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1. INTRODUCTION

In the theory of optimization of dynamical systems an important place is given to the control
problems of objects functioning under conditions of parametric uncertainty or undesirable influence
of external disturbances. The simplest models of such systems in the stochastic section of the
theory are linear, called multiplicative, Ito equations, the diffusion components of which are linear
on vectors of state, control and external or parametric perturbation. Multiplicative equations are
simple enough mathematical objects, and it is hoped to obtain in closed analytic form their solutions
or integral representations for them.

Consider a stochastic Ito system (1.1), (1.2), whose dynamics is given by the multiplicative
Markov equation

dxt = a(t, xt)dt+ b(t)(xt; dw(t)), xt ∈ Rd, w(t) ∈ Rr, x0 = const (1.1)

(coefficients depend on t), driving force is determined by a random function f with a differential

df(t) = (B1(t)ut +B2(t)υt)dt+B01(t)utdw1(t) +B02(t)υtdw2(t), (1.2)

where ut and υt are vector signals of control and external perturbation respectively; w(t) with
or without indices denotes the vector Wiener process. Equation (1.1) is assumed to be linear in
the state vector xt such that a(t, x) = A(t)x, where A(t)∈Rd×d is the matrix d× d at each t, the
diffusion component is defined by the function b(t)(· ; ·) of two variables (x, h) ∈ Rd ×Rr taking
values in Rd, and the mappingRd ×Rr → Rd is bilinear. The operator B(t)h defined by the relation
(B(t)h)x = b(t)(x;h) is linear Rd → Rd at fixed h. All matrix functions in (1.1), (1.2) are assumed
to be continuous on each finite interval of values of the parameter t. The system (1.1), (1.2) is called
below (x, u, υ)-multiplicative; in particular, the system (1.1)—(x)-multiplicative. Multiplicative
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968 SHAIKIN

models of the type (1.1), (1.2) are used, in particular, in the theory of H2/H∞—optimization of
stochastic systems [1].

The purpose of the paper is to obtain in integral form the solution of the linear (x, u, υ)-
multiplicative equation or the stochastic analog of its fundamental matrix. Let’s make it clear
what kind of fundamental matrix and which solution in integral form is talking about. The solu-
tion in the deterministic case of the linear differential equation ẋ = A(t)x+B(t) has the following
form

x(t) = R(t, t0)x0 +

t∫
t0

R(t, τ)B(τ)dτ, (1.3)

where R(t, t0) is the resolvent (or fundamental matrix) of the homogeneous at B = 0 equation
[2, p. 144]. The function R(t, t0)x0 is a general solution of the homogeneous equation taking the
value x0 at t = t0, and the integral in (1.3) is the solution of the perturbed equation going to zero at
t = t0. The fundamental matrix of equation (1.1) in the stochastic case is a matrix random function
Φ(t, τ), and the general solution of the perturbed equation, following the analogy with (1.3), should
be given by the formula

x(t) = Φ(t, t0)x0 +

t∫
t0

Φ(t, τ) ◦ df(τ), (1.4)

where integral is stochastic; ◦ df is denoted the Stratonovich differential [3, p. 105–109]. The
integral is chosen stochastic in the Stratonovich sense for the reason that the differentiation rule of
a complex function t �→ f(ξ1(t), . . . , ξd(t)) is represented in the in the same form as in the classical
calculus, that is, as df =

∑d
i=1

∂f
∂xi ◦ dξi [3]. This integral in Stratonovich form makes it possible

to extend some group-theoretic methods to the stochastic case. In the deterministic case, the
group-theoretical concepts allow to overcome the difficulties of studying multidimensional systems
caused by the non-commutativity of the matrix coefficients defining the dynamics of the system [4].
Perhaps, the same concepts can be useful in the problem of multiplicativity.

Some examples of the application of group-theoretic methods to statistical research are known
in the literature. Here is a small list of publications thematically close to the problem of analyzing
multiplicative systems [5–11]. In [5] the problem of numerical approximation of the solution of the
stochastic equation is considered in the following form

dxt = (Axt + f(xt))dt+
n∑

i=1

(Bixt + gi(xt))dwi, x(0) = x0 ∈ Rd

with nonlinear functions f, gi : R
d → Rd and matrices A,Bi ∈ Rd×d satisfying the following con-

ditions: A,Bi take values in the matrix Lie algebra g with commutator relations [A,Bi] = 0,
[Bi, Bj ] = 0 for all i, j. On the background of works on the group-theoretic analysis of deter-
ministic equations, the number of which has clearly decreased recently [6], the analysis of solution
properties and numerical algorithms for finding solutions (so-called exponential integrators) for
stochastic equations remains an active field of research on multiplicative and additive noise equa-
tions [7, 8]. The question of the mean-square stability of numerical methods for the calculation of
exponential integrators is investigated in [9]. As shown in [10], group-theoretic methods are also
effective for the numerical integration of partial equations. Among the works of Russian authors
we note the research of multiplicative stochastic differential-operator equation with operators A,B
acting in a separable Hilbert space [11]. In this paper, it is assumed that the operator A gives rise
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to a a semigroup of operators S(t), t > 0 of class C0; it guarantees the correctness of the Cauchy
problem for the unperturbed equation Ẋ(t) = AX(t).

The problem solved in this paper considers a finite-dimensional multiplicative equation, for the
computation of its resolvent analog the group-theoretic method is applied, which is a generalization
to the stochastic case of the deterministic Wei–Norman method [12] of finding the resolvents of linear
differential equations. Wei–Norman method: if in the matrix equation Φ̇(t) = B(t)Φ(t), Φ(0) = E
(E is a unit matrix), the non-random function B(t) takes values in the matrix Lie algebra g, then
the solution Φ(t) belongs to the corresponding Lie group G. In this case, one way to construct the
solution of Φ(t) is to represent by a finite product of matrix exponentials

Φ(t) = exp(s1(t)A1) . . . exp(sm(t)Am), (1.5)

where {A1, . . . , Am} is the basis of the minimal Lie algebra g generated by matrices A(t) for all t,
and si(t), i = 1, . . . ,m are some real functions. Finding the desired si(t) is reduced to the solution
of some system of nonlinear differential equations [12]. The basis of the Wei–Norman method
proposed here for the case of the multiplicative Ito equation is to write the latter in the form of
the Fisk–Stratonovich equation and to find a solution of the latter in the form of the product of
matrix exponents exp(Aisi(t)) with the needed semimartingales (in the terminology adopted in
the [3]) si(t). Regarding the matrices Ai, i = 1, . . . ,m, it is assumed, as in the deterministic case,
that they form the basis of some matrix Lie algebra.

Applications of group theory to the problems of analyzing and finding solutions of deterministic
differential equations are widely known from the monographic literature [4, 13, 14]. Applications
to the theory of stochastic differential equations are much more modest; from the textbook liter-
ature we mention [3, 15, 16]. An exposition of the group-theoretic method of Wei–Norman to the
problem of computing the of the resolvents of multiplicative Ito equations has not been found in
the literature.

2. PROBLEM FORMULATION

By characterizing the stochastic system in the previous section as being given by the (x, u, υ)-
multiplicative Ito equation was separation of the equation into its dynamical part and the forcing
force, which does not depend on the state vector of the system. This is dictated by the character of
the problem to compute the fundamental matrix (resolvent) of the stochastic Ito equation, which is
defined by its homogeneous xt-dependent part. Having calculated the resolvent, it is not difficult to
obtain then an integral representation of the solution of the equation. Following this consideration,
it is possible to pass from the general (x, u, υ)-multiplicative system to its dynamic part, i.e., to
equation (1.1), which is multiplicative only on the state.

Let us list the tasks solved in the paper. The first problem is determination of the Wiener and
martingale species of the diffusion component b(t)(xt; dw(t)) of equation (1.1). The second problem
in Sections 3, 4 is to write the multiplicative equation (1.1) in the symmetrized Fisk–Stratonovich
form. The third task is to obtain the integral representation of the solution of the multiplicative
equation (1.1). The more general case of the diffusion equation with the matrix σ(t, x), depending
affinely (not simply linearly) on x, see Section 5, the interesting phenomenon of the appearance of
an additional forcing force in the integral representation for the solution of the equation. When
solving the following two problems in Sections 6 and 7, there arise group-theoretic aspects of solving
a multiplicative equation written in a symmetrized form, with solvable (in Section 6) Lie algebra
and with arbitrary Lie algebra for the matrix coefficients of the diffusion component of the equation
in Section 7. The equation in Section 7 is given in the unsymmetrized martingale form instead of
Wiener processes. In a separate section we give example of finding the resolvent of the equation by
the group-theoretic method. Concluding remarks and a list of cited references conclude the paper.
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3. WIENER AND MARTINGALE REPRESENTATIONS
OF THE DIFFUSION COMPONENT

Both the Wiener process and martingale representations of the differential equation for perturb-
ing forces are quite interesting in multiplicative theory. The martingale equation is discussed in
more detail in Section 7.

Proposition 1. The diffusion component b(t)(xt; dw(t)) of the homogeneous equation (1.1) admits
the following equivalent representations:

(a) b(t)(xt; dw(t)) = (B1(t)xt, . . . , Br(t)xt)dw(t), where Bj(t), j = 1, . . . , r is a matrix with size
d× d;

(b) b(t)(xt; dw(t)) =
m∑
i=1

Aixtdζ
i(t), where Ai, i = 1, . . . ,m are matrices d× d and dζ i(t) =

r∑
j=1

bij(t)dw
j(t), bij(t) ∈ R, where ζ i(t) are martingales.

Proof. As noted in Section 1, the diffusion part b(t)(xt; dw(t)) of the linear equation at each t
is given by the bilinear mapping b(t) of the product V ×H, where V = Rd, H = Rr, of vec-
tor spaces into the space V . When h ∈ H is fixed, the operator B(t)h, defined by the equality
(B(t)h)x = b(t)(x;h), is an element of the space EndV of linear operators from V to V . Let
{hj , j = 1, . . . , r} be a basis in H such that in the decomposition w(t) =

∑
j w

j(t)hj the Wiener
processes wj(t) are mutually independent. There is

b(t)(x; dw(t)) = b(t)

⎛⎝x;
r∑

j=1

dwj(t)(b(t)hj)

⎞⎠ =
r∑

j=1

dwj(t)(B(t)hj)x,

where B(t)hj ∈ EndV .

Denoting Bj(t) := B(t)hj , we obtain statement (a) b(t)(xt; dw(t)) = (B1(t)xt, . . . , Br(t)xt)dw(t)
Proposition 1. Thus, the dependence of b(t) on x is given by a set of r arbitrary square d× d
matrices Bj(t), not necessarily linearly independent [1, 17].

Further, let {Ai, i = 1, . . . ,m} be the basis of a linear subspace L ⊂ EndV , generated by the
operators B(t)hj . Assuming B(t)hj =

∑m
i=1 b

i
j(t)Ai, j = 1, . . . ,m, where bij(t) ∈ R, and introduc-

ing the notations dζ i(t) :=
∑r

j=1 b
i
j(t)dw

j(t), i = 1, . . . ,m, we get b(t)(x; dw(t)) =
∑m

i=1 dζ
i(t)Aix,

which finishes the the proof Proposition 1. Below, without loss of generality, we assume dimL =
m = r.

In the proof of Proposition 1, the drift a(t, xt)dt in the in equation (1.1) was not taken
into account. Implicitly, it was assumed to be zero. It can indeed be converted to zero by the
well-known transformation (of course, in this case (1.1) will be replaced by an equation with
another bilinear mapping b(t)). Indeed, let yt = Λ−1

t xt, where Λt is a matrix exponent satisfy-
ing, as is known, the integral equation Λt = E +

∫ t
0 a(s)Λsds with initial condition Λ0 = E. Since

dyt = (dΛ−1
t )xt +Λ−1

t dxt and dΛ−1
t = −Λ−1

t a(t)dt, then

dyt = Λ−1
t a(t)xtdt+ Λ−1

t bt(xt; dw(t)) − Λ−1
t a(t)xtdt

(note that the matrices a(t) and Λt commute), thus we obtain the equation dyt = Λ−1
t bt(Λtyt; dw(t))

with zero drift. See that the matrices defined above in Proposition 1 Bj(t) are replaced by the
matrices Λ̃t = Λ−1

t Bj(t)Λt, j = 1, . . . , r.

Let us now find out how to transform the multiplicative equation (1.1) to the symmetrized Fisk–
Stratonovich form. It has been noted above that such transformation is a necessary requirement
of the methodology proposed here.
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Proposition 2. In the symmetrized Fisk–Stratonovich form the equation of state (1.1) written in
the form

dxt = a(t)xtdt+ (B1(t)xt, . . . , Br(t)xt)dw(t) (3.1)

(Proposition 1,(a)) takes the form

dxt = a(t)xtdt+B0(t)xtdt+
r∑

j=1

Bj(t)xt ◦ dwj(t), (3.2)

where B0(t) := −1/2
∑r

j=1B
2
j (t).

Proof. Starting from the theory of Markov type equations

dxt = a(t, xt)dt+ σ(t, xt)dw(t), (3.3)

which does not even assume linearity on xt of the functions a(t, xt) and σ(t, xt) [3], let us write
(3.3) in coordinate form

dxit = ai(t, xt)dt+
r∑

j=1

bij(t, xt)dw
j(t), i = 1, . . . , d.

According to the general theory, equation (3.3), using the Fisk–Stratonovich differential, is
represented as

dxt = ā(t, xt)dt+ σ(t, xt) ◦ dw(t), (3.4)

where the vector ā(t, x) has components

āi(t, x) = ai(t, x)− 1/2
d∑

j=1

r∑
k=1

(
∂

∂xj
bik(t, x)

)
bjk(t, x). (3.5)

Recall that the stochastic Ito differential dwj(t) and the differential ◦dwj(t) are related by the
formula

xtdw
q(t) = xt ◦ dwq(t)− 1/2dxtdw

q(t). (3.6)

Consider equation (3.1) in the form

dxt = a(t)xtdt+
r∑

j=1

Bj(t)xtdw
j(t) (3.7)

and refer to formula (3.6). Since xtdw
j(t) = xt ◦ dwj(t)− 1/2dxtdw

j(t), we have, ignoring for now
the drift in (3.7), the equation dxt =

∑
j Bj(t)xt ◦ dwj(t)− 1/2

∑
j Bq(t)dxtdw

j(t). Noting that

dxtdw
j(t) =

∑
k

Bk(t)xtdw
k(t)dwj(t) =

∑
k

Bk(t)xtδjkdt = Bj(t)xtdt,

equation (3.1) in the transformed form can be written as

dxt = a(t)xtdt+
r∑

j=1

Bj(t)xt ◦ dwj(t)− 1/2
r∑

j=1

B2
j (t)xt dt, (3.8)
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which is what was required. The drift in this equation is determined by the matrix A(t) :=
a(t)− 1/2

∑r
j=1B

2
j (t); it can be converted to zero by passing to the state vector yt = Λ−1

t xt, where

Λt = E +
∫ t
0 A(s)Λsds.

In particular, if the matrices Bj(t), j = 1, . . . , r, commute, then the solution of the last equation
is written as products

xt =
r∏

q=1

exp

⎧⎨⎩
t∫

0

Bq(s)dw
q(s)− 1/2

t∫
0

B2
q (s)ds

⎫⎬⎭x0.

It is also clear that the matrices Bq(t) and B2
q (t) commute, so that the the multipliers in the product

can be represented as

exp

⎧⎨⎩
t∫

0

Bq(s)dw
q(s)

⎫⎬⎭ exp

⎧⎨⎩−1/2

t∫
0

B2
q (s)ds

⎫⎬⎭ , q = 1, . . . , r.

The solution of the equation dxt = Bq(t)xt ◦ dwq(t) with zero drift, with initial condition x0 is the

function Uq(t)x0 = exp
{∫ t

0 Bq(s)dw
q(s)

}
x0. The mapping t �→ Uq(t) is the stochastic resolvent of

this equation.

4. STOCHASTIC RESOLVENT OF MULTIPLICATIVE EQUATION

The non-random component a(t)xtdt in a multiplicative equation of the type

dxt = a(t)xtdt+
r∑

j=1

Bj(t)xt ◦ dwj(t) (4.1)

can be converted to zero (Section 3) and, without loss of generality, one can consider the equation
to be given in the form dxt =

∑r
j=1Bj(t)xt ◦ dwj(t) with new matrix coefficients. To do this,

let us put yt = Λ−1
t xt and then dyt = Λ−1

t b(t)(xt; dw(t)). Since it is realized that b(t)(xt; dw(t)) =∑r
j=1Bj(t)xtdw

j(t), then

dyt =
r∑

j=1

Bj(t)Λtyt ◦ dwj(t). (4.2)

Within the group-theoretic formalism, it is the matrices B̃j(t) = Λ−1
t Bj(t)Λt, not the original ma-

trices Bj, j = 1, . . . , r, must give rise to the Lie algebra basic to the Wei–Norman method, where
Λt = exp

∫ t
0 a(s)ds is the exponent of the matrix function t �→ ∫ t

0 a(s)ds.

Let us now define the (stochastic) resolvent of an equation linear in xt. If Ψt is the solution of

dΨt =
r∑

j=1

Λ−1
t Bj(t)ΛtΨt ◦ dwj(t), Ψt|t=0 = E (4.3)

with zero drift, then the the fundamental matrix (resolvent) Φ(t) of the initial equation (4.1)
is defined by the formula Φ(t) = ΛtΨt. But since equation (4.1) is equivalent to Ito’s equation
dxt =

∑r
j=1 dw

j(t)Bj(t)xt, hence, Φ(t) satisfies the Stratonovich equation

dΦt = a(t)Φtdt+
r∑

j=1

Bj(t)Φt ◦ dwj(t), Φt|t=0 = E. (4.4)

If f(t) is the driving force in an inhomogeneous stochastic equation, then the solution of the latter
must have an integral representation (1.4).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



RESOLVENTS OF THE ITO DIFFERENTIAL EQUATIONS MULTIPLICATIVE 973

5. INTEGRAL CAUCHY REPRESENTATION OF THE SOLUTION
OF THE MULTIPLICATIVE EQUATION WITH AFFINE COEFFICIENTS

Equations with affine coefficients are necessary in the theory of such linear controllable systems
that are multiplicative not only on the state vector, but also on the vectors of control and external
perturbation. The stochastic resolvent theory of the previous section dealt with a multiplicative
equation with linear but not affine coefficients. Now consider a vector equation (with a vector
Wiener process) of the form

dxt = a(t, xt)dt+ σ(t, xt)dw(t), x0 ∈ Rd, (5.1)

where a(t, x) = a(t)x+ a0(t), σ(t, x) = B(t, x) + b0(t), a(t)∈Rd×d, a0(t)∈Rd, B(t, x), b0(t)∈Rd×r,
w(t)∈Rr. If (5.1) is a multiplicative system, then B(t, x) = (B1(t)x, . . . , Br(t)x) is a matrix with
columns Bj(t)x, where Bj(t)∈Rd×d, j = 1, . . . , r, which is established in (4.1). Then, b0(t) is a
matrix with columns b0j(t), j = 1, . . . , r. A special case of a one-dimensional (xt∈R) system with
affine coefficients and scalar w(t) is considered by in [15]. In the vector case xt ∈Rd, let us find the
fundamental matrix of the of equation (5.1).

Proposition 3. The solution of the multiplicative equation with coefficients affine with respect
to xt has the following integral representation:

xt = Φt

⎛⎝x0 +

t∫
0

Φ−1
s

⎛⎝a0(s)−
r∑

j=1

Bj(s)b0j(s)

⎞⎠ ds+

t∫
0

Φ−1
s

r∑
j=1

b0j(s)dw
j(s)

⎞⎠ . (5.2)

Here Φt defined in the in the previous section, the resolvent (4.1) written for (5.1) with the conditions
a0(t) = 0, b0j(t) = 0, j = 1, . . . , r.

Note that the appearance under the integrals in (5.2), in addition to a0(s)ds+
∑r

j=1 b0j(s)dw
j(s),

additional driving force B(s)b0(s) := −∑r
j=1Bj(s)b0j(s)ds (it is caused by the “affine” additive

b0(s)) could not be foreseen in advance, but a direct check shows that the function (5.2) indeed
satisfies equation (5.1).

Proof. Let us again turn to equation (5.1). In stochastic case, let us apply a method analogous
to the deterministic method of constant variation. Let’s put xt = Φtηt and consider ηt as the new
unknown instead of xt. Differentiating xt = Φtηt stochastically, we obtain

dxt = (dΦt)ηt +Φtdηt + dΦtdηt,

or by the definition of Φt as the equation (4.4)

dxt =

⎛⎝a(t)dt+
r∑

j=1

dwjBj(t)

⎞⎠xt +Φtdηt +

⎛⎝a(t)dt+
r∑

j=1

dwjBj(t)

⎞⎠Φtdηt.

Equating the right-hand sides of this equation and the original equation (5.1)

dxt = (a(t)xt + a0(t))dt+
r∑

j=1

dwj
(
Bj(t)xt + b0j(t)

)
,

we obtain after abbreviations⎛⎝E + a(t)dt+
r∑

j=1

dwj(t)Bj(t)

⎞⎠Φtdηt = a0(t)dt+
r∑

j=1

b0j(t)dw
j(t). (5.3)
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Because, if we’re being formal,⎛⎝E + a(t)dt+
r∑

j=1

dwjBj(t)

⎞⎠−1

= E −
⎛⎝a(t)dt+

r∑
j=1

dwjBj(t)

⎞⎠+

⎛⎝a(t)dt+
r∑

j=1

dwjBj(t)

⎞⎠2

+ . . .

and ⎛⎝a(t)dt+
r∑

j=1

dwjBj(t)

⎞⎠2

=
r∑

j=1

B2
j d(t),

we obtain from (5.3)

dηt = Φ−1
t

⎛⎝a0(t)dt−
r∑

j=1

Bj(t)b0j(t)dt+
r∑

j=1

dwj(t)b0j(t)

⎞⎠ . (5.4)

This equation expresses the fact that ηt is primitive for the right-hand side in (5.3), so that integrat-
ing (5.4) gives exactly the formula (5.2). Being expressed in terms of resolvent R(t, s) = ΦtΦ

−1
s ,

the same formula gives the integral Cauchy representation of the solution of the multiplicative
equation (4.1) with affine coefficients. This was required to prove.

6. MULTIPLICATIVE EQUATION WITH SOLVABLE LIE ALGEBRA

In this section, an exhaustive solution to the problem of the integral of the solution of the
multiplicative equation is obtained at the cost of a strong assumption that the Lie algebra associated
to the equation is solvable. A result with a solvable Lie algebra is obtained by H. Kunita [18] and
is given in [3] as as one of the examples.1 The equation of state is assumed here to be given a priori
in the symmetrized Fisk–Stratonovich form, the coefficients of the equation do not depend on t.

So, the equation is considered (with constant coefficients)

dxt = (B0xt + b0)dt+
r∑

p=1

(Bpxt + bp) ◦ dwp(t),

Bp ∈ Rd×d, bp ∈ Rd, p = 0, 1, . . . , d.

(6.1)

Lie algebra generated by vector fields fields Lp =
∑d

i=1(Bpx+ bp)
i ∂
∂xi , p = 0, 1, . . . , r, is solvable,

which holds when (Bp)
i
j = 0 for i > j, p = 0, 1, . . . , r. This condition means that in each of the

matrices Bp, its elements under the of the main diagonal are zero. In particular, the only non-zero
element of the last dth row is only the diagonal element (Bp)

d
d, p = 0, 1, . . . , r at i = d. It follows

from equation (6.1)

dxdt =
(
(B0)

d
dx

d
t + bd0

)
dt+

r∑
p=1

(
(Bp)

d
dx

d
t + bdp

)
◦ dwp(t) (6.2)

when i = d. This (scalar) stochastic equation is similar to a deterministic equation in the sense
that it is written using the Fisk–Stratonovich differential, so its solution has the form

xdt = ecd(t)

⎛⎝xd0 +

t∫
0

e−cd(s) ◦ dfd(s)
⎞⎠ , (6.3)

1 A simple example of a solvable Lie algebra is generated by the group of translations of the plane R2 and rotations
about an axis perpendicular to it. The Lie algebra is three-dimensional, its commutation relations are [X1, X2] = 0,
[X1, X3] = X2, [X3, X2] = X1 [19].
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where the function cd(t) under the exponent sign and the driving force fd(t) are given respectively
by the formulas

cd(t) = (B0)
d
d t+

r∑
p=1

(Bp)
d
dw

p(t), fd(t) = bd0 t+
r∑

p=1

bdpw
p(t).

By proceeding analogously, let us consider the equation for xd−1
t :

dxd−1
t =

(
(B0)

d−1
d−1x

d−1
t + (B0)

d−1
d xdt + bd−1

0

)
dt

+
r∑

p=1

(
(Bp)

d−1
d−1x

d−1
t + (Bp)

d−1
d xdt + bd−1

p

)
◦ dwp(t).

(6.4)

In the right-hand side of equation (6.4) depends on xd−1
t the sum of

(B0)
d−1
d−1x

d−1
t dt+

r∑
p=1

(Bp)
d−1
d−1x

d−1
t ◦ dwp(t).

Let us denote the integral of the coefficient at xd−1
t in this sum by

cd−1(t) := (B0)
d−1
d−1t+

r∑
p=1

(Bp)
d−1
d−1w

p(t).

The summands in the right-hand side of equation (6.4) independent of xd−1
t form the sum

dfd−1(t) :=
(
(B0)

d−1
d xdt + bd−1

0

)
dt+

r∑
p=1

(
(B)d−1

d xdt + bd−1
p

)
◦ dwp(t), (6.5)

in which xdt is already known as the solution (6.3) of equation (6.2). The solution of equation (6.4)
is written, therefore, in the form

xd−1
t = ecd−1(t)

⎛⎝xd−1
0 +

t∫
0

e−cd−1(s) ◦ dfd−1(s)

⎞⎠ . (6.6)

The procedure of sequential solution of scalar equations for components xkt , k = n, n− 1, . . . , 1
of the vector xt ∈ Rn is quite obvious from the above. However, the equivalence between this form
of solution and the one given in [3] is not obvious. To establish the equivalence, let us write the
original equation (6.1) by components:

dxit =
∑
j�i

(
(B0)

i
jx

j
t + bi0

)
dt+

r∑
p=1

∑
j�i

(
(Bp)

i
jx

j
t + bip

)
◦ dwp(t). (6.7)

When i is fixed, the summands in the of the right-hand side, depending on xjt with j � i,
play a special role. First, the differential dxit is related to the variable xjt by the coefficient
(B0)

i
jdt+

∑r
p=1(Bp)

i
jdw

p(t), the integral of which is denoted by cij :

cij(t) := (B0)
i
jt+

r∑
p=1

(Bp)
i
jw

p(t), j = i, i+ 1, . . . , d.
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The diagonal element cii(t) of this matrix coincides with the function, which was denoted above

by ci(t). Second, the sum of summands on the right-hand side in (6.7) with in
∑d

j=i+1 x
j
t ◦ dcij(t).

Finally, the terms that do not depend on the components of the vector xt at all form the sum∑r
p=1 b

i
pdw

p(t) + bi0d t. Thus, the solution of the system of equations (6.7) is given by the formulas

xdt = ec
d
d(t)

⎛⎝xd0 +

t∫
0

e−cdd(s) ◦ dfd(s)
⎞⎠ , fd(t) = bd0 t+

r∑
p=1

bdp dw
p(t),

if i = d, and by the formulas

xit = ec
i
i(t)

⎛⎝xi0 +

t∫
0

e−cii(s) ◦ dfi(s)
⎞⎠ ,

where

fi(t) :=
d∑

j=i+1

t∫
0

xj(s) ◦ dcij(s) + bi0t+
r∑

p=1

bipdw
p(t),

if i = d− 1, d− 2, . . . , 1 [3].

7. LIE ALGEBRA OF MULTIPLICATIVE EQUATION
WITH CONTINUOUS SEMIMARTINGALES

Let us consider the slightly more general case of Ito’s equation

dxt =
m∑
p=1

Apxtdζ
p(t), ζ(0) = 0 (7.1)

with continuous semimartingales ζ i(t) =
∫ t
0

∑m
j=1 b

i
j(t)dw

j(t) instead of the Wiener processes wj(t),
j = 1, . . . ,m. The matrices Ap are assumed to be non-commutative, giving rise to an arbitrary
finite-dimensional Lie algebra. It should be noted that the topic of the interaction of the stochastic
structure of the differential equation with the algebraic group-theoretic structure of its coefficients
remains to date insufficiently studied.

Suppose that the equation has a single solution xt, t > 0, then xt depends linearly on x0. We will
let xt = U(t)x0. The solution of the equation dxt = Apxtdζ

p(t), ζ(0) = 0 with a single matrix Ap

and supermartingale ζp(t) is an exponential supermartingale (if
∑

j(b
p
j )

2 < ∞)

σp(t) = eApζp(t)−1/2A2
p<ζp>(t)σp(0),

where < ζp > (t) =
∑

j

∫ t
0 (b

p
j )

2(s)ds; [20, Section 2.7]. To obtain the solution, let us again use the
method, already described in the introduction, namely: we write the original Ito equation (7.1) in
the symmetrized Fisk–Stratonovich form and apply to the obtained equation an analogue of the
deterministic Wei–Norman method [12]. After that, it will not be difficult to obtain the integral
representation of the solution of equation (7.1).

Theorem. Let

dxt =
m∑
p=1

Apxtdζ
p(t), ζ(0) = 0 (7.2)
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be a stochastic system with semimartingales

ζ i(t) =

t∫
0

m∑
j=1

bij(t)dw
j(t).

The functions bpj (t) are known. Consider the functions

Fi =
i−1∏
k=1

eXkskXi

1∏
k=i−1

e−Xksk ,

where X1, . . . ,Xn is a basis of the Lie algebra generated by the matrix coefficients Ap(t), p =
1, . . . ,m, and si(t) are the desired functions. Then for the differentials ◦dsi(t) of the unknown
functions si(t) are valid the system of equations si(t):

n∑
i=1

Fi(t) ◦ dsi(t) =
n∑

p=1

Ãp(t) ◦ dζp(t). (7.3)

Through the functions si(t) a solution xt = U(t)x0 of the original equation (7.1) is expressed.

Proof. Keeping in mind the above remarks, let us write down equation (7.1) in the symmetrized
form. There are xt × dζp(t) = xt ◦ dζp(t)− 1/2 dxt × dζp(t), where

dxt × dζp(t) =
m∑
q=1

Aqxt dζ
q(t)× dζp(t).

Since dζq(t)× dζp(t) =
∑r

j=1 b
q
j(t)b

p
j (t) dt =: cqp(t)dt, where cqp(t) are elements of the matrix

c(t) = b∗(t)b(t) of order m×m, and matrix b(t) = (bpj (t)) of order r ×m, then

xt × dζp(t) = xt ◦ dζp(t)− 1/2
m∑
q=1

Aq xtc
qp(t)dt,

and equation (7.1) is written in the form of

dxt = a(t)xtdt+
m∑
p=1

Apxt ◦ dζp(t) (7.4)

with the drift coefficient a(t) = −1/2
∑m

p,q=1ApAq c
qp(t). The fundamental matrix of equation

(7.3), as above in Section 5 above, let us find it as a product of Φt = ΛtΨt, where matrix Λt =
exp{∫ t

0 a(s)ds} satisfies the matrix equation dΛt = a(t)Λtdt. Given that Ψt = Λ−1
t Φt and dΨt =

(dΛ−1
t )Φ + Λ−1

t dΦt and dΛ−1
t = −Λ−1

t (dΛt)Λ
−1
t for the unknown function Ψt one gets the matrix

differential equation

dΨt =
m∑
p=1

(
Λ−1
t ApΛt

)
Ψt ◦ dζpt . (7.5)

The matrix drift coefficient turns here to zero, and the matrix coefficients Ap of the initial equa-
tion (7.1) turn into coefficients Ãp(t) = Λ−1

t ApΛt. In such a case, from the Campbell-Baker-

Hausdorff theorem [21], according to which a, b ∈ L ⇒ eabe−a ∈ L, it follows that also Ãp ∈ L,
p = 1, . . . ,m. Here there arises a limitation for the application of group-theoretic methods caused
by the necessity to transform the Ito equation to its symmetrized form. Probably, for this reason,
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in most statistical applications, group analysis is applied to equations given immediately in the
Fisk–Stratonovich form.

To continue the topic of group-theoretic analysis of equation (7.5), here let us also assume that
the matrix coefficients Ãp(t) = Λ−1

t ApΛt in equation (7.5) are known a priori and L̃ is a Lie algebra
generated by them for all t with some basis {X1, . . . ,Xn}, then the Wei–Norman method can be
applied to the algebra L̃. Below, the assumption of the existence Lie algebra L̃ for equation (7.5)
is considered to be satisfied.

Purposing to search for the fundamental matrix Ψt in the form of the product
∏n

i=1 e
Xisi(t) with

unknown scalar functions si(t), consider the matrix function

u(s) = u(s1, . . . , sn) = eX1s1 · · · eXnsn , si ∈ R, i = 1, . . . , n

(caution against confusing the numeric variable si with the function si(t)). The partial derivative
∂
∂si

u(s) equals usi =
∏i−1

k=1 e
XkskXi

∏n
k=i e

Xksk , which can be be written in the form usi = Fiu(x),

where denoted by Fi =
∏i−1

k=1 e
XkskXi

∏1
k=i−1 e

−Xksk . Therefore, the Fisk–Stratonovich differential
of the function t �→ Ψt = u(s1(t), . . . , sn(t)) is equal to

dΨt =
n∑

i=1

Fi(t)Ψt ◦ dsi(t),

where Fi(t) is obtained from the formula for Fi by substituting into it si(t) instead of si for all
i = 1, . . . , n. Comparing dΨt with the differential for Ψt from equation (7.5), which (by replacing m
by n) we rewrite as dΨt =

∑n
p=1 Ãp(t)Ψt ◦ dζp(t), we obtain, after reduction by the to the special

matrix Ψt, the basic equation for the differentials ◦ dsi(t) of the desired processes si(t):

n∑
i=1

Fi(t) ◦ dsi(t) =
n∑

p=1

Ãp(t) ◦ dζp(t). (7.6)

Let us remind once again that there are relations

dζp(t) =
r∑

j=1

bpj(t)dw
j(t), p = 1, . . . , n, dsq(t) =

r∑
j=1

gqj (t)dw
j(t), q = 1, . . . , n,

where the functions bpj(t) are known and the functions gqj (t) are sought, where n = dim L̃. If one

decomposes both parts of the basic equation (7.6) by the basis {X1, . . . ,Xn} of the Lie algebra L̃,
then we obtain a system of equations relating the unknowns functions gpj to the known bpj . Equa-
tion (7.6) is obtained by assumption that the drift coefficient a(t) (7.4) is zero. The latter is ensured
by transforming the original equation (7.4) to equation (7.5). The proof is now complete.

8. EXAMPLE

Let us consider an example of solving equation Ito of type (7.1), in which the assumption a(t) = 0
is violated, but still a(t) ∈ L̃. The fundamental matrix of the equation of the state is in the form
of a product of exponential semimartingales. This is an example of using a modification of the
Wei–Norman method (its stochastic version).

Let us find the fundamental matrix Ut of the stochastic equation dxt =
∑3

p=1Xpxtdζ
p(t), dζp(t) =∑3

j=1 b
p
j (t)dw

j(t), ζi(0) = 0. Let L = L3 be a Lie algebra of dimension dimL = 3 with basis (Xi)
and multiplication table [X1,X2] = X3, [X2,X3] = [X1,X3] = 0. The algebra L3 admits a repre-
sentation of (3× 3)-matrices X1 = E12, X2 = E23, X3 = E13 (Eij—matrix canonical units), with
X2

i = 0 for all i. The matrix Utwill be found as the product Ut =
∏3

i=1 exp{si(t)Xi}, where the
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components Zk(t) = sk(t)Xk are absent by virtue of X2
k = 0, and the functions si(t) are suitably

chosen random processes with differentials dsk(t) =
∑3

j=1 g
k
j (t)dw

j(t), sk(0) = 0. We assume

F1(t) = X1, F2(t) = eZ1(t)X2e
−Z1(t), F3 = eZ1(t)eZ2(t)X3e

−Z2(t)e−Z1(t).

It is directly verified that

X2
i = 0 ∀i, F1 = X1, F2 = X2 + s1X3, F3 = X3, F1F2 = X3,

the remaining FiFj are zero. Using the modification of the method outlined in Section 3. Wei–
Norman method of formulating equations for the unknown functions (in this example they are si(t)),
one obtains the equation

3∑
i=1

Fids
i =

3∑
i=1

Xidζ
i.

Taking into account the formulas for Fi in the Xi basis decomposition, from this equation we get

ds1 = dζ1, ds2 = dζ2, ds3 = dζ3 − s1ds2 − ds1ds2. (8.1)

To check the correctness of the obtained solution, let us find the the stochastic differential of the
function Ut by calculating the function itself.

Since
exp{s1X1} = I + s1X1, exp{s2X2} = I + s2X2, exp{s3X3} = I + s3X3,

then, by multiplication we find Ut = I + s1X1 + s2X2 + (s3 + s1s2)X3 and it follows that, dUt =
X1ds

1 +X2ds
2 +X3(ds

3 + d(s1s2)), where d(s1s2) = s1ds2 + s2ds1 + ds1 ds2. Substituting here
the expressions for dsi from (8.1), after the reduction we obtain X1dζ

1 +X2dζ
2 +X3dζ

3, which
coincides with the coefficient in the right-hand side of the original Ito equation. Thus, the solution
of the stochastic Ito equation is found in the form of the product of the of stochastic semimartingales
(“stochastic exponents”).

9. CONCLUSION

The base of the integral representation of the solution of the linear of a stochastic equation is, as
in the deterministic case, the fundamental matrix of solutions, through which the Green’s function
for the inhomogeneous equation is expressed. During the finding of the fundamental matrix of a
multivariate equation, the main difficulty belongs to the noncommutativity of matrix coefficients
of drift and diffusion components.

The non-commutativity of matrices is overcome in a known way if they are in involution. Turning
to the methodology of group theory, we should assume that the coefficients of the equation belong
to a certain matrix Lie algebra L closed with respect to a matrix commutator. For a linear system
with diffusion components, depending only on the Wiener processes, but independent of the state
vector, the Lie algebra associated to the system is organized quite simply: it is generated by the
diffusion and drift coefficients. In the case of diffusion depending linearly on the state vector,
it is necessary to preliminary transformation of the initial equation to the form, using the Fisk–
Stratonovich differential. The drift coefficient becomes in this case depending on squares of diffusion
coefficients, and diffusion coefficients, in their turn, undergoes transformations depending on the
drift coefficient. And only in the commutative case (or in the case of a solvable algebra), it is
possible to avoid the difficulties noted above. Thus, the situation with the application of standard
group-theoretic concepts to the stochastic equation is satisfactory. Perhaps some algebraic structure
other than Lie algebra, would be more appropriate in this problem, but the clarification of this
question requires further study.
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