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Abstract—Scalar characteristics of continuous processes with fuzzy states—mean and correla-
tion functions—are introduced and studied. Their algebraic properties as well as some prop-
erties related to the differentiation and integration of fuzzy functions of a real argument are
established. The dependence between the characteristics of a fuzzy signal at the input and
output of a dynamic system described by a high-order differential equation with constant coef-
ficients is shown.
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1. INTRODUCTION

When studying dynamic processes under limited initial information, a possible approach is to
treat their parameters as realizations of some random processes [1]. However, the distribution of
random variables at the time instants under consideration often has a weakly formalizable law. In
this case, it is convenient to treat such processes as those with fuzzy states (fuzzy processes). In
particular, an important class of fuzzy dynamic processes consists of automatic and optimal control
systems.

Thus, continuous fuzzy processes represent an alternative model for automatic control problems
in addition to continuous random processes. A fuzzy process is understood as a parametric system
of fuzzy numbers that continuously depends on the parameter (time). At present, the theory of
fuzzy sets is used in various applications [2, 3]. In particular, different fuzzy models of controlled
objects have been investigated [4].

In this paper, numerical characteristics of continuous processes with fuzzy states and continuous
time, namely, mean and correlation functions, are introduced and studied; see Sections 3 and 4.
Their properties similar to those of the corresponding characteristics of continuous random processes
are established. Section 3 considers the algebraic properties of the mean and correlation functions
of continuous fuzzy processes. Section 4 is devoted to the properties of these characteristics with
respect to integrals and derivatives of fuzzy processes. Integrals of fuzzy functions are understood
as a special case of Aumann integrals [5] of multivalued functions (as integrals of α-cutoffs). They
were studied in [6, 7] and other publications. Various definitions of derivatives of fuzzy functions
were presented, e.g., in [6–8]. Here, we employ the definition in terms of Hukuhara’s difference
of sets (H-difference) [9]. The results of Sections 3 and 4 rest on the definition and covariance
properties of fuzzy numbers discussed in the author’s paper [10]; see Section 2.
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934 KHATSKEVICH

Nowadays, researchers are actively investigating fuzzy differential equations and their applica-
tions; for example, see [3, Chapters 7 and 8; 7, 8, 11–13]. Among the recent works, we men-
tion [14, 15]. Section 5 of this paper considers fuzzy dynamic systems described by nth-order linear
differential equations with constant coefficients. The dependence between the numerical character-
istics of a fuzzy signal at the output of a fuzzy dynamic system and the corresponding characteristics
of its input fuzzy signal is obtained. In contrast to the well-known frameworks [12–15], the ap-
proach below develops the Green function method, widely used in the theory of ordinary differential
equations [16, Chapter II; 17, Chapter 1], to the class of fuzzy differential equations.

2. THE MEAN, QUASI-SCALAR PRODUCT, AND COVARIANCE OF FUZZY NUMBERS

A fuzzy number is understood as a fuzzy subset of the universal set of real numbers that has
a compact support and a normal, convex, and upper semicontinuous membership function; for
details, e.g., see [1]. Let J denote the set of all such fuzzy numbers.

The interval representation of fuzzy numbers will be used below.

As is known, the α-level intervals (α-levels) of a fuzzy number z̃ with a membership function
μz̃(x) are defined as

zα = {x|μz̃(x) � α}, (α ∈ (0, 1]), z0 = cl{x|μz̃(x) > 0},
where cl indicates the closure of an appropriate set. Assume that all α-levels of a fuzzy number are
closed and bounded intervals on the entire real axis. Let z−(α) and z+(α) denote the left and right
bounds of an α-interval: zα = [z−(α), z+(α)]. The values z−(α) and z+(α) are called the left and
right α-indices of a fuzzy number, respectively. A real number x ∈ R is treated as a fuzzy number
with the left and right α-indices equal to x.

The sum of fuzzy numbers with indices z−(α), z+(α) and u−(α), u+(α) is understood as a fuzzy
number with the α-level intervals [z−(α) + u−(α), z+(α) + u+(α)].

Multiplication by a positive real number c is characterized by the α-level intervals [cz−(α), cz+(α)].
Multiplication by a negative real number c is characterized by the α-level intervals [cz+(α), cz−(α)].
Equality for fuzzy numbers is understood as equality for all the corresponding α-indices ∀α ∈ [0, 1].

According to [18], the mean value of a fuzzy number z̃ can be defined through the interval
representation as follows:

m(z̃) =
1

2

1∫
0

(z−(α) + z+(α)) dα. (1)

Note that the mean (1) is linear.

Example 1. Consider a fuzzy triangular number z̃ characterized by a real-valued triple (a, b, c)
with a < b < c defining the membership function

μz̃(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x− a

b− a
ifx ∈ [a, b]

x− c

b− c
ifx ∈ [b, c]

0 otherwise.

In this case, the lower and upper bounds of the α-interval have the form

z−(α) = (b− a)α+ a, z+(α) = −(c− b)α+ c.

As is easily verified, the mean (1) of the fuzzy triangular number (a, b, c) is m(z̃) = 1
4 (a+2b+c).
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CONTINUOUS PROCESSES WITH FUZZY STATES 935

The distances between fuzzy numbers can be defined on the set of such numbers in different
ways. The interval approach often involves the Hausdorff distances between the α-level sets of
fuzzy numbers: for fuzzy numbers z̃ and ũ with α-levels zα and uα, respectively, the corresponding
metric [19] is given by

ρ(z̃, ũ) = supp
0<α�1

max

{
supp
z∈zα

inf
u∈uα

|z − u|, supp
u∈uα

inf
z∈zα

|z − u|
}
. (2)

Definition (2) induces the equality

ρ(z̃, ũ) = supp
0<α�1

max
{|z−(α) − u−(α)|, |z+(α) − u+(α)|} . (3)

Here, [z−(α), z+(α)] and [u−(α), u+(α)] are the α-level intervals of the fuzzy numbers z̃ and ũ.

Note that, due to (3), the condition ρ(z̃, ũ) = 0 matches the definition of equality for fuzzy
numbers z̃ and ũ given above.

Consider a fuzzy number z̃ with α-levels zα = [z−(α), z+(α)]. Following interval analysis, let

mid zα =
1

2
(z+(α) + z−(α)), rad zα =

1

2
(z+(α) − z−(α)).

Here, mid zα characterizes the midpoint for each α ∈ [0, 1] and rad zα the range. For fuzzy numbers
z̃ and ũ from J, we define the quasi-scalar product [10]

〈z̃, ũ〉 =
1∫

0

(mid zαmiduα + rad zαrad uα) dα

= 0.5

1∫
0

(z+(α)u+(α) + z−(α)u−(α)) dα.

(4)

The quasi-norm is ‖z̃‖ = 〈z̃, z̃〉1/2.
Example 2. Consider two triangular numbers z̃1 and z̃2 characterized by real-valued triples

ai, bi, ci with ai < bi < ci (i = 1, 2). According to the definition of their right and left indices (see
Example 1) and (4), the quasi-scalar product 〈z̃1, z̃2〉 is given by

〈z̃1, z̃2〉 = 2

3
b1b2 +

1

3
(a1a2 + c1c2) +

1

6
(a1b2 + b1a2 + b1c2 + b2c1).

Proposition 1 [10]. The quasi-scalar product (4) possesses the following properties:

1) 〈z̃, ũ〉 = 〈ũ, z̃〉 ∀ ũ, z̃ ∈ J .

2) 〈c1z̃, c2ũ〉 = c1c2〈z̃, ũ〉 provided that c1c2 > 0.

3) 〈z̃1 + z̃2, ũ〉 = 〈z̃1, ũ〉+ 〈z̃2, ũ〉 ∀ ũ, z̃1, z̃2 ∈ J .

4) 〈z̃, z̃〉 � 0, and the condition 〈z̃, z̃〉 = 0 is equivalent to the zero left and right indices of z̃.

5) The generalized Cauchy–Bunyakovsky–Schwarz inequality |〈z̃, ũ〉| � 〈z̃, z̃〉1/2〈ũ, ũ〉1/2 holds
∀ ũ, z̃ ∈ J .

For fuzzy numbers z̃1 and z̃2 with means m1 and m2, respectively, we define their covariance by
the formula [10]

cov[z̃1, z̃2] = 〈z̃1 −m1, z̃2 −m2〉

= 0.5

1∫
0

(
(z+1 −m1)(z

+
2 −m2) + (z−1 −m1)(z

−
2 −m2)

)
dα.

(5)

The variance is denoted by D(z̃) = cov|z̃, z̃|.
AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



936 KHATSKEVICH

Proposition 2 [10]. The covariance (5) possesses the following properties:

1) cov[z̃1 + z̃2, ũ] = cov[z̃1, ũ] + cov[z̃2, ũ] (∀ ũ, z̃1, z̃2 ∈ J).

2) cov[c1z̃, c2ũ] = c1c2cov[z̃, ũ] (∀ ũ, z̃ ∈ J) for any real numbers c1 and c2 such that c1c2 > 0.

3) cov [z̃1, z̃2] = 〈z̃1, z̃2〉 −m1m2, (∀ z̃1, z̃2 ∈ J), where m1 and m2 are the mean values of fuzzy
numbers z̃1 and z̃2, respectively (the specific covariance property).

Proposition 3 [10]. The variance possesses the following properties:

1) D(cz̃) = c2D(z̃) for any real number c.

2) D(z̃ + ũ) = D(z̃) +D(ũ) + 2cov[z̃, ũ] ∀ ũ, z̃ ∈ J .

In several works (e.g., see [20]), the covariance of fuzzy numbers z̃1 and z̃2 was defined as

cov1[z̃1, z̃2] =
1

4

1∫
0

(z+1 (α)− z−1 (α))(z
+
2 (α) − z−2 (α))dα.

With this definition, covariance is always nonnegative, which disagrees with standard covariance
properties (for random variables).

3. CONTINUOUS FUZZY PROCESSES

Consider a fixed segment [t0, T ] of the real axis, where t0� 0. A mapping z̃ : [t0, T ] → J is called
a process with fuzzy states (or a fuzzy process) and continuous time.

Let a fuzzy process z̃(t), t ∈ [t0, T ], be characterized a membership function μz̃(x, t). For a fixed
number α ∈ (0, 1], consider the α-interval zα(t) = {x ∈ R : μz̃(x, t) � α} and z0(α) = cl{x ∈ R :
μz̃(x, t) > 0}. We denote by z−α (t) = z−(t, α) and z+α (t) = z+(t, α) the left and right bounds of the
α-interval, respectively: zα(t) = [z−(t, α), z+(t, α)].

Assume that the indices z−(t, α) and z+(t, α) are square summable in α for each t ∈ [t0, T ] and
continuous in t for any α ∈ [0, 1].

For each t ∈ [t0, T ], let the mean of z̃(t) be defined as

mz̃(t) = m(z̃(t)) =
1

2

1∫
0

(z−(t, α) + z+(t, α))dα. (6)

Theorem 1. The mean of a continuous fuzzy process given by (6) possesses the following prop-
erties:

1. If z̃1(t) and z̃2(t) are continuous fuzzy processes, then m(z̃1(t) + z̃2(t)) = m(z̃1(t)) +m(z̃2(t))
(additivity).

2. If z̃(t) is a continuous fuzzy process and ϕ(t) is a real-valued function, then m(ϕ(t)z̃(t)) =
ϕ(t)m(z̃(t)) (homogeneity).

Indeed, property 1 follows from the definition of interval summation and and the additivity of
Lebesgue integrals.

It remains to show property 2. For a fixed number t ∈ [t0, T ], consider the fuzzy number w̃(t) =
ϕ(t)z̃(t). Note that its left w−(t, α) and right w+(t, α) indices coincide with the expressions
ϕ(t)z−(t, α) and ϕ(t)z+(t, α), respectively, in the case ϕ(t) � 0 or with the expressions ϕ(t)z+(t, α)
and ϕ(t)z−(t, α), respectively, in the case ϕ(t) < 0. However, their sum w−(t, α) + w+(t, α) co-
incides with the expression ϕ(t)(z−(t, α) + z+(t, α)), which is independent of the sign of ϕ(t).
According to (1), this fact implies property 2.

Corollary 1. If f(t) is a real-valued function, then m(z̃(t) + f(t)) = m(z̃(t)) + f(t).
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CONTINUOUS PROCESSES WITH FUZZY STATES 937

Suppose that f−(t) = f+(t) = f(t) for a real number f(t) ∀ t ∈ [t0, T ].

Let the correlation function of a continuous fuzzy process z̃(t) be defined as

Kz̃(t1, t2) =
1

2

1∫
0

(
z+(t1, α) −m(z̃(t1))

) (
z+(t2, α)−m(z̃(t2))

)
+

(
z−(t1, α)−m(z̃(t1))

) (
z−(t2, α) −m(z̃(t2))

)
dα.

(7)

The variance of a continuous fuzzy process is the valueDz̃(t) = Kz̃(t, t). By definition, Dz̃(t) � 0.

Theorem 2. The correlation function (7) of a continuous fuzzy process possesses the following
properties.

1. For a continuous fuzzy process z̃(t), the equality

Kz̃(t1, t2) = Kz̃(t2, t1)

holds ∀ t1, t2 ∈ [t0, T ] (symmetry).

2. If z̃(t) is a continuous fuzzy process and ϕ(t) is a real-valued function, then the correla-
tion function Kw̃(t1, t2) of a continuous fuzzy process w̃(t) = ϕ(t)z̃(t) has the form Kw̃(t1, t2) =
ϕ(t1)ϕ(t2)Kz̃(t1, t2) ∀ t1, t2 ∈ [t0, T ] such that ϕ(t1)ϕ(t2) � 0.

3. If w̃(t) = z̃(t) + ϕ(t), then Kw̃(t1, t2) = Kz̃(t1, t2).

4. |Kz̃1(t1, t2)| �
√
Dz̃(t1)Dz̃(t2).

Theorem 2 is based on the properties of the covariance (5) of fuzzy numbers presented in
Section 2.

For continuous fuzzy processes z̃1(t) and z̃2(t), consider the mutual correlation function

Kz̃1z̃2(t, s) =

1∫
0

(
z+1 (t, α) −m(z̃1(t))

) (
z+2 (s, α)−m(z̃2(s))

)
+

(
z−1 (t, α) −m(z̃1(t))

) (
z−2 (s, α) −m(z̃2(s))

)
dα.

Theorem 3. Let z̃1(t) and z̃2(t) be continuous fuzzy processes. The correlation function of their
sum w̃(t) = z̃1(t) + z̃2(t) has the form

Kw̃(t, s) = Kz̃1(t, s) +Kz̃2(t, s) +Kz̃1,z̃2(t, s) +Kz̃1,z̃2(s, t).

Continuous fuzzy processes z̃1(t) and z̃2(t) are said to be uncorrelated on a segment [t0, T ] if

Kz̃1z̃2(t, s) = 0 (∀ t, s ∈ [t0, T ]).

Corollary 2. If continuous fuzzy processes z̃1(t), z̃2(t) are uncorrelated and w̃(t) = z̃1(t) + z̃2(t),
then

Kw̃(t, s) = Kz̃1(t, s) +Kz̃2(t, s) (∀ t, s ∈ [t0, T ]).

4. THE INTEGRATION AND DIFFERENTIATION OF CONTINUOUS FUZZY PROCESSES

The integral of a continuous fuzzy process z̃(t) between the limits of a segment [t0, T ] is a fuzzy
number g̃ with the α-level intervals gα =

∫ T
t0
zα(t) dt for any α ∈ [0, 1]; for details, see [7]. The

integral is denoted by
∫ T
t0
z̃(t) dt.

In fact, this is the Aumann integral [5] of a multi-valued mapping zα(t).

If the integral
∫ T
t0
z̃(t) dt exists, then the process z̃(t) is said to be integrable on [t0, T ].

The mean of the integral possesses the following property.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



938 KHATSKEVICH

Theorem 4. Let z̃(t) be an integrable fuzzy process on [t0, T ]. Then m

(
T∫
t0

z̃(τ)dτ

)
=

T∫
t0

m(z̃(τ)) dτ .

By the definition of the integral, its indices satisfy the relation⎛⎝ T∫
t0

z̃(τ) dτ

⎞⎠±

α

=

T∫
t0

z±(τ, α) dτ.

Consequently,

m

⎛⎝ T∫
t0

z̃(τ) dτ

⎞⎠ =
1

2

1∫
t0

⎛⎝ T∫
t0

(z−(τ, α)) + (z+(τ, α)) dτ

⎞⎠ dα =

T∫
t0

m(z̃(τ))dτ.

For a continuous fuzzy process z̃(t) ∀ t ∈ [t0, T ], we define the continuous fuzzy process g̃(t) =∫ t
t0
z̃(τ) dτ .

Theorem 5. The integral g̃(t) of a continuous fuzzy process z̃(t) has the correlation function
Kg̃(t1, t2) =

∫ t1
t0

∫ t2
t0

Kz̃(τ1, τ2) dτ1dτ2.

Proof. By definition,

Kg̃(t1, t2) =
1

2

1∫
0

⎛⎝ t1∫
t0

z+(τ, α) dτ −
t1∫

t0

m(z̃(τ, α)) dτ

⎞⎠⎛⎝ t2∫
t0

z+(τ, α) dτ −
t2∫

t0

m(z̃(τ))dτ

⎞⎠

+

⎛⎝ t1∫
t0

z−(τ, α) dτ −
t1∫

t0

m(z̃(τ, α)) dτ

⎞⎠⎛⎝ t2∫
t0

z−(τ, α) dτ −
t2∫

t0

m(z̃(τ)) dτ

⎞⎠ dα

=
1

2

1∫
0

⎛⎝ t1∫
t0

(z+(τ, α)−m(z̃(τ)) dτ)

⎛⎝ t2∫
t0

z+(τ, α) −m(z̃(τ)) dτ

⎞⎠⎞⎠ dα

+
1

2

1∫
0

⎛⎝ t1∫
t0

z−(τ, α) −m(z̃(τ)) dτ

t2∫
t0

z−(τ, α) −m(z̃(τ)) dτ

⎞⎠ dα.

Consider the first integral in this expression. Since the integral’s value is independent of the
integration variable, it can be written as

1

2

1∫
0

⎛⎝ t1∫
t0

z+(τ1, α)−m(z̃(τ1)) dτ1

⎞⎠⎛⎝ t2∫
t0

z+(τ2, α)−m(z̃(τ2)) dτ2

⎞⎠ dα

=
1

2

1∫
0

t1∫
t0

t2∫
t0

(
z+(τ1, α)−m(z̃(τ1))

) (
z+(τ2, α) −m(z̃(τ2))

)
dτ1 dτ2 dα.

The same line of reasoning applies to the indices with a minus sign. Thus,

Kg̃(t1, t2) =
1

2

1∫
0

⎛⎝ t1∫
t0

t2∫
t0

(
z+(τ1, α) −m(z̃(τ1))

) (
z+(τ2, α)−m(z̃(τ2))

)

+
(
z−(τ1, α)−m(z̃(τ1))

) (
z−(τ2, α)−m(z̃(τ2))

)
dτ1 dτ2

⎞⎠ dα.

Interchanging the order of integration finally gives the desired result.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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Consider now the derivatives of fuzzy functions. Different definitions are introduced in the
literature. A common one involves the concept of Hukuhara’s difference (H-difference) [9]. For sets

A and B, a set C is called their H-difference if A = B + C and is denoted by A
h−B.

A mapping z̃ : [t0, T ] → J is said to be differentiable at a point t ∈ [t0, T ] [7] if ∀α[0, 1] the multi-
valued mapping zα(t) is Hukuhara differentiable at the point t with the derivative DHzα(t) and
the family {DHzα(t) : α ∈ [0, 1]} defines a certain element z̃ ′(t) belonging to J . The element z̃ ′(t)
is called the fuzzy derivative of z̃(t) at the point t.

By definition, the fuzzy derivative z̃ ′(t) satisfies the relation

lim
Δt→0

ρ

(
1

Δt

(
z̃(t+Δt)

h− z̃(t)

)
, z̃ ′(t)

)
= 0,

where the distance ρ is given by (3).

Proposition 4 [7]. Let a mapping z̃ : [t0, T ] → J be differentiable and its fuzzy derivative z̃ ′(t)
be integrable on [t0, T ]. Then

z̃(t) = z̃(t0) +

t∫
t0

z̃ ′(s)ds. (8)

Proposition 5 [11]. Let a fuzzy process z̃(t) be differentiable and zα(t) = [z−α (t), z+α (t)] be its
α-interval for any α ∈ [0, 1]. Then the functions z−α (t) and z+α (t) are differentiable with respect to t
and the α-interval of the derivative z̃ ′(t) has the form [z̃ ′(t)]α = [(z−α )′(t), (z+α )′(t)].

Proposition 5 shows the connection between the derivative introduced above and the Seikkala
derivative [8].

Theorem 6. Let z̃(t) be a differentiable fuzzy process with the integrable derivative z̃ ′(t). Then
the mean of its derivative coincides with the derivative of its mean: m(z̃ ′(t)) = d

dtm(z̃(t)).

Proof. Taking the mean of the left- and right-hand sides of formula (8) yields

m(z̃(t)) = m(z̃(t0)) +

t∫
t0

m(z̃ ′(s)) ds.

This equality is based on the additivity of means and Theorem 4. Let us differentiate its sides. In
view of the properties of the integral with a variable upper limit, we obtain d

dtm(z̃(t)) = m(z̃ ′(t)),
and the conclusion follows. The proof of Theorem 6 is complete.

Theorem 7. The derivative z̃ ′(t) of a differentiable fuzzy process z̃(t) has the correlation function

Kz̃ ′(t1, t2) =
∂2(Kz̃(t1, t2))

∂t1∂t2
.

Proof. Denoting z̃ ′(t) = w̃(t), we consider g̃(t) =
∫ t
t0
w̃(s) ds. Due to Theorem 5, the correlation

function Kg̃(t1, t2) is given by

Kg̃(t1, t2) =
1

2

1∫
0

⎛⎝ t1∫
t0

w+(τ1, α)dτ1 −m(w̃(τ1))

⎞⎠⎛⎝ t2∫
t0

w+(τ2, α)dτ2 −m(w̃(τ2))

⎞⎠ dα

+
1

2

1∫
0

⎛⎝ t1∫
t0

w−(τ1, α)dτ1 −m(w̃(τ1))

⎞⎠⎛⎝ t2∫
t0

w−(τ2, α)dτ2 −m(w̃(τ2))

⎞⎠ dα.
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Differentiating this equality, first with respect to t1 and then with respect to t2, yields

∂2Kg̃(t1, t2)

∂t1∂t2
=

1

2

1∫
0

(
w+(τ1, α)−m(w̃(τ1))

) (
w+(τ2, α) −m(w̃(τ2))

)
dα

+
1

2

1∫
0

(
w−(τ1, α) −m(w̃(τ1))

) (
w−(τ2, α)−m(w̃(τ2))

)
dα.

As a result,
∂2Kg̃(t1, t2)

∂t1∂t2
= Kw̃(t1, t2). (9)

Using formula (8) with z̃(t0) = ξ̃, we write

z̃(t) = ξ̃ +

t∫
t0

w̃(s) ds = ξ̃ + g̃(t).

Letting η̃(t) = ξ̃ + g̃(t) and calculating the correlation function of the sum of fuzzy processes,
we obtain

Kz̃(t1, t2) = Kη̃(t1, t2) = Kξ̃(t1, t2) +Kg̃(t1, t2) +Kξg(t1, t2) +Kξg(t2, t1).

By analogy, differentiating this equality, first with respect to t1 and then with respect to t2, yields
∂2Kz̃(t1,t2)

∂t1∂t2
=

∂2Kg̃(t1,t2)
∂t1∂t2

. The other terms on the right-hand side vanish since Kξ̃ is independent of
t1 and t2 by definition whereas Kξg(t1, t2) and Kξg(t2, t1) depend only on t2 and t1, respectively.
Considering formula (9), we finally arrive at the equality

∂2Kz̃(t1, t2)

∂t1∂t2
= Kw̃(t1, t2) = Kz̃ ′(t1, t2),

and the proof of Theorem 7 is complete.

5. TRANSFORMATION OF A CONTINUOUS FUZZY PROCESS
BY A LINEAR DYNAMIC SYSTEM

Consider some device A with continuous fuzzy signals ỹ(t) and z̃(t) at its input and output,
respectively.

Device A is called a linear dynamic system if the relationship between the input and output
signals is described by an nth-order differential equation with constant coefficients. With fuzzy
input ỹ(t) and output z̃(t) signals, the linear dynamic system is described by the fuzzy differential
equation

anz̃
(n)(t) + an−1z̃

(n−1)(t) + · · ·+ a1z̃
′(t) + a0z̃(t)

= bkỹ
(k)(t) + bk−1ỹ

(k−1)(t) + · · ·+ b1ỹ
′(t) + b0ỹ(t) ≡ f̃(t).

(10)

Here, the coefficients ai (i = 0, . . . , n) and bi (i = 0, . . . , k) are constant numbers, the second-
order derivatives of the fuzzy function are understood as z̃ ′′(t) = (z̃ ′(t))′ (and so on for higher-order
derivatives).

The next result characterizes the connection between the mean values of the input and output
fuzzy signals.
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Lemma 1. The mean value zmean(t) = m(z̃(t)) of the output fuzzy signal z̃(t) of the dynamic
system (10) satisfies the scalar differential equation

anx
(n) + an−1x

(n−1) + · · ·+ a1x
′ + a0x = f(t), (11)

where f stands for the mean of the right-hand side of (10): f(t) = mf̃(t).

Indeed, consider the mean of the left- and right-hand sides of equality (10). Using the additivity
and homogeneity of means as well as Theorem 6, we obtain

an(mz̃(t))(n) + an−1(mz̃(t))(n−1) + · · ·+ a1(mz̃(t))′ + a0mz̃(t)

= bk(mỹ(t))(k) + bk−1(mỹ(t))(k−1) + · · ·+ b1(mỹ(t))′ + b0(mỹ(t)) ≡ mf̃(t).

Then the scalar function zmean(t) = m(z̃(t)) satisfies equation (11).

Proposition 6 [16, Chapter II]. Let the roots of the characteristic equation anλ
n + an−1λ

n−1+
· · · + a1λ+ a0 = 0 contain no points on the imaginary axis. Then for any continuous function f(t)
bounded on the entire real axis, there exists a unique solution of equation (11) that is bounded on
the entire real axis. This solution has the form

x(t) =

∞∫
−∞

G(t− s)f(s) ds, (12)

where G(t) is the Green function of the problem on bounded solutions of equation (11).

Note that the Green function of the problem on bounded solutions of equation (11) is known;
for example, see [17, Chapter 1, § 8].

Remark 1. Assume that under the hypotheses of Proposition 6, all roots of the characteristic
equation belong to the left half-plane: (Reλi < 0, i = 1, . . . , n). Then the bounded solution of
equation (11) is asymptotically Lyapunov stable. In addition, the Green function of the problem
on bounded solutions of equation (11) has the form

G(t) =

{
k(t) for t � 0
0 for t < 0,

where k(t) is the Cauchy function of the homogeneous equation corresponding to (11).

Theorem 8. Let the input fuzzy process ỹ(t) be continuous and bounded on the entire real axis
together with its derivatives ỹi(t) (i = 1, 2, . . . , k). Let the roots of the characteristic equation
anλ

n + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0 contain no points on the imaginary axis. Then the mean

value m(z̃(t)) at the output of the dynamic system (10) can be represented as

m(z̃(t)) =

∞∫
−∞

G(t− s)m(f̃(s)) ds, (13)

where G is the Green function of the problem on bounded solutions of equation (11).

Indeed, under the hypotheses of Theorem 8, the right-hand side of equation (11) is a bounded
function on the entire real axis. Then, according to Lemma 1, the function zmean(t) = m(z̃(t))
is the solution of equation (11) bounded on the entire real axis. Hence, Theorem 8 follows from
Proposition 6.

Note that the boundedness of the fuzzy signal ỹ(t) (in Theorem 8 and below) is understood as
the boundedness of all the corresponding α-indices y±α (t) in t ∀α ∈ [0, 1].
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Corollary 3. Assume that under the hypotheses of Theorem 8, the input signal is quasi-station-
ary: m(y(t)) = mỹ = const. Then the output signal is quasi-stationary as well, and its mean value
is m(z̃(t)) = mz̃ =

b0
a0
mỹ.

Indeed, the arbitrary-order derivative of a constant is zero and, in this case, the right-hand side
of equation (11) is b0mỹ. Thenmz̃ is the solution of the corresponding equation (11): a0mz̃ = b0mỹ.
Equation (11) has no other bounded solutions under the hypotheses of Theorem 8.

The same conclusion can be drawn for the mean value of the fuzzy input signal that stabilizes
over time, i.e., m(y(t)) → mỹ as t → ∞.

In some cases, the indices of the output fuzzy signal of the dynamic system (10) can be written
explicitly.

Theorem 9. Assume that under the hypotheses of Theorem 8, all coefficients of the dynamic
system (10) are positive (ai > 0, i = 0, . . . , n). Then the indices of the output fuzzy signal z̃(t) of
the dynamic system (10) have the form

z−α (t) =
∞∫

−∞
G(t− s)f−

α (s) ds, z+α (t) =

∞∫
−∞

G(t− s)f+
α (s) ds, (14)

where f±
α (s) are the indices of the function f̃(s).

Indeed, equality for fuzzy numbers means equality for all the corresponding α-intervals. Due to
the positivity of the coefficients ai and Theorem (6), by the rules of interval arithmetic, equation (10)
∀α ∈ [0, 1] implies

an(z
−
α )

(n)(t) + an−1(z
−
α )

(n−1)(t) + · · ·+ a1(z
−
α )

′(t) + a0z
−
α (t) = f−

α (t); (15)

by analogy, for the indices with a plus sign,

an(z
+
α )

(n)(t) + an−1(z
+
α )

(n−1)(t) + · · ·+ a1(z
+
α )

′(t) + a0z
+
α (t) = f+

α (t). (16)

According to (15) and (16), equalities (14) hold by Proposition 6.

Proposition 7. Assume that under the hypotheses of Theorem 9, the Green function G of prob-
lem (10) is nonnegative. Then the bounded fuzzy signal at the output of the dynamic system (10)
can be represented as

z̃(t) =

∞∫
−∞

G(t− s)f̃(s) ds. (17)

Indeed, by the definition of the integral of a fuzzy function, we have the index relations⎛⎝ ∞∫
−∞

G(t− s)f̃(s) ds

⎞⎠−
α

=

∞∫
−∞

G(t− s)f−
α (s) ds,

⎛⎝ ∞∫
−∞

G(t− s)f̃(s) ds

⎞⎠+
α

=

∞∫
−∞

G(t− s)f̃+
α (s) ds.

In view of (14), they imply the representation (17).

Theorem 10. Assume that under the hypotheses of Theorem 9, all roots of the characteristic
equation have negative real parts (Reλi < 0, i = 1, . . . , n). Then the output fuzzy signal z̃(t) of the
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dynamic system (10) has the correlation function

Kz̃(t1, t2) =

t1∫
−∞

t2∫
−∞

G(t1 − τ1)G(t2 − τ2)Kf̃ (τ1, τ2)dτ1dτ2, (18)

where Kf̃ (τ1, τ2) is the correlation function of the input signal f̃ =
∑n

i=1 biỹ
(i) and G is the Green

function of the problem on bounded solutions of equation (11).

Proof. Considering Remark 1, by definition (7) and formulas (13) and (14), we write

Kz̃(t1, t2) =
1

2

1∫
0

⎡⎣⎛⎝ t1∫
−∞

G(t1 − s)(f+
α (s)−m(f̃(s)))ds

⎞⎠⎛⎝ t2∫
−∞

G(t2 − s)(f+
α (s)−m(f̃(s)))ds

⎞⎠

+

⎛⎝ t1∫
−∞

G(t1 − s)(f−
α (s)−m(f̃(s)))ds

⎞⎠⎛⎝ t2∫
−∞

G(t2 − s)(f−
α (s)−m(f̃(s)))ds

⎞⎠⎤⎦ dα

=
1

2

1∫
0

t1∫
−∞

t2∫
−∞

G(t1 − τ1)G(t2 − τ2)
[
(f+

α (τ1)−m(f̃(τ1)))(f
+
α (τ2)−m(f̃(τ2)))

+ (f−
α (τ1)−m(f̃(τ1)))(f

−
α (τ2)−m(f̃(τ2)))

]
dτ1dτ2dα.

Interchanging the order of integration gives

Kz̃(t1, t2) =

t1∫
−∞

t2∫
−∞

G(t1 − τ1)G(t2 − τ2)

⎛⎝1

2

1∫
0

(f−
α (τ1)−m(f̃(τ1)))(f

−
α (τ2)−m(f̃(τ2)))

+ (f+
α (τ1)−m(f̃(τ1)))(f

+
α (τ2)−m(f̂(τ2)))dα

⎞⎠ dτ1dτ2,

directly leading to (18).

Note that the assumption Reλi < 0, i = 1, . . . , n, in Theorem 10 serves only for clarity when
comparing with Theorem 5. Without this assumption, formula (18) becomes

Kz̃(t1, t2) =

∞∫
−∞

∞∫
−∞

G(t1 − τ1)G(t2 − τ2)Kf̃ (τ1, τ2)dτ1dτ2.

Example 3. Consider a linear dynamic system described by the first-order differential equation
with constant coefficients

z̃ ′(t) + βz̃(t) = ỹ ′(t), β > 0.

Let a fuzzy signal ỹ ′(t) bounded on the entire real axis be supplied to the input of this system.
It is required to find the numerical characteristics of the bounded output fuzzy signal z̃(t).

Note that the Green function of the problem on bounded solutions of the scalar equation
x′ + βx = y(t) is represented as

G1(t) =

{
e−βt for t � 0

0 for t < 0.
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Then, according to Theorem 8, the mean value at the system output has the form

m(z̃(t)) =

t∫
−∞

e−β(t−s)m(ỹ ′(s))ds = e−βt

t∫
−∞

eβsm(ỹ(s))′ds.

Integrating by parts the right-hand side gives

m(z̃(t)) = m(ỹ(t))− βe−βt

t∫
−∞

eβsm(ỹ(s))ds.

Using Theorem 10 and property 2 from Theorem 2, we write the correlation function at the
output as follows:

Kz̃(t1, t2) = e−β(t1+t2)

t1∫
−∞

t2∫
−∞

eβ(τ1+τ2) ∂
2Kỹ(τ1, τ2)

∂τ1∂τ2
dτ1dτ2,

where Kỹ(τ1, τ2) is the correlation function of the input signal.

Example 4. Consider a linear dynamic system described by the second-order differential equation
with constant coefficients

z̃ ′′(t) + a1z̃
′(t) + a0z̃(t) = ỹ(t).

Let a continuous fuzzy signal ỹ (t) bounded on the entire real axis be supplied to the input of this
system. It is required to find the numerical characteristics of the bounded output fuzzy signal z̃(t).

Suppose that the coefficients of this equation satisfy the conditions a1, a0 > 0 and a21 − 4a0 > 0.
Then the roots λ1 and λ2 of the characteristic equation λ2 + a1λ+ a0 = 0 are real and λ1 < λ2 < 0.
In this case, the Green function G2 of the problem on bounded solutions of the equation a2x

′′ +
a1x

′ + a0x = f(t) has the form

G2(t) =

{
(eλ2t − eλ1t)(λ2 − λ1)

−1 for t � 0

0 for t < 0.

Then, according to Theorems 8 and 10, the output fuzzy signal z̃(t) satisfies the relations

m(z̃(t)) =

t∫
−∞

G2(t− s)m(ỹ(s))ds,

Kz̃(t1, t2) =

t1∫
−∞

t2∫
−∞

G2(t1 − τ1)G2(t2 − τ2)Kỹ(τ1, τ2)dτ1dτ2.

Note that the Green functions G1 and G2 in Examples 3 and 4 are nonnegative. Hence, the
representation (17) holds in these examples.

Example 5. Consider a linear dynamic system described by the third-order differential equation
with constant coefficients

z̃ ′′′(t) + a2z̃
′′(t) + a1z̃

′′(t) + a0z̃(t) = ỹ(t).

Let a continuous fuzzy signal ỹ(t) bounded on the entire real axis be supplied to the input of this
system. It is required to find the numerical characteristics of the output fuzzy signal z̃(t).
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Suppose that a2 > 0, a1 > 0, a0 > 0, and a2a1 − a0 > 0. Then, by the Hurwitz criterion, the
equation λ3 + a2λ

2 + a1 + a0 = 0 has the roots with Reλi < 0 (i = 1, 2, 3). Therefore, according to
Theorems 8 and 10, the output fuzzy signal z̃(t) satisfies the relations

m(z̃(t)) =

t∫
−∞

G3(t− s)m(ỹ(s))ds,

Kz̃(t1, t2) =

t1∫
−∞

t2∫
−∞

G3(t1 − τ1)G3(t2 − τ2)Kỹ(τ1, τ2)dτ1dτ2.

Here, G3(t) is the Green function of the problem on bounded solutions of the equation

x′′′(t) + a2x
′′(t) + a1x

′(t) + a0x(t) = f(t),

which has the form G3(t) =

{
k(t) for t� 0
0 for t< 0,

where k(t) is the Cauchy function representing the

solution of the homogeneous equation

k′′′(t) + a2k
′′(t) + a1k

′(t) + a0k(t) = 0

with the initial conditions

k(0) = k′(0) = 0, k′′(0) = 1.

(For details, see [17, Chapter 2, § 8].)

For example, if the characteristic equation has different roots, the Cauchy function is given by

k(t) = C1e
λ1t + C2e

λ2t + C3e
λ3t,

where

C1 =
1

(λ1 − λ2)(λ1 − λ3)
, C2 =

1

(λ2 − λ3)(λ2 − λ1)
, C3 =

1

(λ3 − λ1)(λ3 − λ2)
.

6. CONCLUSIONS

The results of Sections 3 and 4 of this paper—the properties of numerical characteristics of fuzzy
processes—are similar to the well-known counterparts for continuous random processes. However,
despite their significance, they have not been established before.

The main results of this paper concern fuzzy dynamic systems described by nth-order linear
differential equations with bounded input fuzzy signals (Section 5). They are based on the new
properties of the mean and correlation functions of continuous fuzzy processes (Sections 3 and 4) as
well as on the development of the Green function method to the class of fuzzy differential equations.

The approach outlined here is an alternative to the conventional one used to study linear dynamic
systems with constant coefficients in terms of frequency response and direct and inverse Fourier
transform. Unlike the known approaches, it does not assume stationarity (in any sense) for the
processes under consideration. Note that this approach can be extended to continuous processes
with fuzzy random states.
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