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Abstract—The task of angular orientation and stabilization of a space structure during its
assembly in orbit is solved. The structure includes elastic elements that are installed during the
assembly process. The elastic elements of the structure have no sensors to obtain information
about their deformation parameters. Control algorithms are proposed to ensure the stability of
the angular motion of the structure. A nonlinear extended Kalman filter is used to obtain the
necessary information. A joint estimation algorithm for the coordinates of the angular motion
of the considered mechanical system and the coordinates of the elastic vibration tones, as well
as an algorithm for the identification of their unobservable parameters are developed. The
results of mathematical modeling of a variant of the mechanical system of a space structure
are presented, which confirm the operability and efficiency of the developed algorithms for
estimating coordinates and parameters.
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1. INTRODUCTION

Modern spacecraft are dynamic control objects with mechanical structures containing elastic
elements. It is noted in [1] that as the size and complexity of the mechanical structure of such
vehicles grows, the influence of the elastic properties of the structure on the dynamics of the
orientation mode increases. In addition, there is a tendency to complexity of modern spacecraft
structure itself, for example, the use of extended elastic elements. Perturbation in the dynamics
of spacecraft is also brought by the transformation of elements of the design during operation [2].
With the development of space technology, large-size space structures have emerged, called “large
space structures” (LSS), which can be created in space in various ways. LSS—a multidimensional
multi-frequency mechanical system with varying parameters [3, 4]. Some of the first LSSs were
considered to be large-sized umbrella reflectors, whose structures were envisioned to be built by
assembly in space [5]. The development of space robotics makes it possible to solve LSS assembly
problems using various robotic devices [6]. In [7] it is noted that the development of space robotics
is characterized by two trends. On the one hand, elements of future space infrastructure such as
large, multi-modular spacecraft, for example, orbital stations, are expected to be improved, with
robotics as an integral component. On the other hand, more and more attention is being paid
to robotic servicing, interpreted in a broad sense, which also includes robotic assembly operations
for a very broad class of objects [8]. In the robotic environment, space manipulation robots [9],
including free-flying [10] robots, are expected to be used extensively.
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This paper considers an umbrella-type LSS assembled in space, which is a dynamic control object
with variable parameters and a large and discretely time-varying number of degrees of freedom.
As a mechanical system, such LSS can be considered as a sequence of intermediate mechanical
structures formed in the assembly process. The structure contains elastic elements installed in the
assembly process using a space manipulator or a free-flying space manipulation robot. A variant of
LSS is considered, in which elastic elements have no sensors of information about coordinates and
vibration parameters. One of the main LSS control tasks is orientation control and stabilization of
the structure hull axes. The solution of this problem is traditionally obtained on the basis of relay
or discrete algorithms [11]. The breaking character of control actions on the hull and shock effects
during installation of new structural elements are the causes of elastic oscillations of LSS. When
controlling the angular motion of the LSS, a contradiction arises between the main goal of controlling
an elastic dynamic object as a rigid body and the need to damp the appearing elastic oscillations.
Absence of atmospheric resistance forces leads to accumulation of energy of elastic vibrations in the
process of controlling “rigid” motion of LSS. Exceeding the critical amplitude of elastic oscillations
and the proximity of their frequencies to the frequencies of controlling the “rigid” motion lead to
instability of the system [12]. The lack of accurate determination of the mathematical model (MM)
variables in ground conditions leads to the necessity to solve the problem of stable and accurate
control of angular motion at all stages of LSS assembly using robust or adaptive control methods
of dynamic objects [13].

In [14] an algorithm for LSS orientation control is proposed with low frequencies of elastic vibra-
tions, which significantly affect the quality of transients due to the proximity of natural frequencies
of the structure to the frequency of control of its “rigid” motion. In [15] the problem of providing
robust stability of elastic vibrations of spacecraft with a nonlinear orientation control system using
flywheel motors is solved. The solution is based on the purposeful change of stability region bound-
aries in the space of object and regulator parameters to maximize the number of robustly stable
elastic components of the spacecraft structure. It should be noted that the algorithms providing
robust control are effective for the final assembled spacecraft structure (SS). The approach proposed
in [14, 15] is limited by the need to obtain current information on the state of the system and its
MM parameters. Adaptive control algorithms allow to ensure stability and damping vibration in a
wide enough range of LSS elastic vibration natural frequencies with a minimum value of structural
damping. In [16] three types of adaptive control strategy for SS on the sequence of stages of its
change during assembly in space were defined. The first type: control using analysis and predic-
tion of LSS elastic vibration state. The second type: control with estimation of the phase of the
dominant vibrational component in the frequency spectrum of elastic vibrations at the moment of
control switching. The third type: control based on fuzzy logic [17]. In [18], an adaptive control
algorithm with a reference model for the angular motion of the assembled LSS is proposed. Its
functioning does not depend on the intensity and spectral composition of the input influences and
does not require the estimation of the elastic vibrations of the LSS. However, the algorithm provides
high control accuracy at high energy costs. Currently, attention is paid to the realization of the
first type of LSS adaptive control strategy, which uses methods of identification and estimation of
the state of the mechanical system of the structure. In [11], active damping of elastic vibrations of
the International Space Station structure by the orientation motors using identification algorithms
is proposed. To obtain the necessary information for controlling the angular motion of a space
structure with an elastic mechanical system, it is reasonable to use estimation algorithms based
on the Kalman–Bucy [19] filtering theory. In [20], the task of estimating the coordinates of elastic
vibrations of SS using a nonlinear extended Kalman filter is solved. In the present work (as a
follow-up to [20]), an algorithm for joint estimation of the coordinates of angular motion of a me-
chanical system and unmeasured coordinates of elastic vibrations tones, as well as an algorithm for
identification of their unobservable parameters, is developed. The problem of forming algorithms
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for controlling angular stabilization of SS at the assembly stages is solved. It is assumed that at
each stage of assembly there is a connection of a structural element causing elastic vibrations that
need to be damped within a given time interval using gyroscopic power drive of the LSS angular
stabilization system.

2. MATHEMATICAL MODEL OF ANGULAR MOTION OF LSS

The structure of the umbrella-type LSS mechanical system will be considered as a set of solid
bodies, one of which is a carrying body. The other (carried) bodies are building elements attached
in one or another order to the carrying body using the spiral scheme of the umbrella-type frame
assembly. Such a mechanical system contains non-rigid elements and is characterized by a discretely
varying number of degrees of freedom [21]. At the connection points of the structural elements, the
rotational degree of freedom in the considered plane of motion and elastic coupling that limits the
possible displacements of the elements to the area of small deviations relative to the equilibrium
state are taken into account [22]. Using a gyroscopic power drive for LSS assembly containing three
identical control moment gyroscope (CMG) installed in a three-beam star pattern, gyrostabilization
channel interconnections arise due to inertial and gyroscopic influences [23]. A simplified MM of
the spatial angular motion of the mechanical system of the considered LSS type, obtained from
the full MM, is presented in detail in [23]. To solve the problem of analytical synthesis of the
structure of CMG control algorithms, the model of gyro-power-driven LSS motion, neglecting the
cross-effects of CMG motions, can be simplified to three single-type control and gyrostabilization
channels of the following form

Ixχ̈+
nx∑
i=1

Ĩi,xq̈i,x −Hβ̇ + aIββ̈s + F (χ̇) = Mx,

ai,xχ̈+ q̈i,x + bi,xq̇i,x + ci,xqi,x = 0, i = 1, nx,

Iββ̈ + kdβ̇ +Hχ̇+ aIββ̈s = Mu(ux),

(1)

where χ = (ψ,ϕ, ϑ)T is a vector of hull orientation angles, β = (βψ, βϕ, βϑ)
T is a vector of precession

angles of CMG frames, q = (qk)
T is a composite vector of coordinates characterizing the elastic

vibrations of the structure elements along each of the three channels of orientation angles such
that qk = (qi,k)

T, i = 1, nx, where nx is a number of elastic coordinates considered in channel χk,
(k = 1, 3); βs = [(βϕ + βϑ), (βψ + βϑ), (βϕ + βψ)]

T; a = cos(π/4 = 0.707 (for installation of CMGs
of “star” type), Iβ are moments of inertia of CMG frames; H = diag(h1, h2, h3) is a diagonal matrix
of CMG kinetic moments; kd is a damping coefficient along the CMG suspension axis; ai,x, bi,x, ci,x

are parameters of the equations of vibrations of elastic elements; Ix = Īx +
nx∑
i=1

Ĩi,x, where Īx is

a diagonal matrix of axial moments of inertia of the hull, Ĩi,x is a matrix of inertial influence
of ith elastic element on the dynamics of the structure; F (χ̇) is a vector of nonlinear functions
containing products χiχj, i, j = 1, 3, i 
= j; Mx is a vector of disturbing moments of external forces
acting on the hull; Mu(ux) is a vector of control moments applied with respect to the CMG frame
axes; ux is a vector of control voltages, whose components are fed to the inputs of the corresponding
CMG momentum drives.

In the mode of angular orientation and stabilization of the LSS at the assembly stage, the values
of velocities χ̇k are small enough to allow neglecting in F (χ̇) the products χiχj , i, j = 1, 3, i 
= j.
In the analytical study of gyro-power-driven control with three identical CMGs, it is reasonable to
neglect the interchannel cross-couplings and take aIβ β̈s = 0 in (1) [22]. Then the system (1) has
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the form

Ixχ̈+
nx∑
i=1

Ĩi,xq̈i,x −Hβ̇ = Mx,

ai,xχ̈+ q̈i,x + bi,xq̇i,x + ci,xqi,x = 0, i = 1, nx,

Iββ̈ + kdβ̇ +Hχ̇+ aIββ̈s = Mu(ux).

(2)

MM (2) is the basis for its decomposition into three subsystems, which correspond to isolated
gyrostabilization channels [22].

3. LSS ANGULAR MOTION CONTROL ALGORITHMS

Synthesis of control algorithms for dynamic objects with MM of the form (1) or (2) is tradi-
tionally carried out sequentially by two steps [22]. In the first step, the type and parameters of
the algorithms forming the values of the components of the vector ux(t) are determined before the
start of the assembly without taking into account elastic vibrations (q = 0). Such algorithms are
called basic algorithms, during the synthesis of which the MM (2) is transformed to the form of

Ixχ̈−Hβ̇ = Mx,

Iββ̈ + kdβ̇ +Hχ̇+ aIββ̈s = Mu(ux).
(3)

At the second step of synthesis for stabilization and damping of elastic vibrations it is proposed
to form a control algorithm in addition to the basic algorithm, which uses information about elastic
vibrations of elements and their parameters.

It is reasonable to apply basic algorithms for controlling CMG in the LSS stabilization mode at
the stage of assembling PD-algorithms in each kth channel in the form of

ux,k(t) = p1,kχk(t) + p2,kχ̇k(t), k = 1, 3,

where p1,k, p2,k are coefficients, which are chosen taking into account the parameters of the equa-
tions (3) and without taking into account the elasticity of the structure from the conditions of
ensuring stability and the required quality of control.

The control moments applied relative to the CMG precession axes are formed as [22]

Mu,k(ux,k) = p0,k(p1,kχk(t) + p2,kχ̇k(t)), k = 1, 3, (4)

where the coefficients p0,k are determined by the structure characteristics of the hull and are set
depending on the moments of inertia Ix at the assembly stage. It should be noted that MM (3)
with algorithms (4) describe a linear dynamic system with constant parameters at the assembly
stage, whose stability condition on the angular velocity vector χ̇ is determined from the analysis of
its characteristic equations in each kth channel in the form of [22]

kd(hk + p0,kp2,k) > Iβp0,kp1,k, k = 1, 3. (5)

Based on the same characteristic equations, the problem of determining the values of the coeffi-
cients p1,k, p2,k of the algorithms (4) that provide the required regulation time tr,k ≈ 3/η∗k, k = 1, 3
at the coordinates of the vector χ. Here η∗k are the given values of the stability degrees of the
characteristic equations of [22].

Studies of the dynamics of the umbrella-type LSS have shown that, when the number of elas-
tic elements increases, lower frequencies of elastic vibrations appear in the frequency spectrum.
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It should be noted that the gyro-power-driven system with the basic algorithm (4) provides the
necessary damping of high-frequency elastic vibrations. However, in the low-frequency region, the
processes of elastic vibration damping by means of basic control (4) under the condition (5) appear
to be overly delayed [22]. Such dynamics of the processes of orientation and stabilization of the
angular position of the LSS is unsatisfactory. In addition, the increase in the elastic vibration
damping time creates known difficulties when a free-flying space manipulation robot is used in the
LSS assembly process [24]. The mentioned disadvantages require complication of the initial basic
control algorithm (4). A possible way to correct the basic algorithm is to organize a subsystem
of additional gyro-power-driven stabilization of low-frequency elastic vibrations of the LSS, using
estimates q̂i,x, ˆ̇qi,x of the corresponding elastic coordinates. The additional subsystem is connected
after the reorientation maneuver is completed and the structural element is installed at the assem-
bly stage. To accelerate the vibration damping, the subsystem generates additional influences of
the following type at the CMG inputs

Md,k(uq,k) =
nk∑
i=1

p̃1,k,iq̂k,i +
nk∑
i=1

p̃2,k,i ˆ̇qk,i, k = 1, 3, (6)

where q̂k, ˆ̇qk are estimation vectors of elastic coordinates and their derivatives, p̃1,k,i, p̃2,k,i are
constant coefficients at the assembly stage.

In choosing the values of the coefficients in (6), it is necessary to take into account the values
of the parameter estimates in the equations of MM elastic vibrations (2). Estimates of partial
frequency values ωi,x =

√
ci,x from the low-frequency spectrum of elastic vibrations allow us to

choose the coefficients p̃1,k,i, p̃2,k,i that ensure stability and minimum damping time of the elastic
component [22]. Using the estimates χ̂, ˆ̇χ taking into account (6), the control moments are formed
in the form of

Mu,k(ux,k) = p0,k

[
p1,k

(
ˆ̄χk − I−1

x

nx∑
i=1

Ĩi,k q̂i,k

)
+ p2,k

(
ˆ̄̇χk − I−1

x

nx∑
i=1

Ĩi,k ˆ̇qi,k

)]
, k = 1, 3. (7)

The gain coefficients in (7) at estimates q̂i,k, ˆ̇qi,k depend on the values of Ĩi,k, which can be less
than the values of Ix by an order of magnitude or more. For accelerated active compensation of
the effect of elastic vibrations on the angular orientation of the LSS, it is reasonable to introduce
reconfigurable coefficients p̃1,k,i, p̃2,k,i in (7). Then the algorithms (7) take the following form

Mu,k(ux,k) = p0,k

[
p1,k

(
ˆ̄χk −

nx∑
i=1

p̃1,k,iq̂i,k

)
+ p2,k

(
ˆ̄̇χk −

nx∑
i=1

p̃2,k,i ˆ̇qi,k

)]
, k = 1, 3, (8)

where p̃1,k,i � p1,kI
−1
x Ĩi, p̃2,k,i � p2,kI

−1
x Ĩi.

If the elastic elements do not have information sensors, it is necessary to solve the problem
of obtaining estimates of q̂ and elastic vibrations parameters at each stage of LSS assembly after
its completion. To solve this problem, a modified version of the Kalman filter-based estimation
algorithm proposed in [20] is used.

4. SYNTHESIS OF AN ALGORITHM FOR JOINT ESTIMATION OF COORDINATES
ELASTIC VIBRATIONS AND THEIR PARAMETERS

The synthesis of the algorithm for joint estimation of the coordinates of angular motion and
coordinates of vibrations (tones) of elastic elements of the structure will be carried out on the
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example of an isolated channel χ2 = ϕ, which is obtained from MM (2) in the form of

Iϕϕ̈+
n∑

i=1

Ĩiq̈i − h2β̇ = Mϕ,

aiϕ̈+ q̈i + biq̇i + ciqi = 0, i = 1, nx,

Iββ̈ + kdβ̇ + h2ϕ̇ = Mu(uϕ),

(9)

where Mu(uϕ) = pϕuϕ, pϕ = (p1,ϕ, p2,ϕ) is a vector of coefficients, uϕ = (ϕ, ϕ̇)T.

During the synthesis of the estimation algorithm, assume Mϕ = 0. Then the system (9) is
transformed to the form [20]:

¨̄ϕ− I−1
ϕ h2β̇ = 0,(

1− I−1
ϕ

n∑
i=1

aiĨi

)
q̈i +

⎛⎝1− I−1
ϕ

n∑
i=1,j 	=i

aj Ĩj

⎞⎠ (biq̇i + ciqi)

+ ai

n∑
i=1,j 	=i

Ĩj(bj q̇j + cjqj) + aih2β̇ = 0,

Iββ̈ + kdβ̇ + h2

(
ϕ̇− I−1

φ

n∑
i=1

Ĩiq̇j

)
= pϕuϕ.

(10)

and the angle ϕ is defined by the expression

ϕ = ϕ̄− I−1
ϕ

n∑
i=1

Ĩiqi, (11)

where ϕ̄ is an angle of rotation of the hull caused by the rotation of the LSS as a rigid object.

The representation of the ϕ coordinate in the form of (11) allows to apply filtering algorithms
for joint estimation of the coordinates of angular motion of the considered mechanical system of
LSS with CMG, unmeasured coordinates qi of elastic vibration tones, and identification of elastic
vibration parameters in real time. It should be noted that unlike the [20] system (10) is nonlinear
because it contains unknown parameters. A nonlinear extended Kalman filter is used to obtain the
estimates. During the synthesis of the estimation algorithm, let represent the MM equations (10)
and (11) in the Cauchy form

ẋ(t) = f(x(t)) + duϕ + Cw(t), (12)

where x ∈ R5n+4 is a state vector, x = (ϕ̄,˙̄ϕ, β, β̇, qi, q̇i, ai, bi, ci)
T, i = 1, n, b ∈ R5n+4 with non-zero

element d4 = 1, f(x) is a nonlinear vector-function defined from (10) and (11),

f1 = x2, f2 = I−1
ϕ h2x2n+4, f2i+1 = x2i+2, f2n+3 = x2n+4,

f2n+4 = I−1
β

[
d4uϕ − kdx2n+4 − h2

(
x2 − I−1

ϕ

n∑
i=1

Ĩix2i+2

)]
,

f2i+2 = (·)−1

⎡⎣x2n+4+ih2x2n+4 − (·)j(x3n+4+ix2i+2 + x4n+4+ix2i+1)

− x2n+4+i

n∑
j=1,j 	=i

Ĩj(x3n+4+jx2j+2 + x4n+4+jx2j+1)

⎤⎦ ,
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where

(·) = 1− I−1
ϕ

n∑
i=1

aiĨi, (·)j = 1− I−1
ϕ

n∑
j=1,j 	=i

aj Ĩj, j = 1, n, j 
= i,

f2n+4+i = f3n+4+i = f4n+4+i = 0;

w ∈ R4n+2 is a noise vector, C = diag(C0 · · ·Ci · · · ) is a block-diagonal matrix of object noise,
containing blocks C0 ∈ R4×2, Ci ∈ R5×4. The elements of matrix C0 are zero except c21 = c42 = 1,
matrices Ci also have zero elements except c21,i = c32,i = c43,i = c64,i = 1.

It is assumed that in (10) the unknown parameters of elastic vibrations are assumed constant
at the assembly stage. If necessary, any parameters can be included in the state vector χ, which
leads to cumbersome mathematical expressions.

If only coordinates ϕ and ϕ̇ are measured on board the LSS, the measurement equation has the
form

z(t) = Gx(t) + v(t), (13)

where the measurement vector z ∈ R2 has coordinates

z1 = x1 − I−1
ϕ

n∑
i=1

Ĩix4+i + v1, z2 = x2 − I−1
ϕ

n∑
i=1

Ĩix4+n+i + v2;

v is a noise vector of the meters.

The structure of the measurement matrix G ∈ R2×(5n+4) has the form [20]

G = [C1G2 · · ·Gi+2],

where C1, G2, Gi+2 are adjoint matrices, i = 1, n; G1 is a square unit matrix, G2 is a square zero
matrix; the matrix Gi+2 ∈ R2×5 consists of the following non-zero elements: g11,i = g22,i = −I−1

ϕ Ĩϕ.

It is assumed that the initial values of x(t0), w, v are independent of each other, w and v are
Gaussian white noise with zero mathematical expectations and correlation functions:

M〈w(t)wT(τ)〉 = Qw(t)δ(t− τ), M〈v(t)vT(τ)〉 = Qv(t)δ(t − τ).

Here δ is the Dirac delta function, the diagonal noise intensity matrices Qw(t) and Qv(t) are
continuous and positively defined for t � t0. Then the problem of synthesizing an algorithm for
estimating the coordinates x(t) from the measurements z(t) reduces to a special case of a continuous
nonlinear extended Kalman filter [20] with constant matrices C and G:

˙̂x(t) = f(x̂) + du(t) + P (t)GTQ−1
v [z(t)−Gx̂(t)],

Ṗ (t) = D(x̂)P (t) + P (t)D−1(x̂)− P (t)GTQ−1
v GP (t) + CQw(t)C

T,
(14)

where x̂(t) is a vector of estimates of the coordinates of vector x(t), P (t) is a covariance matrix,
D(x̂) = ∂f(x̂)/∂x̂ is a Jacobi matrix.

5. MATHEMATICAL MODELING

The investigation of the capabilities of the control algorithm (8) for active compensation of elastic
vibrations at the angular orientation of the LSS along ϕ coordinate was carried out by means of
mathematical modeling using in (8) estimates derived from the (14) algorithm. The number of
tones and the values of their parameters were assumed to be known and the same in both MM (9)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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and the estimation algorithm (14), except for those parameters that are assumed to be unknown
in (14). To reduce the simulation time in (9), only two tones n = 2 were investigated, and the ˆ̄ϕ,
ˆ̄̇ϕ and q̂i, ˆ̇qi LSS estimates were used to form the control moment. The constant parameters c1
and c2 were chosen as unknowns, and their estimates ĉ1 and ĉ2 were used in (14).

The control signal is generated on the basis of (8) as follows

uφ = p1 ˆ̄ϕ−
2∑

i=1

p̃1,iq̂1,i + p2
ˆ̄̇ϕ−

2∑
i=1

p̃2,i ˆ̇q2,i, (15)

where the coefficients p̃1,i, p̃2,i have the same order as p1 and p2, respectively.

In the modeling of angular orientation dynamics to obtain measurements, a variant of the
system (9) with the algorithm (15) was used as MM in the form of [20]

ẏ = Ay + d̄uϕ, (16)

where y ∈ R8 is a state vector, y = (ϕ̄,˙̄ϕ, β, β̇, q1, q2, q̇1, q̇2)
T, d̄ ∈ R8 is a vector with one non-zero

element d̄4 = 1.

Based on (16), a vector of measured coordinates z = (ϕ∗, ϕ̇∗)T was generated using the expression
z = Ḡy + v, where the matrix Ḡ ∈ R2×8 has non-zero elements ḡ1,1 = ḡ2,2 = 1, ḡ1,5 = ḡ2,7 = −I−1

ϕ Ĩ1,

ḡ2,6 = ḡ2,8 = −I−1
ϕ Ĩ2, v = (v1, v2)

T is a vector of measurement noise.

In (14), MM (12) was used with vector x ∈ R10, which includes identifiable unknown parameters
c1 and c2, x = (ϕ̄,˙̄ϕ, β, β̇, qi, q̇i, c1, c2)

T, i = 1, 2, d ∈ R10 is a vector with one non-zero element
d4 = 1. C ∈R10×6 is a noise matrix with non-zero elements c2,1 = c4,2 = c6,3 = c8,4 = c9,5 = c10,6 = 1.
The measurement model for the algorithm (14) is formed as ẑ = Gx̂, where the matrix G ∈ R2×10

differs from the matrix Ḡ by the presence of the ninth and tenth zero columns. Matrices Qw ∈ R6×6

and Qv ∈ R2×2 (14) are assumed constant.

The initial values at t0 = 0 of the coordinates and parameters, as well as the vectors y, x̂, and
the elements of the diagonal covariance matrix P (0) are assumed to be [20] as follows:

y1(0) = 0.017; y2(0) = 0.016 s−1; y3(0) = 0.18 × 10−3;

y4(0) = 0.7× 10−4 s−1; y5(0) = 0.017; y6(0) = 0.19× 10−4 s−1;

y7(0) = 0.37× 10−2; y8(0) = 0.13 × 10−4 s−1;

a1 = 1.2; a2 = 2.32; b1 = 0.24 s−1; b2 = 0.12 s−1;

c1 = (0.34)2 s−2; c2 = (0.47)2 s−2;

Iϕ = 69200 Nms2; Ĩ1 = 1270 Nms2; Ĩ2 = 2500 Nms2;

Iβ = 1.1 Nms2; kd = 2.5 Nms; h = 240 Nms;

p1,1 = 3.9 × 10−6; p2,2 = 3.8× 10−6 s−2; p3,3 = 0.49 × 10−2;

p4,4 = 6.1× 10−4 s−2; p5,5 = 4.7 × 10−4; p6,6 = 0.54 × 10−2 s−2;

p7,7 = 0.11× 10−4; p8,8 = 0.11 × 10−6 s−2;

p9,9 = 1.1 × 10−3 s−4; p10,10 = 1.8 × 10−3 s−4.

The initial values of the estimates were used:

x̂1(0) = ϕ∗, x̂2(0) = ϕ̇∗, x̂j(0) = 0 ∀j = 3, 8.

Given that the parameters c1 and c2 can only be positive, then x̂9(0) = 0.002 s−2; x̂10(0) = 0.005 s−2.
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Fig. 1. Identification errors of partial frequencies.

The following standard deviations were assumed for modeling discrete analogs of the continuous
white noise of the object and meters:

σw,1 = 1.5 × 10−5 s−2; σw,2 = 2× 10−5 s−2; σw,3 = 2.2× 10−6 s−2;

σw,4 = 1.8× 10−6 s−2; σw,5 = 4.8× 10−2 s−1; σw,6 = 3.6× 10−2 s−1;

σv,1 = 2.6 × 10−4; σv,2 = 1.34× 10−5 s−1.

The white noise intensity matrices Qw and Qv are assumed to be diagonal due to the lack of
correlation between the object noise and the noise in the measurement channels. The elements of
these matrices are calculated using the expressions

qw,kk = 2σ2
w,kτ, k = 1, 6 and qw,jj = 2σ2

v,jτ, j = 1, 2,

where τ is a correlation time, τ � Δt, Δt is an integration step. The following values are adopted:

qw,11 = 2.3 × 10−12 s−3; qw,22 = 0.49 × 10−14 s−3; qw,33 = 4.8 × 10−14 s−3;

qw,44 = 3.2 × 10−14 s−3; qw,55 = 2.3× 10−6 s−3; qw,66 = 1.3× 10−6 s−3;

qv,11 = 4.7× 10−12 s; qv,22 = 2.9 × 10−13 s−1.

In statistical modeling, discretization of the equations (14) was performed using the fourth-order
Runge–Kutta method with Δt, which was chosen to range from 0.002 to 0.005 s.

Figure 1 presents the identification error plots of unmeasured partial frequencies Δωi(t) =√
ci −

√
ĉi(t), i = 1, 2 with doubled standard deviations calculated as the corresponding diago-

nal elements of the matrix P (t): σw,1 = p−4
9,9, σw,2 = p−4

10,10. From the results of statistical modeling,
it follows that the convergence time of the parameter estimates c1 to 2% of the maximum value of
the initial value is on average from 3 to 6 s. At the same time, the convergence time of coordinate
estimates ϕ̂ and ˙̂ϕ to 2% of their maximum values averages 20–25 s.

In order to verify the possibility of using the algorithm (15) to actively compensate for the
influence of vibrations of elastic parts of the LSS on its angular dynamics, mathematical simulations
in the angular stabilization mode have been carried out. The results of comparative modeling of
the angular motion of the LSS along the coordinate ϕ with the control algorithm (7) and the
algorithm (15) are presented in Fig. 2.
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Fig. 2. Stabilization processes for the rotation angle of a structure.

Figure 2a shows plots of the real values of ϕ (11) obtained when using the algorithm (7) with
p̃1,i = 0.017, p̃2,i = 0.01, i = 1, 2, in Fig. 2b shows the graphs when using the algorithm (15) in
which p̃1,i = 3.6, p̃2,i = 2.3. In the first case, the elastic vibrations decay to 2% of the maximum
value of the initial amplitude in ∼ 6000 s, while in the second case, with active compensation of
the effect of elastic vibrations occurs for ∼ 80 s.

In simulations of the stabilization process of the steering angle up to 150 s (see Fig. 2b), errors
in the identification of partial frequencies ranged from 0.7 to 1.6% of the true values of the ωi

parameters.

6. CONCLUSION

The problem of vibration damping arises in controlling the angular motion of an LSS assembled
in orbit, containing elastic elements, in the absence of information about new mechanical parameters
of the assembled structure and initial characteristics arising at each stage of assembly of new
elastic components. This requires ensuring not only a timely change of the estimation strategy
and, accordingly, of the control during the transition of the structure from one class of mechanical
systems to another, but also the application of the principles of adaptive control on the interval of
the structure development within each stage of assembly above the first one. The task of optimizing
the coefficients in the algorithm (8) at the coordinates of elastic vibration tones from the point of
view of rapidity should be solved at the assembly stage, if necessary.

The synthesized algorithm of joint estimation of LSS angular motion coordinates, tones of elastic
vibrations of the structure and their parameters allows to obtain with high accuracy estimates of
their unmeasured coordinates and parameters in real time based only on the readings of LSS angular
motion meters in the absence of any objective information on elastic vibrations.

It should be noted that the construction of an extended Kalman filter for estimating the motion
coordinates and their parameters of such a complex mechanical system as the umbrella-type LSS
considered in this paper requires using a full MM of a much higher order, in which the mutual
influence of vibrational components is taken into account. It is advisable to solve such a problem
when developing the system for a particular variant of the assembled structure using an appropri-
ate amount of computational means. This paper considers the principal possibility of using the
proposed approach to solve the problem of estimation of such complex dynamic objects.

The use of the synthesized algorithms (8) and (14) in LSS assembly has a number of advantages.
Thus, when the first elastic element is installed, the dimensionality of the state vector in the
estimation algorithm is increased by five unmeasured coordinates: two coordinates of the elastic
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vibration tone and three vibration parameters. Since these parameters remain constant for a
long time, after their identification they become known and further identification of them is not
reasonable, then these three parameters can be excluded from the state vector. After installation
of the next elastic element, the above change of dimensionality is repeated and the state vector is
increased by five coordinates. After the identification procedure of the next constant parameters,
the state vector is also decreased by the next three coordinates and so on. Thus, the state vector
after identification of vibration parameters of all elastic elements of the LSS increases only by
2n coordinates, where n—the number of elastic elements installed on the LSS.

The results of statistical mathematical modeling prove the possibility of active compensation
of the influence of vibrations of elastic parts of the LSS on the dynamics of angular orientation
and stabilization of the LSS itself using control of the form (15). When modeling the algorithm of
identification of parameters a, b, c, three variants of estimation were tested, in which one of the
three parameters was chosen and the other two were considered to be known.
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