
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 8, pp. 956–966.
c© The Author(s), 2023 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c© The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 8, pp. 73–87.

STOCHASTIC SYSTEMS

Parametric Algorithm for Finding a Guaranteed Solution

to a Quantile Optimization Problem

S. V. Ivanov∗,a, A. I. Kibzun∗,b, and V. N. Akmaeva∗,c
∗Moscow Aviation Institute (National Research University), Moscow, Russia

e-mail: asergeyivanov89@mail.ru, bkibzun@mail.ru, cakmaeva@mai.ru

Received January 30, 2023

Revised May 15, 2023

Accepted June 9, 2023

Abstract—The problem of stochastic programming with a quantile criterion for a normal dis-
tribution is studied in the case of a loss function that is piecewise linear in random parameters
and convex in strategy. Using the confidence method, the original problem is approximated by
a deterministic minimax problem parameterized by the radius of a ball inscribed in a confidence
polyhedral set. The approximating problem is reduced to a convex programming problem. The
properties of the measure of the confidence set are investigated when the radius of the ball
changes. An algorithm is proposed for finding the radius of a ball that provides a guaranteeing
solution to the problem. A method for obtaining a lower estimate of the optimal value of the
criterion function is described. The theorems are proved on the convergence of the algorithm
with any predetermined probability and on the accuracy of the resulting solution.
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1. INTRODUCTION

Stochastic programming problems with a quantile criterion are optimization problems in which
the minimum point of the quantile of the loss function is sought, depending on the optimization
strategy and random parameters. Similar problems arise when modeling technical and economic
systems, in which the requirements for the reliability of the decision being made play an important
role. The quantile function describes the level of loss that cannot be exceeded with a given fixed
probability, usually close to one. The monographs [1, 2] are devoted to problems of this class.

An effective way to solve the problem of minimizing the quantile function is the confidence
method [1, 2]. The essence of this method is that the original quantile optimization problem is
approximated by a minimax problem. In this problem, we first consider the maximum of the
objective function on a certain set of values of random parameters (confidence set) as a function of
the confidence set and the optimization strategy. Then, the minimum of the obtained maximum
function is searched for by the optimization strategy and the confidence set. The choice of the
optimal confidence set is not an easy task. However, with a properly chosen fixed confidence set,
one can obtain a fairly accurate upper estimation of the quantile function. In particular, it is
shown [2], that for a Gaussian distribution of random factors, the choice of a confidence set in
the form of a ball for large values of the reliability level ensures high accuracy of the resulting
estimate. This article discusses the loss functions that are presented as the maximum of a finite
number of linear (with respect to random parameters) functions. For this class of loss functions,
the optimal confidence set is a polyhedron. In this regard, the estimate on the ball can be improved
by performing an additional optimization over the class of confidence sets in the form of polyhedra,
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parametrized by the radius of the inscribed ball. This idea was implemented for the Gaussian
distribution in [3]. In [4], this algorithm was extended to the case of an arbitrary distribution of
random factors, and an algorithm was proposed for further improving the guaranteeing solution by
moving the faces of a convex polyhedral confidence set while maintaining its probability measure.
It should be noted that in [3, 4] the loss function was assumed to be linear in the optimization
strategy. This allowed the approximating minimax problem to be reduced to a linear programming
problem.

A feature of the approximating problem obtained by using the algorithms [3, 4] is the fact that
in the case of a Gaussian distribution, it can be used to obtain not only the upper, but also the
lower estimate of the optimal value of the quantile function. To do this, in the approximating
problem, instead of the confidence set, take the kernel of the probability measure [2], which, in the
case of a standard Gaussian distribution, is a ball of radius calculated as a quantile of the standard
normal distribution of the same level as the quantile function. It should be noted that the kernel
of a probability measure is not a confidence set.

Of special interest is the case of a loss function that is linear in random parameters. In [1] it is
proved that, under the condition of regularity of the kernel, the quantile function can be calculated
as a maximum by random parameters of the loss function on the core. Later, the regularity
conditions for the kernel were loosen in [5]. The said kernel property was used in [6] to construct
an algorithm for solving a stochastic programming problem with a quantile criterion and a bilinear
loss function, as well as in [7] for approximating probabilistic constraints.

Stochastic programming problems with a quantile criterion are a special case of problems with
probabilistic constraints [8, 9]. The review of methods for solving problems with probabilistic
constraints can be found in [10]. In particular, we should note the approach based on the use of
p-efficient points [11, 12]. However, problems with a quantile criterion have a number of properties
that are not characteristic of problems with arbitrary probabilistic constraints, which makes it
possible to use special methods of analysis, in particular, the confidence method. Problems with a
quantile criterion and additional probabilistic constraints were studied in detail in [1].

This article considers a stochastic programming problem with a loss function that is piecewise
linear in random parameters and convex in terms of the optimization strategy, which makes it
possible to approximate the problem under study by a convex programming problem. For this
problem, an algorithm is developed based on the ideas of constructing algorithms in [3, 4] for
piecewise linear problems. Estimates are given for the accuracy of the proposed algorithm.

2. FORMULATION OF THE PROBLEM

Let X be the random vector (column) with realizations x∈R
m, given on the probability space

(Ω,F ,P). It is assumed that the distribution X is standard normal. We assume that the loss
function Φ is piecewise linear in random parameters:

Φ(u, x) � max
i=1,k1

{B1i(u)x+ b1i(u)}.

The constraints in the problem are described by the function

Q(u, x) � max
j=1,k2

{B2j(u)x+ b2j(u)},

where u∈U ⊂ R
n is the strategy; B1i(u), B2j(u) are rows of matrices B1(u), B2(u) respectively,

b1j(u), i = 1, k1, and b2j(u), j = 1, k2, are elements of vectors (columns) b1(u) and b2(u) respectively.
This article assumes that the functions u �→ B1(u), u �→ B2(u) are linear (i.e., Bl(u) = Dlu+ al,
where Dl is a matrix, al is a vector, l∈{1, 2}), and functions u �→ b1(u), u �→ b2(u) are convex and
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continuous on a convex closed set U . Note that the linear transformation of the random vector X
does not change the structure of the functions Φ and Q. Moreover, any normal vector can be
obtained by a linear transformation of the vector X of suitable dimension. For these reasons, the
case of an arbitrary normal distribution of the vector X reduces to the case under consideration.

Define the probability function as

Pϕ(u) � P{Φ(u,X) � ϕ, Q(u,X) � 0},
where ϕ∈R is a given value of the loss function, and the quantile function as

Φα(u) � min {ϕ | Pϕ(u) � α}, α∈ (0, P ∗),

where
P ∗ � sup

u∈U
P{Q(u,X) � 0}.

The article considers the problem of quantile optimization

Uα � Arg min
u∈U

Φα(u). (1)

Since the functions Φ and Q are continuous and measurable, according to the result of [13, Theo-
rem 6], which is a generalization of a similar result in [1], the function u �→ Φα(u) is lower semicon-
tinuous. Therefore, a solution to the problem (1) exists if the set U is compact. Let us determine
the optimal value of the criterion function as

ϕα � Φα(uα),

where uα ∈Uα. In what follows, we will assume that a solution to the problem (1) exists. In this
case, the boundedness of the set U , generally speaking, is not required.

3. CONSTRUCTION OF SOLUTION ESTIMATES

According to the confidence method, [1] the problem (1) is equivalent to

ϕα = min
S ∈Eα,u∈U

{
sup
x∈S

Φ(u, x) | sup
x∈S

Q(u, x) � 0

}
, (2)

where Eα is the family of all confidence sets S⊂R
m of level α, i.e. Borel sets such thatP{X ∈S}� α.

Denote by Br the ball of radius r:

Br � {x∈R
m | ‖x‖ � r},

where ‖x‖ �
√
x
x is the Euclidean norm of the vector x.

Let us consider a problem similar to the problem (2), in which the set S = Br is fixed:

ψ(r) � min
u∈U

{
max
x∈Br

Φ(u, x) | max
x∈Br

Q(u, x) � 0

}
. (3)

We will assume that the minimum in u in problem (3) is reached, which is true, for example, in the
case of compact set U . In the problem (3) the supremum is replaced by the maximum, because

max
x∈Br

Φ(u, x) = max
x∈Br

max
i=1,k1

{B1i(u)x+ b1i(u)}

= max
i=1,k1

max
x∈Br

{B1i(u)x+ b1i(u)} = max
i=1,k1

{b1i(u) + ‖B1i(u)‖r}.
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In a similar way is max
x∈Br

Q(u, x). Thus, the problem (3) can be rewritten as

ψ(r) = min
u∈U

{
max
i=1,k1

{b1i(u) + ‖B1i(u)‖r} | max
j=1,k2

{b2j(u) + ‖B2j(u)‖r} � 0

}
. (4)

If the constraints of this problem are inconsistent, we will assume that ψ(r) = +∞. From the
monotonic nondecreasing of the objective function and the narrowing of the set of admissible
strategies as r increases it follows that the function ψ is non-decreasing. Problem (4) is equivalent
to the convex programming problem

ϕ → min
u∈U, ϕ∈R

(5)

under constraints

b1i(u) + ‖B1i(u)‖r � ϕ, i = 1, k1,

b2j(u) + ‖B2j(u)‖r � 0, j = 1, k2.

Equivalence is understood here in the sense that the optimal value of the variable ϕ coincides
with ψ(r), and the sets of admissible values u coincide. The total number of constraints in this
problem will be denoted by k = k1 + k2. Problem (5) can be solved with high accuracy using convex
optimization methods [14].

Let Rα be the ball of probabilistic measure α, i.e. the solution of the equation

P{X ∈BRα} = α.

Let us fix in the problem (2) a confidence set S in the form of a ball BRα . Thus, an upper
estimate of the quantile function can be found.

To search for a lower estimate, the kernel of the probability measure can be used, defined as the
intersection of all closed half-spaces A such that P{X ∈A} = α. It is known that for α > 1

2 the
kernel of the distribution of the standard normal Gaussian vector is a ρα-radius ball centered at
zero, where ρα is the quantile of the standard normal distribution of the α level. In [1, Section 3.4.3,
Corollary 2] it is shown that ψ(ρα) � ϕα, when X distributed normally.

Thus, we have obtained the estimate

ψ(ρα) � ϕα � ψ(Rα). (6)

The upper estimate for ψ(Rα) can be improved. Let (u(r), ψ(r)) be some solution to the prob-
lem (5). Let us define the set

Cr �
{
x∈R

m | Φ(u(r), x) � ψ(r), Q(u(r), x) � 0
}

=
{
x∈R

m | B1i(u(r))x+ b1i(u(r)) � ψ(r), B2j(u(r))x+ b2j(u(r)) � 0, i = 1, k1, j = 1, k2
}
.
(7)

We introduce the notation h(r) � P{X ∈Cr} for the probability measure of the set Cr. Note that
h(r) and Cr depend on the choice of u(r). Therefore, in what follows, the choice of u(r) is assumed
to be fixed.

Because
max
x∈Br

Φ(u(r), x) = ψ(r), max
x∈Br

Q(u(r), x) � 0, (8)

the inclusion Br ⊂ Cr is valid. Besides,

max
x∈Br

Φ(u(r), x) = max
x∈Cr

Φ(u(r), x), max
x∈Cr

Q(u(r), x) � 0. (9)

It follows from (8) and (9) that if h(r) � α, then Cr is a confidence set and ψ(r) � ϕα.
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Dependency graph for h(r) = P{X ∈Cr} of r.

It follows from the monotonicity of ψ that the upper bound for the quantile function can be
improved by finding r close to r∗ � inf{r | h(r) � α}, such that h(r) � α. If the function r �→ h(r)
is monotonic, then the dichotomy method can be used to find r∗ . Unfortunately, the function h
can be non-monotone, as the following example demonstrates.

Example 1. Let the loss function be

Φ(u, x) = max{u+ 4x,−u+ 2x+ 2,−11u − 4x},
u∈R, x is a realization of a random variable X ∼ N (0, σ2), σ2 = 1

9 .

It is easy to check that the problem (5) has a solution

u(r) = 1− r, ψ(r) = 1 + 3r if r∈ [0, 1];

u(r) = 0, ψ(r) = 4r if r∈ [1,+∞).

Therefore,

Cr = {x | Φ(u(r), x) � ψ(r)} =

{
[−3 + 2r, r], if r∈ [0, 1],

[−r, r], if r∈ [1,+∞).

Let us calculate the measure of the set Cr if r∈ [0, 1]:

h(r) = P{X ∈Cr} =

r∫
−3+2r

3√
2π

e−
3x2

2 dx.

Let us calculate the derivative of the obtained function:

dh

dr
(r) =

3√
2π

e−
3r2

2 − 2
3√
2π

e−
3(2r−3)2

2 .

Let us calculate the left-hand limit

lim
r→1−

dh

dr
(r) = − 3√

2π
e−

3
2 < 0.

This means that on some interval (1− ε, 1), where ε > 0, function h is decreasing. Moreover,
h(1) ≈ 0.9973. The dependence graph for h(r) is shown in the figure.
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Table 1. Dependence of Rα on m

α \m 1 2 3 4 5 6 7 8 9 10 50

0.95 1.96 2.45 2.80 3.08 3.32 3.55 3.75 3.94 4.11 4.28 8.22

0.99 2.58 3.03 3.37 3.64 3.88 4.10 4.30 4.48 4.65 4.82 8.73

Table 2. Dependence of ρβ on k

α \ k 1 2 3 4 5 6 7 8 9 10 50

0.95 1.64 1.96 2.13 2.24 2.33 2.39 2.45 2.50 2.54 2.58 3.09

0.99 2.33 2.58 2.71 2.81 2.88 2.93 2.98 3.02 3.06 3.09 3.54

As can be seen from the example above, the function h may turn out to be nonmonotone. In
this connection, we propose sufficient conditions that ensure the monotonicity of the function h.

Theorem 1. Let U = R
n and the conditions are fulfilled:

1) b1i(u) = A1iu+ c1i, A1i are the rows of the matrix A1, b2j(u) = A2ju+ c2j , A2j are the rows
of the matrix A2, matrices B1(u) and B2(u) do not depend on u;

2) the rows of the block matrix (
A1 ek1
A2 0k2

)

are linearly independent, where ek1, 0k2 are the columns of ones and zeros respectively (if Q(u, x)≡ 0,
then there are no rows corresponding to A2 in the above matrix );

3) for some r = R the solution to the problem (5) exists.

Then the function h is non-decreasing on the interval [0, R].

The proof of the 1 and all subsequent theorems are in the Appendix.

Note that in Theorem 1 the set U is not compact. Unfortunately, it is difficult to propose more
general conditions for the monotonicity of the function h since the monotonicity measures can only
be guaranteed under the assumption that the set Cr expands as r increases. However, only the
distance from the origin of the faces touching the ball Br can be guaranteed. The remaining faces
can both move away and approach the origin of coordinates.

In connection with the nonmonotonicity of the function h it is necessary to indicate as accurately
as possible the interval in which it is necessary to look for r∗. For this we get the following result.

Theorem 2. Let k = k1 + k2. The inequality h(r) � α holds if r � ρβ and the set Cr is defined,
where ρβ is the quantile of standard normal distribution of the level β = 1− 1−α

k .

From the Theorem 2 and the inequality (6) it follows that

ψ(ρα) � ϕα � min{ψ(Rα), ψ(ρβ)} = ψ (min{Rα, ρβ}) . (10)

It follows from the definition of a confidence ball that Rα =
√
χ2
α(m), where χ2

α(m) is the chi-square
distribution quantile with m degrees of freedom. In contrast to Rα the value of ρβ does not depend
on the dimension of the random vector, but depends only on the number of constraints k. It is
known [2], that Rα − ρα → 0 for α → 1, but the rate of convergence depends on dimension n. It is
easy to see that ρβ → +∞ for k → 1. However, it turns out that for small values k the inequality
ρβ < Rα can be satisfied. The dependence of Rα on m is given in Table 1, and the dependence of
ρβ on k is given in Table 2. The levels α = 0.95 and α = 0.99 are considered. Let, for example,
m = 8, α = 0.95. Then Rα = 3.94, and ρβ < Rα even for k = 50.

Note that for k = 1 we have the equality ρβ = ρα. Therefore, ϕα = ψ(ρα), and the optimal
strategy uα can be found from problem (5) for r = ρα, which agrees with the known result [5].
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4. ALGORITHM FOR SEARCHING FOR A GUARANTEEING SOLUTION

A strategy u∈U , satisfying the relation ϕα(u)�ψ (min{Rα, ρβ}), will be called a guaranteeing
solution. Thus, a guaranteeing solution can be found from the problem (5) for r = R̄α, where
R̄α � min{Rα, ρβ}. Denote this guaranteeing solution by u0. In this section, we propose an algo-
rithm for improving the guaranteeing solution u0, i.e. providing a smaller value of the criterion
function ϕα(u) than ϕα(u

0).

As noted in the previous section, the dichotomy method can be used to find the radius of
the ball r∗, inscribed in the confidence polyhedron Cr. In this case, the following difficulties
arise: first, the continuity and monotonicity of h(r) = P{X ∈Cr} is not guaranteed in the general
case, secondly, the calculation of the probability of X falling into the polyhedron Cr requires
the use of approximate methods. Nevertheless, we will use the dichotomy method to find an
improved guaranteeing solution. Due to the fact that h(r) will be calculated approximately using
the Monte Carlo procedure, we will look for a value of r, such that h(r) � α+ ε, where ε is a
small positive constant (ε < 1− α). Approximate calculation of the measure can lead to the fact
that an unacceptable solution of the problem will be found, therefore it is necessary to specify the
probability p of finding an acceptable solution. Since the quantile setting implies finding a solution
that guarantees a given level of objective function value with a probability α, it is recommended
to choose p � α.

Algorithm 1.

1. Set algorithm parameters ε∈ (0, 1 − α) (accuracy parameter for measure calculation), δ > 0
(accuracy parameter for radius calculation) and p∈ [α, 1) (probability of finding an acceptable
solution).

2. Calculate ρα being the α level quantile of the standard normal distribution and R̄α �
min{Rα, ρβ}, where Rα =

√
χ2
α(m), χ2

α(m) being chi-square distribution quantile with m degrees
of freedom, β = 1− 1−α

k .

3. Calculate sample size

N =

⌈
ln(1/(1 − K

√
p))

2ε2

⌉
,

where K =

⌈
log2

|R̄α − ρα|
δ

⌉
, �a� is the rounding of a up to the nearest integer.

4. Set r1 := ρα, r2 := R̄α.

5. Find the lower estimate for the solution ψ(r1) and the upper estimate ψ(r2) of the optimal
value of the criterion function, as well as the initial guaranteeing solution u(r2), by solving the
problem (5) for r = r1 and r = r2.

6. While |r1 − r2| > δ repeat the following steps:

6.1. Assign r := r1+r2
2 .

6.2. Calculate u(r) and ψ(r), by solving the problem (5).

6.3. Simulate N independent realizations of a random vector X.

6.4. Calculate μ(r) � P{X ∈Br} = Fχ2(m)(r
2), where Fχ2(m)(r

2) is the value of the distribution
function of the chi-square law with m degrees of freedom at point r2.

6.5. Find ĥ(r) being an estimate of the measure of the set Cr, defined by the formula (7):

ĥ(r) = μ(r) +
s(r)

N
,

where s(r) is the number of sample elements included in the set Cr \Br.
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6.6. If ĥ(r) � α+ ε, then r2 := r. Otherwise r1 := r.

7. As a guaranteeing solution, take u(r2).

Note that to improve the accuracy of the algorithm, one can use not the dichotomy method, but
divide the segment of the search for a solution into several equal parts. In this case, at step 6.1 of
the algorithm, it will be necessary to take several values of r in the segment [r1, r2]. It should also
be noted that in the case of a nonmonotonic dependence of r �→ h(r) the algorithm may not find
the root of the equation h(r) = α+ ε, but some guaranteeing solution will be found.

Let us formulate a theorem on the convergence of the algorithm.

Theorem 3. Let the problem (5) have a solution for r∈ [ρα, R̄α]. Then application of the algo-
rithm ensures finding a guaranteeing solution with a probability not less than p.

The following theorem characterizes the accuracy of the solution found using the proposed
algorithm 1. This result is a refinement of [2, Theorem 3.13] for optimization problems of the class
under consideration.

Theorem 4. Let the function ψ be defined and takes finite values on the segment [ρ,R], and let
the loss function be Lipschitz with constant L, i.e.

|Φ(u, x)− Φ(u, y)| � L‖x− y‖.

Also suppose that
max
j=1,k2

{b2j(u(ρ)) + ‖B2j(u(ρ))‖R} � 0. (11)

Then 0 � ψ(R)− ψ(ρ) � (R− ρ)L.

This inequality indicates the closeness of the found upper estimate of the criterion function to
its optimal value. Theorem 4 gives an estimate of the bounds in these inequalities, which can be
obtained even before applying the Algorithm 1. According to this estimation

0 � ψ(R̄α)− ψ(ρα) � L|R̄α − ρα|,

if the conditions of Theorem 4 are satisfied. Note that these conditions are satisfied for a Lipschitz
loss function, for example, for Q(u, x) ≡ 0.

5. NUMERICAL EXPERIMENT

Example 2. Let us find a guaranteeing solution to the problem (1) for

Φ(u, x) = max
{
u1 + 3u3 + 2u5 + x1 + 2x3 + 4,

−u1 + 2u2 − u3 + 3u4 + 2u5 + 2x1 − x2 + 2x3,

2u1 + u2 + 2u3 − 2u4 − u5 + 3x1 + x2 + 2x3 + 2,

3u1 − 2u2 + u3 + 3u4 − 3u5 − 2x1 + 3x2 − 3x3 + 5,

0.1u21 − 0.02u1u2 − 0.03u1u3 + 0.2u22 + 0.05u23 + 0.3u24 +

+ 0.1u25 − 0.2u1 − 0.3u2 − 0.1u3 − 0.2u5 − 3x1 − 2x2 + x3 + 6
}
,

Q(u, x) = 3u2 + u1 + 4u3 − 2u5 − x1 − 3x2 − 4x3 − 10,

U =
{
u∈R

5 | ui ∈ [0; 10], i = 1, 5
}
, α = 0.95. For this level α, ρα = 1.645, Rα = 2.796, β = 0.992,

ρβ = 2.394, R̄α = 2.394. Therefore, the function hmust be considered on the segment [1.645; 2.394].
Solving problem (5) for r = ρα and r = R̄α, find an estimate

ϕα ∈ [ψ(ρα), ψ(R̄α)] = [11.813; 14.754].
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Table 3. Application of the Algorithm 1

Iteration r ĥ(r) ψ(r)

1 2.019 0.949 13.267

2 2.207 0.970 14.007

3 2.113 0.961 13.635

4 2.066 0.956 13.451

5 2.043 0.952 13.359

6 2.031 0.950 13.313

7 2.037 0.9507 13.336

The initial guaranteeing solution has the form

u(R̄α) = (0.139; 0.602; 0.000; 0.004; 1.613)
 .

Let us set the algorithm parameters: ε = 0.001, δ = 0.01, p = 0.99. These parameters require
a sample size of N = 3273 389. The application of Algorithm 1 is shown in Table 3. Improved
guaranteeing solution complies with r = r∗ � 2.043 and it has the form

u(r∗) = (0.536; 0.688; 0.000; 0.003; 1.356)
 .

At the same time

ϕα ∈ [ψ(ρα), ψ(r
∗)] = [11.813; 13.359].

Thus, the use of Algorithm 1 made it possible to reduce the length of the uncertainty interval of
the optimal value of the criterion function on (1− 13.359−11.813

14.754−11.813 )100% = 47%, which indicates the
efficiency of the proposed algorithm.

All calculations were carried out on a computer with Intel(R) Core(TM) i5-6300U CPU,
2.40 GHz, RAM 8 GB RAM in Matlab system using program for solving quadratic Gurobi opti-
mization problems. The counting time was 1035 s. The bulk of the calculation was the calculation
of the measure of the polyhedron Cr using the Monte Carlo method.

6. CONCLUSION

The paper proposes an algorithm for solving a stochastic programming problem with a quantile
criterion in the case of a loss function that is piecewise linear in random parameters and convex
in strategy. The advantage of the proposed algorithm is the ease of constructing approximating
problems, which can later be solved using convex optimization methods. The main computational
difficulty in its application is the need to estimate the measure using the Monte Carlo method. The
proposed algorithm for choosing a confidence set parameterized by the radius of the inscribed ball,
as the example showed, can be successfully applied to solve stochastic optimization problems with
a quantile criterion in the case of a convex piecewise quadratic linear loss function. It can be seen
that this algorithm can also be applied to the case of discrete optimization strategies. The form of
Algorithm 1 will not change, but in the course of applying the algorithm, it will be necessary to solve
not a convex continuous optimization problem, but a discrete optimization problem. Algorithms
for solving such problems may be the subject of further research.
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APPENDIX

Proof of Theorem 1. Conditions 2 and 3 ensure that all constraints in the problem (5) are active.
This means that all faces of the set Cr touch the ball Br. As r increases on the segment [0, R] the
faces of the set Cr are transferred in parallel, touching the ball Br. This means that the set Cr

expands as r increases. Therefore, the function h, defined as the measure Cr, is non-decreasing.
Theorem 1 is proved.

Proof of Theorem 2. Let γ ∈ (0, 1). The set Cργ is defined as the intersection of k half-planes of
measure no less than γ. Denote these half-planes by Li, i = 1, k. Then

h(ργ) = P

{
X ∈

k⋂
i=1

Li

}
= 1−P

{
X ∈

k⋃
i=1

(Rm \ Li)

}
� 1−

k∑
i=1

P{X /∈ Li} = 1− (1− γ)k.

Thus, h(ργ) � α for α � 1− (1− γ)k, which is equivalent to γ � β = 1− 1−α
k . Theorem 2 is proved.

Proof of Theorem 3. Since at each iteration the segment of the search for a solution narrows two
times, the number of iterations K of the algorithm can be found as the minimum natural number
K, that satisfies the inequality

|R̄α − ρα|
2K

� δ.

It follows from this inequality that K =
⌈
log2

|R̄α−ρα|
δ

⌉
. The algorithm can make an error in its

work only if at some iteration it turns out that ĥ(r) � α+ ε, although in fact h(r) < α. It is easy
to see that the random variable s(r) is distributed according to the binomial law with the success
probability h(r)− μ(r). The inequality is known [15, ch. 1, § 6]:

P{ĥ(r)− h(r) � ε} = P

{
s(r)

N
− (h(r)− μ(r)) � ε

}
� e−2Nε2 .

Therefore, if we assume that h(r) < α, then P{ĥ(r) � α+ ε} � e−2Nε2 . Since the samples used
to evaluate the measure are independent, the probability that the algorithm will work correctly
is at least (1− e−2Nε2)K . Hence it follows that in order to ensure the probability p of successful
operation of Algorithm he inequality

p � (1− e−2Nε2)K ⇐⇒ N � ln(1/(1 − K
√
p))

2ε2
.

must be satisfied.

Theorem 3 is proved.

Proof of Theorem 4. Let Ψ(u, r) � maxx∈Br Φ(u, x) = Φ(u, x0(r)), where x0 is the point on the
boundary of the ball Br, where the specified maximum is reached. SinceBρ ⊂BR, Ψ(u, ρ) � Ψ(u,R)
holds. Since the point y = ρ

Rx
0(R) lies on the boundary of the ball Bρ, Φ(u, y) � Ψ(u, ρ). That’s

why

0 � Ψ(u,R)−Ψ(u, ρ) � Φ(u, x0(R))− Φ(u, y) � L‖x0(R)− y‖ = (R − ρ)L.

Thus, the inequalities

Ψ(u, ρ) � Ψ(u,R) � Ψ(u, ρ) + (R− ρ)L (A.1)

are true. Minimizing the left and right parts of the first inequality in (A.1) with respect to u∈U
so that maxj=1,k2

{b2j(u) + ‖B2j(u)‖R} � 0 (constraints of the problem (4) for r = R), we obtain

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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the first inequality to be proved ψ(ρ) � ψ(R) (here we take into account that ψ(ρ) is defined at
least on a wider set). From (11) and the second inequality in (A.1) it follows that

ψ(R) � Ψ(u(ρ), R) � Ψ(u(ρ), ρ) + (R− ρ)L = ψ(ρ) + (R− ρ)L.

This estimate implies the second inequality to be proved. Theorem 4 is proved.
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