT
ΘCΘ) + trKw(BTP0B − γ2I)

]
.

This value is finite under inequalities (3.4); then the maximum is reached at Kx = 0 and Kw = 0.
In this case, the optimal value of the dual problem coincides with λmax(BTP0B). Since the function
is convex and there exists an interior point satisfying the constraint, the primal and dual problems
have the same optimal value [18].
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Abstract—Scalar characteristics of continuous processes with fuzzy states—mean and correla-
tion functions—are introduced and studied. Their algebraic properties as well as some prop-
erties related to the differentiation and integration of fuzzy functions of a real argument are
established. The dependence between the characteristics of a fuzzy signal at the input and
output of a dynamic system described by a high-order differential equation with constant coef-
ficients is shown.
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1. INTRODUCTION

When studying dynamic processes under limited initial information, a possible approach is to
treat their parameters as realizations of some random processes [1]. However, the distribution of
random variables at the time instants under consideration often has a weakly formalizable law. In
this case, it is convenient to treat such processes as those with fuzzy states (fuzzy processes). In
particular, an important class of fuzzy dynamic processes consists of automatic and optimal control
systems.

Thus, continuous fuzzy processes represent an alternative model for automatic control problems
in addition to continuous random processes. A fuzzy process is understood as a parametric system
of fuzzy numbers that continuously depends on the parameter (time). At present, the theory of
fuzzy sets is used in various applications [2, 3]. In particular, different fuzzy models of controlled
objects have been investigated [4].

In this paper, numerical characteristics of continuous processes with fuzzy states and continuous
time, namely, mean and correlation functions, are introduced and studied; see Sections 3 and 4.
Their properties similar to those of the corresponding characteristics of continuous random processes
are established. Section 3 considers the algebraic properties of the mean and correlation functions
of continuous fuzzy processes. Section 4 is devoted to the properties of these characteristics with
respect to integrals and derivatives of fuzzy processes. Integrals of fuzzy functions are understood
as a special case of Aumann integrals [5] of multivalued functions (as integrals of α-cutoffs). They
were studied in [6, 7] and other publications. Various definitions of derivatives of fuzzy functions
were presented, e.g., in [6–8]. Here, we employ the definition in terms of Hukuhara’s difference
of sets (H-difference) [9]. The results of Sections 3 and 4 rest on the definition and covariance
properties of fuzzy numbers discussed in the author’s paper [10]; see Section 2.
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Nowadays, researchers are actively investigating fuzzy differential equations and their applica-
tions; for example, see [3, Chapters 7 and 8; 7, 8, 11–13]. Among the recent works, we men-
tion [14, 15]. Section 5 of this paper considers fuzzy dynamic systems described by nth-order linear
differential equations with constant coefficients. The dependence between the numerical character-
istics of a fuzzy signal at the output of a fuzzy dynamic system and the corresponding characteristics
of its input fuzzy signal is obtained. In contrast to the well-known frameworks [12–15], the ap-
proach below develops the Green function method, widely used in the theory of ordinary differential
equations [16, Chapter II; 17, Chapter 1], to the class of fuzzy differential equations.

2. THE MEAN, QUASI-SCALAR PRODUCT, AND COVARIANCE OF FUZZY NUMBERS

A fuzzy number is understood as a fuzzy subset of the universal set of real numbers that has
a compact support and a normal, convex, and upper semicontinuous membership function; for
details, e.g., see [1]. Let J denote the set of all such fuzzy numbers.

The interval representation of fuzzy numbers will be used below.

As is known, the α-level intervals (α-levels) of a fuzzy number z̃ with a membership function
μz̃(x) are defined as

zα = {x|μz̃(x) � α}, (α ∈ (0, 1]), z0 = cl{x|μz̃(x) > 0},
where cl indicates the closure of an appropriate set. Assume that all α-levels of a fuzzy number are
closed and bounded intervals on the entire real axis. Let z−(α) and z+(α) denote the left and right
bounds of an α-interval: zα = [z−(α), z+(α)]. The values z−(α) and z+(α) are called the left and
right α-indices of a fuzzy number, respectively. A real number x ∈ R is treated as a fuzzy number
with the left and right α-indices equal to x.

The sum of fuzzy numbers with indices z−(α), z+(α) and u−(α), u+(α) is understood as a fuzzy
number with the α-level intervals [z−(α) + u−(α), z+(α) + u+(α)].

Multiplication by a positive real number c is characterized by the α-level intervals [cz−(α), cz+(α)].
Multiplication by a negative real number c is characterized by the α-level intervals [cz+(α), cz−(α)].
Equality for fuzzy numbers is understood as equality for all the corresponding α-indices ∀α ∈ [0, 1].

According to [18], the mean value of a fuzzy number z̃ can be defined through the interval
representation as follows:

m(z̃) =
1

2

1∫
0

(z−(α) + z+(α)) dα. (1)

Note that the mean (1) is linear.

Example 1. Consider a fuzzy triangular number z̃ characterized by a real-valued triple (a, b, c)
with a < b < c defining the membership function

μz̃(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x− a

b− a
ifx ∈ [a, b]

x− c

b− c
ifx ∈ [b, c]

0 otherwise.

In this case, the lower and upper bounds of the α-interval have the form

z−(α) = (b− a)α+ a, z+(α) = −(c− b)α+ c.

As is easily verified, the mean (1) of the fuzzy triangular number (a, b, c) is m(z̃) = 1
4 (a+2b+c).
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The distances between fuzzy numbers can be defined on the set of such numbers in different
ways. The interval approach often involves the Hausdorff distances between the α-level sets of
fuzzy numbers: for fuzzy numbers z̃ and ũ with α-levels zα and uα, respectively, the corresponding
metric [19] is given by

ρ(z̃, ũ) = supp
0<α�1

max

{
supp
z∈zα

inf
u∈uα

|z − u|, supp
u∈uα

inf
z∈zα

|z − u|
}
. (2)

Definition (2) induces the equality

ρ(z̃, ũ) = supp
0<α�1

max
{|z−(α) − u−(α)|, |z+(α) − u+(α)|} . (3)

Here, [z−(α), z+(α)] and [u−(α), u+(α)] are the α-level intervals of the fuzzy numbers z̃ and ũ.

Note that, due to (3), the condition ρ(z̃, ũ) = 0 matches the definition of equality for fuzzy
numbers z̃ and ũ given above.

Consider a fuzzy number z̃ with α-levels zα = [z−(α), z+(α)]. Following interval analysis, let

mid zα =
1

2
(z+(α) + z−(α)), rad zα =

1

2
(z+(α) − z−(α)).

Here, mid zα characterizes the midpoint for each α ∈ [0, 1] and rad zα the range. For fuzzy numbers
z̃ and ũ from J, we define the quasi-scalar product [10]

〈z̃, ũ〉 =

1∫
0

(mid zαmiduα + rad zαrad uα) dα

= 0.5

1∫
0

(z+(α)u+(α) + z−(α)u−(α)) dα.

(4)

The quasi-norm is ‖z̃‖ = 〈z̃, z̃〉1/2.
Example 2. Consider two triangular numbers z̃1 and z̃2 characterized by real-valued triples

ai, bi, ci with ai < bi < ci (i = 1, 2). According to the definition of their right and left indices (see
Example 1) and (4), the quasi-scalar product 〈z̃1, z̃2〉 is given by

〈z̃1, z̃2〉 =
2

3
b1b2 +

1

3
(a1a2 + c1c2) +

1

6
(a1b2 + b1a2 + b1c2 + b2c1).

Proposition 1 [10]. The quasi-scalar product (4) possesses the following properties:

1) 〈z̃, ũ〉 = 〈ũ, z̃〉 ∀ ũ, z̃ ∈ J .

2) 〈c1z̃, c2ũ〉 = c1c2〈z̃, ũ〉 provided that c1c2 > 0.

3) 〈z̃1 + z̃2, ũ〉 = 〈z̃1, ũ〉 + 〈z̃2, ũ〉 ∀ ũ, z̃1, z̃2 ∈ J .

4) 〈z̃, z̃〉 � 0, and the condition 〈z̃, z̃〉 = 0 is equivalent to the zero left and right indices of z̃.

5) The generalized Cauchy–Bunyakovsky–Schwarz inequality |〈z̃, ũ〉| � 〈z̃, z̃〉1/2〈ũ, ũ〉1/2 holds
∀ ũ, z̃ ∈ J .

For fuzzy numbers z̃1 and z̃2 with means m1 and m2, respectively, we define their covariance by
the formula [10]

cov[z̃1, z̃2] = 〈z̃1 −m1, z̃2 −m2〉

= 0.5

1∫
0

(
(z+1 −m1)(z

+
2 −m2) + (z−1 −m1)(z

−
2 −m2)

)
dα.

(5)

The variance is denoted by D(z̃) = cov|z̃, z̃|.
AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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Proposition 2 [10]. The covariance (5) possesses the following properties:

1) cov[z̃1 + z̃2, ũ] = cov[z̃1, ũ] + cov[z̃2, ũ] (∀ ũ, z̃1, z̃2 ∈ J).

2) cov[c1z̃, c2ũ] = c1c2cov[z̃, ũ] (∀ ũ, z̃ ∈ J) for any real numbers c1 and c2 such that c1c2 > 0.

3) cov [z̃1, z̃2] = 〈z̃1, z̃2〉 −m1m2, (∀ z̃1, z̃2 ∈ J), where m1 and m2 are the mean values of fuzzy
numbers z̃1 and z̃2, respectively (the specific covariance property).

Proposition 3 [10]. The variance possesses the following properties:

1) D(cz̃) = c2D(z̃) for any real number c.

2) D(z̃ + ũ) = D(z̃) +D(ũ) + 2cov[z̃, ũ] ∀ ũ, z̃ ∈ J .

In several works (e.g., see [20]), the covariance of fuzzy numbers z̃1 and z̃2 was defined as

cov1[z̃1, z̃2] =
1

4

1∫
0

(z+1 (α) − z−1 (α))(z+2 (α) − z−2 (α))dα.

With this definition, covariance is always nonnegative, which disagrees with standard covariance
properties (for random variables).

3. CONTINUOUS FUZZY PROCESSES

Consider a fixed segment [t0, T ] of the real axis, where t0� 0. A mapping z̃ : [t0, T ] → J is called
a process with fuzzy states (or a fuzzy process) and continuous time.

Let a fuzzy process z̃(t), t ∈ [t0, T ], be characterized a membership function μz̃(x, t). For a fixed
number α ∈ (0, 1], consider the α-interval zα(t) = {x ∈ R : μz̃(x, t) � α} and z0(α) = cl{x ∈ R :
μz̃(x, t) > 0}. We denote by z−α (t) = z−(t, α) and z+α (t) = z+(t, α) the left and right bounds of the
α-interval, respectively: zα(t) = [z−(t, α), z+(t, α)].

Assume that the indices z−(t, α) and z+(t, α) are square summable in α for each t ∈ [t0, T ] and
continuous in t for any α ∈ [0, 1].

For each t ∈ [t0, T ], let the mean of z̃(t) be defined as

mz̃(t) = m(z̃(t)) =
1

2

1∫
0

(z−(t, α) + z+(t, α))dα. (6)

Theorem 1. The mean of a continuous fuzzy process given by (6) possesses the following prop-
erties:

1. If z̃1(t) and z̃2(t) are continuous fuzzy processes, then m(z̃1(t) + z̃2(t)) = m(z̃1(t)) +m(z̃2(t))
(additivity).

2. If z̃(t) is a continuous fuzzy process and ϕ(t) is a real-valued function, then m(ϕ(t)z̃(t)) =
ϕ(t)m(z̃(t)) (homogeneity).

Indeed, property 1 follows from the definition of interval summation and and the additivity of
Lebesgue integrals.

It remains to show property 2. For a fixed number t ∈ [t0, T ], consider the fuzzy number w̃(t) =
ϕ(t)z̃(t). Note that its left w−(t, α) and right w+(t, α) indices coincide with the expressions
ϕ(t)z−(t, α) and ϕ(t)z+(t, α), respectively, in the case ϕ(t) � 0 or with the expressions ϕ(t)z+(t, α)
and ϕ(t)z−(t, α), respectively, in the case ϕ(t) < 0. However, their sum w−(t, α) + w+(t, α) co-
incides with the expression ϕ(t)(z−(t, α) + z+(t, α)), which is independent of the sign of ϕ(t).
According to (1), this fact implies property 2.

Corollary 1. If f(t) is a real-valued function, then m(z̃(t) + f(t)) = m(z̃(t)) + f(t).
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Suppose that f−(t) = f+(t) = f(t) for a real number f(t) ∀ t ∈ [t0, T ].

Let the correlation function of a continuous fuzzy process z̃(t) be defined as

Kz̃(t1, t2) =
1

2

1∫
0

(
z+(t1, α) −m(z̃(t1))

) (
z+(t2, α) −m(z̃(t2))

)
+
(
z−(t1, α) −m(z̃(t1))

) (
z−(t2, α) −m(z̃(t2))

)
dα.

(7)

The variance of a continuous fuzzy process is the valueDz̃(t) = Kz̃(t, t). By definition, Dz̃(t) � 0.

Theorem 2. The correlation function (7) of a continuous fuzzy process possesses the following
properties.

1. For a continuous fuzzy process z̃(t), the equality

Kz̃(t1, t2) = Kz̃(t2, t1)

holds ∀ t1, t2 ∈ [t0, T ] (symmetry).

2. If z̃(t) is a continuous fuzzy process and ϕ(t) is a real-valued function, then the correla-
tion function Kw̃(t1, t2) of a continuous fuzzy process w̃(t) = ϕ(t)z̃(t) has the form Kw̃(t1, t2) =
ϕ(t1)ϕ(t2)Kz̃(t1, t2) ∀ t1, t2 ∈ [t0, T ] such that ϕ(t1)ϕ(t2) � 0.

3. If w̃(t) = z̃(t) + ϕ(t), then Kw̃(t1, t2) = Kz̃(t1, t2).

4. |Kz̃1(t1, t2)| �
√
Dz̃(t1)Dz̃(t2).

Theorem 2 is based on the properties of the covariance (5) of fuzzy numbers presented in
Section 2.

For continuous fuzzy processes z̃1(t) and z̃2(t), consider the mutual correlation function

Kz̃1z̃2(t, s) =

1∫
0

(
z+1 (t, α) −m(z̃1(t))

) (
z+2 (s, α) −m(z̃2(s))

)
+
(
z−1 (t, α) −m(z̃1(t))

) (
z−2 (s, α) −m(z̃2(s))

)
dα.

Theorem 3. Let z̃1(t) and z̃2(t) be continuous fuzzy processes. The correlation function of their
sum w̃(t) = z̃1(t) + z̃2(t) has the form

Kw̃(t, s) = Kz̃1(t, s) +Kz̃2(t, s) +Kz̃1,z̃2(t, s) +Kz̃1,z̃2(s, t).

Continuous fuzzy processes z̃1(t) and z̃2(t) are said to be uncorrelated on a segment [t0, T ] if

Kz̃1z̃2(t, s) = 0 (∀ t, s ∈ [t0, T ]).

Corollary 2. If continuous fuzzy processes z̃1(t), z̃2(t) are uncorrelated and w̃(t) = z̃1(t) + z̃2(t),
then

Kw̃(t, s) = Kz̃1(t, s) +Kz̃2(t, s) (∀ t, s ∈ [t0, T ]).

4. THE INTEGRATION AND DIFFERENTIATION OF CONTINUOUS FUZZY PROCESSES

The integral of a continuous fuzzy process z̃(t) between the limits of a segment [t0, T ] is a fuzzy
number g̃ with the α-level intervals gα =

∫ T
t0
zα(t) dt for any α ∈ [0, 1]; for details, see [7]. The

integral is denoted by
∫ T
t0
z̃(t) dt.

In fact, this is the Aumann integral [5] of a multi-valued mapping zα(t).

If the integral
∫ T
t0
z̃(t) dt exists, then the process z̃(t) is said to be integrable on [t0, T ].

The mean of the integral possesses the following property.
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Theorem 4. Let z̃(t) be an integrable fuzzy process on [t0, T ]. Then m

(
T∫
t0

z̃(τ)dτ

)
=

T∫
t0

m(z̃(τ)) dτ .

By the definition of the integral, its indices satisfy the relation⎛⎝ T∫
t0

z̃(τ) dτ

⎞⎠±

α

=

T∫
t0

z±(τ, α) dτ.

Consequently,

m

⎛⎝ T∫
t0

z̃(τ) dτ

⎞⎠ =
1

2

1∫
t0

⎛⎝ T∫
t0

(z−(τ, α)) + (z+(τ, α)) dτ

⎞⎠ dα =

T∫
t0

m(z̃(τ))dτ.

For a continuous fuzzy process z̃(t) ∀ t ∈ [t0, T ], we define the continuous fuzzy process g̃(t) =∫ t
t0
z̃(τ) dτ .

Theorem 5. The integral g̃(t) of a continuous fuzzy process z̃(t) has the correlation function
Kg̃(t1, t2) =

∫ t1
t0

∫ t2
t0
Kz̃(τ1, τ2) dτ1dτ2.

Proof. By definition,

Kg̃(t1, t2) =
1

2

1∫
0

⎛⎝ t1∫
t0

z+(τ, α) dτ −
t1∫
t0

m(z̃(τ, α)) dτ

⎞⎠⎛⎝ t2∫
t0

z+(τ, α) dτ −
t2∫
t0

m(z̃(τ))dτ

⎞⎠

+

⎛⎝ t1∫
t0

z−(τ, α) dτ −
t1∫
t0

m(z̃(τ, α)) dτ

⎞⎠⎛⎝ t2∫
t0

z−(τ, α) dτ −
t2∫
t0

m(z̃(τ)) dτ

⎞⎠ dα

=
1

2

1∫
0

⎛⎝ t1∫
t0

(z+(τ, α) −m(z̃(τ)) dτ)

⎛⎝ t2∫
t0

z+(τ, α) −m(z̃(τ)) dτ

⎞⎠⎞⎠ dα

+
1

2

1∫
0

⎛⎝ t1∫
t0

z−(τ, α) −m(z̃(τ)) dτ

t2∫
t0

z−(τ, α) −m(z̃(τ)) dτ

⎞⎠ dα.

Consider the first integral in this expression. Since the integral’s value is independent of the
integration variable, it can be written as

1

2

1∫
0

⎛⎝ t1∫
t0

z+(τ1, α) −m(z̃(τ1)) dτ1

⎞⎠⎛⎝ t2∫
t0

z+(τ2, α) −m(z̃(τ2)) dτ2

⎞⎠ dα

=
1

2

1∫
0

t1∫
t0

t2∫
t0

(
z+(τ1, α) −m(z̃(τ1))

) (
z+(τ2, α) −m(z̃(τ2))

)
dτ1 dτ2 dα.

The same line of reasoning applies to the indices with a minus sign. Thus,

Kg̃(t1, t2) =
1

2

1∫
0

⎛⎝ t1∫
t0

t2∫
t0

(
z+(τ1, α) −m(z̃(τ1))

) (
z+(τ2, α) −m(z̃(τ2))

)

+
(
z−(τ1, α) −m(z̃(τ1))

) (
z−(τ2, α) −m(z̃(τ2))

)
dτ1 dτ2

⎞⎠ dα.

Interchanging the order of integration finally gives the desired result.
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Consider now the derivatives of fuzzy functions. Different definitions are introduced in the
literature. A common one involves the concept of Hukuhara’s difference (H-difference) [9]. For sets

A and B, a set C is called their H-difference if A = B + C and is denoted by A
h−B.

A mapping z̃ : [t0, T ] → J is said to be differentiable at a point t ∈ [t0, T ] [7] if ∀α[0, 1] the multi-
valued mapping zα(t) is Hukuhara differentiable at the point t with the derivative DHzα(t) and
the family {DHzα(t) : α ∈ [0, 1]} defines a certain element z̃ ′(t) belonging to J . The element z̃ ′(t)
is called the fuzzy derivative of z̃(t) at the point t.

By definition, the fuzzy derivative z̃ ′(t) satisfies the relation

lim
Δt→0

ρ

(
1

Δt

(
z̃(t+ Δt)

h− z̃(t)

)
, z̃ ′(t)

)
= 0,

where the distance ρ is given by (3).

Proposition 4 [7]. Let a mapping z̃ : [t0, T ] → J be differentiable and its fuzzy derivative z̃ ′(t)
be integrable on [t0, T ]. Then

z̃(t) = z̃(t0) +

t∫
t0

z̃ ′(s)ds. (8)

Proposition 5 [11]. Let a fuzzy process z̃(t) be differentiable and zα(t) = [z−α (t), z+α (t)] be its
α-interval for any α ∈ [0, 1]. Then the functions z−α (t) and z+α (t) are differentiable with respect to t
and the α-interval of the derivative z̃ ′(t) has the form [z̃ ′(t)]α = [(z−α )′(t), (z+α )′(t)].

Proposition 5 shows the connection between the derivative introduced above and the Seikkala
derivative [8].

Theorem 6. Let z̃(t) be a differentiable fuzzy process with the integrable derivative z̃ ′(t). Then
the mean of its derivative coincides with the derivative of its mean: m(z̃ ′(t)) = d

dtm(z̃(t)).

Proof. Taking the mean of the left- and right-hand sides of formula (8) yields

m(z̃(t)) = m(z̃(t0)) +

t∫
t0

m(z̃ ′(s)) ds.

This equality is based on the additivity of means and Theorem 4. Let us differentiate its sides. In
view of the properties of the integral with a variable upper limit, we obtain d

dtm(z̃(t)) = m(z̃ ′(t)),
and the conclusion follows. The proof of Theorem 6 is complete.

Theorem 7. The derivative z̃ ′(t) of a differentiable fuzzy process z̃(t) has the correlation function

Kz̃ ′(t1, t2) =
∂2(Kz̃(t1, t2))

∂t1∂t2
.

Proof. Denoting z̃ ′(t) = w̃(t), we consider g̃(t) =
∫ t
t0
w̃(s) ds. Due to Theorem 5, the correlation

function Kg̃(t1, t2) is given by

Kg̃(t1, t2) =
1

2

1∫
0

⎛⎝ t1∫
t0

w+(τ1, α)dτ1 −m(w̃(τ1))

⎞⎠⎛⎝ t2∫
t0

w+(τ2, α)dτ2 −m(w̃(τ2))

⎞⎠ dα

+
1

2

1∫
0

⎛⎝ t1∫
t0

w−(τ1, α)dτ1 −m(w̃(τ1))

⎞⎠⎛⎝ t2∫
t0

w−(τ2, α)dτ2 −m(w̃(τ2))

⎞⎠ dα.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



940 KHATSKEVICH

Differentiating this equality, first with respect to t1 and then with respect to t2, yields

∂2Kg̃(t1, t2)

∂t1∂t2
=

1

2

1∫
0

(
w+(τ1, α) −m(w̃(τ1))

) (
w+(τ2, α) −m(w̃(τ2))

)
dα

+
1

2

1∫
0

(
w−(τ1, α) −m(w̃(τ1))

) (
w−(τ2, α) −m(w̃(τ2))

)
dα.

As a result,
∂2Kg̃(t1, t2)

∂t1∂t2
= Kw̃(t1, t2). (9)

Using formula (8) with z̃(t0) = ξ̃, we write

z̃(t) = ξ̃ +

t∫
t0

w̃(s) ds = ξ̃ + g̃(t).

Letting η̃(t) = ξ̃ + g̃(t) and calculating the correlation function of the sum of fuzzy processes,
we obtain

Kz̃(t1, t2) = Kη̃(t1, t2) = Kξ̃(t1, t2) +Kg̃(t1, t2) +Kξg(t1, t2) +Kξg(t2, t1).

By analogy, differentiating this equality, first with respect to t1 and then with respect to t2, yields
∂2Kz̃(t1,t2)
∂t1∂t2

=
∂2Kg̃(t1,t2)
∂t1∂t2

. The other terms on the right-hand side vanish since Kξ̃ is independent of
t1 and t2 by definition whereas Kξg(t1, t2) and Kξg(t2, t1) depend only on t2 and t1, respectively.
Considering formula (9), we finally arrive at the equality

∂2Kz̃(t1, t2)

∂t1∂t2
= Kw̃(t1, t2) = Kz̃ ′(t1, t2),

and the proof of Theorem 7 is complete.

5. TRANSFORMATION OF A CONTINUOUS FUZZY PROCESS
BY A LINEAR DYNAMIC SYSTEM

Consider some device A with continuous fuzzy signals ỹ(t) and z̃(t) at its input and output,
respectively.

Device A is called a linear dynamic system if the relationship between the input and output
signals is described by an nth-order differential equation with constant coefficients. With fuzzy
input ỹ(t) and output z̃(t) signals, the linear dynamic system is described by the fuzzy differential
equation

anz̃
(n)(t) + an−1z̃

(n−1)(t) + · · · + a1z̃
′(t) + a0z̃(t)

= bkỹ
(k)(t) + bk−1ỹ

(k−1)(t) + · · · + b1ỹ
′(t) + b0ỹ(t) ≡ f̃(t).

(10)

Here, the coefficients ai (i = 0, . . . , n) and bi (i = 0, . . . , k) are constant numbers, the second-
order derivatives of the fuzzy function are understood as z̃ ′′(t) = (z̃ ′(t))′ (and so on for higher-order
derivatives).

The next result characterizes the connection between the mean values of the input and output
fuzzy signals.
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Lemma 1. The mean value zmean(t) = m(z̃(t)) of the output fuzzy signal z̃(t) of the dynamic
system (10) satisfies the scalar differential equation

anx
(n) + an−1x

(n−1) + · · · + a1x
′ + a0x = f(t), (11)

where f stands for the mean of the right-hand side of (10): f(t) = mf̃(t).

Indeed, consider the mean of the left- and right-hand sides of equality (10). Using the additivity
and homogeneity of means as well as Theorem 6, we obtain

an(mz̃(t))(n) + an−1(mz̃(t))(n−1) + · · · + a1(mz̃(t))′ + a0mz̃(t)

= bk(mỹ(t))(k) + bk−1(mỹ(t))(k−1) + · · · + b1(mỹ(t))′ + b0(mỹ(t)) ≡ mf̃(t).

Then the scalar function zmean(t) = m(z̃(t)) satisfies equation (11).

Proposition 6 [16, Chapter II]. Let the roots of the characteristic equation anλ
n + an−1λ

n−1+
· · · + a1λ+ a0 = 0 contain no points on the imaginary axis. Then for any continuous function f(t)
bounded on the entire real axis, there exists a unique solution of equation (11) that is bounded on
the entire real axis. This solution has the form

x(t) =

∞∫
−∞

G(t− s)f(s) ds, (12)

where G(t) is the Green function of the problem on bounded solutions of equation (11).

Note that the Green function of the problem on bounded solutions of equation (11) is known;
for example, see [17, Chapter 1, § 8].

Remark 1. Assume that under the hypotheses of Proposition 6, all roots of the characteristic
equation belong to the left half-plane: (Reλi < 0, i = 1, . . . , n). Then the bounded solution of
equation (11) is asymptotically Lyapunov stable. In addition, the Green function of the problem
on bounded solutions of equation (11) has the form

G(t) =

{
k(t) for t � 0
0 for t < 0,

where k(t) is the Cauchy function of the homogeneous equation corresponding to (11).

Theorem 8. Let the input fuzzy process ỹ(t) be continuous and bounded on the entire real axis
together with its derivatives ỹi(t) (i = 1, 2, . . . , k). Let the roots of the characteristic equation
anλ

n + an−1λ
n−1 + · · · + a1λ+ a0 = 0 contain no points on the imaginary axis. Then the mean

value m(z̃(t)) at the output of the dynamic system (10) can be represented as

m(z̃(t)) =

∞∫
−∞

G(t− s)m(f̃(s)) ds, (13)

where G is the Green function of the problem on bounded solutions of equation (11).

Indeed, under the hypotheses of Theorem 8, the right-hand side of equation (11) is a bounded
function on the entire real axis. Then, according to Lemma 1, the function zmean(t) = m(z̃(t))
is the solution of equation (11) bounded on the entire real axis. Hence, Theorem 8 follows from
Proposition 6.

Note that the boundedness of the fuzzy signal ỹ(t) (in Theorem 8 and below) is understood as
the boundedness of all the corresponding α-indices y±α (t) in t ∀α ∈ [0, 1].
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Corollary 3. Assume that under the hypotheses of Theorem 8, the input signal is quasi-station-
ary: m(y(t)) = mỹ = const. Then the output signal is quasi-stationary as well, and its mean value
is m(z̃(t)) = mz̃ = b0

a0
mỹ.

Indeed, the arbitrary-order derivative of a constant is zero and, in this case, the right-hand side
of equation (11) is b0mỹ. Then mz̃ is the solution of the corresponding equation (11): a0mz̃ = b0mỹ.
Equation (11) has no other bounded solutions under the hypotheses of Theorem 8.

The same conclusion can be drawn for the mean value of the fuzzy input signal that stabilizes
over time, i.e., m(y(t)) → mỹ as t→ ∞.

In some cases, the indices of the output fuzzy signal of the dynamic system (10) can be written
explicitly.

Theorem 9. Assume that under the hypotheses of Theorem 8, all coefficients of the dynamic
system (10) are positive (ai > 0, i = 0, . . . , n). Then the indices of the output fuzzy signal z̃(t) of
the dynamic system (10) have the form

z−α (t) =

∞∫
−∞

G(t− s)f−α (s) ds, z+α (t) =

∞∫
−∞

G(t− s)f+α (s) ds, (14)

where f±α (s) are the indices of the function f̃(s).

Indeed, equality for fuzzy numbers means equality for all the corresponding α-intervals. Due to
the positivity of the coefficients ai and Theorem (6), by the rules of interval arithmetic, equation (10)
∀α ∈ [0, 1] implies

an(z−α )(n)(t) + an−1(z
−
α )(n−1)(t) + · · · + a1(z−α )′(t) + a0z

−
α (t) = f−α (t); (15)

by analogy, for the indices with a plus sign,

an(z+α )(n)(t) + an−1(z
+
α )(n−1)(t) + · · · + a1(z+α )′(t) + a0z

+
α (t) = f+α (t). (16)

According to (15) and (16), equalities (14) hold by Proposition 6.

Proposition 7. Assume that under the hypotheses of Theorem 9, the Green function G of prob-
lem (10) is nonnegative. Then the bounded fuzzy signal at the output of the dynamic system (10)
can be represented as

z̃(t) =

∞∫
−∞

G(t− s)f̃(s) ds. (17)

Indeed, by the definition of the integral of a fuzzy function, we have the index relations⎛⎝ ∞∫
−∞

G(t− s)f̃(s) ds

⎞⎠−
α

=

∞∫
−∞

G(t− s)f−α (s) ds,

⎛⎝ ∞∫
−∞

G(t− s)f̃(s) ds

⎞⎠+
α

=

∞∫
−∞

G(t− s)f̃+α (s) ds.

In view of (14), they imply the representation (17).

Theorem 10. Assume that under the hypotheses of Theorem 9, all roots of the characteristic
equation have negative real parts (Reλi < 0, i = 1, . . . , n). Then the output fuzzy signal z̃(t) of the
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dynamic system (10) has the correlation function

Kz̃(t1, t2) =

t1∫
−∞

t2∫
−∞

G(t1 − τ1)G(t2 − τ2)Kf̃ (τ1, τ2)dτ1dτ2, (18)

where Kf̃ (τ1, τ2) is the correlation function of the input signal f̃ =
∑n
i=1 biỹ

(i) and G is the Green
function of the problem on bounded solutions of equation (11).

Proof. Considering Remark 1, by definition (7) and formulas (13) and (14), we write

Kz̃(t1, t2) =
1

2

1∫
0

⎡⎣⎛⎝ t1∫
−∞

G(t1 − s)(f+α (s) −m(f̃(s)))ds

⎞⎠⎛⎝ t2∫
−∞

G(t2 − s)(f+α (s) −m(f̃(s)))ds

⎞⎠

+

⎛⎝ t1∫
−∞

G(t1 − s)(f−α (s) −m(f̃(s)))ds

⎞⎠⎛⎝ t2∫
−∞

G(t2 − s)(f−α (s) −m(f̃(s)))ds

⎞⎠⎤⎦ dα
=

1

2

1∫
0

t1∫
−∞

t2∫
−∞

G(t1 − τ1)G(t2 − τ2)
[
(f+α (τ1) −m(f̃(τ1)))(f

+
α (τ2) −m(f̃(τ2)))

+ (f−α (τ1) −m(f̃(τ1)))(f
−
α (τ2) −m(f̃(τ2)))

]
dτ1dτ2dα.

Interchanging the order of integration gives

Kz̃(t1, t2) =

t1∫
−∞

t2∫
−∞

G(t1 − τ1)G(t2 − τ2)

⎛⎝1

2

1∫
0

(f−α (τ1) −m(f̃(τ1)))(f
−
α (τ2) −m(f̃(τ2)))

+ (f+α (τ1) −m(f̃(τ1)))(f+α (τ2) −m(f̂(τ2)))dα

⎞⎠ dτ1dτ2,

directly leading to (18).

Note that the assumption Reλi < 0, i = 1, . . . , n, in Theorem 10 serves only for clarity when
comparing with Theorem 5. Without this assumption, formula (18) becomes

Kz̃(t1, t2) =

∞∫
−∞

∞∫
−∞

G(t1 − τ1)G(t2 − τ2)Kf̃ (τ1, τ2)dτ1dτ2.

Example 3. Consider a linear dynamic system described by the first-order differential equation
with constant coefficients

z̃ ′(t) + βz̃(t) = ỹ ′(t), β > 0.

Let a fuzzy signal ỹ ′(t) bounded on the entire real axis be supplied to the input of this system.
It is required to find the numerical characteristics of the bounded output fuzzy signal z̃(t).

Note that the Green function of the problem on bounded solutions of the scalar equation
x′ + βx = y(t) is represented as

G1(t) =

{
e−βt for t � 0

0 for t < 0.
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Then, according to Theorem 8, the mean value at the system output has the form

m(z̃(t)) =

t∫
−∞

e−β(t−s)m(ỹ ′(s))ds = e−βt
t∫

−∞
eβsm(ỹ(s))′ds.

Integrating by parts the right-hand side gives

m(z̃(t)) = m(ỹ(t)) − βe−βt
t∫

−∞
eβsm(ỹ(s))ds.

Using Theorem 10 and property 2 from Theorem 2, we write the correlation function at the
output as follows:

Kz̃(t1, t2) = e−β(t1+t2)
t1∫

−∞

t2∫
−∞

eβ(τ1+τ2)
∂2Kỹ(τ1, τ2)

∂τ1∂τ2
dτ1dτ2,

where Kỹ(τ1, τ2) is the correlation function of the input signal.

Example 4. Consider a linear dynamic system described by the second-order differential equation
with constant coefficients

z̃ ′′(t) + a1z̃
′(t) + a0z̃(t) = ỹ(t).

Let a continuous fuzzy signal ỹ (t) bounded on the entire real axis be supplied to the input of this
system. It is required to find the numerical characteristics of the bounded output fuzzy signal z̃(t).

Suppose that the coefficients of this equation satisfy the conditions a1, a0> 0 and a21 − 4a0 > 0.
Then the roots λ1 and λ2 of the characteristic equation λ2 + a1λ+ a0 = 0 are real and λ1 < λ2 < 0.
In this case, the Green function G2 of the problem on bounded solutions of the equation a2x

′′ +
a1x

′ + a0x = f(t) has the form

G2(t) =

{
(eλ2t − eλ1t)(λ2 − λ1)

−1 for t � 0

0 for t < 0.

Then, according to Theorems 8 and 10, the output fuzzy signal z̃(t) satisfies the relations

m(z̃(t)) =

t∫
−∞

G2(t− s)m(ỹ(s))ds,

Kz̃(t1, t2) =

t1∫
−∞

t2∫
−∞

G2(t1 − τ1)G2(t2 − τ2)Kỹ(τ1, τ2)dτ1dτ2.

Note that the Green functions G1 and G2 in Examples 3 and 4 are nonnegative. Hence, the
representation (17) holds in these examples.

Example 5. Consider a linear dynamic system described by the third-order differential equation
with constant coefficients

z̃ ′′′(t) + a2z̃
′′(t) + a1z̃

′′(t) + a0z̃(t) = ỹ(t).

Let a continuous fuzzy signal ỹ(t) bounded on the entire real axis be supplied to the input of this
system. It is required to find the numerical characteristics of the output fuzzy signal z̃(t).
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Suppose that a2 > 0, a1 > 0, a0 > 0, and a2a1 − a0 > 0. Then, by the Hurwitz criterion, the
equation λ3 + a2λ

2 + a1 + a0 = 0 has the roots with Reλi < 0 (i = 1, 2, 3). Therefore, according to
Theorems 8 and 10, the output fuzzy signal z̃(t) satisfies the relations

m(z̃(t)) =

t∫
−∞

G3(t− s)m(ỹ(s))ds,

Kz̃(t1, t2) =

t1∫
−∞

t2∫
−∞

G3(t1 − τ1)G3(t2 − τ2)Kỹ(τ1, τ2)dτ1dτ2.

Here, G3(t) is the Green function of the problem on bounded solutions of the equation

x′′′(t) + a2x
′′(t) + a1x

′(t) + a0x(t) = f(t),

which has the form G3(t) =

{
k(t) for t� 0
0 for t< 0,

where k(t) is the Cauchy function representing the

solution of the homogeneous equation

k′′′(t) + a2k
′′(t) + a1k

′(t) + a0k(t) = 0

with the initial conditions

k(0) = k′(0) = 0, k′′(0) = 1.

(For details, see [17, Chapter 2, § 8].)

For example, if the characteristic equation has different roots, the Cauchy function is given by

k(t) = C1e
λ1t + C2e

λ2t + C3e
λ3t,

where

C1 =
1

(λ1 − λ2)(λ1 − λ3)
, C2 =

1

(λ2 − λ3)(λ2 − λ1)
, C3 =

1

(λ3 − λ1)(λ3 − λ2)
.

6. CONCLUSIONS

The results of Sections 3 and 4 of this paper—the properties of numerical characteristics of fuzzy
processes—are similar to the well-known counterparts for continuous random processes. However,
despite their significance, they have not been established before.

The main results of this paper concern fuzzy dynamic systems described by nth-order linear
differential equations with bounded input fuzzy signals (Section 5). They are based on the new
properties of the mean and correlation functions of continuous fuzzy processes (Sections 3 and 4) as
well as on the development of the Green function method to the class of fuzzy differential equations.

The approach outlined here is an alternative to the conventional one used to study linear dynamic
systems with constant coefficients in terms of frequency response and direct and inverse Fourier
transform. Unlike the known approaches, it does not assume stationarity (in any sense) for the
processes under consideration. Note that this approach can be extended to continuous processes
with fuzzy random states.
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Abstract—The relationship between the averaging of functions over time and its averaging over
the set of values of the required variables is considered. Optimization problems are studied, the
criterion and constraints of which include the averaging of functions or functions of the average
values of variables. It is shown that the optimality conditions for these problems have the form
of the maximum principle, and their optimal solution in the time domain is a piecewise constant
function. A generalization of Carathéodory’s theorem on convex hulls of a function is proved.
Optimality conditions are obtained for non-linear programming problems with averaging over
a part of the variables and functions depending on the average values of the variables.

Keywords : averaged constraints, sliding modes, convex hulls of functions, reachability function,
maximum principle in averaged problems
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1. INTRODUCTION

For a wide class of problems, the optimality criterion and all or part of the constraints averagely
depend on all or part of the variables. Such problems arise when, in technological processes, some
variables to be selected must be unchanged (design parameters), while others may change over time,
and the presence of devices that smooth out fluctuations, e.g. capacitances, leads to the average
influence of these changes [1]. Such problems arise in the optimal control of macrosystems (systems
consisting of a set of individually uncontrollable elements), in which it is possible to control only the
average parameters of the set of these elements. All such problems are called averaged optimization
problems.

In systems, whose set of admissible controls is non-convex (e.g. relay systems), the optimal
solution is often a sliding mode, in which the change of the object state depends averagely on any
frequently switching control [2–5]. Averaged problems also arise as auxiliary estimation problems in
the optimization of cyclic modes, when the introduction of averaging expands the set of admissible
solutions and simplifies the solution, allowing to obtain an estimate of the efficiency of the cyclic
mode without finding the form of optimal cycles. The value of such an estimation problem is
known to be “not worse” than the value of the initial one, and its optimal solution contains useful
information about the nature of the optimal solution of the initial one. For definiteness, we will
consider problems for the maximum of the optimality criterion.

In the first section of this paper, we will discuss the relationship between the averaging of
functions whose argument varies in time over a set of values of that argument and over time,
and define what is sought as a solution to the averaged problem and how this solution can be
implemented. In the second section, we will formulate the theorem on the optimality conditions of
the non-linear programming problem with averaging of the optimality criterion and constraints and
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give its proof based on Carathéodory’s theorem on convex hulls of functions. In the third section,
we will consider possible generalizations of the proved theorem.

2. ON THE RELATIONSHIP BETWEEN TIME AVERAGING AND SET AVERAGING

The mean value of the continuous scalar function f(x(t)), t ∈ [0, τ ], x ∈ V ⊂ Rn can be calcu-
lated on time as

ft(x) =
1

τ

τ∫
0

f(x(t))dt (1)

or on set as

fp(x) =

∫
V

f(x)p(x)dx. (2)

The function p(x) is called the distribution density. When x(t) is a random function, p(x) is the
distribution density of the random variable. It is non-negative and its integral on V is equal to one.
In particular, the set V can be a parallelepiped in Rn. In our case, x(t) is a determined function,
so let us focus more on the properties of p(x) such that the results of averaging by formulas (1)
and (2) are the same.

Let us consider the variable x as scalar, the set V here and below as bounded and closed, and
introduce the function θ(x0), x0 ∈ V , equal to the total duration of those time intervals t, for
which x(t) � x0. It is obvious that this function does not exceed τ . Through P (x0), let us denote

the ratio θ(x0)
τ , i.e., the fraction of the interval [0, τ ], for which x(t) � x0. This function grows

monotonically as x0 increases, varying from zero to one. It is similar to the distribution function
of a random variable.

The distribution density is equal to

p(x0) =
dP (x0)

dx0
=

1

τ

dθ(x0)

dx0
=

1

τ

1∑
ν

∣∣∣dxνdt ∣∣∣xν=x0 . (3)

The interval θ increases as x0 increases for any sign of the derivative at those values xν of the
function x(t), in which it is equal to x0.

If at some value of x0 the function x(t) is constant over a fraction γ of the interval [0, τ ], then
the function P (x0) experiences a jump of magnitude γ at that point, and the distribution density
at that point is equal to γδ(x − x0).

Examples

1. Linear functions. Let x(t) = ht
τ . Then, according to formula (3), we get p(x) = 1

h = const.
The same distribution density corresponds to all triangles with base [0, τ ] and height h.

2. Piecewise constant functions. These functions take discrete values of xi, each within a
fraction γi of the interval [0, τ ]. Any such function, according to formula (3), corresponds to the
distribution density function (3)

p(x0) =
∑
i

γiδ(x− xi), γi > 0,
∑
i

γi = 1. (4)

The order, in which the piecewise constant function takes one or another of the possible values,
does not matter.

From these examples we see that every function x(t) corresponds to the distribution density
of its values p(x) defined on V , and every distribution density corresponds to any number of
functions x(t), for which fp(x) = ft(x). An exception is the distribution density of the form
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p(x) = δ(x− x1). In this case, the corresponding function is x(t) = x1 = const over the entire
interval [0, τ ], and it is unique.

Let us consider the case when the function f depends on several variables (e.g., for the sake of
simplicity, on two variables, x1(t) and x2(t)). In this case, the distribution function P (x0) of the
values of vector x represents the fraction of the interval [0, τ ], for which the two following inequalities
are satisfied: x1(t) � x01 and x2(t) � x02. This function grows monotonically with the growth of each
of the arguments. When the first of the components of the vector x0 is at the maximum (p1(x1) = 1),
it is equal to and its derivative is equal to the distribution density p(xmax

1 , x2) = p2(x2). Similarly,
when x2 = xmax

2 , p(xmax
2 , x1) = p1(x1). The functions x1(t) and x2(t) are independent of each other,

so p(x1, x2) = p1(x1)p2(x2).

The sought solution to the averaged optimization problem is the distribution density p∗(x) of
the vector x on the set V of its admissible values. To implement this solution over time, we need
to find one of the possible functions x(t) having the distribution p∗(x). The solution of this last
problem is greatly facilitated by the peculiarities of optimal solutions of p∗(x) proved in the next
section.

3. ON THE OPTIMAL SOLUTION OF AVERAGED OPTIMIZATION PROBLEMS

We will denote the averaging operation by a line drawn over the function or vector to be averaged.
Thus,

x =

∫
V

xp(x)dx, f(x) =

∫
V

f(x)p(x)dx.

The simplest problem of averaged optimization is the problem of maximizing the average value
of a scalar function f(x) at a given average value of its argument:

f(x) → max
/
x = x0, x ∈ V ⊂ Rn. (5)

Or in a more detailed form∫
V

f(x)p(x)dx→ max
/∫
V

xp(x)dx = x0, p(x) � 0,

∫
V

p(x)dx = 1. (6)

The sought function in this problem is p(x) (the distribution density of the vector of sought vari-
ables). This function is non-negative and its integral on the set V is equal to one.

4. CARATHÉODORY’S THEOREM ON CONVEX HULLS OF FUNCTIONS

Carathéodory’s theorem [3, 4, 6] on convex hulls of sets states that any element of a convex
hull CoD of a compact set D in Euclidean space of dimension n can be represented as an element
of a simplex having at most n+ 1 vertices (base points), each of which belongs to D.

In particular, a subgraph of function f(x) can be the set D. The convex hull of a function is the
convex hull of a subgraph. A function depending on n variables is the boundary of a set in Rn+1

space of dimension n. The basis points are known to lie on this boundary, and hence their number
does not exceed n+ 1. Below we will call Carathéodory’s theorem the theorem on convex hulls of
functions.

The ordinate of the convex hull of the function f0(x) at the point x0 belonging to the convex
hull of the set of the function definition is the value of the problem

f0(x) → max
p(x)

/ xi = xi0, i = 1, n,
x ∈ V ⊂ Rn,

(7)

where V is the compact space.
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According to Carathéodory’s theorem, the optimal solution of this problem is

p∗(x) =
n∑
j=0

γjδ(x− xj), γj � 0,
n∑
i=0

γj = 1.

That is, the optimal allocation is concentrated in at most (n + 1) base points.

This fact allows us to rewrite the problem (7) as a non-linear programming problem

n∑
j=0

γjf0(x
j) → max

n∑
j=0

γjx
j = x0,

xj ∈ V ⊂ Rm,
n∑
j=0

γj = 1, γj � 0,
(8)

whose variables are the basis vectors xj and the vector of weight coefficients γ, and use the Kuhn–
Tucker theorem [7] to solve it:

If y∗ is a solution to a non-linear programming problem

f(y) → max
/
ϕi(y) � 0, yj � 0, i = 1, . . . ,m, j = 1, . . . , n, (9)

then there is such a non-zero vector of multipliers

λ = λ0, . . . , λm (λ0 equal to 0 or 1, λi � 0 when i > 0),

that for the Lagrangian function

R = λ0f(y) +
m∑
i=1

λiϕi(y)

the following conditions are true:(
∂R

∂yj

)
y=y∗

= 0, if y∗j > 0;

(
∂R

∂yj

)
y=y∗

� 0, if y∗j = 0; (10)

λi = 0, if ϕi(y
∗) < 0; λi � 0, if ϕi(y

∗) = 0. (11)

For problem (8) the Lagrangian function takes the form

R =
n∑
j=0

γj

[
f0(x

j) +
n∑
i=1

λix
j
i − Λ

]
, (12)

where Λ is the Lagrange multiplier corresponding to the condition of equality of the sum of weight
coefficients to one.

Kuhn–Tucker conditions on weighting factors lead to requirements:

R0(xj, λ) = f0(x
j) +

n∑
i=1

λix
j
i < Λ, if γj = 0, (13)

R0(xj , λ) = f0(x
j) +

n∑
i=1

λix
j
i = Λ, if γj > 0, j = 0, . . . , n+ 1.

Here, R0 is the Lagrangian function of problem (8) without averaging. Hereafter such a problem
will be called the initial one.

Thus, for all base values of x included in the optimal solution of the convex hull problem of the
function f0 with non-zero weight, the Lagrangian function of the original problem is maximal. The
number of such points does not exceed n+ 1.
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5. PROBLEM WITH BOND AVERAGING,
GENERALIZATION OF CARATHÉODORY’S THEOREM

In the non-linear programming problem with averaging functions defining relations between variab-
les, it is required to maximize the average value of the function f0(x) on the set V of admissible val-
ues of x, provided that the average value of the vector function f(x) = (f1(x), . . . , fi(x), . . . , fm(x))
is equal to zero. Formally,

f0(x) → max
/
fi(x) = 0, i = 1, . . . ,m, x ∈ V ∈ Rn. (14)

Theorem 1. 1. The optimal distribution density in problem (14) has the form

p∗(x) =
m∑
j=0

γjδ(x− xj), γj � 0,
m∑
j=0

γj = 1. (15)

2. There is such a non-zero vector

λ = λ0, . . . , λi, . . . , λm, λ0 = (0; 1),

that, at each base point xj, the Lagrangian function of the original problem

R =
m∑
i=0

λifi(x) (16)

is maximal over x ∈ V .

Proof. To prove this statement, we will introduce the concept of the reachability function
of the problem (14):

f∗0 (C) = max f0(x)
/
fk(x) = Ck, k = 1, . . . ,m, x ∈ V. (17)

This function is defined algorithmically on the set

Vc = {C ∈ Rm : f(x) = C, x ∈ V ⊂ Rn} .
It may be non-smooth and semi-continuous on top.

The following statement is true.

Statement. For those values of x, for which f(x) = C, p∗(x) is deliberately equal to zero if
f0(x) 
= f∗0 (C).

Thus, only those values x = x∗(C), for which the value of f0(x) coincides with the ordinate of the
reachability function, can be included in the solution of the averaged problem with non-zero weight.
If this statement were not true, it would be possible to change the density of the distribution so
that the average value of f0(x) would increase.

Since for each C the value of f0 coincides with the ordinate of the reachability function, the
problem (14) can be rewritten as

f∗0 (C) → max
/
Ck = 0, k = 1, . . . ,m, C ∈ Vc ⊂ Rm. (18)

This is the problem on the ordinate of the convex hull of the reachability function at zero. According
to Carathéodory’s theorem, its optimal solution is equal to

p∗(C) =
m∑
j=0

γjδ(C − Cj), γj � 0,
m∑
j=0

γj = 1. (19)

Since each base value of Cj corresponds to the value of xj∗(Cj), the optimal distribution density
in problem (14) is of the form (15). The first statement of Theorem 1 is proved.
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Fig. 1. System consisting of a pump and a smoothing tank (a);
relation between flow rate and power input (b).

The proof of the second statement completely repeats the analogous proof for the problem on
the ordinate of the convex hull of a function with the difference that the Lagrangian function of
the non-averaged problem has the form (16). We emphasize that the number of base points does
not depend on the dimensionality of the vector x, but is determined by the dimensionality m of
the vector function f .

Note that here and below conditions in the form of the maximum principle do not require the
functions defining the averaged problem to be smooth on x, the set V can be non-contiguous [8–10].

Example 1. Let us consider the system consisting of an electric motor, a pump rotated by it
and a vessel in Fig. 1a. The motor consumes power n, on which depends the pump capacity g.
The dependence of g(n) is shown in Fig. 1b. It is required to find the mode for which, for a given
average power input n, the average pumping capacity g is maximized. This is the problem of the
ordinate of the convex hull of the function g(n) at the point n. The number of base points is
two, one of them is the origin of coordinates, and the second one, n1, is defined by the condition
that the Lagrangian function R = g(n) + λn reaches the maximum in it (the same as at n = 0).
Excluding λ from the conditions for the maximum of the Lagrangian function and the requirement
that this maximum be zero, we reach the equation for n1:

g(n)

n
=
dg(n)

dn
.

There are many optimal implementations of this solution over time, and for each of them the
pump power takes values zero and n1, and the fraction of the interval τ , for which n = n1, is equal
to 1 − n

n1 . The maximum value of the interval τ is determined by the value of capacitance G, it is
equal to

τmax =
2G

g(n1)
.

The value of the problem is equal to

g∗ = g(n1)

(
1 − n

n1

)
.

It does not depend on G, and the sliding mode is the optimal solution when the capacitance goes
down to zero.

6. GENERALIZATIONS OF THE AVERAGED NON-LINEAR PROGRAMMING PROBLEM

6.1. Averaged Problem with Deterministic Variables

As mentioned in the introduction, there can be two types of variables in averaged problems:
randomized and deterministic. There is no averaging for variables of the second type. Let us
consider a non-linear programming problem, in which some variables are not averaged.
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The problem with averaging over a part of variables will take the form:

f0(x, y) → max
/
fj(x, y) = 0, x ∈ V ⊂ Rn, y ∈ Vy ⊂ RK , j = 1, . . . ,m, (20)

functions f0, . . . , fm are continuous and continuously differentiable over the set of arguments, the
line corresponds to averaging over x ∈ V , the sets V and Vy are closed and bounded.

For any y, this problem is an averaged non-linear programming problem (14), and hence, due
to the theorem, the optimal distribution density x is concentrated in at most (m + 1) base points,
so that p∗(x) =

∑m
0 γjδ(x − xj) and there exists such a non-zero vector λ that, at each of these

points, the Lagrangian function of the original problem

R =
m∑
j=0

λjfj(x, y), x ∈ V ⊂ Rn, y ∈ Vy ⊂ RK (21)

is maximal on x.

The Lagrangian function of the problem (20), in which the distribution density x is equal
to p∗(x), has the form

R∗ =
m∑
j=0

λj

m∑
i=0

γifj(x
i, y), xi ∈ V ⊂ Rn, y ∈ Vy ⊂ RK . (22)

For any distribution density of randomized variables p(x), the problem (20) is a non-linear
programming problem and, according to Kuhn–Tucker theorem, there is such a non-zero vector λ
with components λ0 = (0; 1), λj, j = 1, . . . ,m, that the conditions of local non-improvability on y
are satisfied for the function (21) at the optimal solution

∂R∗

∂yl
δyl � 0, l = 1, . . . ,K. (23)

Here, δyl is the acceptable variation of yl.

The non-linear programming problem with averaging over a part of variables has much in com-
mon with the optimal control problem with links in the form of differential equations. There, the
control actions enter the problem in such a way that their fast changes are averaged in the neigh-
borhood of each time instant, which cannot be said about the phase coordinates. That is why the
conditions in the form of Pontryagin’s maximum principle are valid for the control actions.

6.2. Problem Containing Functions of Mean Values of Variables

This problem has the form

f0(x, xl) → max
/
fj(x, xl) = 0, x ∈ V ⊂ Rn, l = 1, . . . , K � n. (24)

Let us introduce the notation: yl = xl. The variable yl belongs to the convex hull CoVxl of the
set of admissible values xl. Given the introduced notations, the problem (24) can be rewritten as

f0(x, y) → max
/
fj(x, y) = 0, xl − yl = 0, x∈V ⊂Rn, yl ∈CoVxl ⊂RK . (25)

When written in this form, problem (25) differs from problem (20) only by additional averaged
conditions xl − yl = 0. The Lagrangian function of the original problem will take the form

R =
m∑
j=0

λjfj(x, y) +
K∑
l=1

λl(xl − yl), x ∈ V ⊂ Rn, yl ∈ CoVxl . (26)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



954 TSIRLIN

From the optimality conditions (21), (23) it follows that the maximum number of base values
of x in problem (24) is m+K + 1 and that there is such a non-zero vector λ that at each of the
base points the function R appearing in (26) reaches a maximum on the optimal solution on x,
while, on y, the function (22) is locally non-improvable.

When solving averaged problems, the Lagrange multipliers are expressed through the base values
xj and y from the condition of maximum of the Lagrangian function on x and equality of these
maxima to each other, as well as the conditions of non-improvability on y are written down. After
that, from the averaged conditions, the weight coefficients for each of the base points are found,
given that the sum of these weight coefficients is equal to one.

Example 2. As an illustrative example, let us consider the following problem

(x− x)2 → min
/( 1

x+ x

)
= 1, x = −1; 0; 1. (27)

The Lagrangian function for this problem is equal to

L = (x− y)2 + λ

(
1

x+ y − 1

)
+ μ(y − x). (28)

The number of averaged conditions is two, hence all three admissible values of x are basic, and the
uncertain multipliers must be chosen so that the maximum of the function L∗ is the same at these
points, which leads to the following conditions:

L∗ = (1 + y)2 + λ

(
1

y − 1
− 1

)
− μ(1 + y) = y2 + λ

(
1

y
− 1

)
− μy (29)

= (1 − y)2 + λ

(
1

y + 1
− 1

)
+ μ(1 − y).

Thus,

λ =
2y

2 + y
(1 − y − 2y2), μ =

y(2y − 1)

2 + y
. (30)

After substituting these expressions into L∗ and differentiating the resulting expression by y, we
come to the equation

3y3 + 17y2 + 20y − 10 = 0. (31)

To the second decimal place, y = 0.37. Weight multipliers γ1, γ2, γ3 for x = −1, x = 0, x = 1,
respectively, can now be found from the following conditions

3∑
i=1

γi = 1,
3∑
i=1

γixi = 0.37,
3∑
i=1

γi
1

xi + 0.37
= 1. (32)

Then we get γ1 = 0.155, γ2 = 0.320, γ3 = 0.525.

7. CONCLUSION

Various formulations of non-linear programming problems with averaging were considered. It is
shown that, with the introduction of the concept of reachability function of non-linear programming
problems, the problems containing averaging of functions from a vector of randomized variables x
can be reduced to extremal problems on convex hulls of sets and functions. The optimal distribution
in all these problems is centered in discrete “base” points of the compact set V of admissible values
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of x. The maximum principle for such problems is proved. It is shown that the number of base
points does not exceed the number of averaged conditions in the problem by more than one. The
criterion and constraints of averaged non-linear programming problems may depend on time. If
these dependencies are continuous, then the above optimality conditions are valid for each moment
of time and determine the time variation of the coordinates of the base points and their weights.
The vector of Lagrange indeterminate multipliers corresponding to the optimal solution delivers the
minimum to the maximum value of the maximized function with respect to the sought variables,
which serves as a basis for computational algorithms.
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Abstract—The problem of stochastic programming with a quantile criterion for a normal dis-
tribution is studied in the case of a loss function that is piecewise linear in random parameters
and convex in strategy. Using the confidence method, the original problem is approximated by
a deterministic minimax problem parameterized by the radius of a ball inscribed in a confidence
polyhedral set. The approximating problem is reduced to a convex programming problem. The
properties of the measure of the confidence set are investigated when the radius of the ball
changes. An algorithm is proposed for finding the radius of a ball that provides a guaranteeing
solution to the problem. A method for obtaining a lower estimate of the optimal value of the
criterion function is described. The theorems are proved on the convergence of the algorithm
with any predetermined probability and on the accuracy of the resulting solution.

Keywords : stochastic programming, quantile criterion, confidence method, quantile optimiza-
tion, guaranteeing solution
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1. INTRODUCTION

Stochastic programming problems with a quantile criterion are optimization problems in which
the minimum point of the quantile of the loss function is sought, depending on the optimization
strategy and random parameters. Similar problems arise when modeling technical and economic
systems, in which the requirements for the reliability of the decision being made play an important
role. The quantile function describes the level of loss that cannot be exceeded with a given fixed
probability, usually close to one. The monographs [1, 2] are devoted to problems of this class.

An effective way to solve the problem of minimizing the quantile function is the confidence
method [1, 2]. The essence of this method is that the original quantile optimization problem is
approximated by a minimax problem. In this problem, we first consider the maximum of the
objective function on a certain set of values of random parameters (confidence set) as a function of
the confidence set and the optimization strategy. Then, the minimum of the obtained maximum
function is searched for by the optimization strategy and the confidence set. The choice of the
optimal confidence set is not an easy task. However, with a properly chosen fixed confidence set,
one can obtain a fairly accurate upper estimation of the quantile function. In particular, it is
shown [2], that for a Gaussian distribution of random factors, the choice of a confidence set in
the form of a ball for large values of the reliability level ensures high accuracy of the resulting
estimate. This article discusses the loss functions that are presented as the maximum of a finite
number of linear (with respect to random parameters) functions. For this class of loss functions,
the optimal confidence set is a polyhedron. In this regard, the estimate on the ball can be improved
by performing an additional optimization over the class of confidence sets in the form of polyhedra,
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parametrized by the radius of the inscribed ball. This idea was implemented for the Gaussian
distribution in [3]. In [4], this algorithm was extended to the case of an arbitrary distribution of
random factors, and an algorithm was proposed for further improving the guaranteeing solution by
moving the faces of a convex polyhedral confidence set while maintaining its probability measure.
It should be noted that in [3, 4] the loss function was assumed to be linear in the optimization
strategy. This allowed the approximating minimax problem to be reduced to a linear programming
problem.

A feature of the approximating problem obtained by using the algorithms [3, 4] is the fact that
in the case of a Gaussian distribution, it can be used to obtain not only the upper, but also the
lower estimate of the optimal value of the quantile function. To do this, in the approximating
problem, instead of the confidence set, take the kernel of the probability measure [2], which, in the
case of a standard Gaussian distribution, is a ball of radius calculated as a quantile of the standard
normal distribution of the same level as the quantile function. It should be noted that the kernel
of a probability measure is not a confidence set.

Of special interest is the case of a loss function that is linear in random parameters. In [1] it is
proved that, under the condition of regularity of the kernel, the quantile function can be calculated
as a maximum by random parameters of the loss function on the core. Later, the regularity
conditions for the kernel were loosen in [5]. The said kernel property was used in [6] to construct
an algorithm for solving a stochastic programming problem with a quantile criterion and a bilinear
loss function, as well as in [7] for approximating probabilistic constraints.

Stochastic programming problems with a quantile criterion are a special case of problems with
probabilistic constraints [8, 9]. The review of methods for solving problems with probabilistic
constraints can be found in [10]. In particular, we should note the approach based on the use of
p-efficient points [11, 12]. However, problems with a quantile criterion have a number of properties
that are not characteristic of problems with arbitrary probabilistic constraints, which makes it
possible to use special methods of analysis, in particular, the confidence method. Problems with a
quantile criterion and additional probabilistic constraints were studied in detail in [1].

This article considers a stochastic programming problem with a loss function that is piecewise
linear in random parameters and convex in terms of the optimization strategy, which makes it
possible to approximate the problem under study by a convex programming problem. For this
problem, an algorithm is developed based on the ideas of constructing algorithms in [3, 4] for
piecewise linear problems. Estimates are given for the accuracy of the proposed algorithm.

2. FORMULATION OF THE PROBLEM

Let X be the random vector (column) with realizations x∈R
m, given on the probability space

(Ω,F ,P). It is assumed that the distribution X is standard normal. We assume that the loss
function Φ is piecewise linear in random parameters:

Φ(u, x) � max
i=1,k1

{B1i(u)x+ b1i(u)}.

The constraints in the problem are described by the function

Q(u, x) � max
j=1,k2

{B2j(u)x+ b2j(u)},

where u∈U ⊂ R
n is the strategy; B1i(u), B2j(u) are rows of matrices B1(u), B2(u) respectively,

b1j(u), i = 1, k1, and b2j(u), j = 1, k2, are elements of vectors (columns) b1(u) and b2(u) respectively.
This article assumes that the functions u �→ B1(u), u �→ B2(u) are linear (i.e., Bl(u) = Dlu+ al,
where Dl is a matrix, al is a vector, l∈{1, 2}), and functions u �→ b1(u), u �→ b2(u) are convex and
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continuous on a convex closed set U . Note that the linear transformation of the random vector X
does not change the structure of the functions Φ and Q. Moreover, any normal vector can be
obtained by a linear transformation of the vector X of suitable dimension. For these reasons, the
case of an arbitrary normal distribution of the vector X reduces to the case under consideration.

Define the probability function as

Pϕ(u) � P{Φ(u,X) � ϕ, Q(u,X) � 0},
where ϕ∈R is a given value of the loss function, and the quantile function as

Φα(u) � min {ϕ | Pϕ(u) � α}, α∈ (0, P ∗),

where
P ∗ � sup

u∈U
P{Q(u,X) � 0}.

The article considers the problem of quantile optimization

Uα � Arg min
u∈U

Φα(u). (1)

Since the functions Φ and Q are continuous and measurable, according to the result of [13, Theo-
rem 6], which is a generalization of a similar result in [1], the function u �→ Φα(u) is lower semicon-
tinuous. Therefore, a solution to the problem (1) exists if the set U is compact. Let us determine
the optimal value of the criterion function as

ϕα � Φα(uα),

where uα ∈Uα. In what follows, we will assume that a solution to the problem (1) exists. In this
case, the boundedness of the set U , generally speaking, is not required.

3. CONSTRUCTION OF SOLUTION ESTIMATES

According to the confidence method, [1] the problem (1) is equivalent to

ϕα = min
S ∈Eα,u∈U

{
sup
x∈S

Φ(u, x) | sup
x∈S

Q(u, x) � 0

}
, (2)

where Eα is the family of all confidence sets S⊂R
m of level α, i.e. Borel sets such that P{X ∈S}� α.

Denote by Br the ball of radius r:

Br � {x∈R
m | ‖x‖ � r},

where ‖x‖ �
√
x
x is the Euclidean norm of the vector x.

Let us consider a problem similar to the problem (2), in which the set S = Br is fixed:

ψ(r) � min
u∈U

{
max
x∈Br

Φ(u, x) | max
x∈Br

Q(u, x) � 0

}
. (3)

We will assume that the minimum in u in problem (3) is reached, which is true, for example, in the
case of compact set U . In the problem (3) the supremum is replaced by the maximum, because

max
x∈Br

Φ(u, x) = max
x∈Br

max
i=1,k1

{B1i(u)x+ b1i(u)}

= max
i=1,k1

max
x∈Br

{B1i(u)x+ b1i(u)} = max
i=1,k1

{b1i(u) + ‖B1i(u)‖r}.
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In a similar way is max
x∈Br

Q(u, x). Thus, the problem (3) can be rewritten as

ψ(r) = min
u∈U

{
max
i=1,k1

{b1i(u) + ‖B1i(u)‖r} | max
j=1,k2

{b2j(u) + ‖B2j(u)‖r} � 0

}
. (4)

If the constraints of this problem are inconsistent, we will assume that ψ(r) = +∞. From the
monotonic nondecreasing of the objective function and the narrowing of the set of admissible
strategies as r increases it follows that the function ψ is non-decreasing. Problem (4) is equivalent
to the convex programming problem

ϕ→ min
u∈U, ϕ∈R

(5)

under constraints

b1i(u) + ‖B1i(u)‖r � ϕ, i = 1, k1,

b2j(u) + ‖B2j(u)‖r � 0, j = 1, k2.

Equivalence is understood here in the sense that the optimal value of the variable ϕ coincides
with ψ(r), and the sets of admissible values u coincide. The total number of constraints in this
problem will be denoted by k = k1 + k2. Problem (5) can be solved with high accuracy using convex
optimization methods [14].

Let Rα be the ball of probabilistic measure α, i.e. the solution of the equation

P{X ∈BRα} = α.

Let us fix in the problem (2) a confidence set S in the form of a ball BRα . Thus, an upper
estimate of the quantile function can be found.

To search for a lower estimate, the kernel of the probability measure can be used, defined as the
intersection of all closed half-spaces A such that P{X ∈A} = α. It is known that for α > 1

2 the
kernel of the distribution of the standard normal Gaussian vector is a ρα-radius ball centered at
zero, where ρα is the quantile of the standard normal distribution of the α level. In [1, Section 3.4.3,
Corollary 2] it is shown that ψ(ρα) � ϕα, when X distributed normally.

Thus, we have obtained the estimate

ψ(ρα) � ϕα � ψ(Rα). (6)

The upper estimate for ψ(Rα) can be improved. Let (u(r), ψ(r)) be some solution to the prob-
lem (5). Let us define the set

Cr �
{
x∈R

m | Φ(u(r), x) � ψ(r), Q(u(r), x) � 0
}

=
{
x∈R

m | B1i(u(r))x+ b1i(u(r)) � ψ(r), B2j(u(r))x+ b2j(u(r)) � 0, i = 1, k1, j = 1, k2
}
.

(7)

We introduce the notation h(r) � P{X ∈Cr} for the probability measure of the set Cr. Note that
h(r) and Cr depend on the choice of u(r). Therefore, in what follows, the choice of u(r) is assumed
to be fixed.

Because
max
x∈Br

Φ(u(r), x) = ψ(r), max
x∈Br

Q(u(r), x) � 0, (8)

the inclusion Br ⊂ Cr is valid. Besides,

max
x∈Br

Φ(u(r), x) = max
x∈Cr

Φ(u(r), x), max
x∈Cr

Q(u(r), x) � 0. (9)

It follows from (8) and (9) that if h(r) � α, then Cr is a confidence set and ψ(r) � ϕα.
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Dependency graph for h(r) = P{X ∈Cr} of r.

It follows from the monotonicity of ψ that the upper bound for the quantile function can be
improved by finding r close to r∗ � inf{r | h(r) � α}, such that h(r) � α. If the function r �→ h(r)
is monotonic, then the dichotomy method can be used to find r∗ . Unfortunately, the function h
can be non-monotone, as the following example demonstrates.

Example 1. Let the loss function be

Φ(u, x) = max{u+ 4x,−u+ 2x+ 2,−11u − 4x},
u∈R, x is a realization of a random variable X ∼ N (0, σ2), σ2 = 1

9 .

It is easy to check that the problem (5) has a solution

u(r) = 1 − r, ψ(r) = 1 + 3r if r∈ [0, 1];

u(r) = 0, ψ(r) = 4r if r∈ [1,+∞).

Therefore,

Cr = {x | Φ(u(r), x) � ψ(r)} =

{
[−3 + 2r, r], if r∈ [0, 1],

[−r, r], if r∈ [1,+∞).

Let us calculate the measure of the set Cr if r∈ [0, 1]:

h(r) = P{X ∈Cr} =

r∫
−3+2r

3√
2π
e−

3x2

2 dx.

Let us calculate the derivative of the obtained function:

dh

dr
(r) =

3√
2π
e−

3r2

2 − 2
3√
2π
e−

3(2r−3)2

2 .

Let us calculate the left-hand limit

lim
r→1−

dh

dr
(r) = − 3√

2π
e−

3
2 < 0.

This means that on some interval (1 − ε, 1), where ε > 0, function h is decreasing. Moreover,
h(1) ≈ 0.9973. The dependence graph for h(r) is shown in the figure.
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Table 1. Dependence of Rα on m

α \m 1 2 3 4 5 6 7 8 9 10 50

0.95 1.96 2.45 2.80 3.08 3.32 3.55 3.75 3.94 4.11 4.28 8.22

0.99 2.58 3.03 3.37 3.64 3.88 4.10 4.30 4.48 4.65 4.82 8.73

Table 2. Dependence of ρβ on k

α \ k 1 2 3 4 5 6 7 8 9 10 50

0.95 1.64 1.96 2.13 2.24 2.33 2.39 2.45 2.50 2.54 2.58 3.09

0.99 2.33 2.58 2.71 2.81 2.88 2.93 2.98 3.02 3.06 3.09 3.54

As can be seen from the example above, the function h may turn out to be nonmonotone. In
this connection, we propose sufficient conditions that ensure the monotonicity of the function h.

Theorem 1. Let U = R
n and the conditions are fulfilled:

1) b1i(u) = A1iu+ c1i, A1i are the rows of the matrix A1, b2j(u) = A2ju+ c2j , A2j are the rows
of the matrix A2, matrices B1(u) and B2(u) do not depend on u;

2) the rows of the block matrix (
A1 ek1
A2 0k2

)

are linearly independent, where ek1, 0k2 are the columns of ones and zeros respectively (if Q(u, x)≡ 0,
then there are no rows corresponding to A2 in the above matrix );

3) for some r = R the solution to the problem (5) exists.

Then the function h is non-decreasing on the interval [0, R].

The proof of the 1 and all subsequent theorems are in the Appendix.

Note that in Theorem 1 the set U is not compact. Unfortunately, it is difficult to propose more
general conditions for the monotonicity of the function h since the monotonicity measures can only
be guaranteed under the assumption that the set Cr expands as r increases. However, only the
distance from the origin of the faces touching the ball Br can be guaranteed. The remaining faces
can both move away and approach the origin of coordinates.

In connection with the nonmonotonicity of the function h it is necessary to indicate as accurately
as possible the interval in which it is necessary to look for r∗. For this we get the following result.

Theorem 2. Let k = k1 + k2. The inequality h(r) � α holds if r � ρβ and the set Cr is defined,
where ρβ is the quantile of standard normal distribution of the level β = 1 − 1−α

k .

From the Theorem 2 and the inequality (6) it follows that

ψ(ρα) � ϕα � min{ψ(Rα), ψ(ρβ)} = ψ (min{Rα, ρβ}) . (10)

It follows from the definition of a confidence ball that Rα =
√
χ2
α(m), where χ2

α(m) is the chi-square
distribution quantile with m degrees of freedom. In contrast to Rα the value of ρβ does not depend
on the dimension of the random vector, but depends only on the number of constraints k. It is
known [2], that Rα − ρα → 0 for α→ 1, but the rate of convergence depends on dimension n. It is
easy to see that ρβ → +∞ for k → 1. However, it turns out that for small values k the inequality
ρβ < Rα can be satisfied. The dependence of Rα on m is given in Table 1, and the dependence of
ρβ on k is given in Table 2. The levels α = 0.95 and α = 0.99 are considered. Let, for example,
m = 8, α = 0.95. Then Rα = 3.94, and ρβ < Rα even for k = 50.

Note that for k = 1 we have the equality ρβ = ρα. Therefore, ϕα = ψ(ρα), and the optimal
strategy uα can be found from problem (5) for r = ρα, which agrees with the known result [5].
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4. ALGORITHM FOR SEARCHING FOR A GUARANTEEING SOLUTION

A strategy u∈U , satisfying the relation ϕα(u)�ψ (min{Rα, ρβ}), will be called a guaranteeing
solution. Thus, a guaranteeing solution can be found from the problem (5) for r = R̄α, where
R̄α � min{Rα, ρβ}. Denote this guaranteeing solution by u0. In this section, we propose an algo-
rithm for improving the guaranteeing solution u0, i.e. providing a smaller value of the criterion
function ϕα(u) than ϕα(u0).

As noted in the previous section, the dichotomy method can be used to find the radius of
the ball r∗, inscribed in the confidence polyhedron Cr. In this case, the following difficulties
arise: first, the continuity and monotonicity of h(r) = P{X ∈Cr} is not guaranteed in the general
case, secondly, the calculation of the probability of X falling into the polyhedron Cr requires
the use of approximate methods. Nevertheless, we will use the dichotomy method to find an
improved guaranteeing solution. Due to the fact that h(r) will be calculated approximately using
the Monte Carlo procedure, we will look for a value of r, such that h(r) � α+ ε, where ε is a
small positive constant (ε < 1 − α). Approximate calculation of the measure can lead to the fact
that an unacceptable solution of the problem will be found, therefore it is necessary to specify the
probability p of finding an acceptable solution. Since the quantile setting implies finding a solution
that guarantees a given level of objective function value with a probability α, it is recommended
to choose p � α.

Algorithm 1.

1. Set algorithm parameters ε∈ (0, 1 − α) (accuracy parameter for measure calculation), δ > 0
(accuracy parameter for radius calculation) and p∈ [α, 1) (probability of finding an acceptable
solution).

2. Calculate ρα being the α level quantile of the standard normal distribution and R̄α �
min{Rα, ρβ}, where Rα =

√
χ2
α(m), χ2

α(m) being chi-square distribution quantile with m degrees
of freedom, β = 1 − 1−α

k .

3. Calculate sample size

N =

⌈
ln(1/(1 − K

√
p))

2ε2

⌉
,

where K =

⌈
log2

|R̄α − ρα|
δ

⌉
, �a� is the rounding of a up to the nearest integer.

4. Set r1 := ρα, r2 := R̄α.

5. Find the lower estimate for the solution ψ(r1) and the upper estimate ψ(r2) of the optimal
value of the criterion function, as well as the initial guaranteeing solution u(r2), by solving the
problem (5) for r = r1 and r = r2.

6. While |r1 − r2| > δ repeat the following steps:

6.1. Assign r := r1+r2
2 .

6.2. Calculate u(r) and ψ(r), by solving the problem (5).

6.3. Simulate N independent realizations of a random vector X.

6.4. Calculate μ(r) � P{X ∈Br} = Fχ2(m)(r
2), where Fχ2(m)(r

2) is the value of the distribution
function of the chi-square law with m degrees of freedom at point r2.

6.5. Find ĥ(r) being an estimate of the measure of the set Cr, defined by the formula (7):

ĥ(r) = μ(r) +
s(r)

N
,

where s(r) is the number of sample elements included in the set Cr \Br.
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6.6. If ĥ(r) � α+ ε, then r2 := r. Otherwise r1 := r.

7. As a guaranteeing solution, take u(r2).

Note that to improve the accuracy of the algorithm, one can use not the dichotomy method, but
divide the segment of the search for a solution into several equal parts. In this case, at step 6.1 of
the algorithm, it will be necessary to take several values of r in the segment [r1, r2]. It should also
be noted that in the case of a nonmonotonic dependence of r �→ h(r) the algorithm may not find
the root of the equation h(r) = α+ ε, but some guaranteeing solution will be found.

Let us formulate a theorem on the convergence of the algorithm.

Theorem 3. Let the problem (5) have a solution for r∈ [ρα, R̄α]. Then application of the algo-
rithm ensures finding a guaranteeing solution with a probability not less than p.

The following theorem characterizes the accuracy of the solution found using the proposed
algorithm 1. This result is a refinement of [2, Theorem 3.13] for optimization problems of the class
under consideration.

Theorem 4. Let the function ψ be defined and takes finite values on the segment [ρ,R], and let
the loss function be Lipschitz with constant L, i.e.

|Φ(u, x) − Φ(u, y)| � L‖x− y‖.

Also suppose that
max
j=1,k2

{b2j(u(ρ)) + ‖B2j(u(ρ))‖R} � 0. (11)

Then 0 � ψ(R) − ψ(ρ) � (R− ρ)L.

This inequality indicates the closeness of the found upper estimate of the criterion function to
its optimal value. Theorem 4 gives an estimate of the bounds in these inequalities, which can be
obtained even before applying the Algorithm 1. According to this estimation

0 � ψ(R̄α) − ψ(ρα) � L|R̄α − ρα|,

if the conditions of Theorem 4 are satisfied. Note that these conditions are satisfied for a Lipschitz
loss function, for example, for Q(u, x) ≡ 0.

5. NUMERICAL EXPERIMENT

Example 2. Let us find a guaranteeing solution to the problem (1) for

Φ(u, x) = max
{
u1 + 3u3 + 2u5 + x1 + 2x3 + 4,

−u1 + 2u2 − u3 + 3u4 + 2u5 + 2x1 − x2 + 2x3,

2u1 + u2 + 2u3 − 2u4 − u5 + 3x1 + x2 + 2x3 + 2,

3u1 − 2u2 + u3 + 3u4 − 3u5 − 2x1 + 3x2 − 3x3 + 5,

0.1u21 − 0.02u1u2 − 0.03u1u3 + 0.2u22 + 0.05u23 + 0.3u24 +

+ 0.1u25 − 0.2u1 − 0.3u2 − 0.1u3 − 0.2u5 − 3x1 − 2x2 + x3 + 6
}
,

Q(u, x) = 3u2 + u1 + 4u3 − 2u5 − x1 − 3x2 − 4x3 − 10,

U =
{
u∈R

5 | ui ∈ [0; 10], i = 1, 5
}
, α = 0.95. For this level α, ρα = 1.645, Rα = 2.796, β = 0.992,

ρβ = 2.394, R̄α = 2.394. Therefore, the function h must be considered on the segment [1.645; 2.394].
Solving problem (5) for r = ρα and r = R̄α, find an estimate

ϕα ∈ [ψ(ρα), ψ(R̄α)] = [11.813; 14.754].
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Table 3. Application of the Algorithm 1

Iteration r ĥ(r) ψ(r)

1 2.019 0.949 13.267

2 2.207 0.970 14.007

3 2.113 0.961 13.635

4 2.066 0.956 13.451

5 2.043 0.952 13.359

6 2.031 0.950 13.313

7 2.037 0.9507 13.336

The initial guaranteeing solution has the form

u(R̄α) = (0.139; 0.602; 0.000; 0.004; 1.613)
 .

Let us set the algorithm parameters: ε = 0.001, δ = 0.01, p = 0.99. These parameters require
a sample size of N = 3 273 389. The application of Algorithm 1 is shown in Table 3. Improved
guaranteeing solution complies with r = r∗ � 2.043 and it has the form

u(r∗) = (0.536; 0.688; 0.000; 0.003; 1.356)
 .

At the same time

ϕα ∈ [ψ(ρα), ψ(r∗)] = [11.813; 13.359].

Thus, the use of Algorithm 1 made it possible to reduce the length of the uncertainty interval of
the optimal value of the criterion function on (1 − 13.359−11.813

14.754−11.813 )100% = 47%, which indicates the
efficiency of the proposed algorithm.

All calculations were carried out on a computer with Intel(R) Core(TM) i5-6300U CPU,
2.40 GHz, RAM 8 GB RAM in Matlab system using program for solving quadratic Gurobi opti-
mization problems. The counting time was 1035 s. The bulk of the calculation was the calculation
of the measure of the polyhedron Cr using the Monte Carlo method.

6. CONCLUSION

The paper proposes an algorithm for solving a stochastic programming problem with a quantile
criterion in the case of a loss function that is piecewise linear in random parameters and convex
in strategy. The advantage of the proposed algorithm is the ease of constructing approximating
problems, which can later be solved using convex optimization methods. The main computational
difficulty in its application is the need to estimate the measure using the Monte Carlo method. The
proposed algorithm for choosing a confidence set parameterized by the radius of the inscribed ball,
as the example showed, can be successfully applied to solve stochastic optimization problems with
a quantile criterion in the case of a convex piecewise quadratic linear loss function. It can be seen
that this algorithm can also be applied to the case of discrete optimization strategies. The form of
Algorithm 1 will not change, but in the course of applying the algorithm, it will be necessary to solve
not a convex continuous optimization problem, but a discrete optimization problem. Algorithms
for solving such problems may be the subject of further research.
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APPENDIX

Proof of Theorem 1. Conditions 2 and 3 ensure that all constraints in the problem (5) are active.
This means that all faces of the set Cr touch the ball Br. As r increases on the segment [0, R] the
faces of the set Cr are transferred in parallel, touching the ball Br. This means that the set Cr
expands as r increases. Therefore, the function h, defined as the measure Cr, is non-decreasing.
Theorem 1 is proved.

Proof of Theorem 2. Let γ ∈ (0, 1). The set Cργ is defined as the intersection of k half-planes of
measure no less than γ. Denote these half-planes by Li, i = 1, k. Then

h(ργ) = P

{
X ∈

k⋂
i=1

Li

}
= 1 −P

{
X ∈

k⋃
i=1

(Rm \ Li)
}

� 1 −
k∑
i=1

P{X /∈ Li} = 1 − (1 − γ)k.

Thus, h(ργ) � α for α � 1 − (1 − γ)k, which is equivalent to γ � β = 1 − 1−α
k . Theorem 2 is proved.

Proof of Theorem 3. Since at each iteration the segment of the search for a solution narrows two
times, the number of iterations K of the algorithm can be found as the minimum natural number
K, that satisfies the inequality

|R̄α − ρα|
2K

� δ.

It follows from this inequality that K =
⌈
log2

|R̄α−ρα|
δ

⌉
. The algorithm can make an error in its

work only if at some iteration it turns out that ĥ(r) � α+ ε, although in fact h(r) < α. It is easy
to see that the random variable s(r) is distributed according to the binomial law with the success
probability h(r) − μ(r). The inequality is known [15, ch. 1, § 6]:

P{ĥ(r) − h(r) � ε} = P

{
s(r)

N
− (h(r) − μ(r)) � ε

}
� e−2Nε2 .

Therefore, if we assume that h(r) < α, then P{ĥ(r) � α+ ε} � e−2Nε2 . Since the samples used
to evaluate the measure are independent, the probability that the algorithm will work correctly
is at least (1 − e−2Nε2)K . Hence it follows that in order to ensure the probability p of successful
operation of Algorithm he inequality

p � (1 − e−2Nε2)K ⇐⇒ N � ln(1/(1 − K
√
p))

2ε2
.

must be satisfied.

Theorem 3 is proved.

Proof of Theorem 4. Let Ψ(u, r) � maxx∈Br Φ(u, x) = Φ(u, x0(r)), where x0 is the point on the
boundary of the ball Br, where the specified maximum is reached. SinceBρ ⊂BR, Ψ(u, ρ) � Ψ(u,R)
holds. Since the point y = ρ

Rx
0(R) lies on the boundary of the ball Bρ, Φ(u, y) � Ψ(u, ρ). That’s

why

0 � Ψ(u,R) − Ψ(u, ρ) � Φ(u, x0(R)) − Φ(u, y) � L‖x0(R) − y‖ = (R − ρ)L.

Thus, the inequalities

Ψ(u, ρ) � Ψ(u,R) � Ψ(u, ρ) + (R− ρ)L (A.1)

are true. Minimizing the left and right parts of the first inequality in (A.1) with respect to u∈U
so that maxj=1,k2

{b2j(u) + ‖B2j(u)‖R} � 0 (constraints of the problem (4) for r = R), we obtain
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the first inequality to be proved ψ(ρ) � ψ(R) (here we take into account that ψ(ρ) is defined at
least on a wider set). From (11) and the second inequality in (A.1) it follows that

ψ(R) � Ψ(u(ρ), R) � Ψ(u(ρ), ρ) + (R− ρ)L = ψ(ρ) + (R− ρ)L.

This estimate implies the second inequality to be proved. Theorem 4 is proved.
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1. INTRODUCTION

In the theory of optimization of dynamical systems an important place is given to the control
problems of objects functioning under conditions of parametric uncertainty or undesirable influence
of external disturbances. The simplest models of such systems in the stochastic section of the
theory are linear, called multiplicative, Ito equations, the diffusion components of which are linear
on vectors of state, control and external or parametric perturbation. Multiplicative equations are
simple enough mathematical objects, and it is hoped to obtain in closed analytic form their solutions
or integral representations for them.

Consider a stochastic Ito system (1.1), (1.2), whose dynamics is given by the multiplicative
Markov equation

dxt = a(t, xt)dt + b(t)(xt; dw(t)), xt ∈ Rd, w(t) ∈ Rr, x0 = const (1.1)

(coefficients depend on t), driving force is determined by a random function f with a differential

df(t) = (B1(t)ut +B2(t)υt)dt +B01(t)utdw1(t) +B02(t)υtdw2(t), (1.2)

where ut and υt are vector signals of control and external perturbation respectively; w(t) with
or without indices denotes the vector Wiener process. Equation (1.1) is assumed to be linear in
the state vector xt such that a(t, x) = A(t)x, where A(t)∈Rd×d is the matrix d× d at each t, the
diffusion component is defined by the function b(t)(· ; ·) of two variables (x, h) ∈ Rd ×Rr taking
values in Rd, and the mappingRd ×Rr → Rd is bilinear. The operator B(t)h defined by the relation
(B(t)h)x = b(t)(x;h) is linear Rd → Rd at fixed h. All matrix functions in (1.1), (1.2) are assumed
to be continuous on each finite interval of values of the parameter t. The system (1.1), (1.2) is called
below (x, u, υ)-multiplicative; in particular, the system (1.1)—(x)-multiplicative. Multiplicative
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models of the type (1.1), (1.2) are used, in particular, in the theory of H2/H∞—optimization of
stochastic systems [1].

The purpose of the paper is to obtain in integral form the solution of the linear (x, u, υ)-
multiplicative equation or the stochastic analog of its fundamental matrix. Let’s make it clear
what kind of fundamental matrix and which solution in integral form is talking about. The solu-
tion in the deterministic case of the linear differential equation ẋ = A(t)x+B(t) has the following
form

x(t) = R(t, t0)x0 +

t∫
t0

R(t, τ)B(τ)dτ, (1.3)

where R(t, t0) is the resolvent (or fundamental matrix) of the homogeneous at B = 0 equation
[2, p. 144]. The function R(t, t0)x0 is a general solution of the homogeneous equation taking the

value x0 at t = t0, and the integral in (1.3) is the solution of the perturbed equation going to zero at
t = t0. The fundamental matrix of equation (1.1) in the stochastic case is a matrix random function
Φ(t, τ), and the general solution of the perturbed equation, following the analogy with (1.3), should
be given by the formula

x(t) = Φ(t, t0)x0 +

t∫
t0

Φ(t, τ) ◦ df(τ), (1.4)

where integral is stochastic; ◦ df is denoted the Stratonovich differential [3, p. 105–109]. The
integral is chosen stochastic in the Stratonovich sense for the reason that the differentiation rule of
a complex function t �→ f(ξ1(t), . . . , ξd(t)) is represented in the in the same form as in the classical
calculus, that is, as df =

∑d
i=1

∂f
∂xi

◦ dξi [3]. This integral in Stratonovich form makes it possible
to extend some group-theoretic methods to the stochastic case. In the deterministic case, the
group-theoretical concepts allow to overcome the difficulties of studying multidimensional systems
caused by the non-commutativity of the matrix coefficients defining the dynamics of the system [4].
Perhaps, the same concepts can be useful in the problem of multiplicativity.

Some examples of the application of group-theoretic methods to statistical research are known
in the literature. Here is a small list of publications thematically close to the problem of analyzing
multiplicative systems [5–11]. In [5] the problem of numerical approximation of the solution of the
stochastic equation is considered in the following form

dxt = (Axt + f(xt))dt +
n∑
i=1

(Bixt + gi(xt))dwi, x(0) = x0 ∈ Rd

with nonlinear functions f, gi : Rd → Rd and matrices A,Bi ∈ Rd×d satisfying the following con-
ditions: A,Bi take values in the matrix Lie algebra g with commutator relations [A,Bi] = 0,
[Bi, Bj ] = 0 for all i, j. On the background of works on the group-theoretic analysis of deter-
ministic equations, the number of which has clearly decreased recently [6], the analysis of solution
properties and numerical algorithms for finding solutions (so-called exponential integrators) for
stochastic equations remains an active field of research on multiplicative and additive noise equa-
tions [7, 8]. The question of the mean-square stability of numerical methods for the calculation of
exponential integrators is investigated in [9]. As shown in [10], group-theoretic methods are also
effective for the numerical integration of partial equations. Among the works of Russian authors
we note the research of multiplicative stochastic differential-operator equation with operators A,B
acting in a separable Hilbert space [11]. In this paper, it is assumed that the operator A gives rise
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to a a semigroup of operators S(t), t > 0 of class C0; it guarantees the correctness of the Cauchy
problem for the unperturbed equation Ẋ(t) = AX(t).

The problem solved in this paper considers a finite-dimensional multiplicative equation, for the
computation of its resolvent analog the group-theoretic method is applied, which is a generalization
to the stochastic case of the deterministic Wei–Norman method [12] of finding the resolvents of linear
differential equations. Wei–Norman method: if in the matrix equation Φ̇(t) = B(t)Φ(t), Φ(0) = E
(E is a unit matrix), the non-random function B(t) takes values in the matrix Lie algebra g, then
the solution Φ(t) belongs to the corresponding Lie group G. In this case, one way to construct the
solution of Φ(t) is to represent by a finite product of matrix exponentials

Φ(t) = exp(s1(t)A1) . . . exp(sm(t)Am), (1.5)

where {A1, . . . , Am} is the basis of the minimal Lie algebra g generated by matrices A(t) for all t,
and si(t), i = 1, . . . ,m are some real functions. Finding the desired si(t) is reduced to the solution
of some system of nonlinear differential equations [12]. The basis of the Wei–Norman method
proposed here for the case of the multiplicative Ito equation is to write the latter in the form of
the Fisk–Stratonovich equation and to find a solution of the latter in the form of the product of
matrix exponents exp(Aisi(t)) with the needed semimartingales (in the terminology adopted in
the [3]) si(t). Regarding the matrices Ai, i = 1, . . . ,m, it is assumed, as in the deterministic case,
that they form the basis of some matrix Lie algebra.

Applications of group theory to the problems of analyzing and finding solutions of deterministic
differential equations are widely known from the monographic literature [4, 13, 14]. Applications
to the theory of stochastic differential equations are much more modest; from the textbook liter-
ature we mention [3, 15, 16]. An exposition of the group-theoretic method of Wei–Norman to the
problem of computing the of the resolvents of multiplicative Ito equations has not been found in
the literature.

2. PROBLEM FORMULATION

By characterizing the stochastic system in the previous section as being given by the (x, u, υ)-
multiplicative Ito equation was separation of the equation into its dynamical part and the forcing
force, which does not depend on the state vector of the system. This is dictated by the character of
the problem to compute the fundamental matrix (resolvent) of the stochastic Ito equation, which is
defined by its homogeneous xt-dependent part. Having calculated the resolvent, it is not difficult to
obtain then an integral representation of the solution of the equation. Following this consideration,
it is possible to pass from the general (x, u, υ)-multiplicative system to its dynamic part, i.e., to
equation (1.1), which is multiplicative only on the state.

Let us list the tasks solved in the paper. The first problem is determination of the Wiener and
martingale species of the diffusion component b(t)(xt; dw(t)) of equation (1.1). The second problem
in Sections 3, 4 is to write the multiplicative equation (1.1) in the symmetrized Fisk–Stratonovich
form. The third task is to obtain the integral representation of the solution of the multiplicative
equation (1.1). The more general case of the diffusion equation with the matrix σ(t, x), depending
affinely (not simply linearly) on x, see Section 5, the interesting phenomenon of the appearance of
an additional forcing force in the integral representation for the solution of the equation. When
solving the following two problems in Sections 6 and 7, there arise group-theoretic aspects of solving
a multiplicative equation written in a symmetrized form, with solvable (in Section 6) Lie algebra
and with arbitrary Lie algebra for the matrix coefficients of the diffusion component of the equation
in Section 7. The equation in Section 7 is given in the unsymmetrized martingale form instead of
Wiener processes. In a separate section we give example of finding the resolvent of the equation by
the group-theoretic method. Concluding remarks and a list of cited references conclude the paper.
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3. WIENER AND MARTINGALE REPRESENTATIONS
OF THE DIFFUSION COMPONENT

Both the Wiener process and martingale representations of the differential equation for perturb-
ing forces are quite interesting in multiplicative theory. The martingale equation is discussed in
more detail in Section 7.

Proposition 1. The diffusion component b(t)(xt; dw(t)) of the homogeneous equation (1.1) admits
the following equivalent representations:

(a) b(t)(xt; dw(t)) = (B1(t)xt, . . . , Br(t)xt)dw(t), where Bj(t), j = 1, . . . , r is a matrix with size
d× d;

(b) b(t)(xt; dw(t)) =
m∑
i=1

Aixtdζ
i(t), where Ai, i = 1, . . . ,m are matrices d× d and dζ i(t) =

r∑
j=1

bij(t)dw
j(t), bij(t) ∈ R, where ζ i(t) are martingales.

Proof. As noted in Section 1, the diffusion part b(t)(xt; dw(t)) of the linear equation at each t
is given by the bilinear mapping b(t) of the product V ×H, where V = Rd, H = Rr, of vec-
tor spaces into the space V . When h ∈ H is fixed, the operator B(t)h, defined by the equality
(B(t)h)x = b(t)(x;h), is an element of the space EndV of linear operators from V to V . Let
{hj , j = 1, . . . , r} be a basis in H such that in the decomposition w(t) =

∑
j w

j(t)hj the Wiener
processes wj(t) are mutually independent. There is

b(t)(x; dw(t)) = b(t)

⎛⎝x;
r∑
j=1

dwj(t)(b(t)hj)

⎞⎠ =
r∑
j=1

dwj(t)(B(t)hj)x,

where B(t)hj ∈ EndV .

Denoting Bj(t) := B(t)hj , we obtain statement (a) b(t)(xt; dw(t)) = (B1(t)xt, . . . , Br(t)xt)dw(t)
Proposition 1. Thus, the dependence of b(t) on x is given by a set of r arbitrary square d× d
matrices Bj(t), not necessarily linearly independent [1, 17].

Further, let {Ai, i = 1, . . . ,m} be the basis of a linear subspace L ⊂ EndV , generated by the
operators B(t)hj . Assuming B(t)hj =

∑m
i=1 b

i
j(t)Ai, j = 1, . . . ,m, where bij(t) ∈ R, and introduc-

ing the notations dζ i(t) :=
∑r
j=1 b

i
j(t)dw

j(t), i = 1, . . . ,m, we get b(t)(x; dw(t)) =
∑m
i=1 dζ

i(t)Aix,
which finishes the the proof Proposition 1. Below, without loss of generality, we assume dimL =
m = r.

In the proof of Proposition 1, the drift a(t, xt)dt in the in equation (1.1) was not taken
into account. Implicitly, it was assumed to be zero. It can indeed be converted to zero by the
well-known transformation (of course, in this case (1.1) will be replaced by an equation with
another bilinear mapping b(t)). Indeed, let yt = Λ−1

t xt, where Λt is a matrix exponent satisfy-
ing, as is known, the integral equation Λt = E +

∫ t
0 a(s)Λsds with initial condition Λ0 = E. Since

dyt = (dΛ−1
t )xt + Λ−1

t dxt and dΛ−1
t = −Λ−1

t a(t)dt, then

dyt = Λ−1
t a(t)xtdt+ Λ−1

t bt(xt; dw(t)) − Λ−1
t a(t)xtdt

(note that the matrices a(t) and Λt commute), thus we obtain the equation dyt = Λ−1
t bt(Λtyt; dw(t))

with zero drift. See that the matrices defined above in Proposition 1 Bj(t) are replaced by the
matrices Λ̃t = Λ−1

t Bj(t) Λt, j = 1, . . . , r.

Let us now find out how to transform the multiplicative equation (1.1) to the symmetrized Fisk–
Stratonovich form. It has been noted above that such transformation is a necessary requirement
of the methodology proposed here.
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Proposition 2. In the symmetrized Fisk–Stratonovich form the equation of state (1.1) written in
the form

dxt = a(t)xtdt+ (B1(t)xt, . . . , Br(t)xt)dw(t) (3.1)

(Proposition 1,(a)) takes the form

dxt = a(t)xtdt+B0(t)xtdt+
r∑
j=1

Bj(t)xt ◦ dwj(t), (3.2)

where B0(t) := −1/2
∑r
j=1B

2
j (t).

Proof. Starting from the theory of Markov type equations

dxt = a(t, xt)dt + σ(t, xt)dw(t), (3.3)

which does not even assume linearity on xt of the functions a(t, xt) and σ(t, xt) [3], let us write
(3.3) in coordinate form

dxit = ai(t, xt)dt +
r∑
j=1

bij(t, xt)dw
j(t), i = 1, . . . , d.

According to the general theory, equation (3.3), using the Fisk–Stratonovich differential, is
represented as

dxt = ā(t, xt)dt + σ(t, xt) ◦ dw(t), (3.4)

where the vector ā(t, x) has components

āi(t, x) = ai(t, x) − 1/2
d∑
j=1

r∑
k=1

(
∂

∂xj
bik(t, x)

)
bjk(t, x). (3.5)

Recall that the stochastic Ito differential dwj(t) and the differential ◦dwj(t) are related by the
formula

xtdw
q(t) = xt ◦ dwq(t) − 1/2dxtdw

q(t). (3.6)

Consider equation (3.1) in the form

dxt = a(t)xtdt+
r∑
j=1

Bj(t)xtdw
j(t) (3.7)

and refer to formula (3.6). Since xtdw
j(t) = xt ◦ dwj(t) − 1/2dxtdw

j(t), we have, ignoring for now
the drift in (3.7), the equation dxt =

∑
j Bj(t)xt ◦ dwj(t) − 1/2

∑
j Bq(t)dxtdw

j(t). Noting that

dxtdw
j(t) =

∑
k

Bk(t)xtdw
k(t)dwj(t) =

∑
k

Bk(t)xtδjkdt = Bj(t)xtdt,

equation (3.1) in the transformed form can be written as

dxt = a(t)xtdt+
r∑
j=1

Bj(t)xt ◦ dwj(t) − 1/2
r∑
j=1

B2
j (t)xt dt, (3.8)
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which is what was required. The drift in this equation is determined by the matrix A(t) :=
a(t) − 1/2

∑r
j=1B

2
j (t); it can be converted to zero by passing to the state vector yt = Λ−1

t xt, where

Λt = E +
∫ t
0 A(s)Λsds.

In particular, if the matrices Bj(t), j = 1, . . . , r, commute, then the solution of the last equation
is written as products

xt =
r∏
q=1

exp

⎧⎨⎩
t∫

0

Bq(s)dw
q(s) − 1/2

t∫
0

B2
q (s)ds

⎫⎬⎭x0.

It is also clear that the matrices Bq(t) and B2
q (t) commute, so that the the multipliers in the product

can be represented as

exp

⎧⎨⎩
t∫

0

Bq(s)dw
q(s)

⎫⎬⎭ exp

⎧⎨⎩−1/2

t∫
0

B2
q (s)ds

⎫⎬⎭ , q = 1, . . . , r.

The solution of the equation dxt = Bq(t)xt ◦ dwq(t) with zero drift, with initial condition x0 is the

function Uq(t)x0 = exp
{∫ t

0 Bq(s)dw
q(s)

}
x0. The mapping t �→ Uq(t) is the stochastic resolvent of

this equation.

4. STOCHASTIC RESOLVENT OF MULTIPLICATIVE EQUATION

The non-random component a(t)xtdt in a multiplicative equation of the type

dxt = a(t)xtdt+
r∑
j=1

Bj(t)xt ◦ dwj(t) (4.1)

can be converted to zero (Section 3) and, without loss of generality, one can consider the equation
to be given in the form dxt =

∑r
j=1Bj(t)xt ◦ dwj(t) with new matrix coefficients. To do this,

let us put yt = Λ−1
t xt and then dyt = Λ−1

t b(t)(xt; dw(t)). Since it is realized that b(t)(xt; dw(t)) =∑r
j=1Bj(t)xtdw

j(t), then

dyt =
r∑
j=1

Bj(t)Λtyt ◦ dwj(t). (4.2)

Within the group-theoretic formalism, it is the matrices B̃j(t) = Λ−1
t Bj(t)Λt, not the original ma-

trices Bj, j = 1, . . . , r, must give rise to the Lie algebra basic to the Wei–Norman method, where
Λt = exp

∫ t
0 a(s)ds is the exponent of the matrix function t �→ ∫ t

0 a(s)ds.

Let us now define the (stochastic) resolvent of an equation linear in xt. If Ψt is the solution of

dΨt =
r∑
j=1

Λ−1
t Bj(t)ΛtΨt ◦ dwj(t), Ψt|t=0 = E (4.3)

with zero drift, then the the fundamental matrix (resolvent) Φ(t) of the initial equation (4.1)
is defined by the formula Φ(t) = ΛtΨt. But since equation (4.1) is equivalent to Ito’s equation
dxt =

∑r
j=1 dw

j(t)Bj(t)xt, hence, Φ(t) satisfies the Stratonovich equation

dΦt = a(t)Φtdt +
r∑
j=1

Bj(t)Φt ◦ dwj(t), Φt|t=0 = E. (4.4)

If f(t) is the driving force in an inhomogeneous stochastic equation, then the solution of the latter
must have an integral representation (1.4).
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5. INTEGRAL CAUCHY REPRESENTATION OF THE SOLUTION
OF THE MULTIPLICATIVE EQUATION WITH AFFINE COEFFICIENTS

Equations with affine coefficients are necessary in the theory of such linear controllable systems
that are multiplicative not only on the state vector, but also on the vectors of control and external
perturbation. The stochastic resolvent theory of the previous section dealt with a multiplicative
equation with linear but not affine coefficients. Now consider a vector equation (with a vector
Wiener process) of the form

dxt = a(t, xt)dt + σ(t, xt)dw(t), x0 ∈ Rd, (5.1)

where a(t, x) = a(t)x+ a0(t), σ(t, x) = B(t, x) + b0(t), a(t)∈Rd×d, a0(t)∈Rd, B(t, x), b0(t)∈Rd×r,
w(t)∈Rr. If (5.1) is a multiplicative system, then B(t, x) = (B1(t)x, . . . , Br(t)x) is a matrix with
columns Bj(t)x, where Bj(t)∈Rd×d, j = 1, . . . , r, which is established in (4.1). Then, b0(t) is a
matrix with columns b0j(t), j = 1, . . . , r. A special case of a one-dimensional (xt∈R) system with
affine coefficients and scalar w(t) is considered by in [15]. In the vector case xt ∈Rd, let us find the
fundamental matrix of the of equation (5.1).

Proposition 3. The solution of the multiplicative equation with coefficients affine with respect
to xt has the following integral representation:

xt = Φt

⎛⎝x0 +

t∫
0

Φ−1
s

⎛⎝a0(s) −
r∑
j=1

Bj(s)b0j(s)

⎞⎠ ds+

t∫
0

Φ−1
s

r∑
j=1

b0j(s)dw
j(s)

⎞⎠ . (5.2)

Here Φt defined in the in the previous section, the resolvent (4.1) written for (5.1) with the conditions
a0(t) = 0, b0j(t) = 0, j = 1, . . . , r.

Note that the appearance under the integrals in (5.2), in addition to a0(s)ds+
∑r
j=1 b0j(s)dw

j(s),

additional driving force B(s)b0(s) := −∑r
j=1Bj(s)b0j(s)ds (it is caused by the “affine” additive

b0(s)) could not be foreseen in advance, but a direct check shows that the function (5.2) indeed
satisfies equation (5.1).

Proof. Let us again turn to equation (5.1). In stochastic case, let us apply a method analogous
to the deterministic method of constant variation. Let’s put xt = Φtηt and consider ηt as the new
unknown instead of xt. Differentiating xt = Φtηt stochastically, we obtain

dxt = (dΦt)ηt + Φtdηt + dΦtdηt,

or by the definition of Φt as the equation (4.4)

dxt =

⎛⎝a(t)dt +
r∑
j=1

dwjBj(t)

⎞⎠xt + Φtdηt +

⎛⎝a(t)dt +
r∑
j=1

dwjBj(t)

⎞⎠Φtdηt.

Equating the right-hand sides of this equation and the original equation (5.1)

dxt = (a(t)xt + a0(t))dt +
r∑
j=1

dwj
(
Bj(t)xt + b0j(t)

)
,

we obtain after abbreviations⎛⎝E + a(t)dt +
r∑
j=1

dwj(t)Bj(t)

⎞⎠Φtdηt = a0(t)dt +
r∑
j=1

b0j(t)dw
j(t). (5.3)
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Because, if we’re being formal,⎛⎝E + a(t)dt +
r∑
j=1

dwjBj(t)

⎞⎠−1

= E −
⎛⎝a(t)dt +

r∑
j=1

dwjBj(t)

⎞⎠ +

⎛⎝a(t)dt+
r∑
j=1

dwjBj(t)

⎞⎠2

+ . . .

and ⎛⎝a(t)dt +
r∑
j=1

dwjBj(t)

⎞⎠2

=
r∑
j=1

B2
j d(t),

we obtain from (5.3)

dηt = Φ−1
t

⎛⎝a0(t)dt− r∑
j=1

Bj(t)b0j(t)dt +
r∑
j=1

dwj(t)b0j(t)

⎞⎠ . (5.4)

This equation expresses the fact that ηt is primitive for the right-hand side in (5.3), so that integrat-
ing (5.4) gives exactly the formula (5.2). Being expressed in terms of resolvent R(t, s) = ΦtΦ

−1
s ,

the same formula gives the integral Cauchy representation of the solution of the multiplicative
equation (4.1) with affine coefficients. This was required to prove.

6. MULTIPLICATIVE EQUATION WITH SOLVABLE LIE ALGEBRA

In this section, an exhaustive solution to the problem of the integral of the solution of the
multiplicative equation is obtained at the cost of a strong assumption that the Lie algebra associated
to the equation is solvable. A result with a solvable Lie algebra is obtained by H. Kunita [18] and
is given in [3] as as one of the examples.1 The equation of state is assumed here to be given a priori
in the symmetrized Fisk–Stratonovich form, the coefficients of the equation do not depend on t.

So, the equation is considered (with constant coefficients)

dxt = (B0xt + b0)dt +
r∑
p=1

(Bpxt + bp) ◦ dwp(t),

Bp ∈ Rd×d, bp ∈ Rd, p = 0, 1, . . . , d.

(6.1)

Lie algebra generated by vector fields fields Lp =
∑d
i=1(Bpx+ bp)

i ∂
∂xi

, p = 0, 1, . . . , r, is solvable,
which holds when (Bp)

i
j = 0 for i > j, p = 0, 1, . . . , r. This condition means that in each of the

matrices Bp, its elements under the of the main diagonal are zero. In particular, the only non-zero
element of the last dth row is only the diagonal element (Bp)

d
d, p = 0, 1, . . . , r at i = d. It follows

from equation (6.1)

dxdt =
(
(B0)ddx

d
t + bd0

)
dt +

r∑
p=1

(
(Bp)

d
dx

d
t + bdp

)
◦ dwp(t) (6.2)

when i = d. This (scalar) stochastic equation is similar to a deterministic equation in the sense
that it is written using the Fisk–Stratonovich differential, so its solution has the form

xdt = ecd(t)

⎛⎝xd0 +

t∫
0

e−cd(s) ◦ dfd(s)
⎞⎠ , (6.3)

1 A simple example of a solvable Lie algebra is generated by the group of translations of the plane R2 and rotations
about an axis perpendicular to it. The Lie algebra is three-dimensional, its commutation relations are [X1, X2] = 0,
[X1, X3] = X2, [X3, X2] = X1 [19].
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where the function cd(t) under the exponent sign and the driving force fd(t) are given respectively
by the formulas

cd(t) = (B0)dd t+
r∑
p=1

(Bp)
d
dw

p(t), fd(t) = bd0 t+
r∑
p=1

bdpw
p(t).

By proceeding analogously, let us consider the equation for xd−1
t :

dxd−1
t =

(
(B0)

d−1
d−1x

d−1
t + (B0)d−1

d xdt + bd−1
0

)
dt

+
r∑
p=1

(
(Bp)

d−1
d−1x

d−1
t + (Bp)

d−1
d xdt + bd−1

p

)
◦ dwp(t).

(6.4)

In the right-hand side of equation (6.4) depends on xd−1
t the sum of

(B0)d−1
d−1x

d−1
t dt+

r∑
p=1

(Bp)
d−1
d−1x

d−1
t ◦ dwp(t).

Let us denote the integral of the coefficient at xd−1
t in this sum by

cd−1(t) := (B0)
d−1
d−1t+

r∑
p=1

(Bp)
d−1
d−1w

p(t).

The summands in the right-hand side of equation (6.4) independent of xd−1
t form the sum

dfd−1(t) :=
(
(B0)

d−1
d xdt + bd−1

0

)
dt +

r∑
p=1

(
(B)d−1

d xdt + bd−1
p

)
◦ dwp(t), (6.5)

in which xdt is already known as the solution (6.3) of equation (6.2). The solution of equation (6.4)
is written, therefore, in the form

xd−1
t = ecd−1(t)

⎛⎝xd−1
0 +

t∫
0

e−cd−1(s) ◦ dfd−1(s)

⎞⎠ . (6.6)

The procedure of sequential solution of scalar equations for components xkt , k = n, n− 1, . . . , 1
of the vector xt ∈ Rn is quite obvious from the above. However, the equivalence between this form
of solution and the one given in [3] is not obvious. To establish the equivalence, let us write the
original equation (6.1) by components:

dxit =
∑
j�i

(
(B0)

i
jx
j
t + bi0

)
dt+

r∑
p=1

∑
j�i

(
(Bp)

i
jx
j
t + bip

)
◦ dwp(t). (6.7)

When i is fixed, the summands in the of the right-hand side, depending on xjt with j � i,
play a special role. First, the differential dxit is related to the variable xjt by the coefficient
(B0)ijdt+

∑r
p=1(Bp)

i
jdw

p(t), the integral of which is denoted by cij :

cij(t) := (B0)
i
jt+

r∑
p=1

(Bp)
i
jw

p(t), j = i, i+ 1, . . . , d.
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The diagonal element cii(t) of this matrix coincides with the function, which was denoted above

by ci(t). Second, the sum of summands on the right-hand side in (6.7) with in
∑d
j=i+1 x

j
t ◦ dcij(t).

Finally, the terms that do not depend on the components of the vector xt at all form the sum∑r
p=1 b

i
pdw

p(t) + bi0d t. Thus, the solution of the system of equations (6.7) is given by the formulas

xdt = ec
d
d(t)

⎛⎝xd0 +

t∫
0

e−c
d
d(s) ◦ dfd(s)

⎞⎠ , fd(t) = bd0 t+
r∑
p=1

bdp dw
p(t),

if i = d, and by the formulas

xit = ec
i
i(t)

⎛⎝xi0 +

t∫
0

e−c
i
i(s) ◦ dfi(s)

⎞⎠ ,

where

fi(t) :=
d∑

j=i+1

t∫
0

xj(s) ◦ dcij(s) + bi0t+
r∑
p=1

bipdw
p(t),

if i = d− 1, d− 2, . . . , 1 [3].

7. LIE ALGEBRA OF MULTIPLICATIVE EQUATION
WITH CONTINUOUS SEMIMARTINGALES

Let us consider the slightly more general case of Ito’s equation

dxt =
m∑
p=1

Apxtdζ
p(t), ζ(0) = 0 (7.1)

with continuous semimartingales ζ i(t) =
∫ t
0

∑m
j=1 b

i
j(t)dw

j(t) instead of the Wiener processes wj(t),
j = 1, . . . ,m. The matrices Ap are assumed to be non-commutative, giving rise to an arbitrary
finite-dimensional Lie algebra. It should be noted that the topic of the interaction of the stochastic
structure of the differential equation with the algebraic group-theoretic structure of its coefficients
remains to date insufficiently studied.

Suppose that the equation has a single solution xt, t > 0, then xt depends linearly on x0. We will
let xt = U(t)x0. The solution of the equation dxt = Apxtdζ

p(t), ζ(0) = 0 with a single matrix Ap
and supermartingale ζp(t) is an exponential supermartingale (if

∑
j(b

p
j )

2 <∞)

σp(t) = eApζp(t)−1/2A2
p<ζ

p>(t)σp(0),

where < ζp > (t) =
∑
j

∫ t
0 (bpj )

2(s)ds; [20, Section 2.7]. To obtain the solution, let us again use the
method, already described in the introduction, namely: we write the original Ito equation (7.1) in
the symmetrized Fisk–Stratonovich form and apply to the obtained equation an analogue of the
deterministic Wei–Norman method [12]. After that, it will not be difficult to obtain the integral
representation of the solution of equation (7.1).

Theorem. Let

dxt =
m∑
p=1

Apxtdζ
p(t), ζ(0) = 0 (7.2)
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be a stochastic system with semimartingales

ζ i(t) =

t∫
0

m∑
j=1

bij(t)dw
j(t).

The functions bpj (t) are known. Consider the functions

Fi =
i−1∏
k=1

eXkskXi

1∏
k=i−1

e−Xksk ,

where X1, . . . ,Xn is a basis of the Lie algebra generated by the matrix coefficients Ap(t), p =
1, . . . ,m, and si(t) are the desired functions. Then for the differentials ◦dsi(t) of the unknown
functions si(t) are valid the system of equations si(t):

n∑
i=1

Fi(t) ◦ dsi(t) =
n∑
p=1

Ãp(t) ◦ dζp(t). (7.3)

Through the functions si(t) a solution xt = U(t)x0 of the original equation (7.1) is expressed.

Proof. Keeping in mind the above remarks, let us write down equation (7.1) in the symmetrized
form. There are xt × dζp(t) = xt ◦ dζp(t) − 1/2 dxt × dζp(t), where

dxt × dζp(t) =
m∑
q=1

Aqxt dζ
q(t) × dζp(t).

Since dζq(t) × dζp(t) =
∑r
j=1 b

q
j(t)b

p
j (t) dt =: cqp(t)dt, where cqp(t) are elements of the matrix

c(t) = b∗(t)b(t) of order m×m, and matrix b(t) = (bpj (t)) of order r ×m, then

xt × dζp(t) = xt ◦ dζp(t) − 1/2
m∑
q=1

Aq xtc
qp(t)dt,

and equation (7.1) is written in the form of

dxt = a(t)xtdt+
m∑
p=1

Apxt ◦ dζp(t) (7.4)

with the drift coefficient a(t) = −1/2
∑m
p,q=1ApAq c

qp(t). The fundamental matrix of equation
(7.3), as above in Section 5 above, let us find it as a product of Φt = ΛtΨt, where matrix Λt =
exp{∫ t0 a(s)ds} satisfies the matrix equation dΛt = a(t)Λtdt. Given that Ψt = Λ−1

t Φt and dΨt =
(dΛ−1

t )Φ + Λ−1
t dΦt and dΛ−1

t = −Λ−1
t (dΛt)Λ

−1
t for the unknown function Ψt one gets the matrix

differential equation

dΨt =
m∑
p=1

(
Λ−1
t ApΛt

)
Ψt ◦ dζpt . (7.5)

The matrix drift coefficient turns here to zero, and the matrix coefficients Ap of the initial equa-
tion (7.1) turn into coefficients Ãp(t) = Λ−1

t ApΛt. In such a case, from the Campbell-Baker-

Hausdorff theorem [21], according to which a, b ∈ L⇒ eabe−a ∈ L, it follows that also Ãp ∈ L,
p = 1, . . . ,m. Here there arises a limitation for the application of group-theoretic methods caused
by the necessity to transform the Ito equation to its symmetrized form. Probably, for this reason,
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in most statistical applications, group analysis is applied to equations given immediately in the
Fisk–Stratonovich form.

To continue the topic of group-theoretic analysis of equation (7.5), here let us also assume that
the matrix coefficients Ãp(t) = Λ−1

t ApΛt in equation (7.5) are known a priori and L̃ is a Lie algebra
generated by them for all t with some basis {X1, . . . ,Xn}, then the Wei–Norman method can be
applied to the algebra L̃. Below, the assumption of the existence Lie algebra L̃ for equation (7.5)
is considered to be satisfied.

Purposing to search for the fundamental matrix Ψt in the form of the product
∏n
i=1 e

Xisi(t) with
unknown scalar functions si(t), consider the matrix function

u(s) = u(s1, . . . , sn) = eX1s1 · · · eXnsn , si ∈ R, i = 1, . . . , n

(caution against confusing the numeric variable si with the function si(t)). The partial derivative
∂
∂si
u(s) equals usi =

∏i−1
k=1 e

XkskXi
∏n
k=i e

Xksk , which can be be written in the form usi = Fiu(x),

where denoted by Fi =
∏i−1
k=1 e

XkskXi
∏1
k=i−1 e

−Xksk . Therefore, the Fisk–Stratonovich differential
of the function t �→ Ψt = u(s1(t), . . . , sn(t)) is equal to

dΨt =
n∑
i=1

Fi(t)Ψt ◦ dsi(t),

where Fi(t) is obtained from the formula for Fi by substituting into it si(t) instead of si for all
i = 1, . . . , n. Comparing dΨt with the differential for Ψt from equation (7.5), which (by replacing m
by n) we rewrite as dΨt =

∑n
p=1 Ãp(t)Ψt ◦ dζp(t), we obtain, after reduction by the to the special

matrix Ψt, the basic equation for the differentials ◦ dsi(t) of the desired processes si(t):

n∑
i=1

Fi(t) ◦ dsi(t) =
n∑
p=1

Ãp(t) ◦ dζp(t). (7.6)

Let us remind once again that there are relations

dζp(t) =
r∑
j=1

bpj(t)dw
j(t), p = 1, . . . , n, dsq(t) =

r∑
j=1

gqj (t)dw
j(t), q = 1, . . . , n,

where the functions bpj(t) are known and the functions gqj (t) are sought, where n = dim L̃. If one

decomposes both parts of the basic equation (7.6) by the basis {X1, . . . ,Xn} of the Lie algebra L̃,
then we obtain a system of equations relating the unknowns functions gpj to the known bpj . Equa-
tion (7.6) is obtained by assumption that the drift coefficient a(t) (7.4) is zero. The latter is ensured
by transforming the original equation (7.4) to equation (7.5). The proof is now complete.

8. EXAMPLE

Let us consider an example of solving equation Ito of type (7.1), in which the assumption a(t) = 0
is violated, but still a(t) ∈ L̃. The fundamental matrix of the equation of the state is in the form
of a product of exponential semimartingales. This is an example of using a modification of the
Wei–Norman method (its stochastic version).

Let us find the fundamental matrix Ut of the stochastic equation dxt =
∑3
p=1Xpxtdζ

p(t), dζp(t) =∑3
j=1 b

p
j (t)dw

j(t), ζi(0) = 0. Let L = L3 be a Lie algebra of dimension dimL = 3 with basis (Xi)
and multiplication table [X1,X2] = X3, [X2,X3] = [X1,X3] = 0. The algebra L3 admits a repre-
sentation of (3 × 3)-matrices X1 = E12, X2 = E23, X3 = E13 (Eij—matrix canonical units), with
X2
i = 0 for all i. The matrix Utwill be found as the product Ut =

∏3
i=1 exp{si(t)Xi}, where the
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components Zk(t) = sk(t)Xk are absent by virtue of X2
k = 0, and the functions si(t) are suitably

chosen random processes with differentials dsk(t) =
∑3
j=1 g

k
j (t)dwj(t), sk(0) = 0. We assume

F1(t) = X1, F2(t) = eZ1(t)X2e
−Z1(t), F3 = eZ1(t)eZ2(t)X3e

−Z2(t)e−Z1(t).

It is directly verified that

X2
i = 0 ∀i, F1 = X1, F2 = X2 + s1X3, F3 = X3, F1F2 = X3,

the remaining FiFj are zero. Using the modification of the method outlined in Section 3. Wei–
Norman method of formulating equations for the unknown functions (in this example they are si(t)),
one obtains the equation

3∑
i=1

Fids
i =

3∑
i=1

Xidζ
i.

Taking into account the formulas for Fi in the Xi basis decomposition, from this equation we get

ds1 = dζ1, ds2 = dζ2, ds3 = dζ3 − s1ds2 − ds1ds2. (8.1)

To check the correctness of the obtained solution, let us find the the stochastic differential of the
function Ut by calculating the function itself.

Since
exp{s1X1} = I + s1X1, exp{s2X2} = I + s2X2, exp{s3X3} = I + s3X3,

then, by multiplication we find Ut = I + s1X1 + s2X2 + (s3 + s1s2)X3 and it follows that, dUt =
X1ds

1 +X2ds
2 +X3(ds3 + d(s1s2)), where d(s1s2) = s1ds2 + s2ds1 + ds1 ds2. Substituting here

the expressions for dsi from (8.1), after the reduction we obtain X1dζ
1 +X2dζ

2 +X3dζ
3, which

coincides with the coefficient in the right-hand side of the original Ito equation. Thus, the solution
of the stochastic Ito equation is found in the form of the product of the of stochastic semimartingales
(“stochastic exponents”).

9. CONCLUSION

The base of the integral representation of the solution of the linear of a stochastic equation is, as
in the deterministic case, the fundamental matrix of solutions, through which the Green’s function
for the inhomogeneous equation is expressed. During the finding of the fundamental matrix of a
multivariate equation, the main difficulty belongs to the noncommutativity of matrix coefficients
of drift and diffusion components.

The non-commutativity of matrices is overcome in a known way if they are in involution. Turning
to the methodology of group theory, we should assume that the coefficients of the equation belong
to a certain matrix Lie algebra L closed with respect to a matrix commutator. For a linear system
with diffusion components, depending only on the Wiener processes, but independent of the state
vector, the Lie algebra associated to the system is organized quite simply: it is generated by the
diffusion and drift coefficients. In the case of diffusion depending linearly on the state vector,
it is necessary to preliminary transformation of the initial equation to the form, using the Fisk–
Stratonovich differential. The drift coefficient becomes in this case depending on squares of diffusion
coefficients, and diffusion coefficients, in their turn, undergoes transformations depending on the
drift coefficient. And only in the commutative case (or in the case of a solvable algebra), it is
possible to avoid the difficulties noted above. Thus, the situation with the application of standard
group-theoretic concepts to the stochastic equation is satisfactory. Perhaps some algebraic structure
other than Lie algebra, would be more appropriate in this problem, but the clarification of this
question requires further study.
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Abstract—The synthesis of a control law for tracking a target informative path as a new ap-
proach to solving the problem of planning a flight experiment for identifying the aerodynamic
characteristics of automatically controlled aircraft is proposed. The mathematical statement
and the method for solving the synthesis problem are obtained. In the numerical experiment,
it is shown that the identification accuracy on the synthesized control can be significantly
improved compared to the identification accuracy on the optimal program test signal.
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1. INTRODUCTION

The task of planning test signals for identifying the aerodynamic characteristics (ADC) of an
aircraft is to generate a specially perturbed motion of the aircraft in order to increase the accuracy of
ADC identification. The disturbed movement of the aircraft (test maneuver) is formed by applying
so-called test input signals (test signals) to the aircraft’s controls. As a rule, criteria adopted in the
theory of optimal design of experiments, which characterize to one degree or another the expected
identification accuracy, are used as criteria for selecting a test signal.

Problems of active identification of ADC of aircraft are characterized by a wide variety of
mathematical formulations. Already solved problems differ in their mathematical formulations in:
test signal dimension (scalar [1–9], vector [1, 4, 9–16]), class of functions in which the test signal
is optimized (continuous functions [9], discrete functions [1, 2, 4, 8, 17], polyharmonic functions
[2, 10, 12, 15, 16, 18], type “bang-zero-bang” controls and similar controls [2, 6, 8, 12, 14, 15],

parameterized controls [2, 4, 7, 11], functions of simple form [5]), by type of restrictions (only
for test signal [2, 3, 5, 9] on the components of the state vector of the aircraft in perturbed
motion [1–4, 6, 7, 11, 14, 17]), criterion (Turing number [1], L-, D-criterion [1–7, 9, 11, 12, 14, 15,
17, 18], peak factor [10, 12, 15, 16]). It is usually assumed that the choice of test signal is made
before the experiment, but the possibility of step-by-step optimization of the test signal during
the experiment is also considered [3]. Optimization of test signals is performed most often in the
time domain [1–12, 14, 16], but can also occur in the frequency domain [18] or in the time and
frequency domain simultaneously [13, 17]. For further presentation, it is important to note that in
the known formulations of the problem of active identification of aircraft ADCs, restrictions on the
components of the aircraft state vector in perturbed motion do not take into account (except [6])
possible differences between unknown ADCs and their a priori estimates, and the choice of test
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signals is made in the class of program controls, i.e. adaptive control for the purpose of active
identification of aircraft ADCs is practically not considered [2, 19].

The safety conditions of the flight experiment, various physical and methodological restrictions
determine the restrictions on the disturbances of the components of the aircraft state vector in the
test maneuver. In a number of important applications, taking into account these restrictions is a
necessary condition for performing a test maneuver [11]. If the restrictions are violated, the test
maneuver is not performed (interrupted by the aircraft automatic control system). The fulfillment
of the restrictions must be ensured whenever the ADC and the initial conditions of the test maneuver
are known approximately when selecting a test signal.

In [6] a method for optimizing a test signal is proposed taking into account the specified restric-
tions in the class “bang-zero-bang” controls. In [7], a method for optimizing a test signal is proposed
taking into account the specified restrictions in the class of parameterized controls, in particular,
a solution was obtained in the class of piecewise constant functions with a short persistence time,
which differs significantly from “bang-zero-bang” management. The program test signal obtained
in [7] ensures that the specified restrictions are met for all a priori possible values of the ADC. But
a consequence of this positive property of the test signal is its optimality “on average” on the set
of all restrictions, determined by the set of possible values of the ADC. This means that in each
specific case (in particular, with true ADC values), such a test signal will obviously be suboptimal.
In the class of program test signals, it is impossible to select a test signal that will be optimal for
all possible values of the ADC. However, it is possible to improve the informative properties of the
selected test signal directly during the flight experiment due to the information obtained about
the aircraft state vector. In [20] a method for approximate solution of this problem was proposed.
Below we propose a method for finding its optimal solution.

2. FORMULATION OF THE PROBLEM

The proposed mathematical formulation of the control synthesis problem for identifying the
ADC contains a model of the dynamics of the object in a test mode lasting T seconds, described
by a linear (linearized with respect to the reference motion of the aircraft) differential equation

dx

dt
= A(b)x+Gu, t[0, T ], x(0) = x0, (1)

and discrete measurement model

zi = z(x(ti)) = Hx(ti) + vi, i = 1, N, (2)

where: x is n-dimensional vector of the aircraft state; u = u(t, x) is optimized dimension control
vector m; zi is p is dimensional vector of measurements; vi is vector of “white” Gaussian noise of
measurements, E(vi) = 0, E(viv

T
j ) = 0, i 
= j, E(viv

T
i ) = R, i = 1, N , j = 1, N (E is mathematical

expectation); A(b), G, H is matrices of corresponding dimensions; ti is timepoints at which mea-
surements are taken, ti = h(i− 1), h = T/(N − 1); N is number of measurements. The matrix A(b)
depends on the identified vector of unknown parameters b (the desired ADCs) of dimension k. The
true values of the btrue parameters b are not known. The a priori estimate bpri of the vector btrue

contains an error Δb, bpri = btrue + Δb, with respect to which it is known that the components Δbi
of the vector Δb belong to the intervals [−Δi,Δi]: Δbi ∈ [−Δi,Δi], i = 1, k. We denote the set of
possible values of b by the symbol B.

We will assume that the movement of the aircraft before the start of the test maneuver is quasi-
stationary. This means that the components of the vector x0 in (1) are close to zero, but may be
different from zero. We will assume that xtrue0 belongs to the closed bounded set X0 containing the
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zero vector. We will consider the possible values of the components of the vectors x0 and b to be
independent of each other.

It’s required by choosing on the interval [0, T ] a vector function u = u(t, x) from a certain class
of functions U (defined below):

1) ensure the fulfillment of scalar linear restrictions on the state vector of the aircraft for all a
priori possible values of b and x0

|xs(t, b, x0, u)| � qs(t), b ∈ B, x0 ∈ X0, s = 1, r, (3)

where: xs is components of the vector x on which restrictions are imposed; qs(t) is specified
functions; r is number of restrictions;

2) minimize the control u functional

J = tr
(
WM−1(bpri, x0, u)

)
, (4)

where tr is matrix trace notation, W is non-negative definite weight matrix (usually diagonal),
M is information matrix:

M(b, x0, u) =
N∑
i=1

(∂x(ti, b, x0, u)/∂b)T Q(∂x(ti, b, x0, u)/∂b). (5)

In (5) matrix Q = HTR−1H; x0 = 0; derivatives Sj =
∂x(t, b, x0, u)

∂bj
, j = 1, k are determined from

a system of differential equations for sensitivity functions:⎧⎪⎨⎪⎩
dSj
dt

= A(b)Sj +
∂A(b)

∂bj
x(t, b, x0, u),

Sj(0) = 0, j = 1, k.

(6)

Equations (6) and (1) are solved jointly.

The mathematical formulation of the test signal planning problem in the class of program
controls differs from the above formulation of the problem only in that the desired control is sought
in a given class of time functions, i.e., u = u(t) (usually in the class of continuous or piecewise
continuous functions of time [1–18]).

The solution u = u(t, x) to problem (1)–(4) is proposed to be sought among controls that ensure
tracking of a certain trajectory of system (1), which has good information content about the iden-
tified parameters and satisfies restrictions (3), and precisely in the class of functions representable
in the form

u(t, x) = μupri(t) + L
(
μxpri(t) − x(t)

)
, (7)

where xpri(t) = x(t, bpri, 0, upri)—trajectory of system (1) for optimal program test signal upri(t) at
restrictions B = bpri, X0 = 0; coefficient μ, 0 � μ � 1, and elements Lij of matrix L

|Li,j| � C, i = 1, l, j = 1, n (8)

subject to determination from the minimum condition of criterion (4) under restrictions (3). The
constant C reflects restrictions on the feedback coefficients of the automatic control system (ACS).
For the convenience of further references, we will call the given problem the problem of selecting a
test control, and the desired function u(t, x(t)) will be called a test control.
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System (1) under control (7) can be written in the form

dx

dt
= (A(b) −GL)x+ μG(upri(t) + Lxpri(t)), x(0) = x0, (9)

therefore, for sufficiently small values of the coefficient μ, restrictions (3) will certainly be satisfied.
In addition, from (4)–(6) and (9) it follows that for an arbitrary function u = u(t) the equality
J(μu) = J(u)/μ2 is true, therefore, to minimize functional (4), the value of μ should be chosen as
maximum as possible, subject to the fulfillment of restrictions (3).

The equations for the sensitivity functions Sj , j = 1, k are written in the form (6), since it
is assumed that in the procedure for post-flight estimation of the vector b the technique of ar-
tificially disconnecting the system will be used (9), when a signal uΣ(t) known from a flight ex-
periment is applied to the input of a customized motion model with an excluded ACS circuit
uΣ(t) = μupri(t) + L(μxpri(t) − x(t)). If the customized model includes an ACS model, then the
matrix A in (6) must be replaced by the matrix A−GL.

A fairly complete characteristic of the solution to problem (1)–(5) is the distribution density
of the function values J(b, x0) = trM−1(b, x0, u). The function J(b, x0) characterizes the expected
identification error (the lower bound of the sum of variances of parameter estimates) on the test
control u (t, x(t)) (or on the test signal u(t)) if btrue = b, x(0) = x0. To construct an estimate of a
given distribution density (polygon), it is sufficient to calculate the values of the function J(b, x0)
for a plenty large number NP of pairs of vectors b and x0, b ∈ B, x0 ∈ X0, selected randomly.
If the distribution densities of the components of the vectors b and x0 on the intervals of their
possible values are unknown, then according to the recommendations [21] they should be assumed
to be uniform. The number NP is chosen so that when it increases, the position and shape of the
polygon do not change. With little computational time spent, the polygon of expected identification
error values represents an integral characteristic of test management quality that is convenient
for analysis, allowing one to estimate the probability of obtaining certain values of the expected
identification error parameters.

3. SOLUTION METHOD

In the case of B = bpri, X0 = 0, the optimal program test signal upri(t) and the corresponding
trajectory xpri(t) = x(t, bpri, 0, upri) can be found, for example, by one of the methods described
in [2, 7]. Further, we present a method for optimizing the coefficient μ and matrix L in (7).

We combine the elements of the matrix L and the coefficient μ into one vector v∈V , where
V is a hypercube defined by inequalities (8) and the inequality 0 � μ � 1. The dimension of the
vector v is equal to Nv � nl + 1 (some elements of the matrix L can be set equal to zero to eliminate
feedback on the corresponding components and reduce the number of adjustable coefficients). We
set vNv = μ. We denote by x(t, b, x0, u

v) the solution of system (1) on control (7) for a given
vector v.

LetNC be a positive integer. We divide the optimization interval [0, T ] with points ti = ΔC(i− 1),
i = 1, NC into subintervals of equal length ΔC = T/(NC − 1). We choose NC so large that when
the restrictions are satisfied

|xs(ti, b, x0, uv)| � qs(ti), ti = ΔC(i− 1), i = 1, NC ,

b ∈ B, x0 ∈ X0, s = 1, r
(10)

restrictions (3) can be considered fulfilled for all t ∈ [0, T ] with sufficient accuracy. Thus, to solve
the problem posed, it is sufficient to solve the problem of minimizing criterion (4) on the set S of
vectors v satisfying the set of restrictions (10).
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We define the following auxiliary problem. Minimize by v ∈V the criterion

J = tr
(
WM−1(bpri, 0, uv)

)
(11)

on some closed, bounded set Š of vectors v, defined by a finite number of restrictions

|xs(ti, bj, xj0, uv)| � qs(ti), i = 1, NC ,

bj ∈ B, xj0 ∈ X0, s = 1, r, j = 1,K, v ∈ V.
(12)

The solution to this typical nonlinear programming problem can be found by various methods,
for example, the linearization method [22]. The gradients of restrictions (12) over the components
of the vector v are equal

Svj =
∂x(t, b, x0, u

v)

∂vj
, j = 1, Nv .

The gradient of functional (11) can be calculated if the functions are known

Sbivj = Sbivj (t, b, x0, u
v) =

∂

∂vj
Si, i = 1, k, j = 1, Nv .

The functions Svj , S
bi
vj can be determined from solving the following systems of equations, which

must be solved together with equations (1) and (6):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dSvj
dt

= (A(b) −GL)Svj −G
∂L

∂vj
x(t, b, x0, u) + μG

∂L

∂vj
xpri, if j = 1, Nv − 1,

dSvNv

dt
= (A(b) −GL)SvNv

+G(upri + Lxpri),

Svj (0) = 0, j = 1, Nv ;⎧⎪⎨⎪⎩
dSbivj
dt

= A(b)Sbivj +
∂A(b)

∂bi
Svj ,

Sbivj (0) = 0, j = 1, Nv, i = 1, k.

The solution to the original minimization problem with respect to the vector v of criterion (11)
under restrictions (8) and (10) can be obtained by the following iterative algorithm:

Step 0. We set the counter for the number of iterations: iter = 0. We define arbitrary bj ∈ B,
xj0 ∈ X0, j = 1,K and define the set Siter as set of vectors v satisfying inequalities and condi-
tions (12).

Step 1. We solve an auxiliary problem in which Š = Siter. We denote the solution by viter, the
corresponding test control (7)—by uv

iter
.

Step 2. To check the fulfillment of restrictions (10) on the found control uv
iter

for each s = 1, r

and i = 1, NC we define max
b∈B,x0∈X0

∣∣∣xs(ti, b, x0, uviter )
∣∣∣.

Step 3. If for all s = 1, r, i = 1, NC

max
b∈B,x0∈X0

∣∣∣xs(ti, b, x0, uviter )
∣∣∣ � qs(ti)

is true, then problem (11)–(10) is solved—a test control that satisfies restrictions (10) and minimizes
functional (11) is found. Next go to Step 5.
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Step 4. If for some s∗, i∗

max
b∈B,x0∈X0

∣∣∣xs∗(ti∗ , b, x0, u
viter )

∣∣∣ =
∣∣∣xs∗(ti∗ , b

∗, x∗0, u
viter )

∣∣∣ > qs∗(ti∗)

is true, that is, restrictions (10) are violated, then we supplement the set Siter with restrictions∣∣∣xs∗(ti∗ , b
∗, x∗0, uv

iter
)
∣∣∣ � qs∗(ti∗). We again denote the obtained set by Siter, having previously set

iter = iter + 1. Next go to Step 1.

Step 5. Constructing a polygon of function values J(b, x0) = tr
(
WM−1(b, x0, u

opt)
)
, where

uopt = uv
iter

. The method for constructing the polygon was described in Section 2.

We explain: each subsequent set Si+1 of vectors v is already contained in the previous set Si due
to the fact that each restriction added at Step 4 narrows the set on which criterion (11) is minimized.
Thus S0 ⊃ S1 ⊃ · · · ⊃ Si ⊃ · · · ⊃ S, where S is the set of vectors v defined by the formulas (10).
Consequently, the minimum of criterion (11) on the set S is not less than the minimum on the
set Si. Therefore, if at the ith iteration the conditions of Step 3 of the algorithm are met, then
restrictions (10) are satisfied, and the minimum found on the set Si is the minimum on the set S.

Thus, the solution to problem (4), (10) is reduced to solving a sequence of standard nonlinear
programming problems that “approximate” the original problem in the vicinity of the desired
minimum with the approximation accuracy increasing during iterations. This approach seems
preferable to optimization of test signals using the dynamic programming method [6, 14] due to
the “curse of dimensionality.”

The presented method for solving the problem can be generalized to the case of dependence of
the matrices G and H on the identified parameters b.

4. NUMERICAL MODELING

We consider the problem of constructing a two-component (m = 2) test control u(t, x(t)) on
a time interval of eight seconds (T = 8) in order to identify the coefficients bi, i = 1, 5 models of
aircraft lateral movement [9]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

β̇ = b1β +wy + 0.0565γ + 0.0289δN ,

ẇx = b2β − 0.935wx − 0.124wy + 1.4δN + 2.88δe,

ẇy = b3β + 0.119wx + b4wy + b5δN ,

γ̇ = wx,

(13)

supplemented with the simplest models of the rudder and aileron drive:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̇N = ωN ,

ω̇N = k(δsetN − δN ) − k2ωN , δsetN = u1(t, x(t)),

δ̇e = ωe,

ω̇e = k(δsete − δe) − k2ωe, δsete = u2(t, x(t)),

k =
0.456

τ2
, k2 =

0.8

τ
, τ = 0.02.

(14)

In (13) and (14): β is gliding angle of the aircraft, wx, wy is angular velocities of roll and yaw, γ
is roll angle, δN , δe are rudder and aileron deflection angles, ωN , ωe are rudder and aileron deflection
angular rates, k, k2, τ are parameters of the rudder and aileron drives, coefficients b1, b2, b3, b4, b5
are derivatives of the lateral aerodynamic force and aerodynamic moments of roll and yaw to be
identified corresponding components of the aircraft state vector: β, wx, wy, δN . The dimension of
angular velocities is—degrees per second, angles are—degrees. The variables β, wx, wy, γ, δN , δe
are measured independently at a frequency of 25 hertz.

We have the state vector of the aircraft x = (β,wx, wy, γ, δN , δe, ωN , ωe)
T , vector of identifi-

able parameters b = (b1, b2, b3, b4, b5)T , measurement vector zi = z(ti) = Hx(ti) + vi, ti = h(i− 1),
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i = 1, N , where H is matrix with elements Hii = 1 when i = 1, 6, Hij = 0 when i = 1, 6, j = 1, 8,
i 
= j; vi is vector of “white” Gaussian noise of measurements, E(vi) = 0, E(viv

T
j ) = 0, i 
= j,

E(viv
T
i ) = R, i = 1, N , j = 1, N , h = 0.04 s, N = 201. The root-mean-square measurement errors

(
√
Rii, i = 1, 6) are: for β—1◦, for wx, wy—0.71◦/s, for δN , δe—0.5◦.

A priori estimate of the true values btrue of the vector b:

bpri = (−0.119, −4.43, −2.99, 0.178, 1.55)T .

The boundaries of the tolerance intervals [−Δi,Δi], such that Δbi ∈ [−Δi,Δi], have the form:

Δi = ±0.5
∣∣∣bprii

∣∣∣, i = 1, 4, Δ5 = ±0.2
∣∣∣bpri5

∣∣∣. Thus, the a priori uncertainty of the first four compo-

nents of the vector b is ±50% of the nominal values. The set of possible values of the vector b
defines a parallelepiped with center at the point bpri—set B. The test maneuver should start from
a quasi-stationary state:

|ωx(0)| � 0.25◦/s, |β(0)| � 0.5◦, |ωN (0)| � 0.025◦/s, |δN (0)| � 0.25◦,

|ωy(0)| � 0.25◦/s, |γ(0)| � 0.25◦, |ωe(0)| � 0.025◦/s, |δe(0)| � 0.25◦.
(15)

The set of possible values of the initial conditions of the test maneuver x0 = x(0) defines
the polyhedron—set X0. Intervals I6 = ±0.25◦/s, I7 = ±0.5◦, I8 = ±0.025◦/s, I9 = ±0.25◦,
I10 = ±0.25◦/s, I11 = ±0.25◦, I12 = ±0.025◦/s, I13 = ±0.25◦, defining possible values x0, as well
as tolerance intervals Ii = [−Δi,Δi], i = 1, 5 will be further called intervals of a priori uncertainty.

When constructing polygons of values J(b, x0), we will assume that the components of the a
priori estimate of the vector b and the components of the vector x0 are uniformly distributed over
the intervals of a priori uncertainty Ii = [−Δi,Δi], i = 1, 13 and are independent of each other.
The matrix W in (4) was assumed to be unit.

We will impose restrictions on the permissible disturbances of each of the components of the
vector x in the test maneuver:

|ωN (t, b, x0, u)| � 30◦/s, |ωe(t, b, x0, u)| � 30◦/s, |β(t, b, x0, u)| � 3◦,

|wx(t, b, x0, u)| � 5◦/s, |wy(t, b, x0, u)| � 5◦/s, |γ(t, b, x0, u)| � 5◦,

b ∈ B, x0 ∈ X0, t ∈ [0, 8].

(16)

The first two restrictions in (16) reflect physical restrictions on the speed of movement of the
drives, and the remaining restrictions are intended to ensure the safety of the test maneuver. Time
discretization (see (10)) of restrictions (16) was carried out with the parameter ΔC = h.

The task is to determine such a test control uA(t, x(t)):

uAi (t, x(t)) = μuprii (t) +
4∑
j=1

Li,j
(
μxprii (t) − xi(t)

)
, i = 1, 2, (17)

on which the functional (4) reaches its minimum value. The restrictions on the elements of the
matrix Li,j in test control (17) were taken in the form (8) with C = 0.5, 1, 2. The optimal test
control uA(t, x(t)) was determined in accordance with the algorithm of Section 3. Optimization of
the program test signal uapr(t) with B = bapr, x0 = 0 and replacing restrictions (16) with restrictions

|ωN (t, bpri, 0, u)| � 30◦/s, |ωe(t, bpri, 0, u)| � 30◦/s, |β(t, bpri, 0, u)| � 3◦,

|wx(t, bpri, 0, u)|� 5◦/s, |wy(t, bpri, 0, u)|� 5◦/s, |γ(t, bpri, 0, u)|� 5◦, t∈ [0, 8]

was performed by the method described in [7], in the class of parameterized controls, presented in
the form

uprij (t) =
50∑
i=1

di+50(j−1) sin(πit/T ), j = 1, 2,
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Fig. 1. Optimal solution to the problem in the class of program controls for B = bpri, X0 = 0.
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where di, i = 1, 100 is optimized parameters. Figure 1 shows the trajectory x(t, bpri, 0, upri) of
system (13)–(14), corresponding to the optimal program test signal upri(t) for this task. The
components of the optimal program test signal upri(t) practically coincide with the dependences
δN (t), δe(t) shown on the graph. The value of the criterion on the optimal test signal is equal to
tr
(
M−1(bpri, 0, upri)

)
= 0.0036.

Next, in accordance with the algorithm of Section 3, we found the optimal values of μ and Li,j,
i = 1, 2, j = 1, 4 in (17). All corner points of cube B were taken as the initial sample of values
bj ∈ B, xj0 ∈ X0, j = 1, 32 for xj0 = 0. Finding test controls for each C = 0.5, 1, 2 required five to
eight iterations of the algorithm. The values of the criterion trM−1

(
bpri, 0, uA(t, x(t))

)
on optimal

test controls are equal to: 0.0089 at C = 2; 0.011 for C = 1 and 0.018 for C = 0.5.

Figure 2 shows the fields of values of the components of the vector x, calculated on the test
control uA(t, x(t)) with C = 2 for 60 different pairs bj , xj0 from a priori possible ones (i.e. for
60 possible solutions of system (13)–(14)). At C = 1 and 0.5, the fields of the components of
the vector x differed mainly in the larger width of the “tracks” values. The figure shows that all
specified restrictions (16) are satisfied. Numerical verification of the fulfillment of restrictions (16)
was carried out for 20 000 different pairs bj, xj0 for each value of C = 0.5, 1, 2. The optimal value
of μ for C = 2 was equal to μ = 0.75. We note that on the program test signal u(t) = μupri(t)
restrictions (15) would be violated already at μ = 0.1.

At the same time, the limitations and stability of the system were tested (9). In all these cases,
all eigenvalues of the matrices A(bj) −GL had negative real parts.

Figure 3 shows the polygons of expected identification errors JA(b, x0) = trM−1
(
b, x0, u

A(t, x(t))
)

on optimal test controls in comparison with the polygon of expected identification errors JP (b, x0) =
trM−1

(
b, x0, u

P (t)
)

on the optimal program test signal uP (t). The program test signal uP (t) for
problem (13)–(16) was found using the method described in [7]. The value of the criterion on the
optimal program test signal is tr

(
M−1(bpri, 0, uP (t))

)
= 0.031.

The expected identification errors JP (b, x0) and JA(b, x0) were calculated using solutions to the
same systems of equations (13)–(14) and (6), differing only in input signals u = u(t) = uP (t) and
u = uΣ(t) = uA(t, x(t)) respectively. The number of points to construct the polygon was NP =
20 000.
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Figure 3 shows that the test control is significantly better than the program test signal. The
polygons of expected identification errors on test controls are located to the left of the polygon of
expected identification errors on the program test signal in the region of lower values of expected
identification errors. The spread of possible values of the expected identification error in test
controls is significantly smaller. The right “tails” of the polygons, corresponding to large values of
the expected error, are noticeably shorter on the test controls than on the polygon on the program
test signal. When C = 2 the average value (standard deviation) of the expected identification error
on the test control is more than 3.2 (3.2) times less than the expected error on the program test
signal, with C = 1—more than 2.7 (2.2) times, with C = 0.5—more than 1.6 (1.2) times. Out of
20 000 realizations of the values b and x0, out of a priori possible ones, the share of realizations for
which the ratio of expected identification errors on the test signal and test control was more than
two was equal to: when C = 2—93%, when C = 1—78%, when C = 0.5—28%.

We note that, within the framework of the comparison, the formulation of the problem of
optimizing the program test signal fit to conditions favorable for identification for conducting a
test maneuver with an open control loop.

The optimal values of μ and Li,j in the problem under consideration were such that: max
i,j

Li,j = C;

μ = 0.64 for C = 2, μ = 0.58 for C = 1, μ = 0.45 for C = 0.5. We can assume that the optimal
(maximum achievable) values of the parameter μ in control (7) are limited by the value of the
parameter C in (8). To confirm this assumption, criterion (4) in this problem was replaced by
the criterion J = μ, which was maximized over μ and L under the same restrictions (16), (8) and
in that class controls (17). The values of μ and Li,j, optimal for the criterion J = μ, obtained
at C = 0.5, 1, 2 practically did not differ from the corresponding previously obtained values. We
note that the problem of maximizing μ is significantly simpler than the problem of minimizing the
nonlinear criterion (4).

The a priori uncertainty of the initial conditions of the test maneuver significantly affects the
effectiveness of the test control. The influence of this uncertainty can be weakened if feedback is
introduced gradually at the beginning of the test maneuver (see [20]). In the considered example,
this technique leads to a decrease in the average expected identification error on the test control
by 4.2 times (at C = 2) compared to the error on the program test signal uP (t).

5. CONCLUSION

The problem of planning an experiment for parametric identification of an object’s motion
model is considered under restrictions on permissible disturbances of the object’s state vector in
the experiment and a priori uncertainty regarding the initial conditions of the experiment. Methods
are proposed for solving this problem in the class of feedback controls. This ensures tracking of an
object’s trajectory that satisfies the specified restrictions and has good informativeness about the
identified parameters.

The scope of application of the methods proposed in the article is limited to the tasks of planning
experiments to clarify the characteristics of automatically controlled objects, in particular the
aerodynamic characteristics of automatically controlled aircraft. It should be expected that the
effectiveness of the proposed methods in such problems increases with the increase in the uncertainty
of the prior estimates of the identified characteristics and the tightening of restrictions on the
permissible disturbances of the object’s state vector in the experiment.

The control synthesized for active parametric identification in the class of controls with feedback
is proposed to be called test control by analogy with test signals selected in the class of program
controls.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



SYNTHESIS OF TEST CONTROL 991

The results of statistical modeling, carried out with a fifty percent a priori uncertainty regard-
ing the true values of the identified parameters, confirmed that by choosing a test control, the
identification error can be significantly reduced compared to the identification error on the optimal
program test signal, both on average and “by probability,” i.e., for most priori possible trajectories
of object movement.
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Abstract—The task of angular orientation and stabilization of a space structure during its
assembly in orbit is solved. The structure includes elastic elements that are installed during the
assembly process. The elastic elements of the structure have no sensors to obtain information
about their deformation parameters. Control algorithms are proposed to ensure the stability of
the angular motion of the structure. A nonlinear extended Kalman filter is used to obtain the
necessary information. A joint estimation algorithm for the coordinates of the angular motion
of the considered mechanical system and the coordinates of the elastic vibration tones, as well
as an algorithm for the identification of their unobservable parameters are developed. The
results of mathematical modeling of a variant of the mechanical system of a space structure
are presented, which confirm the operability and efficiency of the developed algorithms for
estimating coordinates and parameters.

Keywords : mathematical model, control algorithm, space structure, gyroscopic drive, vibration
damping, coordinate estimation
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1. INTRODUCTION

Modern spacecraft are dynamic control objects with mechanical structures containing elastic
elements. It is noted in [1] that as the size and complexity of the mechanical structure of such
vehicles grows, the influence of the elastic properties of the structure on the dynamics of the
orientation mode increases. In addition, there is a tendency to complexity of modern spacecraft
structure itself, for example, the use of extended elastic elements. Perturbation in the dynamics
of spacecraft is also brought by the transformation of elements of the design during operation [2].
With the development of space technology, large-size space structures have emerged, called “large
space structures” (LSS), which can be created in space in various ways. LSS—a multidimensional
multi-frequency mechanical system with varying parameters [3, 4]. Some of the first LSSs were
considered to be large-sized umbrella reflectors, whose structures were envisioned to be built by
assembly in space [5]. The development of space robotics makes it possible to solve LSS assembly
problems using various robotic devices [6]. In [7] it is noted that the development of space robotics
is characterized by two trends. On the one hand, elements of future space infrastructure such as
large, multi-modular spacecraft, for example, orbital stations, are expected to be improved, with
robotics as an integral component. On the other hand, more and more attention is being paid
to robotic servicing, interpreted in a broad sense, which also includes robotic assembly operations
for a very broad class of objects [8]. In the robotic environment, space manipulation robots [9],
including free-flying [10] robots, are expected to be used extensively.
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This paper considers an umbrella-type LSS assembled in space, which is a dynamic control object
with variable parameters and a large and discretely time-varying number of degrees of freedom.
As a mechanical system, such LSS can be considered as a sequence of intermediate mechanical
structures formed in the assembly process. The structure contains elastic elements installed in the
assembly process using a space manipulator or a free-flying space manipulation robot. A variant of
LSS is considered, in which elastic elements have no sensors of information about coordinates and
vibration parameters. One of the main LSS control tasks is orientation control and stabilization of
the structure hull axes. The solution of this problem is traditionally obtained on the basis of relay
or discrete algorithms [11]. The breaking character of control actions on the hull and shock effects
during installation of new structural elements are the causes of elastic oscillations of LSS. When
controlling the angular motion of the LSS, a contradiction arises between the main goal of controlling
an elastic dynamic object as a rigid body and the need to damp the appearing elastic oscillations.
Absence of atmospheric resistance forces leads to accumulation of energy of elastic vibrations in the
process of controlling “rigid” motion of LSS. Exceeding the critical amplitude of elastic oscillations
and the proximity of their frequencies to the frequencies of controlling the “rigid” motion lead to
instability of the system [12]. The lack of accurate determination of the mathematical model (MM)
variables in ground conditions leads to the necessity to solve the problem of stable and accurate
control of angular motion at all stages of LSS assembly using robust or adaptive control methods
of dynamic objects [13].

In [14] an algorithm for LSS orientation control is proposed with low frequencies of elastic vibra-
tions, which significantly affect the quality of transients due to the proximity of natural frequencies
of the structure to the frequency of control of its “rigid” motion. In [15] the problem of providing
robust stability of elastic vibrations of spacecraft with a nonlinear orientation control system using
flywheel motors is solved. The solution is based on the purposeful change of stability region bound-
aries in the space of object and regulator parameters to maximize the number of robustly stable
elastic components of the spacecraft structure. It should be noted that the algorithms providing
robust control are effective for the final assembled spacecraft structure (SS). The approach proposed
in [14, 15] is limited by the need to obtain current information on the state of the system and its
MM parameters. Adaptive control algorithms allow to ensure stability and damping vibration in a
wide enough range of LSS elastic vibration natural frequencies with a minimum value of structural
damping. In [16] three types of adaptive control strategy for SS on the sequence of stages of its
change during assembly in space were defined. The first type: control using analysis and predic-
tion of LSS elastic vibration state. The second type: control with estimation of the phase of the
dominant vibrational component in the frequency spectrum of elastic vibrations at the moment of
control switching. The third type: control based on fuzzy logic [17]. In [18], an adaptive control
algorithm with a reference model for the angular motion of the assembled LSS is proposed. Its
functioning does not depend on the intensity and spectral composition of the input influences and
does not require the estimation of the elastic vibrations of the LSS. However, the algorithm provides
high control accuracy at high energy costs. Currently, attention is paid to the realization of the
first type of LSS adaptive control strategy, which uses methods of identification and estimation of
the state of the mechanical system of the structure. In [11], active damping of elastic vibrations of
the International Space Station structure by the orientation motors using identification algorithms
is proposed. To obtain the necessary information for controlling the angular motion of a space
structure with an elastic mechanical system, it is reasonable to use estimation algorithms based
on the Kalman–Bucy [19] filtering theory. In [20], the task of estimating the coordinates of elastic
vibrations of SS using a nonlinear extended Kalman filter is solved. In the present work (as a
follow-up to [20]), an algorithm for joint estimation of the coordinates of angular motion of a me-
chanical system and unmeasured coordinates of elastic vibrations tones, as well as an algorithm for
identification of their unobservable parameters, is developed. The problem of forming algorithms

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



ANGULAR MOTION CONTROL 995

for controlling angular stabilization of SS at the assembly stages is solved. It is assumed that at
each stage of assembly there is a connection of a structural element causing elastic vibrations that
need to be damped within a given time interval using gyroscopic power drive of the LSS angular
stabilization system.

2. MATHEMATICAL MODEL OF ANGULAR MOTION OF LSS

The structure of the umbrella-type LSS mechanical system will be considered as a set of solid
bodies, one of which is a carrying body. The other (carried) bodies are building elements attached
in one or another order to the carrying body using the spiral scheme of the umbrella-type frame
assembly. Such a mechanical system contains non-rigid elements and is characterized by a discretely
varying number of degrees of freedom [21]. At the connection points of the structural elements, the
rotational degree of freedom in the considered plane of motion and elastic coupling that limits the
possible displacements of the elements to the area of small deviations relative to the equilibrium
state are taken into account [22]. Using a gyroscopic power drive for LSS assembly containing three
identical control moment gyroscope (CMG) installed in a three-beam star pattern, gyrostabilization
channel interconnections arise due to inertial and gyroscopic influences [23]. A simplified MM of
the spatial angular motion of the mechanical system of the considered LSS type, obtained from
the full MM, is presented in detail in [23]. To solve the problem of analytical synthesis of the
structure of CMG control algorithms, the model of gyro-power-driven LSS motion, neglecting the
cross-effects of CMG motions, can be simplified to three single-type control and gyrostabilization
channels of the following form

Ixχ̈+
nx∑
i=1

Ĩi,xq̈i,x −Hβ̇ + aIββ̈s + F (χ̇) = Mx,

ai,xχ̈+ q̈i,x + bi,xq̇i,x + ci,xqi,x = 0, i = 1, nx,

Iββ̈ + kdβ̇ +Hχ̇+ aIββ̈s = Mu(ux),

(1)

where χ = (ψ,ϕ, ϑ)T is a vector of hull orientation angles, β = (βψ, βϕ, βϑ)T is a vector of precession
angles of CMG frames, q = (qk)

T is a composite vector of coordinates characterizing the elastic
vibrations of the structure elements along each of the three channels of orientation angles such
that qk = (qi,k)

T, i = 1, nx, where nx is a number of elastic coordinates considered in channel χk,
(k = 1, 3); βs = [(βϕ + βϑ), (βψ + βϑ), (βϕ + βψ)]T; a = cos(π/4 = 0.707 (for installation of CMGs
of “star” type), Iβ are moments of inertia of CMG frames; H = diag(h1, h2, h3) is a diagonal matrix
of CMG kinetic moments; kd is a damping coefficient along the CMG suspension axis; ai,x, bi,x, ci,x

are parameters of the equations of vibrations of elastic elements; Ix = Īx +
nx∑
i=1

Ĩi,x, where Īx is

a diagonal matrix of axial moments of inertia of the hull, Ĩi,x is a matrix of inertial influence
of ith elastic element on the dynamics of the structure; F (χ̇) is a vector of nonlinear functions
containing products χiχj, i, j = 1, 3, i 
= j; Mx is a vector of disturbing moments of external forces
acting on the hull; Mu(ux) is a vector of control moments applied with respect to the CMG frame
axes; ux is a vector of control voltages, whose components are fed to the inputs of the corresponding
CMG momentum drives.

In the mode of angular orientation and stabilization of the LSS at the assembly stage, the values
of velocities χ̇k are small enough to allow neglecting in F (χ̇) the products χiχj , i, j = 1, 3, i 
= j.
In the analytical study of gyro-power-driven control with three identical CMGs, it is reasonable to
neglect the interchannel cross-couplings and take aIβ β̈s = 0 in (1) [22]. Then the system (1) has
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the form

Ixχ̈+
nx∑
i=1

Ĩi,xq̈i,x −Hβ̇ = Mx,

ai,xχ̈+ q̈i,x + bi,xq̇i,x + ci,xqi,x = 0, i = 1, nx,

Iββ̈ + kdβ̇ +Hχ̇+ aIββ̈s = Mu(ux).

(2)

MM (2) is the basis for its decomposition into three subsystems, which correspond to isolated
gyrostabilization channels [22].

3. LSS ANGULAR MOTION CONTROL ALGORITHMS

Synthesis of control algorithms for dynamic objects with MM of the form (1) or (2) is tradi-
tionally carried out sequentially by two steps [22]. In the first step, the type and parameters of
the algorithms forming the values of the components of the vector ux(t) are determined before the
start of the assembly without taking into account elastic vibrations (q = 0). Such algorithms are
called basic algorithms, during the synthesis of which the MM (2) is transformed to the form of

Ixχ̈−Hβ̇ = Mx,

Iββ̈ + kdβ̇ +Hχ̇+ aIββ̈s = Mu(ux).
(3)

At the second step of synthesis for stabilization and damping of elastic vibrations it is proposed
to form a control algorithm in addition to the basic algorithm, which uses information about elastic
vibrations of elements and their parameters.

It is reasonable to apply basic algorithms for controlling CMG in the LSS stabilization mode at
the stage of assembling PD-algorithms in each kth channel in the form of

ux,k(t) = p1,kχk(t) + p2,kχ̇k(t), k = 1, 3,

where p1,k, p2,k are coefficients, which are chosen taking into account the parameters of the equa-
tions (3) and without taking into account the elasticity of the structure from the conditions of
ensuring stability and the required quality of control.

The control moments applied relative to the CMG precession axes are formed as [22]

Mu,k(ux,k) = p0,k(p1,kχk(t) + p2,kχ̇k(t)), k = 1, 3, (4)

where the coefficients p0,k are determined by the structure characteristics of the hull and are set
depending on the moments of inertia Ix at the assembly stage. It should be noted that MM (3)
with algorithms (4) describe a linear dynamic system with constant parameters at the assembly
stage, whose stability condition on the angular velocity vector χ̇ is determined from the analysis of
its characteristic equations in each kth channel in the form of [22]

kd(hk + p0,kp2,k) > Iβp0,kp1,k, k = 1, 3. (5)

Based on the same characteristic equations, the problem of determining the values of the coeffi-
cients p1,k, p2,k of the algorithms (4) that provide the required regulation time tr,k ≈ 3/η∗k, k = 1, 3
at the coordinates of the vector χ. Here η∗k are the given values of the stability degrees of the
characteristic equations of [22].

Studies of the dynamics of the umbrella-type LSS have shown that, when the number of elas-
tic elements increases, lower frequencies of elastic vibrations appear in the frequency spectrum.
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It should be noted that the gyro-power-driven system with the basic algorithm (4) provides the
necessary damping of high-frequency elastic vibrations. However, in the low-frequency region, the
processes of elastic vibration damping by means of basic control (4) under the condition (5) appear
to be overly delayed [22]. Such dynamics of the processes of orientation and stabilization of the
angular position of the LSS is unsatisfactory. In addition, the increase in the elastic vibration
damping time creates known difficulties when a free-flying space manipulation robot is used in the
LSS assembly process [24]. The mentioned disadvantages require complication of the initial basic
control algorithm (4). A possible way to correct the basic algorithm is to organize a subsystem
of additional gyro-power-driven stabilization of low-frequency elastic vibrations of the LSS, using
estimates q̂i,x, ˆ̇qi,x of the corresponding elastic coordinates. The additional subsystem is connected
after the reorientation maneuver is completed and the structural element is installed at the assem-
bly stage. To accelerate the vibration damping, the subsystem generates additional influences of
the following type at the CMG inputs

Md,k(uq,k) =
nk∑
i=1

p̃1,k,iq̂k,i +
nk∑
i=1

p̃2,k,i ˆ̇qk,i, k = 1, 3, (6)

where q̂k, ˆ̇qk are estimation vectors of elastic coordinates and their derivatives, p̃1,k,i, p̃2,k,i are
constant coefficients at the assembly stage.

In choosing the values of the coefficients in (6), it is necessary to take into account the values
of the parameter estimates in the equations of MM elastic vibrations (2). Estimates of partial
frequency values ωi,x =

√
ci,x from the low-frequency spectrum of elastic vibrations allow us to

choose the coefficients p̃1,k,i, p̃2,k,i that ensure stability and minimum damping time of the elastic
component [22]. Using the estimates χ̂, ˆ̇χ taking into account (6), the control moments are formed
in the form of

Mu,k(ux,k) = p0,k

[
p1,k

(
ˆ̄χk − I−1

x

nx∑
i=1

Ĩi,k q̂i,k

)
+ p2,k

(
ˆ̄̇χk − I−1

x

nx∑
i=1

Ĩi,k ˆ̇qi,k

)]
, k = 1, 3. (7)

The gain coefficients in (7) at estimates q̂i,k, ˆ̇qi,k depend on the values of Ĩi,k, which can be less
than the values of Ix by an order of magnitude or more. For accelerated active compensation of
the effect of elastic vibrations on the angular orientation of the LSS, it is reasonable to introduce
reconfigurable coefficients p̃1,k,i, p̃2,k,i in (7). Then the algorithms (7) take the following form

Mu,k(ux,k) = p0,k

[
p1,k

(
ˆ̄χk −

nx∑
i=1

p̃1,k,iq̂i,k

)
+ p2,k

(
ˆ̄̇χk −

nx∑
i=1

p̃2,k,i ˆ̇qi,k

)]
, k = 1, 3, (8)

where p̃1,k,i � p1,kI
−1
x Ĩi, p̃2,k,i � p2,kI

−1
x Ĩi.

If the elastic elements do not have information sensors, it is necessary to solve the problem
of obtaining estimates of q̂ and elastic vibrations parameters at each stage of LSS assembly after
its completion. To solve this problem, a modified version of the Kalman filter-based estimation
algorithm proposed in [20] is used.

4. SYNTHESIS OF AN ALGORITHM FOR JOINT ESTIMATION OF COORDINATES
ELASTIC VIBRATIONS AND THEIR PARAMETERS

The synthesis of the algorithm for joint estimation of the coordinates of angular motion and
coordinates of vibrations (tones) of elastic elements of the structure will be carried out on the
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example of an isolated channel χ2 = ϕ, which is obtained from MM (2) in the form of

Iϕϕ̈+
n∑
i=1

Ĩiq̈i − h2β̇ = Mϕ,

aiϕ̈+ q̈i + biq̇i + ciqi = 0, i = 1, nx,

Iββ̈ + kdβ̇ + h2ϕ̇ = Mu(uϕ),

(9)

where Mu(uϕ) = pϕuϕ, pϕ = (p1,ϕ, p2,ϕ) is a vector of coefficients, uϕ = (ϕ, ϕ̇)T.

During the synthesis of the estimation algorithm, assume Mϕ = 0. Then the system (9) is
transformed to the form [20]:

¨̄ϕ− I−1
ϕ h2β̇ = 0,(

1 − I−1
ϕ

n∑
i=1

aiĨi

)
q̈i +

⎛⎝1 − I−1
ϕ

n∑
i=1,j 	=i

aj Ĩj

⎞⎠ (biq̇i + ciqi)

+ ai

n∑
i=1,j 	=i

Ĩj(bj q̇j + cjqj) + aih2β̇ = 0,

Iββ̈ + kdβ̇ + h2

(
ϕ̇− I−1

φ

n∑
i=1

Ĩiq̇j

)
= pϕuϕ.

(10)

and the angle ϕ is defined by the expression

ϕ = ϕ̄− I−1
ϕ

n∑
i=1

Ĩiqi, (11)

where ϕ̄ is an angle of rotation of the hull caused by the rotation of the LSS as a rigid object.

The representation of the ϕ coordinate in the form of (11) allows to apply filtering algorithms
for joint estimation of the coordinates of angular motion of the considered mechanical system of
LSS with CMG, unmeasured coordinates qi of elastic vibration tones, and identification of elastic
vibration parameters in real time. It should be noted that unlike the [20] system (10) is nonlinear
because it contains unknown parameters. A nonlinear extended Kalman filter is used to obtain the
estimates. During the synthesis of the estimation algorithm, let represent the MM equations (10)
and (11) in the Cauchy form

ẋ(t) = f(x(t)) + duϕ + Cw(t), (12)

where x ∈ R5n+4 is a state vector, x = (ϕ̄,˙̄ϕ, β, β̇, qi, q̇i, ai, bi, ci)
T, i = 1, n, b ∈ R5n+4 with non-zero

element d4 = 1, f(x) is a nonlinear vector-function defined from (10) and (11),

f1 = x2, f2 = I−1
ϕ h2x2n+4, f2i+1 = x2i+2, f2n+3 = x2n+4,

f2n+4 = I−1
β

[
d4uϕ − kdx2n+4 − h2

(
x2 − I−1

ϕ

n∑
i=1

Ĩix2i+2

)]
,

f2i+2 = (·)−1

⎡⎣x2n+4+ih2x2n+4 − (·)j(x3n+4+ix2i+2 + x4n+4+ix2i+1)

− x2n+4+i

n∑
j=1,j 	=i

Ĩj(x3n+4+jx2j+2 + x4n+4+jx2j+1)

⎤⎦ ,
AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



ANGULAR MOTION CONTROL 999

where

(·) = 1 − I−1
ϕ

n∑
i=1

aiĨi, (·)j = 1 − I−1
ϕ

n∑
j=1,j 	=i

aj Ĩj, j = 1, n, j 
= i,

f2n+4+i = f3n+4+i = f4n+4+i = 0;

w ∈ R4n+2 is a noise vector, C = diag(C0 · · ·Ci · · · ) is a block-diagonal matrix of object noise,
containing blocks C0 ∈ R4×2, Ci ∈ R5×4. The elements of matrix C0 are zero except c21 = c42 = 1,
matrices Ci also have zero elements except c21,i = c32,i = c43,i = c64,i = 1.

It is assumed that in (10) the unknown parameters of elastic vibrations are assumed constant
at the assembly stage. If necessary, any parameters can be included in the state vector χ, which
leads to cumbersome mathematical expressions.

If only coordinates ϕ and ϕ̇ are measured on board the LSS, the measurement equation has the
form

z(t) = Gx(t) + v(t), (13)

where the measurement vector z ∈ R2 has coordinates

z1 = x1 − I−1
ϕ

n∑
i=1

Ĩix4+i + v1, z2 = x2 − I−1
ϕ

n∑
i=1

Ĩix4+n+i + v2;

v is a noise vector of the meters.

The structure of the measurement matrix G ∈ R2×(5n+4) has the form [20]

G = [C1G2 · · ·Gi+2],

where C1, G2, Gi+2 are adjoint matrices, i = 1, n; G1 is a square unit matrix, G2 is a square zero
matrix; the matrix Gi+2 ∈ R2×5 consists of the following non-zero elements: g11,i = g22,i = −I−1

ϕ Ĩϕ.

It is assumed that the initial values of x(t0), w, v are independent of each other, w and v are
Gaussian white noise with zero mathematical expectations and correlation functions:

M〈w(t)wT(τ)〉 = Qw(t)δ(t− τ), M〈v(t)vT(τ)〉 = Qv(t)δ(t − τ).

Here δ is the Dirac delta function, the diagonal noise intensity matrices Qw(t) and Qv(t) are
continuous and positively defined for t � t0. Then the problem of synthesizing an algorithm for
estimating the coordinates x(t) from the measurements z(t) reduces to a special case of a continuous
nonlinear extended Kalman filter [20] with constant matrices C and G:

˙̂x(t) = f(x̂) + du(t) + P (t)GTQ−1
v [z(t) −Gx̂(t)],

Ṗ (t) = D(x̂)P (t) + P (t)D−1(x̂) − P (t)GTQ−1
v GP (t) + CQw(t)CT,

(14)

where x̂(t) is a vector of estimates of the coordinates of vector x(t), P (t) is a covariance matrix,
D(x̂) = ∂f(x̂)/∂x̂ is a Jacobi matrix.

5. MATHEMATICAL MODELING

The investigation of the capabilities of the control algorithm (8) for active compensation of elastic
vibrations at the angular orientation of the LSS along ϕ coordinate was carried out by means of
mathematical modeling using in (8) estimates derived from the (14) algorithm. The number of
tones and the values of their parameters were assumed to be known and the same in both MM (9)
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and the estimation algorithm (14), except for those parameters that are assumed to be unknown
in (14). To reduce the simulation time in (9), only two tones n = 2 were investigated, and the ˆ̄ϕ,
ˆ̄̇ϕ and q̂i, ˆ̇qi LSS estimates were used to form the control moment. The constant parameters c1
and c2 were chosen as unknowns, and their estimates ĉ1 and ĉ2 were used in (14).

The control signal is generated on the basis of (8) as follows

uφ = p1 ˆ̄ϕ−
2∑
i=1

p̃1,iq̂1,i + p2
ˆ̄̇ϕ−

2∑
i=1

p̃2,i ˆ̇q2,i, (15)

where the coefficients p̃1,i, p̃2,i have the same order as p1 and p2, respectively.

In the modeling of angular orientation dynamics to obtain measurements, a variant of the
system (9) with the algorithm (15) was used as MM in the form of [20]

ẏ = Ay + d̄uϕ, (16)

where y ∈ R8 is a state vector, y = (ϕ̄,˙̄ϕ, β, β̇, q1, q2, q̇1, q̇2)T, d̄ ∈ R8 is a vector with one non-zero
element d̄4 = 1.

Based on (16), a vector of measured coordinates z = (ϕ∗, ϕ̇∗)T was generated using the expression
z = Ḡy + v, where the matrix Ḡ ∈ R2×8 has non-zero elements ḡ1,1 = ḡ2,2 = 1, ḡ1,5 = ḡ2,7 = −I−1

ϕ Ĩ1,

ḡ2,6 = ḡ2,8 = −I−1
ϕ Ĩ2, v = (v1, v2)T is a vector of measurement noise.

In (14), MM (12) was used with vector x ∈ R10, which includes identifiable unknown parameters
c1 and c2, x = (ϕ̄,˙̄ϕ, β, β̇, qi, q̇i, c1, c2)T, i = 1, 2, d ∈ R10 is a vector with one non-zero element
d4 = 1. C ∈R10×6 is a noise matrix with non-zero elements c2,1 = c4,2 = c6,3 = c8,4 = c9,5 = c10,6 = 1.
The measurement model for the algorithm (14) is formed as ẑ = Gx̂, where the matrix G ∈ R2×10

differs from the matrix Ḡ by the presence of the ninth and tenth zero columns. Matrices Qw ∈ R6×6

and Qv ∈ R2×2 (14) are assumed constant.

The initial values at t0 = 0 of the coordinates and parameters, as well as the vectors y, x̂, and
the elements of the diagonal covariance matrix P (0) are assumed to be [20] as follows:

y1(0) = 0.017; y2(0) = 0.016 s−1; y3(0) = 0.18 × 10−3;

y4(0) = 0.7 × 10−4 s−1; y5(0) = 0.017; y6(0) = 0.19 × 10−4 s−1;

y7(0) = 0.37 × 10−2; y8(0) = 0.13 × 10−4 s−1;

a1 = 1.2; a2 = 2.32; b1 = 0.24 s−1; b2 = 0.12 s−1;

c1 = (0.34)2 s−2; c2 = (0.47)2 s−2;

Iϕ = 69 200 Nms2; Ĩ1 = 1270 Nms2; Ĩ2 = 2500 Nms2;

Iβ = 1.1 Nms2; kd = 2.5 Nms; h = 240 Nms;

p1,1 = 3.9 × 10−6; p2,2 = 3.8 × 10−6 s−2; p3,3 = 0.49 × 10−2;

p4,4 = 6.1 × 10−4 s−2; p5,5 = 4.7 × 10−4; p6,6 = 0.54 × 10−2 s−2;

p7,7 = 0.11 × 10−4; p8,8 = 0.11 × 10−6 s−2;

p9,9 = 1.1 × 10−3 s−4; p10,10 = 1.8 × 10−3 s−4.

The initial values of the estimates were used:

x̂1(0) = ϕ∗, x̂2(0) = ϕ̇∗, x̂j(0) = 0 ∀j = 3, 8.

Given that the parameters c1 and c2 can only be positive, then x̂9(0) = 0.002 s−2; x̂10(0) = 0.005 s−2.
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Fig. 1. Identification errors of partial frequencies.

The following standard deviations were assumed for modeling discrete analogs of the continuous
white noise of the object and meters:

σw,1 = 1.5 × 10−5 s−2; σw,2 = 2 × 10−5 s−2; σw,3 = 2.2 × 10−6 s−2;

σw,4 = 1.8 × 10−6 s−2; σw,5 = 4.8 × 10−2 s−1; σw,6 = 3.6 × 10−2 s−1;

σv,1 = 2.6 × 10−4; σv,2 = 1.34 × 10−5 s−1.

The white noise intensity matrices Qw and Qv are assumed to be diagonal due to the lack of
correlation between the object noise and the noise in the measurement channels. The elements of
these matrices are calculated using the expressions

qw,kk = 2σ2w,kτ, k = 1, 6 and qw,jj = 2σ2v,jτ, j = 1, 2,

where τ is a correlation time, τ � Δt, Δt is an integration step. The following values are adopted:

qw,11 = 2.3 × 10−12 s−3; qw,22 = 0.49 × 10−14 s−3; qw,33 = 4.8 × 10−14 s−3;

qw,44 = 3.2 × 10−14 s−3; qw,55 = 2.3 × 10−6 s−3; qw,66 = 1.3 × 10−6 s−3;

qv,11 = 4.7 × 10−12 s; qv,22 = 2.9 × 10−13 s−1.

In statistical modeling, discretization of the equations (14) was performed using the fourth-order
Runge–Kutta method with Δt, which was chosen to range from 0.002 to 0.005 s.

Figure 1 presents the identification error plots of unmeasured partial frequencies Δωi(t) =√
ci −

√
ĉi(t), i = 1, 2 with doubled standard deviations calculated as the corresponding diago-

nal elements of the matrix P (t): σw,1 = p−4
9,9, σw,2 = p−4

10,10. From the results of statistical modeling,
it follows that the convergence time of the parameter estimates c1 to 2% of the maximum value of
the initial value is on average from 3 to 6 s. At the same time, the convergence time of coordinate
estimates ϕ̂ and ˙̂ϕ to 2% of their maximum values averages 20–25 s.

In order to verify the possibility of using the algorithm (15) to actively compensate for the
influence of vibrations of elastic parts of the LSS on its angular dynamics, mathematical simulations
in the angular stabilization mode have been carried out. The results of comparative modeling of
the angular motion of the LSS along the coordinate ϕ with the control algorithm (7) and the
algorithm (15) are presented in Fig. 2.
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Fig. 2. Stabilization processes for the rotation angle of a structure.

Figure 2a shows plots of the real values of ϕ (11) obtained when using the algorithm (7) with
p̃1,i = 0.017, p̃2,i = 0.01, i = 1, 2, in Fig. 2b shows the graphs when using the algorithm (15) in
which p̃1,i = 3.6, p̃2,i = 2.3. In the first case, the elastic vibrations decay to 2% of the maximum
value of the initial amplitude in ∼ 6000 s, while in the second case, with active compensation of
the effect of elastic vibrations occurs for ∼ 80 s.

In simulations of the stabilization process of the steering angle up to 150 s (see Fig. 2b), errors
in the identification of partial frequencies ranged from 0.7 to 1.6% of the true values of the ωi
parameters.

6. CONCLUSION

The problem of vibration damping arises in controlling the angular motion of an LSS assembled
in orbit, containing elastic elements, in the absence of information about new mechanical parameters
of the assembled structure and initial characteristics arising at each stage of assembly of new
elastic components. This requires ensuring not only a timely change of the estimation strategy
and, accordingly, of the control during the transition of the structure from one class of mechanical
systems to another, but also the application of the principles of adaptive control on the interval of
the structure development within each stage of assembly above the first one. The task of optimizing
the coefficients in the algorithm (8) at the coordinates of elastic vibration tones from the point of
view of rapidity should be solved at the assembly stage, if necessary.

The synthesized algorithm of joint estimation of LSS angular motion coordinates, tones of elastic
vibrations of the structure and their parameters allows to obtain with high accuracy estimates of
their unmeasured coordinates and parameters in real time based only on the readings of LSS angular
motion meters in the absence of any objective information on elastic vibrations.

It should be noted that the construction of an extended Kalman filter for estimating the motion
coordinates and their parameters of such a complex mechanical system as the umbrella-type LSS
considered in this paper requires using a full MM of a much higher order, in which the mutual
influence of vibrational components is taken into account. It is advisable to solve such a problem
when developing the system for a particular variant of the assembled structure using an appropri-
ate amount of computational means. This paper considers the principal possibility of using the
proposed approach to solve the problem of estimation of such complex dynamic objects.

The use of the synthesized algorithms (8) and (14) in LSS assembly has a number of advantages.
Thus, when the first elastic element is installed, the dimensionality of the state vector in the
estimation algorithm is increased by five unmeasured coordinates: two coordinates of the elastic
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vibration tone and three vibration parameters. Since these parameters remain constant for a
long time, after their identification they become known and further identification of them is not
reasonable, then these three parameters can be excluded from the state vector. After installation
of the next elastic element, the above change of dimensionality is repeated and the state vector is
increased by five coordinates. After the identification procedure of the next constant parameters,
the state vector is also decreased by the next three coordinates and so on. Thus, the state vector
after identification of vibration parameters of all elastic elements of the LSS increases only by
2n coordinates, where n—the number of elastic elements installed on the LSS.

The results of statistical mathematical modeling prove the possibility of active compensation
of the influence of vibrations of elastic parts of the LSS on the dynamics of angular orientation
and stabilization of the LSS itself using control of the form (15). When modeling the algorithm of
identification of parameters a, b, c, three variants of estimation were tested, in which one of the
three parameters was chosen and the other two were considered to be known.
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Abstract—The paper considers the modification and application of the ant colony method
for the problem of directed enumeration of the values of system parameters when performing
calculated multiple calculations. Interaction with the user makes it possible to stop the process
of exhaustive enumeration of sets of parameter values, and the application of a modification
of the ant colony method will allow us to consider rational sets at early iterations. If the user
does not terminate the algorithm, then the proposed modifications allow one to enumerate all
solutions using the ant colony method. To modify the ant colony method, a new probabilistic
formula and various algorithms of the ant colony method are proposed, allowing for each agent
to find a new set of parameter values. The optimal algorithm, according to the research results,
is the use of repeated endless cyclic search for a new solution. This modification allows you to
consider all solutions, and at the same time, find all the optimal solutions among the first 5%
of the considered solutions.

Keywords : ant colony method, parametric graph, reordering, computing cluster, hyperparame-
ter optimization
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1. INTRODUCTION

Nowadays, due to the development of computing clusters, many computational and optimiza-
tion tasks are transferred from human experts to computing machines. For such systems arise the
problems of finding rational values of parameters for solving the computational problem, called
hyperparameter optimization [1]. Among the algorithms of hyperparameter optimization one can
mention the Bayesian optimizer, which allows finding regularities of influence of individual param-
eter values (and various combinations) on performance criteria on the basis of hypotheses and a
posteriori information [2]. For multi-criteria and multi-extreme problems it is often necessary to
consider all sets of parameter values, usually by the method of complete search. This paper con-
siders the possibility of using the ant colony method to solve the problem of directed enumeration
of sets of hyperparameters before sending them to a computing system. By interacting with the
user, it is possible to stop the method before considering all sets of parameter values when a set
satisfying the user’s conditions is found. Directed search by the ant colony method will allow to
consider rational sets of parameter values as early as possible, but in case of user’s dissatisfaction
with the results, it will be possible to reconsider all sets of values.

The ant colony method was originally developed for solving the traveling salesman problem
[3, 4]. Modern research allows to apply the ant colony method to search for continuous optimiza-
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tion. The search methods of CACO (ContinuousAntColonyOptimization) [5], ACOR (Ant Colony
Optimization for continuous domain) [6] and CIAC (ContinuousInteractingAntColony) [7, 8] do not
involve the use of a graph and have been actively investigated by different researchers, including
researchers from Russia [9, 10]. Studies describe the possibility of using the ant colony method
for solving problems on graphs: assignment problems with fuzzy execution time [11, 12], problems
of finding optimal routes for a group of salesmen [13, 14] and problems of supporting spare parts
supply processes [15]. Parametric problems related to finding an optimal set of parameters, classi-
fication, dependency detection, etc. are actively researched in the global community [16–19]. For
such problems, a special graph structure is created. The presented methods and modifications
of the ant colony method are designed to find approximate and rational solutions. Usually all
agents (ants) should converge to one solution. The search for new solutions is carried out by the
multistart [9].

For a directed search of parameter values, it is necessary not to converge to one solution (set
of parameter values) but to consider new solutions sequentially until the user stops the method
or considers all possible solutions. In this paper, modifications of the algorithm are proposed to
consider all solutions instead of converging to one. The proposed approach allows to solve problems
with vector optimality criterion and multimodal target functions without restarting the algorithm.
At the same time, the property of optimization algorithms, the fastest finding of optimal solutions,
is preserved.

2. MODELS AND METHODS

The ant colony method is based on the probabilistic search for an arc in a graph according to
the formula

Pij,k(t) =
ταij × μβij,t∑

z∈Ji,k

(
ταiz × μβiz,t

) . (1)

Using (1), the transition probability of an agent from the current vertex i to the vertices from the
set Ji,k at iteration t is determined. From the computational results, the transition probability to
vertex j for the kth agent is determined. The (1) takes the arc length information ταij (remoteness)

and some weight μβij,t (pheromone) into account. The value of ταij is fixed and does not depend on

the iteration number t. The number of weights μβij,t changes between iterations, updating the state
of the graph and the external environment for the agents’ movement.

To determine the values of the system (solution) parameters, it is suggested to represent the
sets of values in the form of a parametric graph. Each specific value of one parameter represents
a vertex of the graph. All values of one parameter are combined into layers. From each vertex of
one layer there is an arc to each vertex of the next layer. The layers of vertices are arranged in a
certain order, which reduces the number of arcs in the graph. An example of a parametric graph
is shown in Fig. 1. Similar graphs are found in [13, 15, 18–21].

The weights (pheromone) in such a graph are recorded not on arcs but on vertices. As a result,
the arcs are fictitious, and such a parametric graph can be represented as a set of layers (parameters)
and a set of vertices (parameter values) [22].

For a parametric graph in the probabilistic formula (1), the value ταij can only be set on the basis
of a priori information from an expert, but this parameter cannot be defined in general. If a single
factor is used in the probability formula, the stagnation of the solution search process increases.
The algorithm converges to the first good solution and does not continue the search for the optimal
one.
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Fig. 1. Diagram of the parametric graph structure.

To solve the stagnation problem, we can “reset” the parametric graph, transfer the state of the
graph vertices to the initial state, or modify the probabilistic formula

Pij,k(t) =
k1 × μαnorm ij,t + k2 ×

(
1

kol(t)ij,t

)β
+ k3 ×

(
kol(t)ij,t
MaxKolj,t

)γ
∑

z∈Ji,k

(
k1 × μαnorm iz,t + k2 ×

(
1

kol(t)iz,t

)β
+ k3 ×

(
kol(t)iz,t
MaxKolz,t

)γ) . (2)

The formula (2) is a linear convolution (not multiplicative as in (1)) of three summands and
weights. The first summand μαnorm ij,t is determined by the number of weights at the ith vertex of
the j th parameter (parametric graph layer) at iteration t. To apply this parameter in the weighted
sum, it is necessary to use the normalized value. The second summand ( 1

kol(t)ij,t
)β is determined

by the number of visits of agents to the ith vertex of the j th parameter during the running time of
the algorithm. This summand increases the probability of visiting a vertex that is rarely present
in the solutions and avoids stagnation in the early iterations of the ant colony method. The third

summand (
kol(t)ij,t
MaxKolj,t

)γ considers the maximum number of possible visits to a vertex: the values

of MaxKolj,t for the parameter j at iteration t. Since, in a parametric graph, one vertex (one
parameter value) must be selected on each layer, we can calculate the total number of solutions or
sets of parameter values. The total number of solutions can be calculated as the product of the
number of vertices in each layer. The maximum number of solutions that can contain a particular
vertex of a parametric graph is computed as the ratio of the total number of solutions and the
number of vertices in a given layer, i.e., for each vertex of layer j, the value MaxKolj,t will be the
same. The third summand at later iterations allows to increase the probability of choosing the
vertex, for which the majority of solutions are considered. If all possible solutions are considered
for a vertex, this vertex can be excluded from the probabilistic search. Additive convolution allows
to compensate the values of summands. Vertices with a large number of weights and frequent visits
(frequently considered vertices) can be compensated by vertices with a small number of visits (rare
vertices) or vertices, for which almost all solutions are considered.

Another specific feature of the algorithm modification is the need to interact with an external
computing system. For such modifications, it is necessary to store the state of the system computed
for a particular solution. If the ant colony method repeatedly finds a solution, this solution is not
sent to the calculator again, and the value of the target function is taken from the hash table
[15, 21].

For the considered algorithm, it is important to find a new solution at each iteration. Therefore,
if the solution already exists in the hash table, different actions are possible:

1. Using the target function values from the hash table, enter the weights as in the original
algorithm.
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Fig. 2. Schematic diagram of the algorithm of the modified ant colony method.
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2. Ignore the agent. The agent does not put weights on the parametric graph.
3. Repeated search for a new solution, not yet considered on the calculator, by the ant colony

method with a limited number of iterations. If no new solution is found for the set number
of iterations, the agent is ignored.

4. Repeated search for a new solution, not yet considered on the calculator, by the ant colony
method with an unlimited number of iterations. The restriction in item no. 3 can solve the
stagnation problem.

5. Repeat the search for a new solution by another algorithm. The possibility of traversing the
parametric graph as a tree has been considered.

The algorithm flowchart of the proposed modification of the ant colony method is shown in Fig. 2.

3. EXPERIMENT

The objectives of directed enumeration of parameter values are:

—enumeration of all sets of parameter values without any exception;

—the fastest possible acquisition of the optimal set of parameter values.

It can be noticed that both problems contradict each other, because among all sets of parameter
values there will always be the best one. But since the system interacts with the calculator and the
user in real time, there is a possibility of stopping the program by the user if a satisfactory solution
is found. It should also be noted that it is possible to use the vector criterion, which transfers the
problem into the area of decision support and multi-criteria optimization [20].

The effectiveness of modifications of the ant colony method is determined by two main evalua-
tions:

—ability of the algorithm to consider all solutions. It is determined by the value of the criterion:
“estimate of the probability of finding a new solution by the agent.” This estimate is calculated by
the ratio of the number of solutions found during the algorithm’s running time to the total number
of solutions considered;

Fig. 3. Diagram of a parametric graph of high dimensionality.
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—speed of finding the optimal solution. It is determined by the value of the criterion: “estimate
of the expected value of the number of iterations at which this solution was found.”

The experiments were performed on the ACO Cluster software written using the Python lan-
guage. Most of the benchmarks taken from [22, 23] and test graphs of high dimensionality [21]
were considered as test data. The structure of the high-dimensional graph is shown in Fig. 3. The
presented high-dimensional graph contains more than 109 solutions for 13 parameters given in dis-
crete and qualitative scales. With 25 agents per iteration and 20 000 iterations, only 0.05% of the
total number of solutions can be considered at most.

To analyze the performance of the algorithm in finding the last (not yet considered) solutions,
investigation of the Carrom table function are given in the results:

f(x) = −
(
cos(x1) cos(x2)e|100−(x21+x

2
2)

0.5|
)2

30
. (3)

The parametric graph for the function (3) contains two layers: for parameters x1 and x2. Each
layer of the parametric graph has 201 vertices defining specific parameter values in the range
[−10, 10] with precision of 0.1. It takes 1936 iterations of the ant colony method to consider all
solutions by 25 agents, assuming that each agent finds a new solution.

4. RESULTS

In this paper, the following modifications of the ant colony algorithm are investigated:

—ACOCC (ACO Cluster Classic)—Classic ant colony method. In (2), the coefficients k2 and k3
are equal to zero. In this case, the additive convolution formula 2 becomes the multiplicative
convolution of the formula (1) with parameter ταij = 1. If the solution already considered by the
algorithm is found, the value of the target function is determined from the hash table.

—ACOCN (ACO Cluster New)—Similar to the classic ant colony method, but in (2) the coeffi-
cients k2 and k3 are equal to one. The transition probability is determined by additive convolution.

—ACOCNI (ACO Cluster New Ignor)—In (2), the coefficients k2 and k3 are equal to one. If a
solution already written to the hash table is found, this agent is ignored and it does not put weights
on the vertices of the parametric graph.

—ACOCCy3 (ACO Cluster Cycle3)—In (2), the coefficients k2 and k3 are equal to one. If a
solution already written to the hash table is found, the solution is searched again using the ant
colony method. The search for a new solution is performed cyclically. A limit on the number of
iterations of the repeated search is set to 3. If no new solution is found within the set number of
iterations, the agent is ignored.

—ACOCCyI (ACO Cluster Cycle Infinity)—In (2), the coefficients k2 and k3 are equal to one.
If a solution already written to the hash table is found, the solution is searched again using the ant
colony method. The search for a new solution is performed cyclically with no limit on the number
of iterations.

—ACOCT (ACO Cluster Tree)—In (2), the coefficients k2 and k3 are equal to one. If a solution
already written to the hash table is found, the new solution is searched again with a different
algorithm. The traversal of the parametric graph as a tree is considered.

Estimates of the results of the modifications for a parametric graph of high dimensionality are
given in Tables 1–4. When applying the ACOCN algorithm, the number of solutions required to
find the best set of parameter values is minimal, and weakly increases with the number of iterations
(3rd column of Table 4). Only the ACOCC algorithm finds a solution faster, but the probability of
finding an optimal solution by the ACOCC algorithm is less than 0.1 (2nd column of Table 3). The
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Table 1. Estimation of expected value of time of solution search by one agent (in seconds)

Number
of iterations

ACOCC ACOCN ACOCNI ACOCCy3 ACOCCyI ACOCT

2500 1.404 × 10−4 1.547 × 10−4 1.562 × 10−4 1.627 × 10−4 1.619 × 10−4 1.887 × 10−4

5000 1.381 × 10−4 1.517 × 10−4 1.560 × 10−4 1.648 × 10−4 1.636 × 10−4 2.745 × 10−4

7500 1.388 × 10−4 1.505 × 10−4 1.567 × 10−4 1.665 × 10−4 1.647 × 10−4 4.158 × 10−4

10 000 1.391 × 10−4 1.501 × 10−4 1.578 × 10−4 1.690 × 10−4 1.654 × 10−4 5.645 × 10−4

12 500 1.370 × 10−4 1.547 × 10−4 1.562 × 10−4 1.706 × 10−4 1.657 × 10−4 6.980 × 10−4

15 000 1.364 × 10−4 1.526 × 10−4 1.569 × 10−4 1.700 × 10−4 1.650 × 10−4 8.593 × 10−4

17 500 1.328 × 10−4 1.472 × 10−4 1.585 × 10−4 1.695 × 10−4 1.655 × 10−4 9.776 × 10−4

20 000 1.325 × 10−4 1.469 × 10−4 1.582 × 10−4 1.741 × 10−4 1.688 × 10−4 10.549 × 10−4

Table 2. Estimation of the probability of finding a new solution by a single agent per iteration of the
ant colony method

Number
of iterations

ACOCC ACOCN ACOCNI ACOCCy3 ACOCCyI ACOCT

2500 0.248 0.618 0.966 1.000 1.000 1.000
5000 0.122 0.381 0.951 1.000 1.000 1.000
7500 0.082 0.282 0.942 1.000 1.000 1.000

10 000 0.063 0.223 0.935 1.000 1.000 1.000
12 500 0.049 0.184 0.929 1.000 1.000 1.000
15 000 0.041 0.158 0.925 1.000 1.000 1.000
17 500 0.035 0.136 0.921 1.000 1.000 1.000
20 000 0.030 0.125 0.918 1.000 1.000 1.000

Table 3. Estimation of the probability of finding a new solution by a single agent per iteration of the
ant colony method

Number
of iterations

ACOCC ACOCN ACOCNI ACOCCy3 ACOCCyI ACOCT

2500 0.03 0.31 0.21 0.27 0.24 0.13
5000 0.03 0.49 0.26 0.26 0.33 0.25
7500 0.03 0.50 0.35 0.30 0.32 0.24

10 000 0.02 0.60 0.22 0.32 0.31 0.33
12 500 0.03 0.78 0.32 0.37 0.42 0.27
15 000 0.02 0.71 0.31 0.44 0.37 0.31
17 500 0.03 0.74 0.28 0.39 0.44 0.26
20 000 0.03 0.72 0.41 0.46 0.43 0.39

Table 4. Estimation of expected value of the solution number (in %), at which the optimal parameter
values were found

Number
of iterations

ACOCC ACOCN ACOCNI ACOCCy3 ACOCCyI ACOCT

2500 0.801 × 10−6 2.956 × 10−6 3.404 × 10−6 2.970 × 10−6 3.299 × 10−6 2.863 × 10−6

5000 1.122 × 10−6 3.191 × 10−6 4.501 × 10−6 4.415 × 10−6 5.648 × 10−6 5.030 × 10−6

7500 1.014 × 10−6 3.378 × 10−6 5.701 × 10−6 6.137 × 10−6 5.830 × 10−6 6.838 × 10−6

10 000 1.142 × 10−6 3.667 × 10−6 5.693 × 10−6 5.337 × 10−6 5.910 × 10−6 7.704 × 10−6

12 500 0.829 × 10−6 3.770 × 10−6 6.779 × 10−6 6.320 × 10−6 8.108 × 10−6 5.269 × 10−6

15 000 0.740 × 10−6 3.741 × 10−6 8.240 × 10−6 10.174 × 10−6 8.794 × 10−6 7.834 × 10−6

17 500 1.393 × 10−6 3.845 × 10−6 8.175 × 10−6 9.221 × 10−6 11.678 × 10−6 15.820 × 10−6

20 000 1.119 × 10−6 3.936 × 10−6 9.864 × 10−6 11.344 × 10−6 10.513 × 10−6 23.592 × 10−6
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Fig. 4. Dependence of the efficiency of the algorithm on the number of iterations of the ant colony method for
the parametric Carrom table function graph.

ACOCC algorithm stagnates at the nearest rational solution. The algorithms that use repeated
search for zero agents (ACOCCy3, ACOCCyI and ACOCT) find a new solution for each agent
(columns 5–7 of Table 2). For 25 agents, for 2 × 104 iterations, the presented algorithms will
consider 5 × 105 sets of parameter values. The time taken for the agent to find a solution does not
depend on the number of iterations of the algorithm for most algorithms (Table 1). As a result,
it is possible to predict the required number of iterations to find all solutions. The exception is
the ACOCT algorithm, which requires more time for one agent to search for a path as the number
of iterations increases. The algorithms ACOCC, ACOCN, ACOCNI, ACOCCy3 and ACOCCyI
can be ranked in ascending order based on the agent’s solution search time. The time of search
for a solution by an agent in algorithms ACOCCy3 and ACOCCyI is close, because the number of
additional iterations is most often less than the limit of 3 iterations.

It should be noted that the cyclic search actually increases the number of iterations, since it
works according to the rules of the ant colony method. If, among ten agents in an iteration, one
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Table 5. Estimation of expected value of number of additional iterations by ACOCCyI modification

Number of iterations 1900 1910 1920 1930 1940 1950

k2=0; k3=0; 8.379 8.712 9.582 10.487 23.004 25.153
k2=0; k3=0; ignor ; 8.399 9.028 9.880 10.719 19.658 18.996
k2=0; k3=1; 5.035 5.248 5.735 6.536 13.408 12.861
k2=0; k3=1; ignor ; 5.054 5.291 5.711 6.558 10.658 10.299
k2=1; k3=0; 7.049 7.780 8.990 11.493 44.962 42.247
k2=1; k3=0; ignor ; 7.113 7.744 8.698 10.263 13.658 13.533
k2=1; k3=1; 4.864 5.312 5.990 7.383 19.585 19.828
k2=1; k3=1; ignor ; 4.874 5.314 5.977 7.268 11.172 11.292

agent did not find a new solution and needed ten additional iterations, then twenty iterations were
actually performed. Unlike twenty iterations of the original algorithm, there is no updating of
weights on the parametric graph for these iterations and the necessary number of iterations can
be controlled. Since modifications of ACOCCy3 and ACOCCyI showed good convergence to the
optimal solution and each agent in this algorithm finds a new solution (Table 2), let us investigate
the possibility of finding all solutions in a parametric graph. For the purpose of the study, we will
use a graph of low dimensionality (40 401 solutions) with a target Carrom table function (3). The
results of applying the ACOCCyI modification are shown in Fig. 4. Unlike ACOCCyI, ACOCNI
modification has considered only 35% of the solutions for 2000 iterations. During the investigation
of the ACOCCyI modification, the values of the coefficients k2 and k3 in (2) were modified.

The long dashed lines with dots in Fig. 4 define the modification that has k2 = 0 (at k3 = 0 the
point is a double point, at k3 = 1 the point is a single point). At k2 = 0 the optimal solution with
probability 1 is determined only after 1000 iterations (more than 60% of the considered solutions).
More efficient are the modifications in which k2 = 1 (at k3 = 0 the line is dashed, at k3 = 1 the line
is solid). For any number of iterations, the optimal solution is found after examining from 0.009%
(40 401 × 0.009 = 363) solutions to 0.012% (484 solutions)—a confidence interval with a confidence
level of 0.99 (bottom plot of Fig. 4). Finding the 0.99% optimal solution requires 2 times less
than the considered solutions, sets of parameter values. The ACOCNI modification (line of dots)
requires a similar number of considered solutions to find the optimal one.

The top graph of Fig. 4 shows the number of additional iterations required per agent. On average,
an agent requires less than 5 additional iterations when considering most possible solutions. As a
result, it is inefficient to set a constraint as in the ACOCCy3 modification. The minimum number of
additional iterations required to find a new, not yet considered, set of parameter values guarantees
minimal delays in the running time of the algorithm.

The inefficient behavior of the modification occurs at the last 36 iterations, at which it is
necessary to find the last 900 remaining unexamined solutions (Table 5). The even rows of the
table labeled ignor are the results of the ACOCCyI modification with the condition of ignoring the
vertices for which all solutions are considered. The modification does not consider vertices with
kol(t)ij,t = MaxKolj,t in the probability formula (2).

The results presented in Table 5 prove the efficiency of using the third summand in the for-
mula (2). When k3 = 1, the number of additional iterations required is significantly smaller than
when k3 = 0. The smaller number of additional iterations corresponds to a shorter search time for
the remaining unexamined sets of parameter values. Ignoring the vertices, for which all possible
solutions are considered (lines labeled “ignor”), shows high efficiency.

Both test parametric graphs have several optimal parameter values (equal to the value of the
target function). Figure 5 shows the Carrom table function graph and the solution number estima-
tion graph, where the specific values of the parameters x1 and x2 were evaluated for 3000 runs of
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Fig. 5. Function graph and solution number estimates for Carrom table function.

the ACOCCyI modification of the ant colony method. With a large number of runs, the algorithm
finds all 4 optima at the earliest iterations. The graph of iteration number estimation visually fol-
lows the graph of the function, i.e., the optimal and rational solutions proposed by the modification
of the ant colony method are statistically determined at the initial runs.

5. CONCLUSION

In this paper, the problem of directed enumeration of sets of parameter values was considered.
To solve the problem, a parametric graph is used, in which the set of parameters is represented as a
set of vertices united in groups (layers). This graph has no arcs, and it is necessary to determine the
order of the layers, which can lead to differences in the effectiveness of the proposed modifications.
But the advantage of this type of parametric graph is the simplicity of its creation for the user.
For the ant colony method, we considered the problem of enumerating all values of the system
parameters. Optimization properties of the method allow to consider the optimal set of parameter
values as early as possible. Modifications are proposed to simplify and control the search for new
sets of parameter values using the ant colony method. The use of an interface for interaction
with the user is assumed to provide the possibility of stopping the method when a set of system
parameter values satisfying the user is found. If such a set is not found, the ant colony method
will consider all combinations of discrete parameter values. This approach will also allow to solve
multi-extremal and multi-criteria problems.

The considered ant colony method is a rather powerful tool for solving the given problem due to
the probabilistic formula for selecting the next vertex. A simple modification of the probabilistic
formula is proposed, which allows to significantly improve the performance of the algorithm. This
modification defines the probability of choosing the next vertex as an additive convolution of three
components: the weights in the vertex, the number of visits to the vertex by agents, and the number
of remaining solutions containing this vertex.

In this paper, modifications are proposed that allow choosing different algorithms of behavior
when the agent obtains the already considered solution. The verification of the found solution
is performed using a hash table. The repeated cyclic search has shown good convergence to the
optimal solution and the best performance when searching for the last sets of parameter values on
different parametric graphs. The repeated cyclic search performs worse than the original algorithm
with the new probabilistic formula.

Consideration of all possible combinations of values of system parameters is a specific task, since
it is possible to search all variants by a complete search and, as a result, to find an optimal solution.
Most of the algorithms of search for system variants are aimed at finding a rational solution by
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convergence to it, and such algorithms do not consider “bad” solutions. Despite the probabilistic
convergence of the ant colony method to a single solution, the paper proves that it is possible
for the algorithm to consider all solutions, even all suboptimal solutions, under any distribution
of the probability formula. For multimodal functions, the multistart procedure, which introduces
additional stochasticity into the algorithm, can be abandoned.

The disadvantages of the ant colony method include the presence of a large number of free
parameters [9]. The parameters related to the “classical” ant colony method (number of agents
per iteration, weight evaporation factor, and addition factor) are discussed in detail in [21]. When
investigating the asynchronous behavior of the ant colony method in interaction with an asyn-
chronous computational cluster, it is assumed to set the number of agents equal to the number of
threads performing computations on the cluster. The lack of convergence of the algorithm to a
single solution does not require the setting of boundary conditions and multistart parameters. But
the presence of coefficients in the new probabilistic formula requires additional research. Various
discrete values of weight and degree coefficients in formula (2) have been investigated. The opti-
mal values are those that are equal to 1. It should be noted that the situation when the weight
coefficients take real values and sum up to 1 requires further research. The dynamic change of
the coefficient values also requires further research, since the coefficient k1 is effective in the early
iterations to quickly find the optimal set of parameter values, and the coefficient k3—to find the
remaining solutions in the last iterations.

Further development is expected in the following directions.
1. The proposed alternative algorithm for finding a new solution by traversing the tree has

shown low efficiency and requires improvement.
2. The value of individual parameter layers of a parametric graph has not been considered. This

study will allow to allocate the most and the least significant parameters of the technical
system.

3. The probabilistic formula for the agent’s choice of the next vertex is a very powerful tool,
and it can be modified based on the value of individual layers.

4. Further research on the structure of the parametric graph, the partitioning of the layer into
sub-layers, layer permutations, and methods of graph formation is needed.

5. Application of the proposed method for solving problems with vector criterion. Research of
modifications for fast consideration on cluster of all solutions from the Pareto set.

6. When the ant colony method works together with an asynchronous calculator, it is assumed
to obtain the values of the target function asynchronously with respect to the operation of
the ant colony method. For this modification, it is proposed that each agent is computed
in its own thread, and as a result, the asynchronous operation of the ant colony method
is considered. The addition and evaporation of weights from the parametric graph can be
performed as separate threads.
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