
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 8, pp. 1005–1016.
c© The Author(s), 2023 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c© The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 8, pp. 153–168.

OPTIMIZATION, SYSTEM ANALYSIS, AND OPERATIONS RESEARCH

Control of Set of System Parameter Values

by the Ant Colony Method

I. N. Sinitsyn∗,∗∗,a and Yu. P. Titov∗,∗∗,b

∗Moscow Aviation Institute (National Research University), Moscow, Russia
∗∗Federal Research Center for Computer Science and Control,

Russian Academy of Sciences, Moscow, Russia
e-mail: asinitsin@dol.ru, bkalengul@mail.ru

Received January 23, 2023

Revised March 21, 2023

Accepted June 9, 2023

Abstract—The paper considers the modification and application of the ant colony method
for the problem of directed enumeration of the values of system parameters when performing
calculated multiple calculations. Interaction with the user makes it possible to stop the process
of exhaustive enumeration of sets of parameter values, and the application of a modification
of the ant colony method will allow us to consider rational sets at early iterations. If the user
does not terminate the algorithm, then the proposed modifications allow one to enumerate all
solutions using the ant colony method. To modify the ant colony method, a new probabilistic
formula and various algorithms of the ant colony method are proposed, allowing for each agent
to find a new set of parameter values. The optimal algorithm, according to the research results,
is the use of repeated endless cyclic search for a new solution. This modification allows you to
consider all solutions, and at the same time, find all the optimal solutions among the first 5%
of the considered solutions.

Keywords : ant colony method, parametric graph, reordering, computing cluster, hyperparame-
ter optimization
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1. INTRODUCTION

Nowadays, due to the development of computing clusters, many computational and optimiza-
tion tasks are transferred from human experts to computing machines. For such systems arise the
problems of finding rational values of parameters for solving the computational problem, called
hyperparameter optimization [1]. Among the algorithms of hyperparameter optimization one can
mention the Bayesian optimizer, which allows finding regularities of influence of individual param-
eter values (and various combinations) on performance criteria on the basis of hypotheses and a
posteriori information [2]. For multi-criteria and multi-extreme problems it is often necessary to
consider all sets of parameter values, usually by the method of complete search. This paper con-
siders the possibility of using the ant colony method to solve the problem of directed enumeration
of sets of hyperparameters before sending them to a computing system. By interacting with the
user, it is possible to stop the method before considering all sets of parameter values when a set
satisfying the user’s conditions is found. Directed search by the ant colony method will allow to
consider rational sets of parameter values as early as possible, but in case of user’s dissatisfaction
with the results, it will be possible to reconsider all sets of values.

The ant colony method was originally developed for solving the traveling salesman problem
[3, 4]. Modern research allows to apply the ant colony method to search for continuous optimiza-
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tion. The search methods of CACO (ContinuousAntColonyOptimization) [5], ACOR (Ant Colony
Optimization for continuous domain) [6] and CIAC (ContinuousInteractingAntColony) [7, 8] do not
involve the use of a graph and have been actively investigated by different researchers, including
researchers from Russia [9, 10]. Studies describe the possibility of using the ant colony method
for solving problems on graphs: assignment problems with fuzzy execution time [11, 12], problems
of finding optimal routes for a group of salesmen [13, 14] and problems of supporting spare parts
supply processes [15]. Parametric problems related to finding an optimal set of parameters, classi-
fication, dependency detection, etc. are actively researched in the global community [16–19]. For
such problems, a special graph structure is created. The presented methods and modifications
of the ant colony method are designed to find approximate and rational solutions. Usually all
agents (ants) should converge to one solution. The search for new solutions is carried out by the
multistart [9].

For a directed search of parameter values, it is necessary not to converge to one solution (set
of parameter values) but to consider new solutions sequentially until the user stops the method
or considers all possible solutions. In this paper, modifications of the algorithm are proposed to
consider all solutions instead of converging to one. The proposed approach allows to solve problems
with vector optimality criterion and multimodal target functions without restarting the algorithm.
At the same time, the property of optimization algorithms, the fastest finding of optimal solutions,
is preserved.

2. MODELS AND METHODS

The ant colony method is based on the probabilistic search for an arc in a graph according to
the formula

Pij,k(t) =
ταij × μβ

ij,t∑
z∈Ji,k

(
ταiz × μβ

iz,t

) . (1)

Using (1), the transition probability of an agent from the current vertex i to the vertices from the
set Ji,k at iteration t is determined. From the computational results, the transition probability to
vertex j for the kth agent is determined. The (1) takes the arc length information ταij (remoteness)

and some weight μβ
ij,t (pheromone) into account. The value of ταij is fixed and does not depend on

the iteration number t. The number of weights μβ
ij,t changes between iterations, updating the state

of the graph and the external environment for the agents’ movement.

To determine the values of the system (solution) parameters, it is suggested to represent the
sets of values in the form of a parametric graph. Each specific value of one parameter represents
a vertex of the graph. All values of one parameter are combined into layers. From each vertex of
one layer there is an arc to each vertex of the next layer. The layers of vertices are arranged in a
certain order, which reduces the number of arcs in the graph. An example of a parametric graph
is shown in Fig. 1. Similar graphs are found in [13, 15, 18–21].

The weights (pheromone) in such a graph are recorded not on arcs but on vertices. As a result,
the arcs are fictitious, and such a parametric graph can be represented as a set of layers (parameters)
and a set of vertices (parameter values) [22].

For a parametric graph in the probabilistic formula (1), the value ταij can only be set on the basis
of a priori information from an expert, but this parameter cannot be defined in general. If a single
factor is used in the probability formula, the stagnation of the solution search process increases.
The algorithm converges to the first good solution and does not continue the search for the optimal
one.
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Fig. 1. Diagram of the parametric graph structure.

To solve the stagnation problem, we can “reset” the parametric graph, transfer the state of the
graph vertices to the initial state, or modify the probabilistic formula

Pij,k(t) =
k1× μα

norm ij,t + k2×
(

1
kol(t)ij,t

)β
+ k3×

(
kol(t)ij,t

MaxKolj,t

)γ
∑

z∈Ji,k

(
k1× μα

norm iz,t + k2×
(

1
kol(t)iz,t

)β
+ k3×

(
kol(t)iz,t

MaxKolz,t

)γ) . (2)

The formula (2) is a linear convolution (not multiplicative as in (1)) of three summands and
weights. The first summand μα

norm ij,t is determined by the number of weights at the ith vertex of
the j th parameter (parametric graph layer) at iteration t. To apply this parameter in the weighted
sum, it is necessary to use the normalized value. The second summand ( 1

kol(t)ij,t
)β is determined

by the number of visits of agents to the ith vertex of the j th parameter during the running time of
the algorithm. This summand increases the probability of visiting a vertex that is rarely present
in the solutions and avoids stagnation in the early iterations of the ant colony method. The third

summand (
kol(t)ij,t

MaxKolj,t
)γ considers the maximum number of possible visits to a vertex: the values

of MaxKolj,t for the parameter j at iteration t. Since, in a parametric graph, one vertex (one
parameter value) must be selected on each layer, we can calculate the total number of solutions or
sets of parameter values. The total number of solutions can be calculated as the product of the
number of vertices in each layer. The maximum number of solutions that can contain a particular
vertex of a parametric graph is computed as the ratio of the total number of solutions and the
number of vertices in a given layer, i.e., for each vertex of layer j, the value MaxKolj,t will be the
same. The third summand at later iterations allows to increase the probability of choosing the
vertex, for which the majority of solutions are considered. If all possible solutions are considered
for a vertex, this vertex can be excluded from the probabilistic search. Additive convolution allows
to compensate the values of summands. Vertices with a large number of weights and frequent visits
(frequently considered vertices) can be compensated by vertices with a small number of visits (rare
vertices) or vertices, for which almost all solutions are considered.

Another specific feature of the algorithm modification is the need to interact with an external
computing system. For such modifications, it is necessary to store the state of the system computed
for a particular solution. If the ant colony method repeatedly finds a solution, this solution is not
sent to the calculator again, and the value of the target function is taken from the hash table
[15, 21].

For the considered algorithm, it is important to find a new solution at each iteration. Therefore,
if the solution already exists in the hash table, different actions are possible:

1. Using the target function values from the hash table, enter the weights as in the original
algorithm.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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Fig. 2. Schematic diagram of the algorithm of the modified ant colony method.
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2. Ignore the agent. The agent does not put weights on the parametric graph.
3. Repeated search for a new solution, not yet considered on the calculator, by the ant colony

method with a limited number of iterations. If no new solution is found for the set number
of iterations, the agent is ignored.

4. Repeated search for a new solution, not yet considered on the calculator, by the ant colony
method with an unlimited number of iterations. The restriction in item no. 3 can solve the
stagnation problem.

5. Repeat the search for a new solution by another algorithm. The possibility of traversing the
parametric graph as a tree has been considered.

The algorithm flowchart of the proposed modification of the ant colony method is shown in Fig. 2.

3. EXPERIMENT

The objectives of directed enumeration of parameter values are:

—enumeration of all sets of parameter values without any exception;

—the fastest possible acquisition of the optimal set of parameter values.

It can be noticed that both problems contradict each other, because among all sets of parameter
values there will always be the best one. But since the system interacts with the calculator and the
user in real time, there is a possibility of stopping the program by the user if a satisfactory solution
is found. It should also be noted that it is possible to use the vector criterion, which transfers the
problem into the area of decision support and multi-criteria optimization [20].

The effectiveness of modifications of the ant colony method is determined by two main evalua-
tions:

—ability of the algorithm to consider all solutions. It is determined by the value of the criterion:
“estimate of the probability of finding a new solution by the agent.” This estimate is calculated by
the ratio of the number of solutions found during the algorithm’s running time to the total number
of solutions considered;

Fig. 3. Diagram of a parametric graph of high dimensionality.
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—speed of finding the optimal solution. It is determined by the value of the criterion: “estimate
of the expected value of the number of iterations at which this solution was found.”

The experiments were performed on the ACO Cluster software written using the Python lan-
guage. Most of the benchmarks taken from [22, 23] and test graphs of high dimensionality [21]
were considered as test data. The structure of the high-dimensional graph is shown in Fig. 3. The
presented high-dimensional graph contains more than 109 solutions for 13 parameters given in dis-
crete and qualitative scales. With 25 agents per iteration and 20 000 iterations, only 0.05% of the
total number of solutions can be considered at most.

To analyze the performance of the algorithm in finding the last (not yet considered) solutions,
investigation of the Carrom table function are given in the results:

f(x) = −
(
cos(x1) cos(x2)e

|100−(x2
1+x2

2)
0.5|

)2
30

. (3)

The parametric graph for the function (3) contains two layers: for parameters x1 and x2. Each
layer of the parametric graph has 201 vertices defining specific parameter values in the range
[−10, 10] with precision of 0.1. It takes 1936 iterations of the ant colony method to consider all
solutions by 25 agents, assuming that each agent finds a new solution.

4. RESULTS

In this paper, the following modifications of the ant colony algorithm are investigated:

—ACOCC (ACO Cluster Classic)—Classic ant colony method. In (2), the coefficients k2 and k3
are equal to zero. In this case, the additive convolution formula 2 becomes the multiplicative
convolution of the formula (1) with parameter ταij = 1. If the solution already considered by the
algorithm is found, the value of the target function is determined from the hash table.

—ACOCN (ACO Cluster New)—Similar to the classic ant colony method, but in (2) the coeffi-
cients k2 and k3 are equal to one. The transition probability is determined by additive convolution.

—ACOCNI (ACO Cluster New Ignor)—In (2), the coefficients k2 and k3 are equal to one. If a
solution already written to the hash table is found, this agent is ignored and it does not put weights
on the vertices of the parametric graph.

—ACOCCy3 (ACO Cluster Cycle3)—In (2), the coefficients k2 and k3 are equal to one. If a
solution already written to the hash table is found, the solution is searched again using the ant
colony method. The search for a new solution is performed cyclically. A limit on the number of
iterations of the repeated search is set to 3. If no new solution is found within the set number of
iterations, the agent is ignored.

—ACOCCyI (ACO Cluster Cycle Infinity)—In (2), the coefficients k2 and k3 are equal to one.
If a solution already written to the hash table is found, the solution is searched again using the ant
colony method. The search for a new solution is performed cyclically with no limit on the number
of iterations.

—ACOCT (ACO Cluster Tree)—In (2), the coefficients k2 and k3 are equal to one. If a solution
already written to the hash table is found, the new solution is searched again with a different
algorithm. The traversal of the parametric graph as a tree is considered.

Estimates of the results of the modifications for a parametric graph of high dimensionality are
given in Tables 1–4. When applying the ACOCN algorithm, the number of solutions required to
find the best set of parameter values is minimal, and weakly increases with the number of iterations
(3rd column of Table 4). Only the ACOCC algorithm finds a solution faster, but the probability of
finding an optimal solution by the ACOCC algorithm is less than 0.1 (2nd column of Table 3). The
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Table 1. Estimation of expected value of time of solution search by one agent (in seconds)

Number
of iterations

ACOCC ACOCN ACOCNI ACOCCy3 ACOCCyI ACOCT

2500 1.404× 10−4 1.547× 10−4 1.562× 10−4 1.627× 10−4 1.619× 10−4 1.887× 10−4

5000 1.381× 10−4 1.517× 10−4 1.560× 10−4 1.648× 10−4 1.636× 10−4 2.745× 10−4

7500 1.388× 10−4 1.505× 10−4 1.567× 10−4 1.665× 10−4 1.647× 10−4 4.158× 10−4

10 000 1.391× 10−4 1.501× 10−4 1.578× 10−4 1.690× 10−4 1.654× 10−4 5.645× 10−4

12 500 1.370× 10−4 1.547× 10−4 1.562× 10−4 1.706× 10−4 1.657× 10−4 6.980× 10−4

15 000 1.364× 10−4 1.526× 10−4 1.569× 10−4 1.700× 10−4 1.650× 10−4 8.593× 10−4

17 500 1.328× 10−4 1.472× 10−4 1.585× 10−4 1.695× 10−4 1.655× 10−4 9.776× 10−4

20 000 1.325× 10−4 1.469× 10−4 1.582× 10−4 1.741× 10−4 1.688× 10−4 10.549× 10−4

Table 2. Estimation of the probability of finding a new solution by a single agent per iteration of the
ant colony method

Number
of iterations

ACOCC ACOCN ACOCNI ACOCCy3 ACOCCyI ACOCT

2500 0.248 0.618 0.966 1.000 1.000 1.000
5000 0.122 0.381 0.951 1.000 1.000 1.000
7500 0.082 0.282 0.942 1.000 1.000 1.000

10 000 0.063 0.223 0.935 1.000 1.000 1.000
12 500 0.049 0.184 0.929 1.000 1.000 1.000
15 000 0.041 0.158 0.925 1.000 1.000 1.000
17 500 0.035 0.136 0.921 1.000 1.000 1.000
20 000 0.030 0.125 0.918 1.000 1.000 1.000

Table 3. Estimation of the probability of finding a new solution by a single agent per iteration of the
ant colony method

Number
of iterations

ACOCC ACOCN ACOCNI ACOCCy3 ACOCCyI ACOCT

2500 0.03 0.31 0.21 0.27 0.24 0.13
5000 0.03 0.49 0.26 0.26 0.33 0.25
7500 0.03 0.50 0.35 0.30 0.32 0.24

10 000 0.02 0.60 0.22 0.32 0.31 0.33
12 500 0.03 0.78 0.32 0.37 0.42 0.27
15 000 0.02 0.71 0.31 0.44 0.37 0.31
17 500 0.03 0.74 0.28 0.39 0.44 0.26
20 000 0.03 0.72 0.41 0.46 0.43 0.39

Table 4. Estimation of expected value of the solution number (in %), at which the optimal parameter
values were found

Number
of iterations

ACOCC ACOCN ACOCNI ACOCCy3 ACOCCyI ACOCT

2500 0.801× 10−6 2.956× 10−6 3.404× 10−6 2.970× 10−6 3.299× 10−6 2.863× 10−6

5000 1.122× 10−6 3.191× 10−6 4.501× 10−6 4.415× 10−6 5.648× 10−6 5.030× 10−6

7500 1.014× 10−6 3.378× 10−6 5.701× 10−6 6.137× 10−6 5.830× 10−6 6.838× 10−6

10 000 1.142× 10−6 3.667× 10−6 5.693× 10−6 5.337× 10−6 5.910× 10−6 7.704× 10−6

12 500 0.829× 10−6 3.770× 10−6 6.779× 10−6 6.320× 10−6 8.108× 10−6 5.269× 10−6

15 000 0.740× 10−6 3.741× 10−6 8.240× 10−6 10.174× 10−6 8.794× 10−6 7.834× 10−6

17 500 1.393× 10−6 3.845× 10−6 8.175× 10−6 9.221× 10−6 11.678× 10−6 15.820× 10−6

20 000 1.119× 10−6 3.936× 10−6 9.864× 10−6 11.344× 10−6 10.513× 10−6 23.592× 10−6
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Fig. 4. Dependence of the efficiency of the algorithm on the number of iterations of the ant colony method for
the parametric Carrom table function graph.

ACOCC algorithm stagnates at the nearest rational solution. The algorithms that use repeated
search for zero agents (ACOCCy3, ACOCCyI and ACOCT) find a new solution for each agent
(columns 5–7 of Table 2). For 25 agents, for 2× 104 iterations, the presented algorithms will
consider 5× 105 sets of parameter values. The time taken for the agent to find a solution does not
depend on the number of iterations of the algorithm for most algorithms (Table 1). As a result,
it is possible to predict the required number of iterations to find all solutions. The exception is
the ACOCT algorithm, which requires more time for one agent to search for a path as the number
of iterations increases. The algorithms ACOCC, ACOCN, ACOCNI, ACOCCy3 and ACOCCyI
can be ranked in ascending order based on the agent’s solution search time. The time of search
for a solution by an agent in algorithms ACOCCy3 and ACOCCyI is close, because the number of
additional iterations is most often less than the limit of 3 iterations.

It should be noted that the cyclic search actually increases the number of iterations, since it
works according to the rules of the ant colony method. If, among ten agents in an iteration, one
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Table 5. Estimation of expected value of number of additional iterations by ACOCCyI modification

Number of iterations 1900 1910 1920 1930 1940 1950

k2=0; k3=0; 8.379 8.712 9.582 10.487 23.004 25.153
k2=0; k3=0; ignor ; 8.399 9.028 9.880 10.719 19.658 18.996
k2=0; k3=1; 5.035 5.248 5.735 6.536 13.408 12.861
k2=0; k3=1; ignor ; 5.054 5.291 5.711 6.558 10.658 10.299
k2=1; k3=0; 7.049 7.780 8.990 11.493 44.962 42.247
k2=1; k3=0; ignor ; 7.113 7.744 8.698 10.263 13.658 13.533
k2=1; k3=1; 4.864 5.312 5.990 7.383 19.585 19.828
k2=1; k3=1; ignor ; 4.874 5.314 5.977 7.268 11.172 11.292

agent did not find a new solution and needed ten additional iterations, then twenty iterations were
actually performed. Unlike twenty iterations of the original algorithm, there is no updating of
weights on the parametric graph for these iterations and the necessary number of iterations can
be controlled. Since modifications of ACOCCy3 and ACOCCyI showed good convergence to the
optimal solution and each agent in this algorithm finds a new solution (Table 2), let us investigate
the possibility of finding all solutions in a parametric graph. For the purpose of the study, we will
use a graph of low dimensionality (40 401 solutions) with a target Carrom table function (3). The
results of applying the ACOCCyI modification are shown in Fig. 4. Unlike ACOCCyI, ACOCNI
modification has considered only 35% of the solutions for 2000 iterations. During the investigation
of the ACOCCyI modification, the values of the coefficients k2 and k3 in (2) were modified.

The long dashed lines with dots in Fig. 4 define the modification that has k2 = 0 (at k3 = 0 the
point is a double point, at k3 = 1 the point is a single point). At k2 = 0 the optimal solution with
probability 1 is determined only after 1000 iterations (more than 60% of the considered solutions).
More efficient are the modifications in which k2 = 1 (at k3 = 0 the line is dashed, at k3 = 1 the line
is solid). For any number of iterations, the optimal solution is found after examining from 0.009%
(40 401 × 0.009 = 363) solutions to 0.012% (484 solutions)—a confidence interval with a confidence
level of 0.99 (bottom plot of Fig. 4). Finding the 0.99% optimal solution requires 2 times less
than the considered solutions, sets of parameter values. The ACOCNI modification (line of dots)
requires a similar number of considered solutions to find the optimal one.

The top graph of Fig. 4 shows the number of additional iterations required per agent. On average,
an agent requires less than 5 additional iterations when considering most possible solutions. As a
result, it is inefficient to set a constraint as in the ACOCCy3 modification. The minimum number of
additional iterations required to find a new, not yet considered, set of parameter values guarantees
minimal delays in the running time of the algorithm.

The inefficient behavior of the modification occurs at the last 36 iterations, at which it is
necessary to find the last 900 remaining unexamined solutions (Table 5). The even rows of the
table labeled ignor are the results of the ACOCCyI modification with the condition of ignoring the
vertices for which all solutions are considered. The modification does not consider vertices with
kol(t)ij,t = MaxKolj,t in the probability formula (2).

The results presented in Table 5 prove the efficiency of using the third summand in the for-
mula (2). When k3 = 1, the number of additional iterations required is significantly smaller than
when k3 = 0. The smaller number of additional iterations corresponds to a shorter search time for
the remaining unexamined sets of parameter values. Ignoring the vertices, for which all possible
solutions are considered (lines labeled “ignor”), shows high efficiency.

Both test parametric graphs have several optimal parameter values (equal to the value of the
target function). Figure 5 shows the Carrom table function graph and the solution number estima-
tion graph, where the specific values of the parameters x1 and x2 were evaluated for 3000 runs of
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Fig. 5. Function graph and solution number estimates for Carrom table function.

the ACOCCyI modification of the ant colony method. With a large number of runs, the algorithm
finds all 4 optima at the earliest iterations. The graph of iteration number estimation visually fol-
lows the graph of the function, i.e., the optimal and rational solutions proposed by the modification
of the ant colony method are statistically determined at the initial runs.

5. CONCLUSION

In this paper, the problem of directed enumeration of sets of parameter values was considered.
To solve the problem, a parametric graph is used, in which the set of parameters is represented as a
set of vertices united in groups (layers). This graph has no arcs, and it is necessary to determine the
order of the layers, which can lead to differences in the effectiveness of the proposed modifications.
But the advantage of this type of parametric graph is the simplicity of its creation for the user.
For the ant colony method, we considered the problem of enumerating all values of the system
parameters. Optimization properties of the method allow to consider the optimal set of parameter
values as early as possible. Modifications are proposed to simplify and control the search for new
sets of parameter values using the ant colony method. The use of an interface for interaction
with the user is assumed to provide the possibility of stopping the method when a set of system
parameter values satisfying the user is found. If such a set is not found, the ant colony method
will consider all combinations of discrete parameter values. This approach will also allow to solve
multi-extremal and multi-criteria problems.

The considered ant colony method is a rather powerful tool for solving the given problem due to
the probabilistic formula for selecting the next vertex. A simple modification of the probabilistic
formula is proposed, which allows to significantly improve the performance of the algorithm. This
modification defines the probability of choosing the next vertex as an additive convolution of three
components: the weights in the vertex, the number of visits to the vertex by agents, and the number
of remaining solutions containing this vertex.

In this paper, modifications are proposed that allow choosing different algorithms of behavior
when the agent obtains the already considered solution. The verification of the found solution
is performed using a hash table. The repeated cyclic search has shown good convergence to the
optimal solution and the best performance when searching for the last sets of parameter values on
different parametric graphs. The repeated cyclic search performs worse than the original algorithm
with the new probabilistic formula.

Consideration of all possible combinations of values of system parameters is a specific task, since
it is possible to search all variants by a complete search and, as a result, to find an optimal solution.
Most of the algorithms of search for system variants are aimed at finding a rational solution by
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convergence to it, and such algorithms do not consider “bad” solutions. Despite the probabilistic
convergence of the ant colony method to a single solution, the paper proves that it is possible
for the algorithm to consider all solutions, even all suboptimal solutions, under any distribution
of the probability formula. For multimodal functions, the multistart procedure, which introduces
additional stochasticity into the algorithm, can be abandoned.

The disadvantages of the ant colony method include the presence of a large number of free
parameters [9]. The parameters related to the “classical” ant colony method (number of agents
per iteration, weight evaporation factor, and addition factor) are discussed in detail in [21]. When
investigating the asynchronous behavior of the ant colony method in interaction with an asyn-
chronous computational cluster, it is assumed to set the number of agents equal to the number of
threads performing computations on the cluster. The lack of convergence of the algorithm to a
single solution does not require the setting of boundary conditions and multistart parameters. But
the presence of coefficients in the new probabilistic formula requires additional research. Various
discrete values of weight and degree coefficients in formula (2) have been investigated. The opti-
mal values are those that are equal to 1. It should be noted that the situation when the weight
coefficients take real values and sum up to 1 requires further research. The dynamic change of
the coefficient values also requires further research, since the coefficient k1 is effective in the early
iterations to quickly find the optimal set of parameter values, and the coefficient k3—to find the
remaining solutions in the last iterations.

Further development is expected in the following directions.
1. The proposed alternative algorithm for finding a new solution by traversing the tree has

shown low efficiency and requires improvement.
2. The value of individual parameter layers of a parametric graph has not been considered. This

study will allow to allocate the most and the least significant parameters of the technical
system.

3. The probabilistic formula for the agent’s choice of the next vertex is a very powerful tool,
and it can be modified based on the value of individual layers.

4. Further research on the structure of the parametric graph, the partitioning of the layer into
sub-layers, layer permutations, and methods of graph formation is needed.

5. Application of the proposed method for solving problems with vector criterion. Research of
modifications for fast consideration on cluster of all solutions from the Pareto set.

6. When the ant colony method works together with an asynchronous calculator, it is assumed
to obtain the values of the target function asynchronously with respect to the operation of
the ant colony method. For this modification, it is proposed that each agent is computed
in its own thread, and as a result, the asynchronous operation of the ant colony method
is considered. The addition and evaporation of weights from the parametric graph can be
performed as separate threads.
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