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Abstract—This paper develops a novel unified approach to designing suboptimal robust control
laws for uncertain objects with different criteria based on a priori information and experimental
data. The guaranteed estimates of the γ0, generalizedH2, andH∞ norms of a closed loop system
and the corresponding suboptimal robust control laws are expressed in terms of solutions of
linear matrix inequalities considering a priori knowledge and object modeling data. A numerical
example demonstrates the improved quality of control systems when a priori and experimental
data are used together.
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1. INTRODUCTION

In a rich variety of control design approaches for objects with an incomplete mathematical model,
there exist two main ones as follows. Within one approach, the controller’s parameters are found
from a priori information about the possible ranges of the object’s uncertain parameters. Following
the other approach, the controller’s parameters are tuned recursively using current information
or are calculated based on experimental data. Traditionally, the former approach is associated
with robust control (see [1] and the survey [2]); the latter approach, with adaptive control (see the
surveys [3, 4]).

In recent years, researchers have been actively developing the data-driven design of control
systems without any explicit mathematical model of the object [5–9]. The paper [10] was pioneering
in this area: it was discovered that a single trajectory can be used to fully characterize a linear
time-invariant dynamic system under the so-called persistency of excitation. If this condition holds,
linear quadratic control of objects without disturbances and without measurement noises can be
implemented without knowledge of the object’s mathematical model directly from input and output
measurement data [5]. According to [6], it suffices to fulfill the less restrictive condition of data
informativity for the property of interest in order to construct control laws from experimental data.
(Examples of such properties are stabilizability by linear state feedback control or linear quadratic
control with a given performance criterion). In [7], the state feedback parameters were derived
from open-loop measurements of the input and output of an uncertain object subjected to an
unmeasured disturbance from a definite class. For a fully uncertain object, H2- and H∞-optimal
control laws were constructed based on input and output measurements using a matrix version of
S-lemma [11] in the publication [8] and using Petersen’s lemma [12] in the publication [9].
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DESIGN OF SUBOPTIMAL ROBUST CONTROLLERS 919

This paper develops a novel robust control design approach for uncertain dynamic objects based
on the joint use of a priori information about the structure of the uncertain object parameter matrix
and the upper bound of its norm (on the one hand) and experimental data obtained by observing
the object on some time interval (on the other hand). The quality of robust control is evaluated by
upper bounds for one of the three performance indices: the γ0 norm (the damping level of stochastic
disturbances in the closed-loop uncertain system or the maximum value of the quadratic functional
of the target output under a pulse disturbance), the generalized H2 norm (the time-maximum
deviation of the Euclidean norm of the system’s target output under all deterministic disturbances
bounded in the l2 norm), and the H∞ norm (the maximum value of the ratio of the l2 norms of
the target output and the exogenous disturbance).

The design procedure includes several basic steps. First, the set of unknown matrices consistent
with a priori information is characterized by a quadratic inequality. Then, an experiment is con-
ducted to measure the system trajectory under given initial conditions and controls and an unknown
exogenous disturbance with known bounds of its components. This step yields another quadratic
inequality satisfied by all unknown matrices consistent with the experimental results. Next, an
extended and completely defined system with additional artificial input and output satisfying the
two quadratic inequalities is determined; this system “incorporates” the original uncertain system.
Finally, upper bounds are found for the damping levels of the disturbances of the original uncertain
system as those of the disturbances of the extended system under all additional inputs satisfying
the two quadratic inequalities.

This paper is organized as follows. After the Introduction, Section 2 gives the general problem
statement; in particular, two quadratic inequalities for the unknown object parameter matrix are
derived from a priori information and experimental data. In Section 3, necessary background is
provided on the γ0, generalized H2, and H∞ norms as well as their relations in the primal and dual
systems. Section 4 describes the robust control design procedure, including the main theorem and
its proof. Several experiments with an uncertain third-order system are presented in Section 5;
they show the advantages of robust control laws based on a priori information and experimental
data over the counterparts designed using a priori information or experimental data only. Section 6
summarizes the results and draws conclusions.

2. ROBUST CONTROL BASED ON A PRIORI AND EXPERIMENTAL DATA:
PROBLEM STATEMENT

Consider an uncertain system described by

x(t+ 1) = (A+BΔΔCΔ)x(t) + (Bu +BΔΔDΔ)u(t) +Bw(t),

z(t) = Cx(t) +Du(t)
(2.1)

with the following notations: x(t) ∈ Rnx is the state vector, z(t) ∈ Rnz is the target output,
w(t) ∈ Rnw is an exogenous disturbance, and u(t) ∈ Rnu is the control vector (input). All ma-
trices except the unknown parameter matrix Δ are given. In general, it is required to design linear
state-feedback control laws based on information about the unknown parameters of the system
so that the damping levels of the exogenous disturbances from different classes in the closed loop
system do not exceed specified values.

The information about the unknown matrix Δ is divided into a priori one and the one obtained
by a preliminary experiment. Assume that the matrix Δ has a block-diagonal structure and

Δ = diag (Δ1, . . . ,Δl) =
l∑

i=1

LiΔiR
T
i , ΔiΔ

T
i � η2i I, (2.2)
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920 KOGAN, STEPANOV

where Δi ∈ Rmi×ni is a complete matrix block or a diagonal square matrix block Δi = δiIni ;
Li and Ri are matrices composed of unit column vectors corresponding to the location of the
ith matrix block such that LT

i Lj = 0 and RT
i Rj = 0, i 
= j, and ηi are given values. In accordance

with the structure of the matrix Δ, the matrix BΔ can be written as BΔ = (B1 . . . Bl), where
Bi = BΔLi. With the notation Δ̂ = BΔΔ, we have

Δ̂ = BΔ

l∑
i=1

LiΔiR
T
i =

l∑
i=1

BiΔiR
T
i . (2.3)

Since Δ̂Rj = BjΔj, j = 1, . . . , l, it follows that Δ̂ =
(
Δ̂1 Δ̂2 · · · Δ̂l

)
, where Δ̂i = BiΔi.

In particular, if the state and control matrices in the object’s equation are completely unknown,
then

A = 0, Bu = 0, BΔ = I, CΔ = (I 0)T, DΔ = (0 I)T (2.4)

in (2.1); in this case, Δ̂ = Δ = (A(real) B
(real)
u ), where A(real) and B

(real)
u are the unknown state

and control matrices, respectively. This case without using a priori information was studied in the
papers [5, 6, 8, 9]).

Next we express the a priori information about the matrix Δ in terms of the matrix Δ̂. Following
the well-known robust control design approach under structured uncertainty [13, 14], let us define
the set Λ = diag (Λ1, . . . ,Λl) consisting of all Λ = diag (Λ1, . . . ,Λl) for which Λi = λiIni , λi � 0,
if the matrix block Δi is complete and all symmetric nonnegative definite matrices Λi ∈ Rni×ni

if Δi = δiIni . Due to (2.2), the inequality λiΔiΔ
T
i � λiη

2
i I holds for a complete matrix block

Δi ∈ Rni×ni for all λi � 0 and the inequality ΔiΛiΔ
T
i � η2i Λi holds for a block Δi = δiIni for all

symmetric nonnegative definite matrices Λi ∈ Rni×ni . Hence, as is easily verified,

ΔΛΔT − ηΛηT � 0 ∀Λ ∈ Λ (2.5)

with η = diag (η1In1 , . . . , ηlInl
) for all the matrices Δ satisfying (2.2).

Multiplying this inequality by the matrices BΔ and BT
Δ on the left and right, respectively, yields

Δ̂ΛΔ̂T −BΔηΛη
TBT

Δ � 0 ∀Λ ∈ Λ. (2.6)

This condition can be written as(
Δ̂ I

)
Υ

(
Δ̂ I

)T
� 0 ∀Λ ∈ Λ, (2.7)

where Υ = diag(Λ,−BΔηΛη
TBT

Δ). Let Δ denote the set of given-structure matrices Δ satisfy-

ing (2.5) and Δ̂a denote the set of matrices Δ̂ = (Δ̂1, . . . , Δ̂l) satisfying inequality (2.6). Clearly,
for any Δ ∈ Δ there exists Δ̂ = BΔΔ ∈ Δ̂a. The converse is also true as follows.

Lemma 2.1. If matrices Bi = BΔLi, i = 1, . . . , l, have full column rank, then for any Δ̂ ∈ Δ̂a

there exists Δ ∈ Δ such that Δ̂ = BΔΔ.

Proof of Lemma. Assume that Δ̂ ∈ Δ̂a. Due to (2.6), we have Δ̂Ta = 0 for any vector a 
= 0 with
BT

Δa = 0. This means that the columns of the matrix Δ̂ belong to the image of the matrix BΔ.
Hence, the linear matrix equation BΔΔ = Δ̂ is solvable in the matrix Δ. It remains to show
inequality (2.5) for this solution. From (2.6) it follows that

Bi(ΔiΛiΔ
T
i − η2i Λi)B

T
i � 0

for each block. Since the matrices Bi have full column rank, ΔiΛiΔ
T
i − η2i Λi � 0 holds for all i,

i.e., Δ ∈ Δ, and the desired result is established.
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According to this lemma, there is no loss of information when passing from the matrix Δ that
satisfies inequality (2.5) to the matrix Δ̂ that satisfies inequality (2.7). In view of this fact, we
write the original uncertain system (2.1) as

x(t+ 1) = (A+ Δ̂CΔ)x(t) + (Bu + Δ̂DΔ)u(t) +Bw(t),

z(t) = Cx(t) +Du(t),
(2.8)

where the unknown parameter matrix Δ̂ = (Δ̂1, . . . , Δ̂l) of the corresponding structure satisfies
inequality (2.7).

Additional information about the unknown parameters of system (2.8) is extracted from a fi-
nite set of its trajectory measurements. More precisely put, it is possible to measure the system
states x0, x1, . . . , xN under given controls u0, . . . , uN−1 and some unknown disturbance w(t) whose
components satisfy the constraint

|wi(t)| � d, t = 0, . . . , N − 1, i = 1, . . . , nw (2.9)

for some given d (the disturbance level), i.e., max0�t�N−1 ‖w(t)‖∞ � d. Following conventional
notations (e.g., see [6]), we compile the matrices

Φ = (x0 x1 · · · xN−1) , Φ+ = (x1 x2 · · · xN ) ,

W = (w0 w1 · · · wN−1) , U = (u0 u1 · · · uN−1)

and introduce

CΔΦ+DΔU = Φ̂.

Due to the object’s equation,

Φ̃ = Δ̂(real)Φ̂ +BW, (2.10)

where Φ̃ = Φ+ −AΦ−BuU and Δ̂(real) is the real unknown parameter matrix of the object (2.8).
According to (2.9) and (2.10),

(Φ̃− Δ̂Φ̂)(Φ̃− Δ̂Φ̂)T = BWWTBT � d2nwNBBT

for Δ̂ = Δ̂(real).

Let Δ̂p denote the set of given-structure matrices Δ̂ satisfying this inequality. Obviously,

Δ̂(real) ∈ Δ̂p. Introducing the matrix

Ψ =

(
Ψ11 ∗
ΨT

12 Ψ22

)
=

(
Φ̂Φ̂T ∗
−Φ̃Φ̂T Φ̃Φ̃T − d2nwNBBT

)
, (2.11)

we write this inequality as (
Δ̂ I

)
Ψ

(
Δ̂ I

)T
� 0. (2.12)

Let Δ̂ = Δ̂a
⋂
Δ̂p denote the set of matrices Δ̂ satisfying the constraints (2.7) and (2.12).

The quality of the closed-loop uncertain system (2.8) with a linear state-feedback control law
will be evaluated by its response to stochastic and deterministic disturbances under zero initial
state, measured by three performance indices: the guaranteed estimates of the γ0, generalized H2,
and H∞ norms. The guaranteed estimate of the γ0 norm is defined as the damping level of a
stochastic disturbance from the class Gnw of vector Gaussian white noises of dimension nw, equal
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to the maximum value of the square root of the ratio of the steady-state time-averaged variances
of the output z and input w under all nonzero covariance matrices Kw of the input [15]:

γ0 = sup
Δ̂ ∈ Δ̂

γ0(Δ̂), γ0(Δ̂) = ess sup
w ∈ Gnw

‖z‖P
‖w‖P ,

where ‖s‖2P = lim
N→∞

(1/N)
∑N−1

t=0 |s(t)|2 and ess stands for essential supremum (the least upper

bound with probability 1). The guaranteed estimates of the generalized H2 and H∞ norms charac-
terize, respectively, the relative maximum values of the time-maximal deviation and the quadratic
functional of the target output under deterministic disturbances from the class l2. They are defined
as

γg2 = sup
Δ̂ ∈ Δ̂

γg2(Δ̂), γg2(Δ̂) = sup
w(t)	=0

supt�0 |z(t)|
‖w‖ ,

γ∞ = sup
Δ̂ ∈ Δ̂

γ∞(Δ̂), γ∞(Δ̂) = sup
w(t)	=0

‖z‖
‖w‖ ,

where ‖s‖2 = ∑∞
t=0 |s(t)|2. The problem is to obtain upper bounds for these norms and finally

design control laws ensuring the required system quality estimates.

3. NECESSARY BACKGROUND ON THE γ0, GENERALIZED H2, AND H∞ NORMS

Before deriving the guaranteed estimates of the above norms, we clarify the calculation of the
norms γ0(Δ̂), γg2(Δ̂), and γ∞(Δ̂) for the closed loop system (2.8), u(t) = Θx(t) under a fixed
matrix Δ̂ given by the equations

x(t+ 1) = [A+BuΘ+ Δ̂(CΔ +DΔΘ)]x(t) +Bw(t),

z(t) = (C +DΘ)x(t).
(3.1)

With the notations

AΘ = A+BuΘ, CΔΘ = CΔ +DΔΘ, AΔ = AΘ + Δ̂CΔΘ, CΘ = C +DΘ,

these equations can be written as

x(t+ 1) = AΔx(t) +Bw(t),

z(t) = CΘx(t).
(3.2)

The damping level of the stochastic disturbance, i.e., the γ0 norm of this system, is found by solving
a semidefinite programming problem in the covariance matrices Kw = KT

w � 0 (the disturbance)
and Kx = KT

x � 0 (the state) [15]:

γ20(Δ̂) = max trCΘKxC
T
Θ : AΔKxA

T
Δ −Kx +BKwB

T = 0, trKw � 1. (3.3)

Here, we need the following auxiliary result, proved in the Appendix.

Lemma 3.1. Problem (3.3) is Lagrange dual to the problem

γ20(Δ̂) = min γ2 : AT
ΔPAΔ − P + CT

ΘCΘ � 0, BTPB � γ2I. (3.4)
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According to problem (3.4), the increment of the function V (x) = xTPx along the trajectories
of (3.2) with the initial disturbance w(0) = w0, w(t) ≡ 0, t > 0, and zero initial conditions satisfies
the inequalities

�V + |z|2 � 0, t � 1, V (x1) = wT
0 B

TPBw0 � γ2|w0|2 ∀x ∈ Rnx , ∀w0 ∈ Rnw . (3.5)

In other words, the damping level of stochastic disturbances coincides with that of a deterministic
initial disturbance, understood as the maximum value of the ratio of the l2 norm of the output under
the “pulse” disturbance w(0) = w0, w(t) ≡ 0, t � 1, and zero initial conditions to the Euclidean
norm of the disturbance:

γ20(Δ̂) = max
w0 	=0

‖z‖2
|w0|2 .

The next characteristic—the maximum deviation of the output (the generalized H2 norm
[16, 17])—is found by solving the problem

γ2g2(Δ̂) = min γ2 : AΔQAT
Δ −Q+BBT � 0, CΘQCT

Θ � γ2I. (3.6)

With the change of variables P = Q−1, it can be written as

γ2g2(Δ̂) = min γ2 :

(
AT

ΔPAΔ − P ∗
BTPAΔ BTPB − I

)
� 0,

(
P ∗
CΘ γ2I

)
� 0.

This means that the increment of the function V (x) = xTPx along the trajectories of (3.2) with
zero initial conditions satisfies the inequality

�V − |w|2 � 0, ∀x ∈ Rnx , ∀w ∈ Rnw , P � γ−2CT
ΘCΘ. (3.7)

As is well known, the system under consideration has the H∞ norm below γ if and only if the
linear matrix inequality (LMI)

⎛⎜⎜⎝
AT

ΔPAΔ − P ∗ ∗
BTPAΔ BTPB − γ2I ∗

CΘ 0 −I

⎞⎟⎟⎠ < 0 (3.8)

is solvable in the matrix P = PT > 0. According to this LMI, the increment of the positive definite
function V (x) = xTPx along the trajectories of (3.2) satisfies the inequality

�V + |z|2 − γ2|w|2 < 0 (3.9)

for all x and w.

Direct comparison of problems (3.4) and (3.6) shows that the γ0 and generalized H2 norms of
system (3.1), respectively, coincide with the generalized H2 and γ0 norms of the dual system

x̂(t+ 1) = (AΘ + Δ̂CΔΘ)
Tx̂(t) + CT

Θŵ(t), x̂(0) = 0,

ẑ(t) = BTx̂(t).
(3.10)

In addition, the dual systems (3.1) and (3.10) obviously have the same H∞ norm.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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4. ROBUST γ0-, GENERALIZED H2-, AND H∞-SUBOPTIMAL CONTROL LAWS

Now we present the main steps to obtain the guaranteed estimates of the γ0, γg2, and γ∞ norms
of the uncertain system (3.1) and to find the parameters of the corresponding suboptimal robust
control laws. Let γ̂0, γ̂g2, and γ̂∞ denote the corresponding guaranteed estimates of the norms of
the dual system (3.10). According to the previous section,

γ0 = γ̂g2, γg2 = γ̂0, γ∞ = γ̂∞.

Consider an extended system with the additional artificial input wΔ(t) and output zΔ(t) described
by

xa(t+ 1) = AT
Θxa(t) + CT

ΔΘwΔ(t) + CT
Θwa(t), xa(0) = 0,

za(t) = BTxa(t), zΔ(t) = xa(t),
(4.1)

where xa(t), wa(t), and za(t) are the state, disturbance, and target output, respectively. Suppose
that for all t � 0, the additional input signal wΔ(t) in system (4.1) satisfies the two inequalities(

wΔ(t)

zΔ(t)

)T

Ψ

(
wΔ(t)

zΔ(t)

)
� 0,

(
wΔ(t)

zΔ(t)

)T

Υ

(
wΔ(t)

zΔ(t)

)
� 0, (4.2)

where the matrices Ψ and Υ are given by (2.11) and (2.7). The set of all such signals will be denoted
by WΔ. System (3.10) is “immersed” in system (4.1), (4.2): for wΔ(t) = Δ̂TzΔ(t), equations (4.1)
turn into equations (3.10); as follows from (2.12) and (2.7), for all Δ̂ ∈ Δ̂ we have(

wΔ(t)
zΔ(t)

)T

Ψ

(
wΔ(t)
zΔ(t)

)
= zTΔ(t)

(
Δ̂T

I

)T

Ψ

(
Δ̂T

I

)
zΔ(t) � 0,

(
wΔ(t)
zΔ(t)

)T

Υ

(
wΔ(t)
zΔ(t)

)
= zTΔ(t)

(
Δ̂T

I

)T

Υ

(
Δ̂T

I

)
zΔ(t) � 0,

i.e., wΔ(t) = Δ̂TzΔ(t) ∈ WΔ.

For the extended system (4.1), (4.2), we define the γ0, generalized H2, and H∞ norms with
respect to the input wa and output za under all admissible inputs wΔ as

γ̃0 = sup
wΔ(t) ∈ WΔ

ess sup
wa ∈ Gnw

‖za‖P
‖wa‖P ,

γ̃g2 = sup
wΔ(t) ∈ WΔ

sup
wa(t)	=0

supt�0 |za(t)|
‖wa‖ ,

γ̃∞ = sup
wΔ(t) ∈ WΔ

sup
wa(t)	=0

‖za‖
‖wa‖ .

(4.3)

They obviously restrict from above the guaranteed estimates of the corresponding norms of sys-
tem (3.10). In view of the relations between the norms of dual systems (see above), the guaranteed
estimates of the norms of the original uncertain system (3.1) satisfy the inequalities

γ0 � γ̃g2, γg2 � γ̃0, γ∞ � γ̃∞.

The performance indices (4.3) will be below a given value γ if there exists a positive definite
quadratic function V (xa) = xTa Pxa whose increment along the trajectories of (4.1) satisfies the
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following conditions for each norm (similar to conditions (3.5), (3.7), and (3.9) for system (3.2)):

(AT
Θxa + CT

ΔΘwΔ)
TP (AT

Θxa +CT
ΔΘwΔ)− xTa Pxa + |za|2 � 0, CΘPCT

Θ < γ2I;

(AT
Θxa + CT

ΔΘwΔ + CT
Θwa)

TP (AT
Θxa +CT

ΔΘwΔ + CT
Θwa)− xTa Pxa − |wa|2 � 0,(

P ∗
BT γ2I

)
> 0;

(AT
Θxa + CT

ΔΘwΔ + CT
Θwa)

TP (AT
Θxa + CT

ΔΘwΔ + CT
Θwa)− xTa Pxa + |za|2 − γ2|wa|2 < 0

for all xa, wa, and all wΔ ∈ WΔ, i.e., those obeying the constraints (4.2). A sufficient condition
for this is the existence of a matrix P = PT > 0 and nonnegative numbers μ � 0 and ν � 0 such
that, for all xa, wa, and wΔ,

�V + |za|2 −
(

wΔ

zΔ

)T

(μΨ+ νΥ)

(
wΔ

zΔ

)
� 0, CΘPCT

Θ < γ2I;

�V − |wa|2 −
(

wΔ

zΔ

)T

(μΨ+ νΥ)

(
wΔ

zΔ

)
� 0,

(
P ∗
BT γ2I

)
> 0;

�V + |za|2 − γ2|wa|2 −
(

wΔ

zΔ

)T

(μΨ+ νΥ)

(
wΔ

zΔ

)
< 0,

where the increment of the function V (x) in the first inequality is taken along the trajectory of
system (4.1) with wa(t) ≡ 0. We write these inequalities in matrix form and introduce the new
matrix variable Z = ΘP . Then replacing the matrix νΛ with the matrix Λ without notational
change and applying Schur’s complement lemma lead to an important result.

Theorem 4.1. The guaranteed estimates of the γ0, generalized H2, and H∞ norms of the un-
certain system (2.1), (2.2) with the control law u(t) = Θx(t), where Θ = ZP−1, are below γ if the
following LMIs are solvable in P > 0, Z, Λ ∈ Λ, and μ � 0:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P ∗ ∗ ∗ ∗
FA −P − μΨ22 ∗ ∗ ∗
FCΔ

−μΨ12 −μΨ11 − Λ ∗ ∗
FC 0 0 −I ∗
0 ΛηTBT

Δ 0 0 −Λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0,

(
P ∗
BT γ2I

)
> 0; (4.4)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P ∗ ∗ ∗ ∗
FA −P − μΨ22 ∗ ∗ ∗
0 BT −I ∗

FCΔ
−μΨ12 0 −μΨ11 − Λ ∗

0 ΛηTBT
Δ 0 0 −Λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0,

(
P ∗
FC γ2I

)
> 0 (4.5)
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926 KOGAN, STEPANOV

and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P ∗ ∗ ∗ ∗ ∗
FA −P − μΨ22 ∗ ∗ ∗ ∗
0 BT −I ∗ ∗ ∗

FCΔ
−μΨ12 0 −μΨ11 − Λ ∗ ∗

FC 0 0 0 −γ2I ∗
0 ΛηTBT

Δ 0 0 0 −Λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0, (4.6)

where FA = AP +BuZ, FC = CP +DZ, FCΔ
= CΔP +DΔZ, the elements of the matrices Ψ are

given by (2.11), and the matrix η = diag (η1In1 , . . . , ηlInl
) is given by (2.2).

The minimum values of γ2 obtained using this theorem will be denoted by γ2(Δ̂,Θ), where the
arguments are the corresponding system parameter matrix (Δ̂ for the uncertain system and Δ̂(real)

for the real system) and the corresponding feedback parameter matrix (Θ(ab) for the robust control
law based on a priori and experimental data, Θ(a) for the robust control law based on a priori
data only, and Θ(b) for the robust control law based on experimental data only). If only a priori
data are used, then the guaranteed estimates of the norms γ2(Δ̂,Θ(a)) are found by solving these
inequalities with μ = 0; if only experimental data are used, then γ2(Δ̂,Θ(b)) are found by solving
these inequalities with Λ = 0. It is clear that γ2(Δ̂,Θ(ab)) � min{γ2(Δ̂,Θ(a)), γ2(Δ̂,Θ(b))}.

In the case of completely unknown state and control matrices of the system with the matrices
of equation (2.1) given by (2.4) and ΔΔT � η2I, Theorem 4.1 provides the guaranteed estimates
of the corresponding norms for Λ = {λI : λ � 0}.

The inequalities in Theorem 4.1 serve for calculating the parameters of control laws and the
norms in different scenarios by choosing appropriate blocks FA, FC , and FCΔ

and variables Λ
and μ. In the next section, some of these scenarios will be implemented for an illustrative example.
Also, the corresponding blocks FA, FC , and FCΔ

and variables Λ and μ in inequalities (4.4)–(4.6)
will be presented.

5. ILLUSTRATIVE EXAMPLE

Consider the results of several experiments with one system of the form (2.1):

x(t+ 1) =

⎛⎜⎝ 0.3 0.8 −0.3
−0.2 + δ 0.6 + Δ11 −0.1 + Δ12

0.5 −0.2 +Δ21 0.9 + Δ22

⎞⎟⎠x(t) +

⎛⎜⎝ 0.2
1 + δ
0.5

⎞⎟⎠u(t) + w(t),

z(t) =

(
I3
0

)
x(t) +

(
03×1

0.2

)
u(t),

where

BΔ =

⎛⎜⎝ 0 0 0
1 1 0
0 0 1

⎞⎟⎠ , CΔ = I3, DΔ =

⎛⎜⎝ 1
0
0

⎞⎟⎠ , Δ =

(
Δ1 0
0 Δ2

)
,

Δ1 = δ, Δ2 =

(
Δ11 Δ12

Δ21 Δ22

)
, |δ| � 0.12; Δ2Δ

T
2 � 0.19.

1. Based on a priori information only, we calculate the guaranteed estimates of the norms and
parameter matrix of the corresponding robust control laws using the formula Θ(a) = ZP−1 by
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solving inequalities (4.4)–(4.6) with FA = AP +BuZ, FC = CP +DZ, FCΔ
= CΔP +DΔZ,

η = diag (0.12; 0.19I2), μ = 0, and the unknown variable Λ � 0:

γ20(Δ̂,Θ
(a)
0 ) = 12.8095; Θ

(a)
0 = (−0.4356; −0.6420; −0.3125),

γ2g2(Δ̂,Θ
(a)
g2 ) = 10.5935; Θ

(a)
g2 = (−0.8498; −0.7996; −0.6503),

γ2∞(Δ̂,Θ(a)
∞ ) = 49.2653; Θ(a)

∞ = (−1.2373; −0.8204; −0.9710).

Suppose that the real system is described by the uncertain parameters δ(real) = −0.05,

Δ
(real)
11 = 0.2, Δ

(real)
12 = Δ

(real)
21 = 0, and Δ

(real)
22 = −0.1 so that

Δ̂ = Δ̂(real) =

⎛⎜⎝ 0 0 0
−0.05 0.2 0

0 0 −0.1

⎞⎟⎠ , (5.1)

whereas the state and control matrices of the real object are

A(real) = A+ Δ̂(real)CΔ, B(real)
u = Bu + Δ̂(real)DΔ.

Let us calculate the three norms of the closed loop system (the real object with the robust
feedback control with the parameter matrix Θ(a)) by solving inequalities (4.4)–(4.6) with

FA = (A(real) +B(real)
u Θ(a))P, FC = (C +DΘ(a))P, FCΔ

= 0,

Λ = 0, and μ = 0:

γ20(Δ̂
(real),Θ

(a)
0 ) = 4.8319;

γ2g2(Δ̂
(real),Θ

(a)
g2 ) = 5.1373;

γ2∞(Δ̂(real),Θ(a)
∞ ) = 23.5459.

For comparison, here are the optimal values of these norms and parameter matrices of the
optimal feedback control laws for the real system (if it were known), calculated using the for-

mula Θ(real) = ZP−1 by solving inequalities (4.4)–(4.6) with FA = A(real)P +B
(real)
u Z, FC =

CP +DZ, FCΔ
= 0, Λ = 0, and μ = 0:

γ20(Δ̂
(real),Θ

(real)
0 ) = 3.9569; Θ

(real)
0 = (−0.0765; −0.9379; 0.0064),

γ2g2(Δ̂
(real),Θ

(real)
g2 ) = 4.4024; Θ

(real)
g2 = (−0.1369; −0.9249; −0.0741),

γ2∞(Δ̂(real),Θ(real)
∞ ) = 10.4651; Θ(real)

∞ = (−1.2547; −1.3605; −0.3919).

2. Consider the case of no a priori information about the possible range of unknown parameters
of the object: experimental data are used instead. We calculate the guaranteed estimates
of the norms and find the parameter matrices of the suboptimal robust feedback control
laws using the formula Θ(b) = ZP−1 by solving inequalities (4.4)–(4.6) with FA = AP +BuZ,
FC = CP +DZ, FCΔ

= CΔP +DΔZ, Λ = 0, and the unknown variable μ � 0. To obtain
experimental data, we model equation (2.8) with the initial conditions x0 = (9; 5;−7)T under

the uncertainties δ(real) = −0.05, Δ
(real)
11 = 0.2, Δ

(real)
12 = Δ

(real)
21 = 0, and Δ

(real)
22 = −0.1 so

that Δ̂ = Δ̂(real). The components of the control u(t) and disturbance w(t) vectors in the
experiment are chosen as random variables with the uniform distribution on the intervals [−1, 1]
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and [−d, d], respectively, from a random-number generator. For d = 0.1 and N = 100, the
results were as follows:

γ20(Δ̂,Θ
(b)
0 ) = 9.2104; Θ

(b)
0 = (−0.1087; −0.8626; −0.0074),

γ2g2(Δ̂,Θ
(b)
g2 ) = 11.0614; Θ

(b)
g2 = (−0.1745; −1.0321; −0.0257),

γ2∞(Δ̂,Θ(b)
∞ ) = 56.6811; Θ(b)

∞ = (−0.6556; −1.3677; −0.0644).

For the real system with robust feedback control laws with the corresponding parameter ma-
trices Θ(b), solving inequalities (4.4)–(4.6) with

FA = (A(real) +B(real)
u Θ(b))P, FC = (C +DΘ(b))P, FCΔ

= 0,

Λ = 0, and μ = 0 yielded the following values of the norms:

γ20(Δ̂
(real),Θ

(b)
0 ) = 3.9640;

γ2g2(Δ̂
(real),Θ

(b)
g2 ) = 4.4416;

γ2∞(Δ̂(real),Θ(b)
∞ ) = 12.2661.

3. We design the suboptimal robust control law based on a priori information and the same
experimental data for the real system (see above). For this purpose, we calculate the guaran-
teed estimates of the norms and find the parameter matrices of the robust feedback control
laws using the formula Θ(ab) = ZP−1 by solving inequalities (4.4)–(4.6) with FA = AP +BuZ,
FC = CP +DZ, FCΔ

= CΔP +DΔZ, and the unknown variables Λ � 0 and μ � 0:

γ20(Δ̂,Θ
(ab)
0 ) = 8.2265; Θ

(ab)
0 = (−0.1613; −0.7716; −0.0661),

γ2g2(Δ̂,Θ
(ab)
g2 ) = 8.9113; Θ

(ab)
g2 = (−0.4617; −0.8835; −0.2449),

γ2∞(Δ̂,Θ(ab)
∞ ) = 35.2885; Θ(ab)

∞ = (−0.9790; −1.0324; −0.5212).

For the real system with robust feedback control laws with the parameter matrices Θ(ab), the
three norms calculated by solving inequalities (4.4)–(4.6) with

FA = (A(real) +B(real)
u Θ(ab))P, FC = (C +DΘ(ab))P, FCΔ

= 0,

Λ = 0, and μ = 0 took the following values:

γ20(Δ̂
(real),Θ

(ab)
0 ) = 4.0280;

γ2g2(Δ̂
(real),Θ

(ab)
g2 ) = 4.5248;

γ2∞(Δ̂(real),Θ(ab)
∞ ) = 14.3512.

Figures 1–3 show the guaranteed estimates of the γ0, generalized H2, and H∞ norms, respec-
tively, based on a priori information only, experimental data only, and a priori information together
with experimental data, depending on the disturbance level d in the experiment; the lower hori-
zontal lines correspond to the values of these norms for the real object whereas the upper ones to
their values under robust control laws designed from a priori information only. Figure 4 plots the
guaranteed estimate of the H∞ norm obtained by the joint use of a priori information and experi-
mental data with the disturbance level d = 0.05 as a function of the number of measurements N ;
the horizontal lines correspond to the H∞ norm of the real object and the guaranteed estimate of
the H∞ norm obtained using a priori information only.
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Fig. 1. The guaranteed estimates of the γ0 norm as a function of the disturbance level in experimental data
for different types of information used.
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Fig. 2. The guaranteed estimates of the generalized H2 norm as a function of the disturbance level in experi-
mental data for different types of information used.

According to these results, if the disturbance level in the experiment is relatively small, then
the guaranteed estimates of the norms of the closed-loop uncertain system designed using both a
priori and experimental data are much smaller than their counterparts under the robust control
laws designed using only a priori data or only experimental data. For example, the guaranteed
estimates of the H∞ norms of the closed-loop system with control laws designed using only a pri-

ori or only experimental data with the disturbance level d = 0.1 are γ2∞(Δ̂,Θ
(a)
∞ ) = 49.2653 and
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Fig. 3. The guaranteed estimates of the H∞ norm as a function of the disturbance level in experimental data
for different types of information used.
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Fig. 4. The guaranteed estimate of the H∞ norm with a given disturbance level in experimental data depending
on the number of measurements.

γ2∞(Δ̂,Θ
(b)
∞ ) = 56.6811, respectively; when these a priori and experimental data are used together,

the guaranteed estimate of the H∞ norm equals γ2∞(Δ̂,Θ
(ab)
∞ ) = 35.2885. Note the effect of in-

creasing the guaranteed estimates of the norms obtained from experimental data only. This effect
can be explained as follows: the set of admissible models of the object consistent with the ex-
perimental data expands as the disturbance level increases, and the maximum value of the norm
on this set grows accordingly. We emphasize another important feature: the range of disturbance
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levels in which the guaranteed estimate of the norm when using a priori and experimental data
together is smaller than that when using a priori data only depends on the initial conditions and
the chosen controls in the experiment; therefore, this range can be varied and even (apparently)
planned. Furthermore, a large number of measurements are not required to obtain acceptable
results (see Fig. 4).

6. CONCLUSIONS

This paper has proposed a novel design method for suboptimal robust control laws considering
a priori information about the mathematical model of the object and, moreover, experimental data
of modeling the object over a small time interval. When obtaining experimental data, neither
the persistency of excitation (which ensures the identifiability of unknown parameters) nor data
informativity for the corresponding control law is required. In this method, the use of additional
information about the unknown parameters of the object obtained from experimental data signif-
icantly reduces the guaranteed estimates of the γ0, generalized H2, and H∞ norms of the closed
loop system.

APPENDIX

Proof of Lemma 3.1. We write the Lagrange function for this problem and express the optimal
value of its dual function as

min
P0�0,γ2�0

max
Kx�0,Kw�0

[
trCΘKxC

T
Θ + trP0(AΔKxA

T
Δ −Kx +BKwB

T) + γ2(1− trKw)
]

= min
P0�0,γ2�0

max
Kx�0,Kw�0

[
γ2 + trKx(A

T
ΔP0AΔ − P0 +CT

ΘCΘ) + trKw(B
TP0B − γ2I)

]
.

This value is finite under inequalities (3.4); then the maximum is reached at Kx = 0 and Kw = 0.
In this case, the optimal value of the dual problem coincides with λmax(B

TP0B). Since the function
is convex and there exists an interior point satisfying the constraint, the primal and dual problems
have the same optimal value [18].
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