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Abstract—The synthesis of a control law for tracking a target informative path as a new ap-
proach to solving the problem of planning a flight experiment for identifying the aerodynamic
characteristics of automatically controlled aircraft is proposed. The mathematical statement
and the method for solving the synthesis problem are obtained. In the numerical experiment,
it is shown that the identification accuracy on the synthesized control can be significantly
improved compared to the identification accuracy on the optimal program test signal.
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1. INTRODUCTION

The task of planning test signals for identifying the aerodynamic characteristics (ADC) of an
aircraft is to generate a specially perturbed motion of the aircraft in order to increase the accuracy of
ADC identification. The disturbed movement of the aircraft (test maneuver) is formed by applying
so-called test input signals (test signals) to the aircraft’s controls. As a rule, criteria adopted in the
theory of optimal design of experiments, which characterize to one degree or another the expected
identification accuracy, are used as criteria for selecting a test signal.

Problems of active identification of ADC of aircraft are characterized by a wide variety of
mathematical formulations. Already solved problems differ in their mathematical formulations in:
test signal dimension (scalar [1–9], vector [1, 4, 9–16]), class of functions in which the test signal
is optimized (continuous functions [9], discrete functions [1, 2, 4, 8, 17], polyharmonic functions
[2, 10, 12, 15, 16, 18], type “bang-zero-bang” controls and similar controls [2, 6, 8, 12, 14, 15],
parameterized controls [2, 4, 7, 11], functions of simple form [5]), by type of restrictions (only
for test signal [2, 3, 5, 9] on the components of the state vector of the aircraft in perturbed
motion [1–4, 6, 7, 11, 14, 17]), criterion (Turing number [1], L-, D-criterion [1–7, 9, 11, 12, 14, 15,
17, 18], peak factor [10, 12, 15, 16]). It is usually assumed that the choice of test signal is made
before the experiment, but the possibility of step-by-step optimization of the test signal during
the experiment is also considered [3]. Optimization of test signals is performed most often in the
time domain [1–12, 14, 16], but can also occur in the frequency domain [18] or in the time and
frequency domain simultaneously [13, 17]. For further presentation, it is important to note that in
the known formulations of the problem of active identification of aircraft ADCs, restrictions on the
components of the aircraft state vector in perturbed motion do not take into account (except [6])
possible differences between unknown ADCs and their a priori estimates, and the choice of test
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signals is made in the class of program controls, i.e. adaptive control for the purpose of active
identification of aircraft ADCs is practically not considered [2, 19].

The safety conditions of the flight experiment, various physical and methodological restrictions
determine the restrictions on the disturbances of the components of the aircraft state vector in the
test maneuver. In a number of important applications, taking into account these restrictions is a
necessary condition for performing a test maneuver [11]. If the restrictions are violated, the test
maneuver is not performed (interrupted by the aircraft automatic control system). The fulfillment
of the restrictions must be ensured whenever the ADC and the initial conditions of the test maneuver
are known approximately when selecting a test signal.

In [6] a method for optimizing a test signal is proposed taking into account the specified restric-
tions in the class “bang-zero-bang” controls. In [7], a method for optimizing a test signal is proposed
taking into account the specified restrictions in the class of parameterized controls, in particular,
a solution was obtained in the class of piecewise constant functions with a short persistence time,
which differs significantly from “bang-zero-bang” management. The program test signal obtained
in [7] ensures that the specified restrictions are met for all a priori possible values of the ADC. But
a consequence of this positive property of the test signal is its optimality “on average” on the set
of all restrictions, determined by the set of possible values of the ADC. This means that in each
specific case (in particular, with true ADC values), such a test signal will obviously be suboptimal.
In the class of program test signals, it is impossible to select a test signal that will be optimal for
all possible values of the ADC. However, it is possible to improve the informative properties of the
selected test signal directly during the flight experiment due to the information obtained about
the aircraft state vector. In [20] a method for approximate solution of this problem was proposed.
Below we propose a method for finding its optimal solution.

2. FORMULATION OF THE PROBLEM

The proposed mathematical formulation of the control synthesis problem for identifying the
ADC contains a model of the dynamics of the object in a test mode lasting T seconds, described
by a linear (linearized with respect to the reference motion of the aircraft) differential equation

dx

dt
= A(b)x+Gu, t[0, T ], x(0) = x0, (1)

and discrete measurement model

zi = z(x(ti)) = Hx(ti) + vi, i = 1, N, (2)

where: x is n-dimensional vector of the aircraft state; u = u(t, x) is optimized dimension control
vector m; zi is p is dimensional vector of measurements; vi is vector of “white” Gaussian noise of
measurements, E(vi) = 0, E(viv

T
j ) = 0, i 
= j, E(viv

T
i ) = R, i = 1, N , j = 1, N (E is mathematical

expectation); A(b), G, H is matrices of corresponding dimensions; ti is timepoints at which mea-
surements are taken, ti = h(i− 1), h = T/(N − 1); N is number of measurements. The matrix A(b)
depends on the identified vector of unknown parameters b (the desired ADCs) of dimension k. The
true values of the btrue parameters b are not known. The a priori estimate bpri of the vector btrue

contains an error Δb, bpri = btrue +Δb, with respect to which it is known that the components Δbi
of the vector Δb belong to the intervals [−Δi,Δi]: Δbi ∈ [−Δi,Δi], i = 1, k. We denote the set of
possible values of b by the symbol B.

We will assume that the movement of the aircraft before the start of the test maneuver is quasi-
stationary. This means that the components of the vector x0 in (1) are close to zero, but may be
different from zero. We will assume that xtrue0 belongs to the closed bounded set X0 containing the
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zero vector. We will consider the possible values of the components of the vectors x0 and b to be
independent of each other.

It’s required by choosing on the interval [0, T ] a vector function u = u(t, x) from a certain class
of functions U (defined below):

1) ensure the fulfillment of scalar linear restrictions on the state vector of the aircraft for all a
priori possible values of b and x0

|xs(t, b, x0, u)| � qs(t), b ∈ B, x0 ∈ X0, s = 1, r, (3)

where: xs is components of the vector x on which restrictions are imposed; qs(t) is specified
functions; r is number of restrictions;

2) minimize the control u functional

J = tr
(
WM−1(bpri, x0, u)

)
, (4)

where tr is matrix trace notation, W is non-negative definite weight matrix (usually diagonal),
M is information matrix:

M(b, x0, u) =
N∑
i=1

(∂x(ti, b, x0, u)/∂b)
T Q(∂x(ti, b, x0, u)/∂b). (5)

In (5) matrix Q = HTR−1H; x0 = 0; derivatives Sj =
∂x(t, b, x0, u)

∂bj
, j = 1, k are determined from

a system of differential equations for sensitivity functions:⎧⎪⎨⎪⎩
dSj

dt
= A(b)Sj +

∂A(b)

∂bj
x(t, b, x0, u),

Sj(0) = 0, j = 1, k.

(6)

Equations (6) and (1) are solved jointly.

The mathematical formulation of the test signal planning problem in the class of program
controls differs from the above formulation of the problem only in that the desired control is sought
in a given class of time functions, i.e., u = u(t) (usually in the class of continuous or piecewise
continuous functions of time [1–18]).

The solution u = u(t, x) to problem (1)–(4) is proposed to be sought among controls that ensure
tracking of a certain trajectory of system (1), which has good information content about the iden-
tified parameters and satisfies restrictions (3), and precisely in the class of functions representable
in the form

u(t, x) = μupri(t) + L
(
μxpri(t)− x(t)

)
, (7)

where xpri(t) = x(t, bpri, 0, upri)—trajectory of system (1) for optimal program test signal upri(t) at
restrictions B = bpri, X0 = 0; coefficient μ, 0 � μ � 1, and elements Lij of matrix L

|Li,j| � C, i = 1, l, j = 1, n (8)

subject to determination from the minimum condition of criterion (4) under restrictions (3). The
constant C reflects restrictions on the feedback coefficients of the automatic control system (ACS).
For the convenience of further references, we will call the given problem the problem of selecting a
test control, and the desired function u(t, x(t)) will be called a test control.
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System (1) under control (7) can be written in the form

dx

dt
= (A(b)−GL)x+ μG(upri(t) + Lxpri(t)), x(0) = x0, (9)

therefore, for sufficiently small values of the coefficient μ, restrictions (3) will certainly be satisfied.
In addition, from (4)–(6) and (9) it follows that for an arbitrary function u = u(t) the equality
J(μu) = J(u)/μ2 is true, therefore, to minimize functional (4), the value of μ should be chosen as
maximum as possible, subject to the fulfillment of restrictions (3).

The equations for the sensitivity functions Sj , j = 1, k are written in the form (6), since it
is assumed that in the procedure for post-flight estimation of the vector b the technique of ar-
tificially disconnecting the system will be used (9), when a signal uΣ(t) known from a flight ex-
periment is applied to the input of a customized motion model with an excluded ACS circuit
uΣ(t) = μupri(t) + L(μxpri(t)− x(t)). If the customized model includes an ACS model, then the
matrix A in (6) must be replaced by the matrix A−GL.

A fairly complete characteristic of the solution to problem (1)–(5) is the distribution density
of the function values J(b, x0) = trM−1(b, x0, u). The function J(b, x0) characterizes the expected
identification error (the lower bound of the sum of variances of parameter estimates) on the test
control u (t, x(t)) (or on the test signal u(t)) if btrue = b, x(0) = x0. To construct an estimate of a
given distribution density (polygon), it is sufficient to calculate the values of the function J(b, x0)
for a plenty large number NP of pairs of vectors b and x0, b ∈ B, x0 ∈ X0, selected randomly.
If the distribution densities of the components of the vectors b and x0 on the intervals of their
possible values are unknown, then according to the recommendations [21] they should be assumed
to be uniform. The number NP is chosen so that when it increases, the position and shape of the
polygon do not change. With little computational time spent, the polygon of expected identification
error values represents an integral characteristic of test management quality that is convenient
for analysis, allowing one to estimate the probability of obtaining certain values of the expected
identification error parameters.

3. SOLUTION METHOD

In the case of B = bpri, X0 = 0, the optimal program test signal upri(t) and the corresponding
trajectory xpri(t) = x(t, bpri, 0, upri) can be found, for example, by one of the methods described
in [2, 7]. Further, we present a method for optimizing the coefficient μ and matrix L in (7).

We combine the elements of the matrix L and the coefficient μ into one vector v∈V , where
V is a hypercube defined by inequalities (8) and the inequality 0 � μ � 1. The dimension of the
vector v is equal to Nv � nl + 1 (some elements of the matrix L can be set equal to zero to eliminate
feedback on the corresponding components and reduce the number of adjustable coefficients). We
set vNv = μ. We denote by x(t, b, x0, u

v) the solution of system (1) on control (7) for a given
vector v.

LetNC be a positive integer. We divide the optimization interval [0, T ] with points ti = ΔC(i− 1),
i = 1, NC into subintervals of equal length ΔC = T/(NC − 1). We choose NC so large that when
the restrictions are satisfied

|xs(ti, b, x0, uv)| � qs(ti), ti = ΔC(i− 1), i = 1, NC ,

b ∈ B, x0 ∈ X0, s = 1, r
(10)

restrictions (3) can be considered fulfilled for all t ∈ [0, T ] with sufficient accuracy. Thus, to solve
the problem posed, it is sufficient to solve the problem of minimizing criterion (4) on the set S of
vectors v satisfying the set of restrictions (10).
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We define the following auxiliary problem. Minimize by v ∈V the criterion

J = tr
(
WM−1(bpri, 0, uv)

)
(11)

on some closed, bounded set Š of vectors v, defined by a finite number of restrictions

|xs(ti, bj, xj0, uv)| � qs(ti), i = 1, NC ,

bj ∈ B, xj0 ∈ X0, s = 1, r, j = 1,K, v ∈ V.
(12)

The solution to this typical nonlinear programming problem can be found by various methods,
for example, the linearization method [22]. The gradients of restrictions (12) over the components
of the vector v are equal

Svj =
∂x(t, b, x0, u

v)

∂vj
, j = 1, Nv .

The gradient of functional (11) can be calculated if the functions are known

Sbi
vj = Sbi

vj (t, b, x0, u
v) =

∂

∂vj
Si, i = 1, k, j = 1, Nv .

The functions Svj , S
bi
vj can be determined from solving the following systems of equations, which

must be solved together with equations (1) and (6):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dSvj

dt
= (A(b)−GL)Svj −G

∂L

∂vj
x(t, b, x0, u) + μG

∂L

∂vj
xpri, if j = 1, Nv − 1,

dSvNv

dt
= (A(b)−GL)SvNv

+G(upri + Lxpri),

Svj (0) = 0, j = 1, Nv ;⎧⎪⎨⎪⎩
dSbi

vj

dt
= A(b)Sbi

vj +
∂A(b)

∂bi
Svj ,

Sbi
vj (0) = 0, j = 1, Nv, i = 1, k.

The solution to the original minimization problem with respect to the vector v of criterion (11)
under restrictions (8) and (10) can be obtained by the following iterative algorithm:

Step 0. We set the counter for the number of iterations: iter = 0. We define arbitrary bj ∈ B,
xj0 ∈ X0, j = 1,K and define the set Siter as set of vectors v satisfying inequalities and condi-
tions (12).

Step 1. We solve an auxiliary problem in which Š = Siter. We denote the solution by viter, the
corresponding test control (7)—by uv

iter
.

Step 2. To check the fulfillment of restrictions (10) on the found control uv
iter

for each s = 1, r

and i = 1, NC we define max
b∈B,x0∈X0

∣∣∣xs(ti, b, x0, uviter )∣∣∣.
Step 3. If for all s = 1, r, i = 1, NC

max
b∈B,x0∈X0

∣∣∣xs(ti, b, x0, uviter )∣∣∣ � qs(ti)

is true, then problem (11)–(10) is solved—a test control that satisfies restrictions (10) and minimizes
functional (11) is found. Next go to Step 5.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



986 GRIGOR’EV

Step 4. If for some s∗, i∗

max
b∈B,x0∈X0

∣∣∣xs∗(ti∗ , b, x0, uviter )∣∣∣ = ∣∣∣xs∗(ti∗ , b∗, x∗0, uviter )∣∣∣ > qs∗(ti∗)

is true, that is, restrictions (10) are violated, then we supplement the set Siter with restrictions∣∣∣xs∗(ti∗ , b∗, x∗0, uviter )∣∣∣ � qs∗(ti∗). We again denote the obtained set by Siter, having previously set

iter = iter + 1. Next go to Step 1.

Step 5. Constructing a polygon of function values J(b, x0) = tr
(
WM−1(b, x0, u

opt)
)
, where

uopt = uv
iter

. The method for constructing the polygon was described in Section 2.

We explain: each subsequent set Si+1 of vectors v is already contained in the previous set Si due
to the fact that each restriction added at Step 4 narrows the set on which criterion (11) is minimized.
Thus S0 ⊃ S1 ⊃ · · · ⊃ Si ⊃ · · · ⊃ S, where S is the set of vectors v defined by the formulas (10).
Consequently, the minimum of criterion (11) on the set S is not less than the minimum on the
set Si. Therefore, if at the ith iteration the conditions of Step 3 of the algorithm are met, then
restrictions (10) are satisfied, and the minimum found on the set Si is the minimum on the set S.

Thus, the solution to problem (4), (10) is reduced to solving a sequence of standard nonlinear
programming problems that “approximate” the original problem in the vicinity of the desired
minimum with the approximation accuracy increasing during iterations. This approach seems
preferable to optimization of test signals using the dynamic programming method [6, 14] due to
the “curse of dimensionality.”

The presented method for solving the problem can be generalized to the case of dependence of
the matrices G and H on the identified parameters b.

4. NUMERICAL MODELING

We consider the problem of constructing a two-component (m = 2) test control u(t, x(t)) on
a time interval of eight seconds (T = 8) in order to identify the coefficients bi, i = 1, 5 models of
aircraft lateral movement [9]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

β̇ = b1β +wy + 0.0565γ + 0.0289δN ,

ẇx = b2β − 0.935wx − 0.124wy + 1.4δN + 2.88δe,

ẇy = b3β + 0.119wx + b4wy + b5δN ,

γ̇ = wx,

(13)

supplemented with the simplest models of the rudder and aileron drive:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̇N = ωN ,

ω̇N = k(δsetN − δN )− k2ωN , δsetN = u1(t, x(t)),

δ̇e = ωe,

ω̇e = k(δsete − δe)− k2ωe, δsete = u2(t, x(t)),

k =
0.456

τ2
, k2 =

0.8

τ
, τ = 0.02.

(14)

In (13) and (14): β is gliding angle of the aircraft, wx, wy is angular velocities of roll and yaw, γ
is roll angle, δN , δe are rudder and aileron deflection angles, ωN , ωe are rudder and aileron deflection
angular rates, k, k2, τ are parameters of the rudder and aileron drives, coefficients b1, b2, b3, b4, b5
are derivatives of the lateral aerodynamic force and aerodynamic moments of roll and yaw to be
identified corresponding components of the aircraft state vector: β, wx, wy, δN . The dimension of
angular velocities is—degrees per second, angles are—degrees. The variables β, wx, wy, γ, δN , δe
are measured independently at a frequency of 25 hertz.

We have the state vector of the aircraft x = (β,wx, wy, γ, δN , δe, ωN , ωe)
T , vector of identifi-

able parameters b = (b1, b2, b3, b4, b5)
T , measurement vector zi = z(ti) = Hx(ti) + vi, ti = h(i− 1),

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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i = 1, N , where H is matrix with elements Hii = 1 when i = 1, 6, Hij = 0 when i = 1, 6, j = 1, 8,
i 
= j; vi is vector of “white” Gaussian noise of measurements, E(vi) = 0, E(viv

T
j ) = 0, i 
= j,

E(viv
T
i ) = R, i = 1, N , j = 1, N , h = 0.04 s, N = 201. The root-mean-square measurement errors

(
√
Rii, i = 1, 6) are: for β—1◦, for wx, wy—0.71◦/s, for δN , δe—0.5◦.
A priori estimate of the true values btrue of the vector b:

bpri = (−0.119, −4.43, −2.99, 0.178, 1.55)T .

The boundaries of the tolerance intervals [−Δi,Δi], such that Δbi ∈ [−Δi,Δi], have the form:

Δi = ±0.5
∣∣∣bprii

∣∣∣, i = 1, 4, Δ5 = ±0.2
∣∣∣bpri5

∣∣∣. Thus, the a priori uncertainty of the first four compo-

nents of the vector b is ±50% of the nominal values. The set of possible values of the vector b
defines a parallelepiped with center at the point bpri—set B. The test maneuver should start from
a quasi-stationary state:

|ωx(0)| � 0.25◦/s, |β(0)| � 0.5◦, |ωN (0)| � 0.025◦/s, |δN (0)| � 0.25◦,

|ωy(0)| � 0.25◦/s, |γ(0)| � 0.25◦, |ωe(0)| � 0.025◦/s, |δe(0)| � 0.25◦.
(15)

The set of possible values of the initial conditions of the test maneuver x0 = x(0) defines
the polyhedron—set X0. Intervals I6 = ±0.25◦/s, I7 = ±0.5◦, I8 = ±0.025◦/s, I9 = ±0.25◦,
I10 = ±0.25◦/s, I11 = ±0.25◦, I12 = ±0.025◦/s, I13 = ±0.25◦, defining possible values x0, as well
as tolerance intervals Ii = [−Δi,Δi], i = 1, 5 will be further called intervals of a priori uncertainty.

When constructing polygons of values J(b, x0), we will assume that the components of the a
priori estimate of the vector b and the components of the vector x0 are uniformly distributed over
the intervals of a priori uncertainty Ii = [−Δi,Δi], i = 1, 13 and are independent of each other.
The matrix W in (4) was assumed to be unit.

We will impose restrictions on the permissible disturbances of each of the components of the
vector x in the test maneuver:

|ωN (t, b, x0, u)| � 30◦/s, |ωe(t, b, x0, u)| � 30◦/s, |β(t, b, x0, u)| � 3◦,

|wx(t, b, x0, u)| � 5◦/s, |wy(t, b, x0, u)| � 5◦/s, |γ(t, b, x0, u)| � 5◦,

b ∈ B, x0 ∈ X0, t ∈ [0, 8].

(16)

The first two restrictions in (16) reflect physical restrictions on the speed of movement of the
drives, and the remaining restrictions are intended to ensure the safety of the test maneuver. Time
discretization (see (10)) of restrictions (16) was carried out with the parameter ΔC = h.

The task is to determine such a test control uA(t, x(t)):

uAi (t, x(t)) = μuprii (t) +
4∑

j=1

Li,j

(
μxprii (t)− xi(t)

)
, i = 1, 2, (17)

on which the functional (4) reaches its minimum value. The restrictions on the elements of the
matrix Li,j in test control (17) were taken in the form (8) with C = 0.5, 1, 2. The optimal test
control uA(t, x(t)) was determined in accordance with the algorithm of Section 3. Optimization of
the program test signal uapr(t) with B = bapr, x0 = 0 and replacing restrictions (16) with restrictions

|ωN (t, bpri, 0, u)| � 30◦/s, |ωe(t, b
pri, 0, u)| � 30◦/s, |β(t, bpri, 0, u)| � 3◦,

|wx(t, b
pri, 0, u)|� 5◦/s, |wy(t, b

pri, 0, u)|� 5◦/s, |γ(t, bpri, 0, u)|� 5◦, t∈ [0, 8]

was performed by the method described in [7], in the class of parameterized controls, presented in
the form

uprij (t) =
50∑
i=1

di+50(j−1) sin(πit/T ), j = 1, 2,

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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where di, i = 1, 100 is optimized parameters. Figure 1 shows the trajectory x(t, bpri, 0, upri) of
system (13)–(14), corresponding to the optimal program test signal upri(t) for this task. The
components of the optimal program test signal upri(t) practically coincide with the dependences
δN (t), δe(t) shown on the graph. The value of the criterion on the optimal test signal is equal to
tr

(
M−1(bpri, 0, upri)

)
= 0.0036.

Next, in accordance with the algorithm of Section 3, we found the optimal values of μ and Li,j,
i = 1, 2, j = 1, 4 in (17). All corner points of cube B were taken as the initial sample of values
bj ∈ B, xj0 ∈ X0, j = 1, 32 for xj0 = 0. Finding test controls for each C = 0.5, 1, 2 required five to
eight iterations of the algorithm. The values of the criterion trM−1

(
bpri, 0, uA(t, x(t))

)
on optimal

test controls are equal to: 0.0089 at C = 2; 0.011 for C = 1 and 0.018 for C = 0.5.

Figure 2 shows the fields of values of the components of the vector x, calculated on the test
control uA(t, x(t)) with C = 2 for 60 different pairs bj , xj0 from a priori possible ones (i.e. for
60 possible solutions of system (13)–(14)). At C = 1 and 0.5, the fields of the components of
the vector x differed mainly in the larger width of the “tracks” values. The figure shows that all
specified restrictions (16) are satisfied. Numerical verification of the fulfillment of restrictions (16)
was carried out for 20 000 different pairs bj, xj0 for each value of C = 0.5, 1, 2. The optimal value
of μ for C = 2 was equal to μ = 0.75. We note that on the program test signal u(t) = μupri(t)
restrictions (15) would be violated already at μ = 0.1.

At the same time, the limitations and stability of the system were tested (9). In all these cases,
all eigenvalues of the matrices A(bj)−GL had negative real parts.

Figure 3 shows the polygons of expected identification errors JA(b, x0) = trM−1
(
b, x0, u

A(t, x(t))
)

on optimal test controls in comparison with the polygon of expected identification errors JP (b, x0) =
trM−1

(
b, x0, u

P (t)
)
on the optimal program test signal uP (t). The program test signal uP (t) for

problem (13)–(16) was found using the method described in [7]. The value of the criterion on the
optimal program test signal is tr

(
M−1(bpri, 0, uP (t))

)
= 0.031.

The expected identification errors JP (b, x0) and JA(b, x0) were calculated using solutions to the
same systems of equations (13)–(14) and (6), differing only in input signals u = u(t) = uP (t) and
u = uΣ(t) = uA(t, x(t)) respectively. The number of points to construct the polygon was NP =
20000.
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Figure 3 shows that the test control is significantly better than the program test signal. The
polygons of expected identification errors on test controls are located to the left of the polygon of
expected identification errors on the program test signal in the region of lower values of expected
identification errors. The spread of possible values of the expected identification error in test
controls is significantly smaller. The right “tails” of the polygons, corresponding to large values of
the expected error, are noticeably shorter on the test controls than on the polygon on the program
test signal. When C = 2 the average value (standard deviation) of the expected identification error
on the test control is more than 3.2 (3.2) times less than the expected error on the program test
signal, with C = 1—more than 2.7 (2.2) times, with C = 0.5—more than 1.6 (1.2) times. Out of
20 000 realizations of the values b and x0, out of a priori possible ones, the share of realizations for
which the ratio of expected identification errors on the test signal and test control was more than
two was equal to: when C = 2—93%, when C = 1—78%, when C = 0.5—28%.

We note that, within the framework of the comparison, the formulation of the problem of
optimizing the program test signal fit to conditions favorable for identification for conducting a
test maneuver with an open control loop.

The optimal values of μ and Li,j in the problem under consideration were such that: max
i,j

Li,j = C;

μ = 0.64 for C = 2, μ = 0.58 for C = 1, μ = 0.45 for C = 0.5. We can assume that the optimal
(maximum achievable) values of the parameter μ in control (7) are limited by the value of the
parameter C in (8). To confirm this assumption, criterion (4) in this problem was replaced by
the criterion J = μ, which was maximized over μ and L under the same restrictions (16), (8) and
in that class controls (17). The values of μ and Li,j, optimal for the criterion J = μ, obtained
at C = 0.5, 1, 2 practically did not differ from the corresponding previously obtained values. We
note that the problem of maximizing μ is significantly simpler than the problem of minimizing the
nonlinear criterion (4).

The a priori uncertainty of the initial conditions of the test maneuver significantly affects the
effectiveness of the test control. The influence of this uncertainty can be weakened if feedback is
introduced gradually at the beginning of the test maneuver (see [20]). In the considered example,
this technique leads to a decrease in the average expected identification error on the test control
by 4.2 times (at C = 2) compared to the error on the program test signal uP (t).

5. CONCLUSION

The problem of planning an experiment for parametric identification of an object’s motion
model is considered under restrictions on permissible disturbances of the object’s state vector in
the experiment and a priori uncertainty regarding the initial conditions of the experiment. Methods
are proposed for solving this problem in the class of feedback controls. This ensures tracking of an
object’s trajectory that satisfies the specified restrictions and has good informativeness about the
identified parameters.

The scope of application of the methods proposed in the article is limited to the tasks of planning
experiments to clarify the characteristics of automatically controlled objects, in particular the
aerodynamic characteristics of automatically controlled aircraft. It should be expected that the
effectiveness of the proposed methods in such problems increases with the increase in the uncertainty
of the prior estimates of the identified characteristics and the tightening of restrictions on the
permissible disturbances of the object’s state vector in the experiment.

The control synthesized for active parametric identification in the class of controls with feedback
is proposed to be called test control by analogy with test signals selected in the class of program
controls.
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The results of statistical modeling, carried out with a fifty percent a priori uncertainty regard-
ing the true values of the identified parameters, confirmed that by choosing a test control, the
identification error can be significantly reduced compared to the identification error on the optimal
program test signal, both on average and “by probability,” i.e., for most priori possible trajectories
of object movement.

REFERENCES

1. Kas’yanov, V.A. and Udartsev, E.P., Opredelenie kharakteristik vozdushnykh sudov metodami identifikat-
sii (Determination of Aircraft Characteristics by Identification Methods), Moscow: Mashinostroenie,
1988.

2. Ovcharenko, V.N., Aerodinamicheskie kharakteristiki letatel’nykh apparatov: identifikatsiya po poletnym
dannym (Aerodynamic Characteristics of Aircraft: Identification by Flight Data), Moscow: LENAD,
2019.

3. Hosseini, B., Diepolder, J., and Holzapfel, F., Online Parameter Estimation and Optimal Input Design,
MMSC , 2020, pp. 128–139. CEUR-WS.org/vol-2783/paper-09.pdf.

4. Licitra, G., Burgerc, A., Williamsa, P., et al., Optimal Input Design for Autonomous Aircraft, Control
Engineering Practice, 2018, vol. 77, pp. 15–27.

5. Ovcharenko, V.N., Planning of Identifying Input Signals in Linear Dynamic Systems, Autom. Remote
Control , 2001, vol. 62, no. 2, pp. 236–247.

6. Hosseini, B., Botkin, N., Diepolder, J., and Holzapfel, F., Robust Optimal Input Design for Flight
Vehicle System Identification, AIAA Scitech 2020 Forum, 2020. https://doi.org/10.2514/6.2020-0290

7. Grigor’ev, N.V., Test Signal Planning for Identifying the Aerodynamic Characteristics of Automatically
Controlled Aircraft Taking into Account the Uncertainty of A Priori Data, AiT , 2022, no. 4, pp. 125–139.

8. Jayanti, E.B., Atmasari, N., Mardikasari, H., et al., Pengaruh Masukan Kendali Terhadap Hasil Identi-
fikasi Parameter Pesawat Udara Konfigurasi Konvensional Matra Terbang Longitudinal, J. Techn. Sist.
Comput., 2019, no. 7(1), pp. 25–30. https://doi.org/10.14710/jtsiskom.7.1.2019.25-30

9. Gupta, N.K., Hall, W.E., Jr., Input Design for Identification of Aircraft Stability and Control Derivatives,
NASA CR-2493 , 1975.

10. Belokon’, S.A., Zolotukhin, Yu.N., and Filippov, M.N., Method of Test Signal Design for Estimating the
Aircraft Aerodynamic Parameters, Avtometriya, 2017, vol. 53, no. 4, pp. 59–65.

11. Grigor’ev, N.V. and Nesterov, V.E., Active Identification of the ADC of a Re-entry Rocket Unit in
Flight Conditions on a Scalable Demonstrator, Aviakosmicheskaya Tekhnika i Tekhnologiya, 2014, no. 1,
pp. 47–56.

12. Lichota, P., Multi-Axis Inputs for Identification of a Reconfigurable Fixed-Wing UAV, Aerospace, 2020,
7. https://doi.org/10.3390/aerospace7080113

13. Roeser, M.S. and Fezans, N., Method for Designing Multi-Input System Identification Signals Us-
ing a Compact Time-Frequency Representation, J. CEAS Aeronaut., 2021, vol. 12, pp. 291–306.
https://doi.org/10.1007/s13272-021-00499-6

14. Morelli, E.A., Flight Test of Optimal Inputs And Comparison with Conventional Inputs, J. Aircr., 1999,
vol. 36(2), pp. 389–397. https://doi.org/10.2514/2.2469

15. Morelli, E.A., Optimal Input Design for Aircraft Stability and Control Flight Testing, J. Optim. Theory
Appl., 2021, 191, pp. 415–439. https://doi.org/10.1007/s10957-021-01912-0

16. Grauer, J.A. and Boucher, M., Aircraft System Identification from Multisine Inputs and Frequency
Responses, AIAA Scitech 2020 Forum, Orlando, FL, USA (2020). https://doi.org/10.2514/6.2020-0287

17. Hosseini, B. and Holzapfel, F., Optimal Input Design for Flight Vehicle System Identification in Fre-
quency Domain, AIAA Scitech 2022 Forum, 2022. https://doi.org/10.2514/6.2022-2297

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



992 GRIGOR’EV

18. Berestov, L.M., Poplavskii, B.K., and Miroshnichenko, L.Ya., Chastotnye metody identifikatsii leta-
tel’nykh apparatov (Frequency Methods for Aircraft Identification), Moscow: Mashinostroenie, 1985.

19. Talalay, A.M., Active Identification in the case of Adaptive Control, Autom. Remote Control , 1986,
vol. 47, no. 2, pp. 1226–1230.

20. Grigor’ev, N.V., Active Identification of Aerodynamic Characteristics: from Test Signal to Test Control,
Polet , 2022, no. 10, pp. 3–11.

21. Kan, Yu.S. and Kibzun, A.I., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kri-
teriyami (Stochastic Programming Problems with Probabilistic Criteria), Moscow: Fizmatlit, 2009.

22. Pshenichnyi, B.N. and Danilin, Yu.M., Chislennye metody v ekstremal’nykh zadachakh (Numerical Meth-
ods in Extremal Problems), Moscow: Nauka, 1978.

This paper was recommended for publication by A.A. Galyaev, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023


