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Abstract—A novel approach is proposed to suppress bounded exogenous disturbances in linear
control systems using a PI controller. The approach is based on reducing the original problem
to a nonconvex matrix optimization problem. A gradient method for finding the controller’s
parameters is derived and its justification is provided. The corresponding recurrence procedure
is rather effective and yields quite satisfactory controllers in terms of engineering performance
criteria. This paper continues a series of the author’s research works devoted to the design of
feedback control laws from an optimization point of view.
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1. INTRODUCTION

The recent paper [1] introduced a novel (optimization-based) approach to the classical problem
of suppressing bounded nonrandom exogenous disturbances. This problem is posed as follows.
Consider a linear control system described by

ẋ = Ax+Bu+Dw, x(0) = x0,

y = C1x,

z = C2x+B1u

with the state vector x(t)∈R
n, the measured output y(t)∈R

l, the controlled output z(t)∈R
r,

the control vector u(t)∈R
p, and a measured disturbance w(t)∈R

m that is bounded at each time
instant t :

|w(t)| � 1 for all t � 0. (1)

It is required to choose a stabilizing state-feedback u = Kx or output-feedback u = Ky control
(if it exists) to reduce the “peak” of the output z(t), i.e., the value maxt |z(t)|.

Within the approach presented in [1], the original problem was reduced to a nonconvex matrix
optimization problem. A gradient method for finding a static state-feedback or output-feedback
control law of the system was developed, and its justification was given.

On the other hand, in [2], an optimization approach going back to [3] was applied to design a PID
controller. The regular approach proposed therein involves solving a nonconvex matrix optimization
problem to find the controller’s parameters. The quality of this controller was evaluated by a
quadratic criterion of the system output: the controller was tuned against the uncertainty in the
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902 KHLEBNIKOV

initial conditions to make the system output uniformly small. As it turned out, the corresponding
recurrence procedure is rather effective and yields controllers that are quite satisfactory in terms
of engineering performance criteria.

This paper continues both of the research lines mentioned above: we design a PI controller for
suppressing bounded exogenous disturbances in linear control systems by solving an optimization
problem.

From this point onwards, the following notations are adopted: | · | is the Euclidean norm of a
vector, ‖ · ‖ is the spectral norm of a matrix, ‖ · ‖F is the Frobenius norm of a matrix, T stands
for the transpose operation, tr means the matrix trace, I is an identity matrix of appropriate
dimensions, and λi(A) are the eigenvalues of a matrix A.

2. PROBLEM STATEMENT. THE METHOD OF INVARIANT ELLIPSOIDS

Consider a linear continuous-time control system described by

ẋ = Ax+ bu+Dw, x(0) = x0,

y = cTx,

z = Cx,

(2)

where A∈R
n×n, b∈R

n, D∈R
n×m, and c∈R

n, C ∈R
r×n, with the state vector x(t)∈R

n, the
observed output y(t)∈R, the controlled output z(t)∈R

r, an exogenous disturbance w(t)∈R
m

that satisfies the constraint (1), and the control vector u(t)∈R in the form of a PI controller

u(t) = −kPy(t)− kI

t∫
0

y(τ)dτ. (3)

The objective is to find the numerical parameters kP and kI of the controller (3) that stabilizes
the closed loop system and suppresses the exogenous disturbances w by minimizing the bounding
ellipsoid for the output z.

Let us conceptually recall the method of invariant ellipsoids; for details, see [4, 5]. Consider a
linear continuous time-invariant dynamic system described by

ẋ = Ax+Dw, x(0) = x0,

z = Cx
(4)

with the state vector x(t)∈R
n, the output z(t)∈R

r, and an exogenous disturbance w(t)∈R
l that

satisfies the constraint (1). Assume that system (4) is stable (i.e., the matrix A is Hurwitz) and
the pair (A,D) is controllable.

An ellipsoid centered at the origin is said to be invariant for system (4) if any of its trajectories
evolving from a point inside the ellipsoid remains in this ellipsoid at any time instant under all
admissible exogenous disturbances of the system.

When evaluating the effect of exogenous disturbances on the system output, it is natural to
consider the minimal ellipsoids containing the system output (in a certain sense). Clearly, if an
ellipsoid

Ex =
{
x∈R

n : xTP−1x � 1
}
, P � 0, (5)

is invariant, then the output of system (4) with x0 ∈Ex belongs to the so-called bounding ellipsoid

Ez =
{
z ∈R

p : zT(CPCT)−1z � 1
}
. (6)
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In the literature, the linear function f(P ) = trCPCT (the sum of the squares of the semi-axes of
the bounding ellipsoid) is often considered a minimality criterion.

The paper [6] established an invariance criterion for ellipsoids in terms of linear matrix inequal-
ities (LMIs). Let us formulate it as follows (see [4]).

Theorem 1. Assume that the matrix A is Hurwitz, the pair (A,D) is controllable, and the matrix
P (α) � 0 satisfies the Lyapunov equation(

A+
α

2
I

)
P + P

(
A+

α

2
I
)T

+
1

α
DDT = 0

on the interval 0 < α < 2σ(A).

Then the minimal bounding ellipsoid is obtained by minimizing the univariate function f(α) =
trCP (α)CT on the interval 0 < α < 2σ(A); if α∗ is the minimum point and x0 satisfies the con-
dition xT0 P

−1(α∗)x0 � 1, then the uniform estimate

|z(t)| �
√
f(α∗), 0 � t < ∞,

holds.

3. SOLUTION APPROACH

Let us introduce an auxiliary scalar variable ξ as follows:

ξ̇ = y, ξ(0) = 0.

With the extended state vector

g =

(
x
ξ

)
∈R

n+1,

system (2) can be written as

ġ =

(
A 0
cT 0

)
g +

(
b
0

)
u+

(
D
0

)
w, g(0) =

(
x0
0

)
,

y =
(
cT 0

)
g.

(7)

According to (2) and (3), we have

u = −kP y(t)− kI

t∫
0

y(τ)dτ = −kP c
Tx− kIξ

= −kP c
Tx− kIξ = −kP

(
cT 0

)
g − kI

(
0 1

)
g.

(8)

The expression (8) with the more convenient notations k1 = kP and k2 = kI takes the form

u = −
(
k1c

T k2
)
g. (9)

Thus, system (7) with the feedback control law (9) is described by

ġ =

(
A− k1bc

T −k2b

cT 0

)
g +

(
D
0

)
w, g(0) =

(
x0
0

)
.
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904 KHLEBNIKOV

It can be represented as

ġ = (A0 + k1A1 + k2A2)g +

(
D
0

)
w, g(0) =

(
x0
0

)
,

where

A0 =

(
A 0
cT 0

)
, A1 =

(
−bcT 0
0 0

)
, A2 =

(
0 −b
0 0

)
.

Following the method of invariant ellipsoids, let the state g of system (7) belong to the invariant
ellipsoid (5) generated by a matrix P ∈ R

(n+1)×(n+1). We will minimize the size of the corresponding
bounding ellipsoid (6) with respect to the output

z = Cx =
(
C 0

)
g.

Due to Theorem 1, the associated problem is to minimize tr(C 0)P (C 0)T subject to the constraint

(
A0 + k1A1 + k2A2 +

α

2
I

)
P + P

(
A0 + k1A1 + k2A2 +

α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0 (10)

with respect to the matrix variables P = PT ∈R
n×n, the scalar variables k1 and k2, and the scalar

parameter α > 0. Given k1, k2, and α, the matrix P is found from equation (10); therefore, the
independent variables are k1, k2, and α.

Consider the vector

k =

(
k1
k2

)
∈R

2

and the value

tr
(
C 0

)
P
(
C 0

)T
+ ρ|k|2, ρ � 1

as the performance criterion. Here, the second component is a control penalty (the coefficient ρ > 0
adjusts its significance) and ensures the coercivity of the objective function in k. (For details, see
Section 5.)

Thus, the original problem (the design of a PI controller to suppress exogenous disturbances)
has been reduced to the matrix optimization problem

min f(k, α), f(k, α) = trP
(
C 0

)T (
C 0

)
+ ρ|k|2 (11)

subject to the constraint (10).

4. OPTIMIZATION OF THE FUNCTION f(α)

Consider the problem
min f(α), f(α) = trPCTC,

subject to the constraint (
A+

α

2
I

)
P + P

(
A+

α

2
I

)T

+
1

α
DDT = 0

with respect to the matrix variable P = PT ∈R
n×n and the scalar parameter α > 0. Assume that

the matrix A is stable (Hurwitz).
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As was shown in [1], minimization with respect to α can be effectively performed using Newton’s
method. Let us choose an initial approximation 0 < α0 < 2σ(A) and apply the iterative process

αj+1 = αj − f ′(αj)

f ′′(αj)
,

where

f ′(α) = trY

(
P − 1

α2
DDT

)
,

f ′′(α) = 2 tr Y

(
X +

1

α3
DDT

)
,

and Y and X are the solutions of the Lyapunov equations(
A+

α

2
I

)T

Y + Y

(
A+

α

2
I

)
+ CTC = 0

and (
A+

α

2
I

)
X +X

(
A+

α

2
I

)T

+ P − 1

α2
DDT = 0,

respectively.

According to [1], the method converges globally (faster than the geometric progression with
a coefficient of 1/2), with quadratic convergence in the neighborhood of the solution. It really
requires at most 3–4 iterations to obtain a solution with high accuracy, unless the initial point is
too close to the limits of the interval (0, 2σ(A)).

Thus, we have an efficient algorithm to perform minimization with respect to α in prob-

lem (11), (10): it suffices to replace the matrix A by A0 + k1A1 + k2A2, the matrix C by
(
C 0

)
,

and the matrix D by

(
D
0

)
.

5. OPTIMIZATION OF THE FUNCTION f(k)

Introducing the convenient notation

{A, k} = k1A1 + k2A2,

we accept the following hypothesis.

Assumption. Let k0 =

(
k01
k02

)
be a known stabilizing controller, i.e., the matrix A0 + {A, k0} is

Hurwitz.

We will investigate the properties of the function

f(k) = min
α

f(k, α).

Lemma 1. The function f(k) is well-defined and positive on the set S of stabilizing controllers.

The proofs of this and all subsequent results are given in Appendix 2.

Note that the set S can be nonconvex and disconnected whereas its boundaries can be nons-
mooth.
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Lemma 2. The function f(k, α) is well-defined on the set of stabilizing feedback control laws k
and for 0 < α < 2σ(A0 + {A, k}). It is differentiable on this set, and the gradient is given by

1

2
∇kf(k, α) =

(
trPYA1

trPYA2

)
+ ρk, (12)

∇αf(k, α) = trY

⎡⎣P − 1

α2

(
D
0

)(
D
0

)T
⎤⎦ , (13)

where the matrices P and Y are the solutions of the Lyapunov equations

(
A0 + {A, k}+ α

2
I

)
P + P

(
A0 + {A, k}+ α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0

and (
A0 + {A, k}+ α

2
I

)T

Y + Y

(
A0 + {A, k}+ α

2
I

)
+
(
C 0

)T (
C 0

)
= 0, (14)

respectively.

The function f(k, α) achieves minimum at an inner point of the admissible set that is determined
by the conditions

∇kf(k, α) = 0, ∇αf(k, α) = 0.

In addition, f(k, α) as a function of α is strictly convex on 0 < α < 2σ(A0 + {A, k}) and achieves
minimum at an inner point of this interval.

The Hessian of the function f(k) has the following properties.

Lemma 3. The function f(k) is twice differentiable, and the action of its Hessian on an arbitrary
vector1 e∈R

2 is given by

1

2

(
∇2

kkf(k)e, e
)
= ρ(e, e) + 2 trP ′Y {A, e}, (15)

where P ′ is the solution of the Lyapunov equation(
A0 + {A, k}+ α

2
I

)
P ′ + P ′

(
A0 + {A, k}+ α

2
I

)T

+ {A, e}P + P{A, e}T = 0. (16)

Remark 1. To obtain simple quantitative estimates in Lemmas 4 and 5 below, we incorporate
the regularizing terms ε1 and ε2 into the optimization problem (11), (10) as follows:

min f(k, α), f(k, α) = trP

((
C 0

)T (
C 0

)
+ ε1I

)
+ ρ|k|2, ε1 � 1

subject to the constraint

(
A0 + {A, k}+ α

2
I

)
P + P

(
A0 + {A, k} + α

2
I

)T

+
1

α

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦ = 0, ε2 � 1. (17)

The requirement of their introduction can be significantly weakened, but the current aim is to
obtain the simplest and most obvious results.

1 In the sense of the second derivative in a direction (the second directional derivative).
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Lemma 4. The function f(k) is coercive on the set S (i.e., tends to infinity on its boundary)
and, moreover,

f(k) � ε1
4σ(A0 + {A, k}) (‖A0 + {A, k}‖+ σ(A0 + {A, k}))‖D‖2F , (18)

f(k) � ρ|k|2.

Corollary 1. The level set

S0 =
{
k ∈S : f(k) � f(k0)

}
is bounded for any controller k0 ∈S.

Corollary 2. There exists a minimum point k∗ on the set S and ∇f(k∗) = 0.

The gradient of the function f(k) is not Lipschitz on the entire set S, but it has this property
on its subset S0. The corresponding result is presented below.

Lemma 5. On the set S0, the gradient of the function f(k) is Lipschitz with the constant

L = ρ+
8
√
2nf2(k0)

ε1ε22

(
‖A0‖+max

i
‖Ai‖

√
2

ρ
f(k0)

)2 (
f2(k0)

ε21
+ 2max

i
‖Ai‖2

)
max ‖Ai‖F . (19)

These properties of the function f(k) and its derivatives allow constructing a minimization
method and justifying its convergence.

6. OPTIMIZATION ALGORITHM

We propose an iterative approach to solve problem (11). This approach is based on the appli-
cation of the gradient method with respect to the variable k and Newton’s method with respect to
the variable α. The algorithm includes several steps as follows.

Algorithm 1 to minimize f(k, α):

1. Choose some values of the parameters ε > 0, γ > 0, 0 < τ < 1, and the initial stabilizing
approximation k0. Calculate α0 = σ(A0 + {A, k0}).

2. On the jth iteration, the values kj and αj are given.

Calculate the matrix A0 + {A, kj}, solve the Lyapunov equations

(
A0 + {A, kj}+ αj

2
I

)
P + P

(
A0 + {A, kj}+ αj

2
I

)T

+
1

αj

(
D
0

)(
D
0

)T

= 0,

(
A0 + {A, kj}+ αj

2
I

)T

Y + Y

(
A0 + {A, kj}+ αj

2
I

)
+
(
C 0

)T (
C 0

)
= 0,

and find the matrices P and Y .

Calculate the gradient

Hj = ∇kf(kj, αj)

from the relation
1

2
∇kf(k, α) =

(
trPYA1

trPYA2

)
+ ρk.

If |Hj| � ε, then take kj as the approximate solution.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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3. Perform the gradient method step:

kj+1 = kj − γjHj.

Adjust the step length γj > 0 by fractionating γ until the following conditions are satisfied:

a. kj+1 is a stabilizing controller.

b. f(kj+1) � f(kj)− τγj |Hj|2.
4. Minimize f(kj+1, α) with respect to α (see Section 4) and find αj+1. Revert to Step 2.

This method converges in the following sense.

Theorem 2. In Algorithm 1, only a finite number of fractions are realized for γj at each iteration,
the function f(kj) is monotonically decreasing, and its gradient vanishes with an exponential rate
(like a geometric progression):

lim
j→∞

|Hj | = 0.

Indeed, Algorithm 1 is well-defined at the initial point since k0 is a stabilizing controller by
the assumption. For sufficiently small γj, the function f(k) monotonically decreases (moves in the
direction of its antigradient); with this step adjustment, the values of kj remain in the domain S0,
where Lemma 5 ensures the Lipschitz property of the gradient. Thus, the gradient method for
unconstrained minimization is convergent [7]. In particular, condition b) at Step 3 of Algorithm 1
will be satisfied after a finite number of fractions, and the gradient method will have gradient
convergence with a linear rate.

Naturally, it is difficult to expect convergence to a global minimum: the domain of definition
of f(k) may even be disconnected.

7. EXAMPLE

Consider an illustrative example from the paper [8]. The transfer function has the form

G(s) =
1

(1 + s)(1 + αs)(1 + α2s)(1 + α3s)
, α = 0.5.

Matlab’s procedure tf2ss gives the following matrices of system (4) in the state space:

A =

⎛⎜⎜⎜⎝
−15 −70 −120 −64
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎠ , c =

⎛⎜⎜⎜⎝
0
0
0
64

⎞⎟⎟⎟⎠ .

Let us choose the matrix

D =

⎛⎜⎜⎜⎝
1 0
0 1
0 0
0 0

⎞⎟⎟⎟⎠
and the controlled output matrix

C =

(
1 0 0 0
0 1 0 0

)
.

We assign ρ = 0.001 and the stabilizing controller

k0 =

(
1.7366
0.7734

)
as an initial one.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



PI CONTROLLER DESIGN FOR SUPPRESSING EXOGENOUS DISTURBANCES 909

0 5 10
Niter

f(
k)

15 20 25
5

6

7

8

9

10

11

12

13

14

15

Fig. 1. Optimization procedure.
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Fig. 2. Bounding ellipses.

The dynamics of the criterion f(k) are demonstrated in Fig. 1. The process terminates with the
PI controller with the gains

k∗ =

(
0.2956
0.3514

)
and the corresponding bounding ellipse with the matrix

P∗ =

(
5.1763 −0.7885
−0.7885 0.5635

)
, trP∗ = 5.7398.

In Fig. 2, the solid line indicates the bounding ellipse and the trajectory of the closed loop
system with the PI controller k∗ under some admissible exogenous disturbance. Here, the dashed
line shows the bounding ellipse for the closed loop system with the dynamic controller (see [4])

u = Kx̂,

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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Fig. 3. The logarithmic amplitude-phase frequency response of the closed loop system.

where x̂ is an observer
˙̂x = Ax̂+ bu+ L(y − cTx̂), x̂(0) = 0

with the matrices

K =
(
−0.5154 −2.6143 −4.3786 −2.4252

)
× 106, L =

⎛⎜⎜⎜⎝
0.0075
−0.0225
−0.0002
0.0189

⎞⎟⎟⎟⎠ .

Finally, the dotted line in Fig. 2 presents the bounding ellipse for the closed loop system with
the linear dynamic controller (see [4])

ẋr = Arxr +Bry, xr(0) = 0,

u = Crxr +Dry

with the matrices

Ar =

⎛⎜⎜⎜⎝
−0.1373 −0.6748 −1.0932 −0.1035
0.0140 0.0688 0.1114 −1.7096
0.0004 0.0019 0.0031 −0.0509
0.0000 0.0000 0.0001 −0.0007

⎞⎟⎟⎟⎠× 105, Br =

⎛⎜⎜⎜⎝
−0.7528
2.7644
0.0821
0.0011

⎞⎟⎟⎟⎠× 103,

Cr =
(
−0.1135 −0.5579 −0.9037 −2.9271

)
× 105, Dr = 3.8176 × 103.

Clearly, the PI controller leads to quite comparable results, being advantageous by simplicity and
convenience of practical implementation. In addition, the PI controller has satisfactory character-
istics.

The transfer function of the PI controller with the coefficients k∗ has the form

GPID(s) = 0.2956 +
0.3514

s
.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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The closed loop system with the PI controller k∗ is stable by the Nyquist criterion; its minimal
gain and phase margins are 20.6 dB and 70.3◦, respectively (Fig. 3).

For comparison, choosing the initial stabilizing controller

k̃0 =

(
0.8882
0.6153

)
,

we obtain the PI controller with the gains

k̃∗ =

(
0.3277
0.3662

)

and the corresponding bounding ellipse with the matrix

P̃∗ =

(
5.0890 −0.7854
−0.7854 0.5721

)
, tr P̃∗ = 5.6611.

The norms of the resulting controllers differ by 6.5% only whereas the bounding ellipses by less
than 1.5% (in terms of the trace criterion).

All the calculations were carried out in Matlab using CVX [9], a free package.

8. DISCUSSION

This paper has proposed a novel approach to designing a PI controller that optimally suppresses
bounded exogenous disturbances in a linear control system. The approach is based on reducing
the original problem to a nonconvex matrix optimization problem, which is further solved by the
gradient method. Its justification has been provided as well.

Note that Theorem 2 establishes the convergence of this method only in the norm of the gradient
of the objective function. However, according to numerical simulations, the method yields quite
satisfactory PI controllers from an engineering point of view. At the same time, it seems important
to consider meaningful particular formulations of the problem where the function f(k) satisfies on
the level set S0 the Polyak– �Lojasiewicz condition [7]

1

2
|∇f(k)|2 � μ (f(k)− f(k∗))

with a constant μ > 0 depending only on k0 and the parameters of system (2). In this case, one
could also speak of strong pointwise convergence, similar to what was shown in [3] for the linear
quadratic problem with state-feedback control.

Finally, it would be interesting to extend this approach to the design of PID controllers, which
will be the subject of subsequent publications.

APPENDIX A

The lemmas below contain well-known results necessary for the further presentation.

Lemma A.1 [1]. Let X and Y be the solutions of the dual Lyapunov equations with a Hurwitz
matrix A:

ATX +XA+W = 0 and AY + Y AT + V = 0.

Then
tr (XV ) = tr (YW ).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023
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Lemma A.2 [10].

1. Matrices A and B of compatible dimensions satisfy the relations

‖AB‖F � ‖A‖F ‖B‖,
| trAB| � ‖A‖F ‖B‖F ,

‖A‖ � ‖A‖F ,
AB +BTAT � εAAT +

1

ε
BTB for any ε > 0.

2. Nonnegative definite matrices A and B satisfy the relations

0 � λmin(A)λmax(B) � λmin(A) trB � trAB � λmax(A) trB � trA trB.

Lemma A.3 [1]. The solution P of the Lyapunov equation

AP + PAT +Q = 0

with a Hurwitz matrix A and Q � 0 obey the bounds

λmax(P ) � λmin(Q)

2σ
, λmin(P ) � λmin(Q)

2‖A‖ ,

where σ = −max
i

Reλi(A).

If Q = DDT and the pair (A,D) is controllable, then

λmax(P ) � ‖u∗D‖2
2σ

> 0,

where

u∗A = λu∗, Reλ = −σ, ‖u‖ = 1,

i.e., u is the left eigenvector of the matrix A corresponding to the eigenvalue λ of the matrix A with
the greatest real part. The vector u and the number λ can be complex-valued; here, u∗ denotes the
Hermitian conjugate.

APPENDIX B

Proof of Lemma 1. Indeed, if the matrix A0 + {A, k} is Hurwitz, then σ(A0 + {A, k}) > 0 and
there exists the solution P � 0 of the Lyapunov equation (10) for 0 < α < 2σ(A0 + {A, k}). Thus,
the function f(k, α) > 0 is well-defined and f(k) > 0 by Theorem 1. The proof of Lemma 1 is
complete.

Proof of Lemma 2. The optimization problem has the form

min f(k, α), f(k, α) = trP
(
C 0

)T (
C 0

)
+ ρ|k|2

subject to the constraint described by the Lyapunov equation

(
A0 + {A, k}+ α

2
I

)
P + P

(
A0 + {A, k}+ α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0.
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To differentiate with respect to k, we add the increment Δk and denote the corresponding
increment of P by ΔP : (

A0 + {A, k +Δk}+ α

2
I

)
(P +ΔP )

+ (P +ΔP )

(
A0 + {A, k +Δk}+ α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0.

Let us apply linearization and subtract this and the previous equations to obtain(
A0 + {A, k}+ α

2
I

)
ΔP +ΔP

(
A0 + {A, k} + α

2
I

)T

+ {A,Δk}P + P{A,Δk}T = 0.

(B.1)

The increment of f(k) is calculated by linearizing the corresponding terms:

Δf(k) = tr (P +ΔP )
(
C 0

)T (
C 0

)
+ ρ|k +Δk|2

−
(
trP

(
C 0

)T (
C 0

)
+ ρ|k|2

)
= trΔP

(
C 0

)T (
C 0

)
+ 2ρkTΔk.

Consider equation (14), dual to (B.1). Due to Lemma A.1, from equations (B.1) and (14) it
follows that

Δf(k) = 2 tr Y {A,Δk}P + 2ρkTΔk.

Thus,

df(k) = 2 trPY
2∑

i=1

Aidki + 2ρ
2∑

i=1

kidki,

which leads to (12).

The validity of (13) is demonstrated by analogy with [1, Lemma 1]. The proof of Lemma 2 is
complete.

Proof of Lemma 3. The value
(∇2

kkf(k)e, e
)
is calculated by differentiating ∇kf(k) in the

direction e∈R
2. For this purpose, linearizing the corresponding terms and using the convenient

notation

[ trPYA] =

(
trPYA1

trPYA2

)
,

we calculate the increment of ∇kf(k) in the direction e:

1

2
Δ∇kf(k)e = ρ(k + δe) + [ tr (P +ΔP )(Y +ΔY )A]− (ρk + [ trPYA])

= ρ(k + δe) +
[
tr

(
P + δP ′(k)e

) (
Y + δY ′(k)e

)A]− (ρk + [ trPYA])

= δ
(
ρe+

[
tr

(
PY ′(k)e+ P ′(k)eY

)A])
,

where

ΔP = P (k + δe) − P (k) = δP ′(k)e,
ΔY = Y (k + δe) − Y (k) = δY ′(k)e.
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Thus, with P ′ = P ′(k)e and Y ′ = Y ′(k)e, we have

1

2

(
∇2

kkf(k)e, e
)
=

(
ρe+ [ tr (PY ′ + P ′Y )A], e

)
.

Furthermore, P = P (k) is the solution of equation (17). We write it in increments in the
direction e : (

A0 + {A, k + δe}+ α

2
I

)
(P + δP ′)

+ (P + δP ′)
(
A0 + {A, k + δe} + α

2
I

)T

+
1

α

(
D
0

)(
D
0

)T

= 0

or (
A0 + {A, k}+ α

2
I

)
(P + δP ′) + (P + δP ′)

(
A0 + {A, k}+ α

2
I

)T

+ δ
(
{A, e}P + P{A, e}T

)
+

1

α

(
D
0

)(
D
0

)T

= 0.

Subtracting equation (17) from this expression gives equation (16).

Similarly, Y = Y (k) is the solution of the Lyapunov equation (14). We write it in increments in
the direction e : (

A0 + {A, k + δe}+ α

2
I

)T

(Y + δY ′)

+ (Y + δY ′)
(
A0 + {A, k + δe} + α

2
I

)
+
(
C 0

)T (
C 0

)
= 0,

or (
A0 + {A, k} + α

2
I

)T

(Y + δY ′) + (Y + δY ′)
(
A0 + {A, k + δe} + α

2
I

)
+ δ

(
{A, e}TY + Y {A, e}

)
+
(
C 0

)T (
C 0

)
= 0.

Subtracting equation (14) from this expression yields(
A0 + {A, k}+ α

2
I

)T

Y ′ + Y ′
(
A0 + {A, k}+ α

2
I

)
+ {A, e}TY + Y {A, e} = 0. (B.2)

From (16) and (B.2) it follows that

trP ′Y {A, e} = trPY ′{A, e},
so

1

2

(
∇2

kkf(k)e, e
)
= ρ(e, e) +

(
[ tr (PY ′ + P ′Y )A], e

)
= ρ(e, e) + 2 trP ′Y {A, e}.

The proof of Lemma 3 is complete.

Proof of Lemma 4. Consider a sequence of stabilizing controllers {kj}∈S such that kj → k∈ ∂S,
i.e., σ (A0 + {A, k}) = 0. In other words, for any ε > 0 there exists a number N = N(ε) such that

|σ (A0 + {A, kj})− σ (A0 + {A, k}) | = σ (A0 + {A, kj}) < ε

for all j � N(ε).
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Let Pj be the solution of the Lyapunov equation (10) associated with the controller kj :(
A0+{A, kj}+ αj

2
I

)
Pj +Pj

(
A0+{A, kj}+αj

2
I

)T
+

1

αj

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦= 0.

Also, let Yj be the solution of the dual Lyapunov equation(
A0+{A, kj}+αj

2
I

)T

Yj +Yj

(
A0+{A, kj}+ αj

2
I

)
+
(
C 0

)T(
C 0

)
+ ε1I = 0.

Using Lemma A.3, we have

f(kj) = trPj

((
C 0

)T (
C 0

)
+ ε1I

)
+ ρ|kj |2 � trPj

((
C 0

)T (
C 0

)
+ ε1I

)

= trYj
1

αj

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦ � 1

αj
λmin(Yj) tr

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦

� 1

αj
λmin(Yj)

∥∥∥∥∥
(
D
0

)∥∥∥∥∥
2

F

� 1

αj

λmin

((
C 0

)T (
C 0

)
+ ε1I

)
2
∥∥A0 + {A, kj}+ αj

2 I
∥∥ ‖D‖2F

� ε1
4σ (A0 + {A, kj})

∥∥A0 + {A, kj}+ αj

2 I
∥∥‖D‖2F

� ε1
4ε (‖A0 + {A, kj}‖+ ε)

‖D‖2F −−→
ε→0

+∞

since
0 < αj < 2σ (A0 + {A, kj})

and ∥∥∥∥A0 + {A, kj}+ αj

2
I

∥∥∥∥ � ‖A0 + {A, kj}‖+ αj

2
< ‖A0 + {A, kj}‖ + σ (A0 + {A, kj}) .

On the other hand,

f(kj) = trPj

((
C 0

)T (
C 0

)
+ ε1I

)
+ ρ|kj |2 � ρ|kj |2 −−−−−−→|kj |→+∞

+∞.

The proof of Lemma 4 is complete.

Proof of Corollary 2. The function f(k) has a minimum point on the set S0 (as a continuous
function on a compact set), but the set S0 shares no points with the boundary S due to (18). Finally,
the function f(k) is differentiable on S0 by Lemma 2, which concludes the proof of Corollary 2.

Proof of Lemma 5. Applying Lemma A.2 to (15) gives

1

2
‖∇2

kkf(k)‖ =
1

2
sup
|e|=1

|
(
∇2

kkf(k)e, e
)
| � sup

|e|=1
ρ(e, e) + 2 sup

|e|=1
| trP ′Y {A, e}|

= ρ+ 2 sup
|e|=1

‖P ′‖F ‖Y {A, e}‖F � ρ+ 2‖P ′‖F sup
|e|=1

‖Y ‖‖{A, e}‖F

� ρ+ 2
√
2‖P ′‖F ‖Y ‖max

i
‖Ai‖F

since

‖{A, e}‖F =

∥∥∥∥∥∑
i

Aiei

∥∥∥∥∥
F

�
∑
i

‖Ai‖F |ei| � max
i

‖Ai‖F |e|1 �
√
2max

i
‖Ai‖F |e|.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 8 2023



916 KHLEBNIKOV

Thus, it is necessary to estimate from above the value

ρ+ 2
√
2max

i
‖Ai‖F ‖P ′‖F ‖Y ‖.

For ‖Y ‖ we have the upper bound

ε2
α
‖Y ‖ � 1

α
λmin

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦ trY � tr Y
1

α

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦
= trP

((
C 0

)T (
C 0

)
+ ε1I

)
= f(k)− ρ|k|2 � f(k) � f(k0),

and consequently,

‖Y ‖ � α

ε2
f(k0). (B.3)

An upper bound for α is established as follows:

α < 2σ (A0 + {A, k}) � 2 ‖A0 + {A, k}‖

� 2

(
‖A0‖+

∑
i

‖Ai‖|ki|
)

� 2

(
‖A0‖+max

i
‖Ai‖|k|1

)

� 2

(
‖A0‖+max

i
‖Ai‖

√
2|k|

)
� 2

(
‖A0‖+max

i
‖Ai‖

√
2

ρ
f(k)

)

� 2

(
‖A0‖+max

i
‖Ai‖

√
2

ρ
f(k0)

)
,

so

‖Y ‖ � 2

ε2

(
‖A0‖+max

i
‖Ai‖

√
2

ρ
f(k0)

)
f(k0).

Now, let us estimate ‖P‖ from above:

ε1‖P‖ � λmin

((
C 0

)T (
C 0

)
+ ε1I

)
‖P‖

� trP

((
C 0

)T (
C 0

)
+ ε1I

)
= f(k)− ρ|k|2 � f(k) � f(k0),

which yields

‖P‖ � f(k0)

ε1
.

It remains to estimate from above the value ‖P ′‖F . In view of Lemma A.2,

λmax

(
{A, e}P + P{A, e}T

)
=

∥∥∥{A, e}P + P{A, e}T
∥∥∥ �

∥∥∥P 2 + {A, e}{A, e}T
∥∥∥

� ‖P‖2 + ‖{A, e}‖2 � f2(k0)

ε21
+ 2max

i
‖Ai‖2 � ξ

ε2
α

� ξ
1

α
λmin

⎡⎣(D
0

)(
D
0

)T

+ ε2I

⎤⎦
for

ξ =
α

ε2

(
f2(k0)

ε21
+ 2max

i
‖Ai‖2

)
.
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Therefore, the solution P ′ of the Lyapunov equation (16) satisfies the inequality

P ′ � ξP � α

ε2

(
f2(k0)

ε21
+ 2max

i
‖Ai‖2

)
f(k0)

ε1
I

� 2f(k0)

ε1ε2

(
‖A0‖+max

i
‖Ai‖

√
2

ρ
f(k0)

)(
f2(k0)

ε21
+ 2max

i
‖Ai‖2

)
I.

Hence, it follows that

‖P ′‖F � 2
√
nf(k0)

ε1ε2

(
‖A0‖+max

i
‖Ai‖

√
2

ρ
f(k0)

)(
f2(k0)

ε21
+ 2max

i
‖Ai‖2

)
. (B.4)

Considering the bounds (B.3) and (B.4), we arrive at the relation (19). The proof of Lemma 5
is complete.
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