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Abstract—The relationship between the averaging of functions over time and its averaging over
the set of values of the required variables is considered. Optimization problems are studied, the
criterion and constraints of which include the averaging of functions or functions of the average
values of variables. It is shown that the optimality conditions for these problems have the form
of the maximum principle, and their optimal solution in the time domain is a piecewise constant
function. A generalization of Carathéodory’s theorem on convex hulls of a function is proved.
Optimality conditions are obtained for non-linear programming problems with averaging over
a part of the variables and functions depending on the average values of the variables.
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1. INTRODUCTION

For a wide class of problems, the optimality criterion and all or part of the constraints averagely
depend on all or part of the variables. Such problems arise when, in technological processes, some
variables to be selected must be unchanged (design parameters), while others may change over time,
and the presence of devices that smooth out fluctuations, e.g. capacitances, leads to the average
influence of these changes [1]. Such problems arise in the optimal control of macrosystems (systems
consisting of a set of individually uncontrollable elements), in which it is possible to control only the
average parameters of the set of these elements. All such problems are called averaged optimization
problems.

In systems, whose set of admissible controls is non-convex (e.g. relay systems), the optimal
solution is often a sliding mode, in which the change of the object state depends averagely on any
frequently switching control [2–5]. Averaged problems also arise as auxiliary estimation problems in
the optimization of cyclic modes, when the introduction of averaging expands the set of admissible
solutions and simplifies the solution, allowing to obtain an estimate of the efficiency of the cyclic
mode without finding the form of optimal cycles. The value of such an estimation problem is
known to be “not worse” than the value of the initial one, and its optimal solution contains useful
information about the nature of the optimal solution of the initial one. For definiteness, we will
consider problems for the maximum of the optimality criterion.

In the first section of this paper, we will discuss the relationship between the averaging of
functions whose argument varies in time over a set of values of that argument and over time,
and define what is sought as a solution to the averaged problem and how this solution can be
implemented. In the second section, we will formulate the theorem on the optimality conditions of
the non-linear programming problem with averaging of the optimality criterion and constraints and
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give its proof based on Carathéodory’s theorem on convex hulls of functions. In the third section,
we will consider possible generalizations of the proved theorem.

2. ON THE RELATIONSHIP BETWEEN TIME AVERAGING AND SET AVERAGING

The mean value of the continuous scalar function f(x(t)), t ∈ [0, τ ], x ∈ V ⊂ Rn can be calcu-
lated on time as

ft(x) =
1

τ

τ∫
0

f(x(t))dt (1)

or on set as

fp(x) =

∫
V

f(x)p(x)dx. (2)

The function p(x) is called the distribution density. When x(t) is a random function, p(x) is the
distribution density of the random variable. It is non-negative and its integral on V is equal to one.
In particular, the set V can be a parallelepiped in Rn. In our case, x(t) is a determined function,
so let us focus more on the properties of p(x) such that the results of averaging by formulas (1)
and (2) are the same.

Let us consider the variable x as scalar, the set V here and below as bounded and closed, and
introduce the function θ(x0), x0 ∈ V , equal to the total duration of those time intervals t, for
which x(t) � x0. It is obvious that this function does not exceed τ . Through P (x0), let us denote

the ratio θ(x0)
τ , i.e., the fraction of the interval [0, τ ], for which x(t) � x0. This function grows

monotonically as x0 increases, varying from zero to one. It is similar to the distribution function
of a random variable.

The distribution density is equal to

p(x0) =
dP (x0)

dx0
=

1

τ

dθ(x0)

dx0
=

1

τ

1∑
ν

∣∣∣dxν
dt

∣∣∣
xν=x0

. (3)

The interval θ increases as x0 increases for any sign of the derivative at those values xν of the
function x(t), in which it is equal to x0.

If at some value of x0 the function x(t) is constant over a fraction γ of the interval [0, τ ], then
the function P (x0) experiences a jump of magnitude γ at that point, and the distribution density
at that point is equal to γδ(x − x0).

Examples

1. Linear functions. Let x(t) = ht
τ . Then, according to formula (3), we get p(x) = 1

h = const.
The same distribution density corresponds to all triangles with base [0, τ ] and height h.

2. Piecewise constant functions. These functions take discrete values of xi, each within a
fraction γi of the interval [0, τ ]. Any such function, according to formula (3), corresponds to the
distribution density function (3)

p(x0) =
∑
i

γiδ(x− xi), γi > 0,
∑
i

γi = 1. (4)

The order, in which the piecewise constant function takes one or another of the possible values,
does not matter.

From these examples we see that every function x(t) corresponds to the distribution density
of its values p(x) defined on V , and every distribution density corresponds to any number of
functions x(t), for which fp(x) = ft(x). An exception is the distribution density of the form
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p(x) = δ(x− x1). In this case, the corresponding function is x(t) = x1 = const over the entire
interval [0, τ ], and it is unique.

Let us consider the case when the function f depends on several variables (e.g., for the sake of
simplicity, on two variables, x1(t) and x2(t)). In this case, the distribution function P (x0) of the
values of vector x represents the fraction of the interval [0, τ ], for which the two following inequalities
are satisfied: x1(t) � x01 and x2(t) � x02. This function grows monotonically with the growth of each
of the arguments. When the first of the components of the vector x0 is at the maximum (p1(x1) = 1),
it is equal to and its derivative is equal to the distribution density p(xmax

1 , x2) = p2(x2). Similarly,
when x2 = xmax

2 , p(xmax
2 , x1) = p1(x1). The functions x1(t) and x2(t) are independent of each other,

so p(x1, x2) = p1(x1)p2(x2).

The sought solution to the averaged optimization problem is the distribution density p∗(x) of
the vector x on the set V of its admissible values. To implement this solution over time, we need
to find one of the possible functions x(t) having the distribution p∗(x). The solution of this last
problem is greatly facilitated by the peculiarities of optimal solutions of p∗(x) proved in the next
section.

3. ON THE OPTIMAL SOLUTION OF AVERAGED OPTIMIZATION PROBLEMS

We will denote the averaging operation by a line drawn over the function or vector to be averaged.
Thus,

x =

∫
V

xp(x)dx, f(x) =

∫
V

f(x)p(x)dx.

The simplest problem of averaged optimization is the problem of maximizing the average value
of a scalar function f(x) at a given average value of its argument:

f(x) → max
/
x = x0, x ∈ V ⊂ Rn. (5)

Or in a more detailed form∫
V

f(x)p(x)dx → max
/∫

V

xp(x)dx = x0, p(x) � 0,

∫
V

p(x)dx = 1. (6)

The sought function in this problem is p(x) (the distribution density of the vector of sought vari-
ables). This function is non-negative and its integral on the set V is equal to one.

4. CARATHÉODORY’S THEOREM ON CONVEX HULLS OF FUNCTIONS

Carathéodory’s theorem [3, 4, 6] on convex hulls of sets states that any element of a convex
hull CoD of a compact set D in Euclidean space of dimension n can be represented as an element
of a simplex having at most n+ 1 vertices (base points), each of which belongs to D.

In particular, a subgraph of function f(x) can be the set D. The convex hull of a function is the
convex hull of a subgraph. A function depending on n variables is the boundary of a set in Rn+1

space of dimension n. The basis points are known to lie on this boundary, and hence their number
does not exceed n+ 1. Below we will call Carathéodory’s theorem the theorem on convex hulls of
functions.

The ordinate of the convex hull of the function f0(x) at the point x0 belonging to the convex
hull of the set of the function definition is the value of the problem

f0(x) → max
p(x)

/ xi = xi0, i = 1, n,
x ∈ V ⊂ Rn,

(7)

where V is the compact space.
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According to Carathéodory’s theorem, the optimal solution of this problem is

p∗(x) =
n∑

j=0

γjδ(x− xj), γj � 0,
n∑

i=0

γj = 1.

That is, the optimal allocation is concentrated in at most (n + 1) base points.

This fact allows us to rewrite the problem (7) as a non-linear programming problem

n∑
j=0

γjf0(x
j) → max

n∑
j=0

γjx
j = x0,

xj ∈ V ⊂ Rm,
n∑

j=0
γj = 1, γj � 0,

(8)

whose variables are the basis vectors xj and the vector of weight coefficients γ, and use the Kuhn–
Tucker theorem [7] to solve it:

If y∗ is a solution to a non-linear programming problem

f(y) → max
/
ϕi(y) � 0, yj � 0, i = 1, . . . ,m, j = 1, . . . , n, (9)

then there is such a non-zero vector of multipliers

λ = λ0, . . . , λm (λ0 equal to 0 or 1, λi � 0 when i > 0),

that for the Lagrangian function

R = λ0f(y) +
m∑
i=1

λiϕi(y)

the following conditions are true:(
∂R

∂yj

)
y=y∗

= 0, if y∗j > 0;

(
∂R

∂yj

)
y=y∗

� 0, if y∗j = 0; (10)

λi = 0, if ϕi(y
∗) < 0; λi � 0, if ϕi(y

∗) = 0. (11)

For problem (8) the Lagrangian function takes the form

R =
n∑

j=0

γj

[
f0(x

j) +
n∑

i=1

λix
j
i − Λ

]
, (12)

where Λ is the Lagrange multiplier corresponding to the condition of equality of the sum of weight
coefficients to one.

Kuhn–Tucker conditions on weighting factors lead to requirements:

R0(xj, λ) = f0(x
j) +

n∑
i=1

λix
j
i < Λ, if γj = 0, (13)

R0(xj , λ) = f0(x
j) +

n∑
i=1

λix
j
i = Λ, if γj > 0, j = 0, . . . , n+ 1.

Here, R0 is the Lagrangian function of problem (8) without averaging. Hereafter such a problem
will be called the initial one.

Thus, for all base values of x included in the optimal solution of the convex hull problem of the
function f0 with non-zero weight, the Lagrangian function of the original problem is maximal. The
number of such points does not exceed n+ 1.
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5. PROBLEM WITH BOND AVERAGING,
GENERALIZATION OF CARATHÉODORY’S THEOREM

In the non-linear programming problem with averaging functions defining relations between variab-
les, it is required to maximize the average value of the function f0(x) on the set V of admissible val-
ues of x, provided that the average value of the vector function f(x) = (f1(x), . . . , fi(x), . . . , fm(x))
is equal to zero. Formally,

f0(x) → max
/
fi(x) = 0, i = 1, . . . ,m, x ∈ V ∈ Rn. (14)

Theorem 1. 1. The optimal distribution density in problem (14) has the form

p∗(x) =
m∑
j=0

γjδ(x− xj), γj � 0,
m∑
j=0

γj = 1. (15)

2. There is such a non-zero vector

λ = λ0, . . . , λi, . . . , λm, λ0 = (0; 1),

that, at each base point xj, the Lagrangian function of the original problem

R =
m∑
i=0

λifi(x) (16)

is maximal over x ∈ V .

Proof. To prove this statement, we will introduce the concept of the reachability function
of the problem (14):

f∗
0 (C) = max f0(x)

/
fk(x) = Ck, k = 1, . . . ,m, x ∈ V. (17)

This function is defined algorithmically on the set

Vc = {C ∈ Rm : f(x) = C, x ∈ V ⊂ Rn} .
It may be non-smooth and semi-continuous on top.

The following statement is true.

Statement. For those values of x, for which f(x) = C, p∗(x) is deliberately equal to zero if
f0(x) 
= f∗

0 (C).

Thus, only those values x = x∗(C), for which the value of f0(x) coincides with the ordinate of the
reachability function, can be included in the solution of the averaged problem with non-zero weight.
If this statement were not true, it would be possible to change the density of the distribution so
that the average value of f0(x) would increase.

Since for each C the value of f0 coincides with the ordinate of the reachability function, the
problem (14) can be rewritten as

f∗
0 (C) → max

/
Ck = 0, k = 1, . . . ,m, C ∈ Vc ⊂ Rm. (18)

This is the problem on the ordinate of the convex hull of the reachability function at zero. According
to Carathéodory’s theorem, its optimal solution is equal to

p∗(C) =
m∑
j=0

γjδ(C − Cj), γj � 0,
m∑
j=0

γj = 1. (19)

Since each base value of Cj corresponds to the value of xj∗(Cj), the optimal distribution density
in problem (14) is of the form (15). The first statement of Theorem 1 is proved.
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Fig. 1. System consisting of a pump and a smoothing tank (a);
relation between flow rate and power input (b).

The proof of the second statement completely repeats the analogous proof for the problem on
the ordinate of the convex hull of a function with the difference that the Lagrangian function of
the non-averaged problem has the form (16). We emphasize that the number of base points does
not depend on the dimensionality of the vector x, but is determined by the dimensionality m of
the vector function f .

Note that here and below conditions in the form of the maximum principle do not require the
functions defining the averaged problem to be smooth on x, the set V can be non-contiguous [8–10].

Example 1. Let us consider the system consisting of an electric motor, a pump rotated by it
and a vessel in Fig. 1a. The motor consumes power n, on which depends the pump capacity g.
The dependence of g(n) is shown in Fig. 1b. It is required to find the mode for which, for a given
average power input n, the average pumping capacity g is maximized. This is the problem of the
ordinate of the convex hull of the function g(n) at the point n. The number of base points is
two, one of them is the origin of coordinates, and the second one, n1, is defined by the condition
that the Lagrangian function R = g(n) + λn reaches the maximum in it (the same as at n = 0).
Excluding λ from the conditions for the maximum of the Lagrangian function and the requirement
that this maximum be zero, we reach the equation for n1:

g(n)

n
=

dg(n)

dn
.

There are many optimal implementations of this solution over time, and for each of them the
pump power takes values zero and n1, and the fraction of the interval τ , for which n = n1, is equal
to 1− n

n1 . The maximum value of the interval τ is determined by the value of capacitance G, it is
equal to

τmax =
2G

g(n1)
.

The value of the problem is equal to

g∗ = g(n1)

(
1− n

n1

)
.

It does not depend on G, and the sliding mode is the optimal solution when the capacitance goes
down to zero.

6. GENERALIZATIONS OF THE AVERAGED NON-LINEAR PROGRAMMING PROBLEM

6.1. Averaged Problem with Deterministic Variables

As mentioned in the introduction, there can be two types of variables in averaged problems:
randomized and deterministic. There is no averaging for variables of the second type. Let us
consider a non-linear programming problem, in which some variables are not averaged.
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The problem with averaging over a part of variables will take the form:

f0(x, y) → max
/
fj(x, y) = 0, x ∈ V ⊂ Rn, y ∈ Vy ⊂ RK , j = 1, . . . ,m, (20)

functions f0, . . . , fm are continuous and continuously differentiable over the set of arguments, the
line corresponds to averaging over x ∈ V , the sets V and Vy are closed and bounded.

For any y, this problem is an averaged non-linear programming problem (14), and hence, due
to the theorem, the optimal distribution density x is concentrated in at most (m+ 1) base points,
so that p∗(x) =

∑m
0 γjδ(x − xj) and there exists such a non-zero vector λ that, at each of these

points, the Lagrangian function of the original problem

R =
m∑
j=0

λjfj(x, y), x ∈ V ⊂ Rn, y ∈ Vy ⊂ RK (21)

is maximal on x.

The Lagrangian function of the problem (20), in which the distribution density x is equal
to p∗(x), has the form

R∗ =
m∑
j=0

λj

m∑
i=0

γifj(x
i, y), xi ∈ V ⊂ Rn, y ∈ Vy ⊂ RK . (22)

For any distribution density of randomized variables p(x), the problem (20) is a non-linear
programming problem and, according to Kuhn–Tucker theorem, there is such a non-zero vector λ
with components λ0 = (0; 1), λj, j = 1, . . . ,m, that the conditions of local non-improvability on y
are satisfied for the function (21) at the optimal solution

∂R∗

∂yl
δyl � 0, l = 1, . . . ,K. (23)

Here, δyl is the acceptable variation of yl.

The non-linear programming problem with averaging over a part of variables has much in com-
mon with the optimal control problem with links in the form of differential equations. There, the
control actions enter the problem in such a way that their fast changes are averaged in the neigh-
borhood of each time instant, which cannot be said about the phase coordinates. That is why the
conditions in the form of Pontryagin’s maximum principle are valid for the control actions.

6.2. Problem Containing Functions of Mean Values of Variables

This problem has the form

f0(x, xl) → max
/
fj(x, xl) = 0, x ∈ V ⊂ Rn, l = 1, . . . , K � n. (24)

Let us introduce the notation: yl = xl. The variable yl belongs to the convex hull CoVxl
of the

set of admissible values xl. Given the introduced notations, the problem (24) can be rewritten as

f0(x, y) → max
/
fj(x, y) = 0, xl − yl = 0, x∈V ⊂Rn, yl ∈CoVxl

⊂RK . (25)

When written in this form, problem (25) differs from problem (20) only by additional averaged
conditions xl − yl = 0. The Lagrangian function of the original problem will take the form

R =
m∑
j=0

λjfj(x, y) +
K∑
l=1

λl(xl − yl), x ∈ V ⊂ Rn, yl ∈ CoVxl
. (26)
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From the optimality conditions (21), (23) it follows that the maximum number of base values
of x in problem (24) is m+K + 1 and that there is such a non-zero vector λ that at each of the
base points the function R appearing in (26) reaches a maximum on the optimal solution on x,
while, on y, the function (22) is locally non-improvable.

When solving averaged problems, the Lagrange multipliers are expressed through the base values
xj and y from the condition of maximum of the Lagrangian function on x and equality of these
maxima to each other, as well as the conditions of non-improvability on y are written down. After
that, from the averaged conditions, the weight coefficients for each of the base points are found,
given that the sum of these weight coefficients is equal to one.

Example 2. As an illustrative example, let us consider the following problem

(x− x)2 → min
/(

1

x+ x

)
= 1, x = −1; 0; 1. (27)

The Lagrangian function for this problem is equal to

L = (x− y)2 + λ

(
1

x+ y − 1

)
+ μ(y − x). (28)

The number of averaged conditions is two, hence all three admissible values of x are basic, and the
uncertain multipliers must be chosen so that the maximum of the function L∗ is the same at these
points, which leads to the following conditions:

L∗ = (1 + y)2 + λ

(
1

y − 1
− 1

)
− μ(1 + y) = y2 + λ

(
1

y
− 1

)
− μy (29)

= (1− y)2 + λ

(
1

y + 1
− 1

)
+ μ(1− y).

Thus,

λ =
2y

2 + y
(1− y − 2y2), μ =

y(2y − 1)

2 + y
. (30)

After substituting these expressions into L∗ and differentiating the resulting expression by y, we
come to the equation

3y3 + 17y2 + 20y − 10 = 0. (31)

To the second decimal place, y = 0.37. Weight multipliers γ1, γ2, γ3 for x = −1, x = 0, x = 1,
respectively, can now be found from the following conditions

3∑
i=1

γi = 1,
3∑

i=1

γixi = 0.37,
3∑

i=1

γi
1

xi + 0.37
= 1. (32)

Then we get γ1 = 0.155, γ2 = 0.320, γ3 = 0.525.

7. CONCLUSION

Various formulations of non-linear programming problems with averaging were considered. It is
shown that, with the introduction of the concept of reachability function of non-linear programming
problems, the problems containing averaging of functions from a vector of randomized variables x
can be reduced to extremal problems on convex hulls of sets and functions. The optimal distribution
in all these problems is centered in discrete “base” points of the compact set V of admissible values
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of x. The maximum principle for such problems is proved. It is shown that the number of base
points does not exceed the number of averaged conditions in the problem by more than one. The
criterion and constraints of averaged non-linear programming problems may depend on time. If
these dependencies are continuous, then the above optimality conditions are valid for each moment
of time and determine the time variation of the coordinates of the base points and their weights.
The vector of Lagrange indeterminate multipliers corresponding to the optimal solution delivers the
minimum to the maximum value of the maximized function with respect to the sought variables,
which serves as a basis for computational algorithms.
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