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Abstract—This paper considers a single-server queueing system with an incoming Markovian
Arrival Process (MAP) request flow with two states. Explicit expressions are derived for the
stationary probability distribution of the states and several numerical characteristics of the
system (the probability of idle time of the server, the expected number of requests in the
system, and the mean queue length). The resulting numerical characteristics are presented in
tables and plotted in graphical form as well. The recurrent MAP flow with two states as a
special case of correlated MAP request flows is studied.
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1. INTRODUCTION

Mathematical models of queueing systems and networks (QSs, QNs) adequately describe the
behavior of real physical, technical, economic, and other objects and systems. Therefore, they
have become widespread in the scientific community. A basic element of QSs and QNs are random
incoming request flows. Almost throughout the 20th century, research on QSs and QNs was based
on the assumption of the uncorrelated nature of incoming request flows. In other words, the
simplest request flows—stationary Poisson ones—were considered. However, at the end of the
century, the stationary Poisson flow model lost its adequacy to real information request flows in
telecommunication networks and systems, wireless and mobile communication networks due to their
intensive development.

The rapid change of digital technologies ensured the penetration of digital networks into all
spheres of human activity. It would be impossible without the use and development of mathemat-
ical modeling methods and algorithms for network technologies. Since the end of the 20th century,
intensive research in modern queueing theory has been dealing with queueing systems with corre-
lated flows (systems with doubly stochastic flows). The emergence of doubly stochastic event flows,
a new mathematical model with the most adequate description of the correlated nature of real
information flows, was motivated by the practical studies of modern telecommunication networks
with essentially nonstationary and correlated heterogeneous information flows.

Doubly stochastic flows are characterized by two stochastics: requests in the flow arrive at
random time instants (the first stochastics), and the flow intensity (the accompanying process) is a
random process (the second stochastics). There are two types of doubly stochastic flows depending
on their accompanying process (intensity): the ones with a continuous random process [1, 2] and
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764 GORTSEV, NEZHELSKAYA

the ones with a piecewise constant random process with a finite (arbitrary) number of states. The
studies of second-type flows were first presented almost simultaneously in 1979 in the papers [3–5].
In [3, 4], these flows were called Markov Chain (MC) flows; in [5], Markov Versatile Process (MVP)
flows. In [6, 7], the above flows were termed Markovian Arrival Process (MAP) flows. Their main
property is correlation. Note that MAP (MC) flows are the most appropriate mathematical model
of correlated request flows in real telecommunication systems and networks [8].

The monograph [8], unique in the world literature, systematically presented QSs and QNs with
correlated flows. As was emphasized in [8], the analytical investigation of QSs and QNs with
correlated flows is a rather difficult process; finding the explicit-form characteristics of QSs and
QNs is a nontrivial problem, sometimes unsolvable.

In this paper, we analytically investigate a single-server QS with waiting, the classical incoming
MAP request flow with two states [6, 7], and exponential service.

For the stationary operation mode of this QS, explicit analytical formulas are derived for the
probability of idle time of the server, the mean queue length, and the expected number of requests
in the system.

Note that QSs and QNs with incoming MAP request flows have been analyzed since the 1990s.
In particular, the states and parameters of an MAP request flow under perfect and incomplete
observability conditions (in the presence of dead time) were estimated by the authors. In this
regard, we refer to some publications [9–14].

In addition, the system under consideration differs from the systems operating in a synchronous
random environment: in such an environment, synchronous flows are considered in which the state
of the control process (accompanying process) changes at random time instants (the instants of
events occurrence). Thus, a synchronous random environment always assumes a nonzero probability
for changing the states of the control process at the instant of events occurrence in the synchronous
flow. In an MAP flow, in contrast, a flow event not necessarily occurs at the instant of changing
the state of the control process. (If the probability of event occurrence is always 1, we have a
synchronous flow.) Thus, the mathematical model of a random environment considered below
generalizes the mathematical model of a synchronous random environment, which is the novelty of
this study.

The evolution from the simplest flow to modern mathematical models of information flows in
telecommunication systems and networks (to the models of correlated flows, particularly MAP
flows) can be traced in the monograph [8]. In addition, it provides an extensive bibliography on
QSs and QNs. Among the recent works on this subject, let us mention the paper [15]. Note that
numerical analysis is a common feature of research on QSs and QNs with an incoming MAP request
flow. This paper continues the investigations initiated in [16].

2. MATHEMATICAL MODEL OF THE SYSTEM.
PROBLEM STATEMENT

Consider a single-server QS with waiting. The server receives an incoming MAP flow of events
(requests, messages, etc.) whose accompanying process λ(t) is a piecewise constant random process
with two states S1 and S2. If λ(t) = λi, then the process λ(t) (flow) has the ith state (Si), i = 1, 2;
λ1 > λ2 > 0. The sojourn time of the process λ(t) in the state Si is a random variable with the
exponential distribution function Fi(t) = 1− exp{−λit}, t � 0, i = 1, 2.

When the ith state of the flow (process λ(t)) ends, the following instantaneous changes in the
system state are possible:

1) A flow event occurs, and the process λ(t) passes from the state Si to the state Sj; the joint
probability of this situation is P1(λj |λi), i, j = 1, 2.
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2) No flow event occurs, and the process λ(t) passes from the state Si to the state Sj; the joint
probability of this situation is P0(λj |λi), i, j = 1, 2 (i �= j).

Note that P0(λj |λi) + P1(λj |λi) + P1(λi|λi) = 1, i, j = 1, 2 (i �= j). Here, the occurrence (non-
occurrence) of an event in the state Si is primary, i.e., it precedes the transition from the flow
state Si to the flow state Sj with the probability P1(λj |λi) (the transition from the flow state Si
to the flow state Sj with the probability P0(λj |λi), respectively).

Let the QS operate in a stationary mode. Under the assumptions made, λ(t) is the accompanying
stationary, piecewise constant, and transitive Markov process with the two states S1 and S2. If
the process λ(t) is in the state Si, then the request is served in a time τ � 0 with the exponential
distribution law F (i)(τ) = 1− exp{−μiτ} with the intensity μi (μi > 0), i = 1, 2.

Remark 1. For an MAP flow, the accompanying random process λ(t) does not coincide with the
flow intensity: in the states S1 and S2, the flow intensity takes the values λ1[1− P0(λ2|λ1)] and
λ2[1− P0(λ1|λ2)], respectively. Then the mean intensity of this flow is [17]

λ = λ1[1− P0(λ2|λ1)]π1 + λ2[1− P0(λ1|λ2)]π2,

π1 =
λ2[1− P1(λ2|λ2)]

λ1[1− P1(λ1|λ1)] + λ2[1− P1(λ2|λ2)] ,

π2 =
λ1[1− P1(λ1|λ1)]

λ1[1− P1(λ1|λ1)] + λ2[1− P1(λ2|λ2)] ,

(1)

where π1 and π2 denote the prior probabilities of the states S1 and S2 of the process λ(t) (flow),
respectively, in the stationary mode.

Let τk = tk+1 − tk, k = 1, 2, . . . , be the duration of the kth interval between the arrival time
instants tk and tk+1 of flow requests (τk � 0). Due to the stationary mode, the probability density
of the durations is p(τk) = p(τ), τ � 0, for any k � 1. Then, without loss of generality, tk can be
supposed 0, i.e., a request arrives at the time instant τ = 0. The following explicit formula for the
probability density p(τ) was derived in [11]:

p(τ) = γz1e
−z1τ + (1− γ)z2e

−z2τ , τ � 0,

γ = {z2 − λ1π1(0)[1 − P0(λ2|λ1)]− λ2π2(0)[1 − P0(λ1|λ2)]} (z2 − z1)
−1,

z1,2 =

[
(λ1 + λ2)∓

√
(λ1 − λ2)2 + 4λ1λ2P0(λ1|λ2)P0(λ2|λ1)

]
/2,

π1(0) =
P1(λ1|λ2) + P1(λ1|λ1)P0(λ1|λ2)

P1(λ1|λ2) + P1(λ2|λ1) + P1(λ1|λ1)P0(λ1|λ2) + P1(λ2|λ2)P0(λ2|λ1) ,

π2(0) = 1− π1(0).

(2)

In (2), πi(0) is the stationary probability that the process λ(τ) has the state Si, i = 1, 2, at the
time instant τ = 0 (the arrival of an MAP flow request); z1 and z2 are the roots of the characteristic
equation z2 − (λ1 + λ2)z + λ1λ2[1− P0(λ1|λ2)P0(λ2|λ1)] = 0, where 0 < z1 < z2 due to (2); γ is a
value that depends on the flow parameters.

Consider two adjacent intervals (tk, tk+1) and (tk+1, tk+2) with the durations τk = tk+1 − tk and
τk+1 = tk+2 − tk+1, respectively. Since the flow is stationary, they are located arbitrarily on the
time axis. Letting k = 1, we study two intervals (t1, t2) and (t2, t3) with the durations τ1 = t2 − t1
and τ2 = t3 − t2, respectively, where τ1 � 0 and τ2 � 0. In this case, τ1 = 0 corresponds to the
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Fig. 1. The stochastic state transition graph for the process λ(t).

arrival time instant t1 of a flow request and τ2 = 0 to the arrival time instant t2 of the next flow
request. The joint probability density has the form [11, 13]

p(τ1, τ2) = p(τ1)p(τ2) + γ(1− γ)
P1(λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1)

1− P0(λ1|λ2)P0(λ2|λ1)
× (z1e−z1τ1 − z2e

−z2τ1) (z1e−z1τ2 − z2e
−z2τ2) , τ1 � 0, τ2 � 0,

(3)

where z1, z2, and p(τk) are given by (2) for τ = τk, k = 1, 2.

According to (3), an MAP flow is generally a correlated flow; it turns recurrent or degenerates
into elementary only in special cases.

Special case 1: P1(λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1) = 0, a recurrent MAP request flow with
two states. In this case, p(τ) is given by (2), where γ = [z2 − λ1P1(λ1|λ1)− λ2P1(λ2|λ2)](z2 − z1)

−1.

From (3) it follows that p(τ1, τ2) = p(τ1)p(τ2). Since the arrival time instants t1, . . . , tk in the flow
induce a nested Markov chain {λ(tk)}, for an arbitrary number k, k � 2, we have p(τ1, . . . , τk) =
p(τ1) . . . p(τk).

The product γ(1− γ) in (3) can be represented as

γ(1 − γ) =
z1z2

(z2 − z1)2
{λ1[1− P0(λ2|λ1)]− λ2[1− P0(λ1|λ2)]}

× {π1(0)λ1[1− P1(λ1|λ1)]− π2(0)λ2[1− P1(λ2|λ2)]} (4)

× {λ1λ2[1− P0(λ2|λ1)][1 − P1(λ2|λ2)] + λ1λ2[1− P0(λ1|λ2)][1− P1(λ1|λ1)]}−1.

The expression (4) implies special cases 2 and 3; see below.

Special case 2: λ1[1− P0(λ2|λ1)]− λ2[1− P0(λ1|λ2)] = 0, an elementary flow with a parame-
ter z1. From (2) it follows that z1 = λ1[1− P0(λ2|λ1)], γ = 1; p(τ) = z1e

−z1τ , τ � 0.

Special case 3: π1(0)λ1[1− P1(λ1|λ1)]− π2(0)λ2[1− P1(λ2|λ2)] = 0, an elementary flow with
a parameter z1. From (2) it follows that z1 = λ2[P1(λ2|λ1) + P1(λ2|λ2)P0(λ2|λ1)], γ = 1; p(τ) =
z1e

−z1τ , τ � 0.

The problem is to find an explicit analytical form of the numerical characteristics of this QS:

(a) the probability of idle time of the server,

(b) the mean queue length,

(c) the expected number of requests in the system.

Let i(t) be the number of requests in the queue at an arbitrary time instant t (i(t) = 0, 1, . . .).
Since the incoming MAP flow is correlated, the random process i(t) is not Markovian. To con-
struct a Markov process, it is necessary to consider the state of the incoming MAP flow. For this
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purpose, we introduce an additional variable j(t), i.e., the state of the incoming MAP flow (the
state of the accompanying process λ(t) at an arbitrary time instant t), j(t) = 1, 2. If j(t) = 1, then
λ(t) = λ1; if j(t) = 2, then λ(t) = λ2, which ensures the Markov property of the two-dimensional
process (i(t), j(t)).

Remark 2. Because the intensity of the server in the state Sj is μj (μj > 0), j = 1, 2, the com-
ponent j(t) of the two-dimensional Markov process (i(t), j(t)) must be observable in the same way
as the component i(t) is. Then the accompanying process λ(t), generally unobservable, must be
treated as an observable process that controls the change of states in the MAP request flow.

Since the stationary operation mode is considered, the system state will be denoted by (i, j),
i = 0, 1, . . . , j = 1, 2. There are two more possible states, (−1, 1) and (−1, 2); in these states, the
system receives no requests (the queue length is zero and the server is idle).

Under the prerequisites above, the mathematical model of the QS under study can be represented
as a connected stochastic graph [18]; see Fig. 1. Here, the vertices reflect the states of the QS; each
arc corresponds to infinitesimal characteristics (state transition intensities), without loops in each
state; each vertex (each state) is reachable and recurrent.

3. DERIVATION OF NUMERICAL CHARACTERISTICS OF THE SYSTEM

We denote by P (i, 1) and P (i, 2) the stationary (final) probabilities of the system states (i =
−1, 0, . . .). The stochastic graph cutsets Gi1 = {(i− 1, 1; i, 1), (i, 1; i − 1, 1), (i, 1; i + 1, 1),
(i+ 1, 1; i, 1), (i, 1; i, 2), (i, 2; i, 1), (i − 1, 2; i, 1), (i, 1; i + 1, 2)}, Gi2 = {(i − 1, 2; i, 2), (i, 2; i − 1, 2),
(i, 2; i + 1, 2), (i + 1, 2; i, 2), (i, 2; i, 1), (i, 1; i, 2), (i − 1, 1; i, 2), (i, 2; i + 1, 1)}, i = 0, 1, . . . , satisfy
the following infinite system of difference equations with constant coefficients:

μ1P (i+ 1, 1) − (λ1 + μ1)P (i, 1) + λ1P1(λ1|λ1)P (i− 1, 1)

+ λ2P0(λ1|λ2)P (i, 2) + λ2P1(λ1|λ2)P (i− 1, 2) = 0,

μ2P (i+ 1, 2) − (λ2 + μ2)P (i, 2) + λ2P1(λ2|λ2)P (i− 1, 2)

+ λ1P0(λ2|λ1)P (i, 1) + λ1P1(λ2|λ1)P (i− 1, 1) = 0, i = 0, 1, . . . .

(5)

The solution of system (5) is found in the form P (i, 1) = ξi, P (i, 2) = Cξi (i = 0, 1, . . .). The
characteristic equation for (5) is

(ξ − 1)
{
μ1μ2ξ

3 − [λ1μ2 + μ1(λ2 + μ2)]ξ
2

+ [λ1λ2 + λ1μ2P1(λ1|λ1) + λ2μ1P1(λ2|λ2)− λ1λ2P0(λ1|λ2)P0(λ2|λ1)]ξ
− λ1λ2[P (λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1)]

}
= 0.

(6)

Consider conditions for the existence of the stationary operation mode of the QS (the existence
of the probabilities P (i, 1) and P (i, 2), i = −1, 0, . . .). The random variable τ , the duration of the
time interval between sequential events in the MAP request flow, has the expectation

E(τ ) =

∞∫
0

τp(τ)dτ, (7)

where the density p(τ) is given by (2). Substituting this function into (7) yields E(τ ) =
[γz2 + (1− γ)z1]/z1z2. Then the expected number of requests in the incoming correlated MAP flow
per unit time can be written as λ = 1/E(τ ) = λ1[1− P0(λ2|λ1)]π1 + λ2[1− P0(λ1|λ2)]π2, which
coincides with (1). On the other hand, the expected number of requests served per unit time is
μ = μ1π1 + μ2π2.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023
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Consider a situation where λ = μ, or (μ1−λ1[1−P0(λ2|λ1)])π1+(μ2−λ2[1−P0(λ1|λ2)])π2 = 0.
Hence, this expression vanishes only if μ1 = λ1[1− P0(λ2|λ1)], μ2 = λ2[1− P0(λ1|λ2)]. Substituting
these formulas for μ1 and μ2 into (6), we obtain the characteristic equation

λ1λ2(ξ − 1)2
{
[1− P0(λ1|λ2)][1− P0(λ2|λ1)]ξ2 − [2− P0(λ1|λ2)− P0(λ2|λ1)]ξ

+ [P1(λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1)]
}
= 0.

(8)

Since Eq. (8) has multiple roots, the general solution of system (5) with μ1 = λ1[1− P0(λ2|λ1)]
and μ2 = λ2[1− P0(λ1|λ2)] takes the form

P (i, 1) = D1ξ
i
1 +D2iξ

i
2 +D3ξ

i
3 +D4ξ

i
4,

P (i, 2) = B1D1ξ
i
1 +B2D2iξ

i
2 +B3D3ξ

i
3 +B4D4ξ

i
4, i = 0, 1, . . . .

(9)

In (9), Ps(i, 1) = Dsξ
i
s and Ps(i, 2) = BsDsξ

i
s, s = 1, 4, are partial solutions of system (5); their

constants Bs and Ds are determined from the boundary conditions, ξ1 = ξ2 = 1, and

ξ3,4 =

{
[2− P0(λ1|λ2)− P0(λ2|λ1)]

∓
(
[2− P0(λ1|λ2)− P0(λ2|λ1)]2 − 4[1− P0(λ1|λ2)][1− P0(λ2|λ1)]b

) 1
2

}
×
{
2[1− P0(λ1|λ2)][1− P0(λ2|λ1)]

}−1
,

b = P1(λ1|λ1)P1(λ2|λ2)− P1(λ1|λ2)P1(λ2|λ1).

(10)

Here, three cases are possible: b > 0, b < 0, and b = 0.

The case b > 0. From (10) it follows that 0 < ξ3 < 1 < ξ4. Since P (i, 1) and P (i, 2) are proba-
bilities, they must satisfy the normalization condition

∞∑
i=−1

P (i, 1) +
∞∑

i=−1

P (i, 2) = 1.

A necessary condition for this equality is the limit relations limP (i, 1) = 0 and limP (i, 2) = 0 as

i→ ∞. Otherwise, the series
∞∑

i=−1
P (i, 1) and

∞∑
i=−1

P (i, 2) will diverge. In view of the aforesaid, the

general solution (9) with D1 = D2 = D4 = 0 takes the form

P (i, 1) = D3ξ
i
3, P (i, 2) = B3D3ξ

i
3, i = 0, 1, . . . . (11)

We find the constant B3. Substituting (11) into the first equation of system (5) with μ1 =
λ1[1− P0(λ2|λ1)] and μ2 = λ2[1− P0(λ1|λ2)] gives B3 < 0 after nontrivial transformations.
Then (11) implies D3 < 0. The inequality D3 < 0 leads to a contradiction: P (i, 1) < 0, i � 0;
P (i, 2) > 0, i � 0. Letting D3 = 0 yields P (i, 1) = P (i, 2) = 0, i � 0; in other words, the contradic-
tion is eliminated. Therefore, the final distribution P (i, 1), P (i, 2), i � 0, does not exist for λ = μ
and, a fortiori, for λ > μ.

We analyze the situation λ < μ. Due to (6), the general solution of system (5) takes the form

P (i, 1) = A1ξ
i
1 +A2ξ

i
2 +A3ξ

i
3 +A4ξ

i
4,

P (i, 2) = C1A1ξ
i
1 + C2A2ξ

i
2 +C3A3ξ

i
3 + C4A4ξ

i
4, i = 0, 1, . . . ,

(12)
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where Ps(i, 1) = Asξ
i
s and Ps(i, 2) = CsAsξ

i
s are partial solutions of system (5); their constants

Cs and As, s = 1, 4, are determined from the boundary conditions; ξ4 = 1, ξ1, ξ2, and ξ3 are the
roots of the cubic equation in (6), positive real numbers: 0 < ξ1 < ξ2 < 1 < ξ3. In addition, the limit
relations limP (i, 1) = limP (i, 2) = 0 as i→ ∞ hold (a necessary condition). Hence, A3 = A4 = 0,
and the general solution of (12) takes the form

P (i, 1) = A1ξ
i
1 +A2ξ

i
2,

P (i, 2) = C1A1ξ
i
1 +C2A2ξ

i
2, i = 0, 1, . . . .

(13)

Substituting the partial solution Ps(i, 1) = Asξ
i
s, Ps(i, 2) = CsAsξ

i
s, i = 0, 1, . . . , into the first

equation of system (5), first for s = 1 and then for s = 2, we obtain the constants

Cs = −μ1ξ
2
s − (λ1 + μ1)ξs + λ1P1(λ1|λ1)
λ2[P0(λ1|λ2)ξs + P1(λ1|λ2)] , s = 1, 2. (14)

The values Ai, i = 1, 2, and the probabilities P (−1, 1) and P (−1, 2) are found using the boundary
equations and the normalization condition. The stochastic graph cutsets

G−1,1 = {(−1, 1; 0, 1), (0, 1;−1, 1), (−1, 1; 0, 2), (−1, 1;−1, 2), (−1, 2;−1, 1)},
G−1,2 = {(−1, 2; 0, 2), (0, 2;−1, 2), (−1, 2; 0, 1), (−1, 2;−1, 1), (−1, 1;−1, 2)},
G = {(i, 1; i + 1, 2), (i, 1; i, 2), (i, 2; i + 1, 1), (i, 2; i, 1), i = −1, 0, 1, . . .}

determine the corresponding boundary equations:

μ1P (0, 1) − λ1P (−1, 1) + λ2P0(λ1|λ2)P (−1, 2) = 0,

μ2P (0, 2) − λ2P (−1, 2) + λ1P0(λ2|λ1)P (−1, 1) = 0,

λ1[1− P1(λ1|λ1)]
∞∑

i=−1

P (i, 1) − λ2[1− P1(λ2|λ2)]
∞∑

i=−1

P (i, 2) = 0.

(15)

Supplementing (15) with the normalization condition

P (−1, 1) + P (−1, 2) +
∞∑
i=0

[P (i, 1) + P (i, 2)] = 1,

in view of (13), we arrive at the system of equations for the unknowns Ai, i = 1, 2, P (−1, 1), and
P (−1, 2). Solving (15) yields

P (−1, 1) = a11A1 + a12A2, P (−1, 2) = a21A1 + a22A2,

A1 = (1− ξ1)
π1[C2 + a22(1− ξ2)]− π2[1 + a12(1− ξ2)]

[1 + a11(1− ξ1)][C2 + a22(1− ξ2)]− [1 + a12(1− ξ2)][C1 + a21(1− ξ1)]
,

A2 = −(1− ξ2)
π1[C1 + a21(1− ξ1)]− π2[1 + a11(1− ξ1)]

[1 + a11(1− ξ1)][C2 + a22(1− ξ2)]− [1 + a12(1− ξ2)][C1 + a21(1− ξ1)]
,

a11 =
μ1 + μ2P0(λ1|λ2)C1

λ1[1− P0(λ1|λ2)P0(λ2|λ1)] , a12 =
μ1 + μ2P0(λ1|λ2)C2

λ1[1− P0(λ1|λ2)P0(λ2|λ1)] ,

a21 =
μ2C1 + μ1P0(λ2|λ1)

λ2[1− P0(λ1|λ2)P0(λ2|λ1)] , a22 =
μ2C2 + μ1P0(λ2|λ1)

λ2[1− P0(λ1|λ2)P0(λ2|λ1)] .

(16)

The values C1 and C2 are given by (14); the probabilities π1 and π2, by (1). The values ξ1 and ξ2
are the roots of the cubic equation in (6) (0 < ξ1 < ξ2 < 1).

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



770 GORTSEV, NEZHELSKAYA

Table 1. The probability of idle time P (−1) depending on λ1 for b > 0

P1(λ1|λ2)
λ1 2 4 6 8 10 11

1/4 0.780 0.718 0.680 0.651 0.627 0.616

1/6 0.787 0.728 0.693 0.667 0.645 0.636

1/8 0.790 0.734 0.700 0.675 0.654 0.645

1/10 0.792 0.737 0.704 0.679 0.659 0.651

1/12 0.794 0.739 0.706 0.682 0.663 0.655

1/13 0.794 0.739 0.707 0.684 0.664 0.656

Table 2. The mean queue length E(I) depending on λ1 for b > 0

P1(λ1|λ2)
λ1 2 4 6 8 10 11

1/4 0.052 0.097 0.145 0.196 0.249 0.276

1/6 0.047 0.085 0.125 0.167 0.209 0.231

1/8 0.045 0.080 0.116 0.153 0.191 0.210

1/10 0.043 0.076 0.110 0.145 0.180 0.198

1/12 0.042 0.074 0.106 0.140 0.173 0.190

1/13 0.042 0.073 0.105 0.138 0.171 0.187

Table 3. The expected number of requests E(I + 1) in the system depending on λ1 for b > 0

P1(λ1|λ2)
λ1 2 4 6 8 10 11

1/4 0.272 0.379 0.465 0.545 0.622 0.659

1/6 0.260 0.357 0.432 0.500 0.564 0.595

1/8 0.254 0.346 0.416 0.478 0.537 0.565

1/10 0.251 0.340 0.406 0.466 0.521 0.547

1/12 0.249 0.335 0.400 0.457 0.510 0.536

1/13 0.248 0.334 0.398 0.454 0.506 0.531

Formulas (13) and (16) allow deriving explicit expressions for the numerical characteristics of
the system: P (−1) (the probability of idle time of the server), E(I) (the mean queue length), and
E(I + 1) (the expected number of requests in the system), where I is the random queue length in
the QS. They are:

P (−1) = (a11 + a21)A1 + (a12 + a22)A2,

E(I) = A1(1 + C1)
ξ1

(1 − ξ1)2
+A2(1 + C2)

ξ2
(1 − ξ2)2

,

E(I + 1) =
A1(1 + C1)

(1− ξ1)2
+
A2(1 + C2)

(1− ξ2)2
,

(17)

where C1 and C2 are given by (14); A1, A2, a11, a21, a12, and a22, by (16). The values ξ1 and ξ2
are the roots of the cubic equation in (6) (0 < ξ1 < ξ2 < 1).

The initial data for calculating the numerical characteristics (17), see the tables below, are
chosen to assess the degree of their correspondence to the physical understanding of the service
process in the QS.

Tables 1–3 present the characteristics P (−1), E(I), and E(I + 1) (17) depending on the parame-
ter λ1 (λ1 = 2, 4, . . . , 10, 11) under the fixed parameter values λ2 = 1, μ1 = 12, μ2 = 2; P1(λ1|λ1) =
P1(λ2|λ1) = P0(λ2|λ1) = P1(λ2|λ2) = 1

3 for b > 0 and P1(λ1|λ2) = 1
4 (P0(λ1|λ2) = 5

12 ); P1(λ1|λ2) = 1
6
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Fig. 2. The probability of idle time P (−1) depending on λ1 for b > 0.

P1(�1 | �2) = 1/4 P1(�1 | �2) = 1/6 P1(�1 | �2) = 1/8

P1(�1 | �2) = 1/10 P1(�1 | �2) = 1/13

E(I)
0.28

0.22

0.16

0.10

0.04
�12 4 6 8 10 12

Fig. 3. The mean queue length E(I) depending on λ1 for b > 0.

P1(�1 | �2) = 1/4 P1(�1 | �2) = 1/6 P1(�1 | �2) = 1/8

P1(�1 | �2) = 1/10 P1(�1 | �2) = 1/13
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Fig. 4. The expected number of requests E(I + 1) in the system depending on λ1 for b > 0

(P0(λ1|λ2) = 1
2); P1(λ1|λ2) = 1

8 (P0(λ1|λ2) = 13
24 ); P1(λ1|λ2) = 1

10 (P0(λ1|λ2) = 17
30); P1(λ1|λ2) = 1

12

(P0(λ1|λ2) = 7
12); P1(λ1|λ2) = 1

13 (P0(λ1|λ2) = 23
39 ).

The behavior of these characteristics depending on the parameter λ1 for b > 0 matches the
physical understanding of the service process in the single-server QS with an incoming correlated
MAP request flow.

Figures 2–4 show the graphs of the numerical characteristics (17) plotted on the numerical values
of Tables 1–3, respectively.

The case b < 0. First of all, we investigate the existence of the stationary mode, i.e., the
situation λ = μ. Then it follows from (10) that ξ3 < 0 and ξ4 > 1; similar to the case b > 0, the
general solution of the system takes the form (11). Since ξ3 < 0, this fact entails the negative
probability P (i, 1) for i = 1, 3, . . . , (an obvious contradiction to its definition). This contradiction
is eliminated by letting D3 = 0: P (i, 1) = P (i, 2) = 0, i � 0. Therefore, in the case b < 0, the final
distribution P (i, 1), P (i, 2), i � 0, does not exist for λ = μ and, a fortiori, for λ > μ.

Now we study the situation λ < μ. Due to (6), the general solution of system (5) takes the
form (12). In the case b < 0, we have ξ4 = 1, ξ1, ξ2, and ξ3 are the real roots of the cubic equation
in (6): ξ1 < 0, 0 < ξ2 < 1 < ξ3. Hence, it follows that A1 = A3 = A4 = 0 in (12), and the general
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Table 4. The probability of idle time P (−1) depending on λ1 for b < 0

P1(λ2|λ2)
λ1 2 4 6 8 10 11

1/4 0.796 0.729 0.687 0.654 0.627 0.615
1/6 0.815 0.748 0.705 0.672 0.645 0.633

1/8 0.824 0.757 0.714 0.681 0.654 0.642

1/10 0.830 0.762 0.719 0.686 0.659 0.647

1/12 0.833 0.765 0.722 0.690 0.662 0.650

1/13 0.834 0.767 0.724 0.691 0.664 0.652

Table 5. The mean queue length E(I) depending on λ1 for b < 0

P1(λ2|λ2)
λ1 2 4 6 8 10 11

1/4 0.044 0.091 0.143 0.200 0.260 0.291

1/6 0.035 0.077 0.124 0.177 0.232 0.261

1/8 0.031 0.071 0.116 0.166 0.220 0.248

1/10 0.029 0.067 0.112 0.161 0.213 0.241

1/12 0.027 0.065 0.109 0.157 0.209 0.236

1/13 0.027 0.064 0.108 0.156 0.207 0.234

Table 6. The expected number of requests E(I + 1) in the system depending on λ1 for b < 0

P1(λ2|λ2)
λ1 2 4 6 8 10 11

1/4 0.249 0.362 0.457 0.546 0.633 0.675

1/6 0.219 0.329 0.419 0.504 0.587 0.528

1/8 0.206 0.314 0.402 0.485 0.566 0.606

1/10 0.199 0.305 0.392 0.474 0.554 0.594

1/12 0.194 0.300 0.386 0.467 0.547 0.586

1/13 0.193 0.298 0.384 0.465 0.544 0.583

solution of (12) is written as

P (i, 1) = A2ξ
i
2, P (i, 2) = C2A2ξ

i
2, i = 0, 1, . . . . (18)

In (18), the constant C2 is given by (14) for s = 2. The constant A2 and the probabilities P (−1, 1)
and P (−1, 2) are determined using Eqs. (15) and the normalization condition. As a result,

P (−1, 1) = a12A2; P (−1, 2) = a22A2;

A2 =
1− ξ2

1 + C2 + (a12 + a22)(1− ξ2)
,

(19)

where C2 is given by (14) for s = 2; a12 and a22, by (16). The value ξ2 is the root of the cubic
equation in (6) (0 < ξ2 < 1).

Formulas (18) and (19) allow deriving the system characteristics:

P (−1) = (a12 + a22)A2;

E(I) = A2ξ2
1 + C2

(1− ξ2)2
, E(I + 1) =

(1 + C2)A2

(1− ξ2)2
,

(20)

where C2 is given by (14) for s = 2; a12 and a22, by (16); A2, by (19). The value ξ2 is the root of
the cubic equation in (6) (0 < ξ2 < 1).
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Fig. 5. The probability of idle time P (−1) depending on λ1 for b < 0.
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Fig. 6. The mean queue length E(I) depending on λ1 for b < 0.
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Fig. 7. The expected number of requests E(I + 1) in the system depending on λ1 for b < 0.

Tables 4–6 present the characteristics P (−1), E(I), and E(I + 1) (20) depending on the param-
eter λ1 (λ1 = 2, 4, . . . , 10, 11) for the fixed parameter values λ2 = 1, μ1 = 12, μ2 = 2; P1(λ1|λ1) =
P1(λ2|λ1) = P0(λ2|λ1) = P1(λ1|λ2) = 1

3 for b < 0 and P1(λ2|λ2) = 1
4 (P0(λ1|λ2) = 5

12 ); P1(λ2|λ2) = 1
6

(P0(λ1|λ2) = 1
2); P1(λ2|λ2) = 1

8 (P0(λ1|λ2) = 13
24); P1(λ2|λ2) = 1

10 (P0(λ1|λ2) = 17
30); P1(λ2|λ2) = 1

12

(P0(λ1|λ2) = 7
12); P1(λ2|λ2) = 1

13 (P0(λ1|λ2) = 23
39 ).

Figures 5–7 show the graphs of the numerical characteristics (20) plotted on the numerical values
of Tables 4–6, respectively.

The behavior of these characteristics depending on the parameter λ1 for b < 0 also matches the
physical understanding of the service process in the single-server QS with an incoming correlated
MAP request flow.

4. A SPECIAL CASE: A RECURRENT MAP REQUEST FLOW

In this special case, we have b = 0, which implies the recurrence of the MAP request flow; see (3).
Consider conditions for the existence of the stationary probabilities P (i, 1) and P (i, 2), i � 0. In the
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Table 7. The probability of idle time P (−1) depending on λ1 for b = 0

P1(λ1|λ1)
λ1 2 4 6 8 10 11

1/4 0.831 0.781 0.750 0.726 0.707 0.698

1/6 0.888 0.854 0.833 0.818 0.805 0.799

1/8 0.916 0.891 0.875 0.863 0.854 0.850

1/10 0.933 0.913 0.900 0.891 0.883 0.880

1/12 0.944 0.927 0.917 0.909 0.902 0.900

1/13 0.949 0.933 0.923 0.916 0.910 0.907

Table 8. The mean queue length E(I) depending on λ1 for b = 0

P1(λ1|λ1)
λ1 2 4 6 8 10 11

1/4 0.030 0.056 0.083 0.111 0.139 0.152

1/6 0.013 0.023 0.033 0.043 0.053 0.058

1/8 0.007 0.012 0.018 0.023 0.028 0.030

1/10 0.004 0.008 0.011 0.014 0.017 0.019

1/12 0.003 0.005 0.008 0.010 0.0129 0.013

1/13 0.002 0.005 0.006 0.008 0.010 0.011

Table 9. The expected number of requests E(I + 1) in the system depending on λ1 for b = 0

P1(λ1|λ1)
λ1 2 4 6 8 10 11

1/4 0.199 0.275 0.333 0.385 0.432 0.454

1/6 0.124 0.169 0.200 0.226 0.248 0.259

1/8 0.091 0.122 0.143 0.160 0.174 0.181

1/10 0.071 0.095 0.111 0.124 0.134 0.139

1/12 0.059 0.078 0.091 0.101 0.109 0.113

1/13 0.054 0.072 0.083 0.092 0.100 0.103

situation λ = μ, the characteristic Eq. (8) takes the form

λ1λ2(ξ − 1)2ξ
{
[1− P0(λ2|λ1)][1 − P0(λ1|λ2)]ξ − [2− P0(λ1|λ2)− P0(λ2|λ1)]

}
= 0, (21)

and the general solution of system (5) is (9). The characteristic Eq. (21) has the roots

ξ1 = ξ2 = 1, ξ3 = 0, ξ4 =
1

1− P0(λ1|λ2) +
1

1− P0(λ2|λ1) > 1. (22)

In view of (22), letting D1 = D2 = D4 = 0 in the general solution (9) yields P (i, 1) = P (i, 2) = 0,
i � 0. Therefore, in the case b = 0, the final distribution P (i, 1), P (i, 2), i � 0, does not exist for
λ = μ and, a fortiori, for λ > μ.

We analyze the situation λ < μ. In the case b = 0, the characteristic Eq. (6) is written as

ξ(ξ − 1)
{
μ1μ2ξ

2 − [λ1μ2 + μ1(λ2 + μ2)]ξ

+ [λ1λ2 + λ1μ2P1(λ1|λ1) + λ2μ1P1(λ2|λ2)− λ1λ2P0(λ1|λ2)P0(λ2|λ1)]
}
= 0.

(23)
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Fig. 8. The probability of idle time P (−1) depending on λ1 for b = 0.
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Fig. 9. The mean queue length E(I) depending on λ1 for b = 0.
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Fig. 10. The expected number of requests E(I + 1) in the system depending on λ1 for b = 0.

The characteristic Eq. (23) has the roots ξ3 = 0, ξ4 = 1, and

ξ1,2 =

{
(λ1μ2 + λ2μ1 + μ1μ2)∓

[
(λ1μ2 + λ2μ1 + μ1μ2)

2

− 4μ1μ2
(
λ1λ2 + λ1μ2P1(λ1|λ1) + λ2μ1P1(λ2|λ2)− λ1λ2P0(λ1|λ2)P0(λ2|λ1)

)] 1
2

}
/2μ1μ2,

(24)

0 < ξ1 < 1 < ξ2. Due to (23) and (24), the general solution (12) of system (5) takes the form

P (i, 1) = A1ξ
i
1, P (i, 2) = C1A1ξ

i
1, i = 0, 1, . . . . (25)

In (25), the constant C1 is given by (14) for s = 1. The constant A1 and the probabilities P (−1, 1)
and P (−1, 2) are determined using Eqs. (15) and the normalization condition. As a result,

P (−1, 1) = a11A1; P (−1, 2) = a21A1;

A1 =
1− ξ1

1 + C1 + (a11 + a21)(1− ξ1)
,

(26)

where C1 is given by (14) for s = 1; a21 and a11, by (16); ξ1, by (24).
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Formulas (25) and (26) allow deriving the system characteristics:

P (−1) = (a21 + a11)A1;

E(I) = A1ξ1
1 + C1

(1− ξ1)2
, E(I + 1) =

(1 + C1)A1

(1− ξ1)2
,

(27)

where C1 is given by (14) for s = 1; a21 and a11, by (16); A1, by (26); ξ1, by (24).

Tables 7–9 present the characteristics P (−1), E(I), and E(I +1) (27) depending on the param-
eter λ1 (λ1 = 2, 4, . . . , 10, 11) for the fixed parameter values λ2 = 1, μ1 = 12, μ2 = 2 for b = 0 and
(P1(λi|λi) = P1(λj |λi) = 1

4 ; P0(λ1|λ2) = P0 (λ2|λ1) = 1
2); (P1 (λi|λi) = P1 (λj |λi) = 1

6 ; P0 (λ1|λ2) =
P0 (λ2|λ1) = 2

3 ); (P1(λi|λi) =P1(λj |λi) = 1
8 ; P0(λ1|λ2) =P0(λ2|λ1) = 3

4 ); (P1(λi|λi) =P1(λj|λi) = 1
10 ;

P0(λ1|λ2) = P0(λ2|λ1) = 4
5); (P1(λi|λi) = P1(λj |λi) = 1

12 ; P0(λ1|λ2) = P0(λ2|λ1) = 5
6 ); (P1(λi|λi) =

P1(λj |λi) = 1
13 ; P0(λ1|λ2) = P0(λ2|λ1) = 11

13 ); i, j = 1, 2 (i �= j).

As in the cases b > 0 and b < 0, the behavior of these characteristics depending on the parame-
ter λ1 for b = 0 matches the physical understanding of the service process in the single-server QS
with an incoming correlated MAP request flow.

Figures 8–10 show the graphs of the numerical characteristics (27) plotted on the numerical
values of Tables 7–9, respectively.

5. CONCLUSIONS

The paper has considered a single-server QS with an incoming correlated MAP request flow
with two states. The analysis problems formulated in Section 2 have been completely solved for
this queueing system.

Let us summarize the results and present the final formulas.

The case b > 0. The stationary probabilities P (i, 1) and P (i, 2), i = 0, 1, . . . , are given by
P (i, 1) = A1ξ

i
1 +A2ξ

i
2 and P (i, 2) = C1A1ξ

i
1 + C2A2ξ

i
2, respectively, where: the constants Cs,

s = 1, 2, are calculated using (14); ξ1 and ξ2 (0 < ξ1 < ξ2 < 1) are the roots of the cubic Eq. (6); the
probabilities P (−1, 1) and P (−1, 2) as well as the constants A1 and A2 are calculated using (16).
The numerical characteristics P (−1), E(I), and E(I + 1) are given by (17).

The case b < 0. The stationary probabilities P (i, 1) and P (i, 2), i = 0, 1, . . . , are given by
P (i, 1) = A2ξ

i
2 and P (i, 2) = C2A2ξ

i
2, respectively, where: the constant C2 is calculated using (14)

for s = 2; ξ2 (0 < ξ2 < 1) is the root of the cubic Eq. (6); the probabilities P (−1, 1) and P (−1, 2)
as well as the constant A2 are calculated using (19). The numerical characteristics P (−1), E(I),
and E(I + 1) are given by (20).

The case b = 0. The stationary probabilities P (i, 1) and P (i, 2), i = 0, 1, . . . , are given by
P (i, 1) = A1ξ

i
1 and P (i, 2) = C1A1ξ

i
1, respectively, where: the constant C1 is calculated using (14)

for s = 1; ξ1 (0 < ξ1 < 1) is the root (24) of the characteristic Eq. (23); the probabilities P (−1, 1)
and P (−1, 2) as well as the constant A1 are calculated using (26). The numerical characteristics
P (−1), E(I), and E(I + 1) are given by (27).

Formulas (17), (20), and (27) have been derived by introducing an additional variable and using
the method of transition intensity diagrams (the method of stochastic graph cutsets) [8]. The case
b = 0 degenerates the incoming correlated MAP request flow into a recurrent one.

The analytical formulas (17), (20), and (27) serve to calculate the numerical characteristics of
an MAP request flow with given parameters without involving numerical methods. The graphs
of the numerical characteristics presented above match the physical understanding of the service
process in this QS.
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Abstract—Continuous random processes with fuzzy states are studied. The properties of their
numerical characteristics (expectations and correlation functions) corresponding to those of
numerical random processes are established. The results obtained are based on the properties
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1. INTRODUCTION

Fuzzy modeling is actively used in various applications with incomplete or weakly formalized
initial data [1–3]. In particular, note the recent works on the fuzzy approach in control theory [4, 5].

On the other hand, when studying dynamic processes under limited initial information, a possible
approach is to treat their parameters as realizations of some random processes [6].

This paper combines both approaches: continuous random processes with fuzzy states are in-
vestigated below. More precisely put, time and the set of possible fuzzy states are supposed to
be continuous. (In other words, this set is uncountable.) The cross-section of a continuous fuzzy
random process at any time instant is a fuzzy random variable. This study involves well-known
results from the theory of fuzzy random variables [7–9] and the differentiability and integrability
of fuzzy-valued functions ([10, 11] and [12, 13], respectively).

The properties established below are modifications of the well-known results [6, Chapter 1] on the
expectations and correlation functions of standard continuous random processes. Seemingly, they
have not been observed previously. In this case, an important role is played by fuzzy expectations
(nonrandom fuzzy-valued functions of time) reflecting the trends of fuzzy random processes.

One application considered in this paper is the problem of transforming a fuzzy random signal
by a linear dynamic system described by a linear differential equation with constant coefficients.
Here, the characteristics of an input signal (fuzzy expectation and correlation function) are used to
determine similar characteristics of an output signal. These results develop the well-known results
for real stationary random processes; for example, see [6, Chapter 7].

Note the difference between the approach and results presented below and the works on random
processes with discrete fuzzy states and continuous time (e.g., [14, 15]) that discussed the properties
of the probabilities of discrete fuzzy states depending on time.

In what follows, a fuzzy number z̃ defined on the universal space R of real numbers will be
understood as a set of ordered pairs (x, μz̃(x)), where the membership function μz̃ : R→ [0, 1]
∀x ∈ R determines the grade of membership to the set z̃ [1, Chapter 5].
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The interval representation of fuzzy numbers will be employed: to each fuzzy number we assign
the set of its α-intervals.

As is known, the α-level set of a fuzzy number z̃ with a membership function μz̃(x) is defined as

Zα = {x |μz̃(x) � α} (α ∈ (0, 1]), Z0 = cl{x |μz̃(x) > 0},
where cl indicates the closure of an appropriate set.

Assume that all α-levels of a fuzzy number are closed and bounded intervals on the entire real
axis. Let z−(α) and z+(α) denote the left and right bounds of an interval Zα : Zα = [z−(α), z+(α)].
Sometimes, z−(α) and z+(α) are called the left and right α-indices of a fuzzy number, respectively.
Suppose that they are measurable and bounded on [0, 1]. The set of such fuzzy numbers will be
denoted by J .

The sum of fuzzy numbers is understood as a fuzzy number whose indices are the sums of the
corresponding indices of the terms. Multiplication of a fuzzy number by a positive number means
multiplying its indices by this number. Multiplication by a negative real number means multiplying
the indices by this number and reversing them. Equality for fuzzy numbers is understood as equality
for all the corresponding α-indices ∀α ∈ [0, 1].

The set J can be metrized in various ways. In particular, for fuzzy numbers z̃1, z̃2 ∈J , one
metric is given by

d(z̃1, z̃2) =

⎛⎝ 1∫
0

(
(z−1 (α)− z−2 (α))

2 + (z+1 (α)− z+2 (α))
2
)
dα

⎞⎠1/2

, (1)

where z−i (α) and z+i (α) are the left and right indices of z̃i (i = 1, 2), respectively; for example,
see [16].

2. FUZZY EXPECTATION, THE EXPECTATION AND COVARIANCE
OF FUZZY RANDOM VARIABLES

Let (Ω,Σ, P ) be a probability space with Ω as the set of elementary events, Σ as a σ-algebra
consisting of the subsets of the set Ω, and P as a probability measure.

Consider a mapping X̃ : Ω → J . For a fixed event ω ∈ Ω, its α-level intervals Xα(ω) are given
by

Xα(ω) =
{
r∈R : μ

X̃(ω)
(r) � α

}
α∈ (0, 1], X0(ω) = cl

{
r∈R : μ

X̃(ω)
(r) > 0

}
,

where μ
X̃(ω)

(r) is the membership function of a fuzzy number X̃(ω). An interval Xα(ω) can be

written as Xα(ω) = [X−(ω,α),X+(ω,α)], where the bounds X−(ω,α) and X+(ω,α) are called the
left and right indices of the mapping X̃, respectively.

A mapping X̃ : Ω → J is called a fuzzy random variable (FRV) if the real-valued functions
X±(ω,α) are measurable for all α ∈ [0, 1]; for example, see [7, 8]. In this case, the indices are real
random variables for any α ∈ [0, 1].

We will study the class X− of all fuzzy random variables for which the indices X−(ω,α) and
X+(ω,α) are square summable functions on Ω× [0, 1].

Note that an FRV can be interpreted as a random element in the metric space J with the
metric (1).

For an FRV X̃(ω), let

x−(α) =
∫
Ω

X−(ω,α)dP, x+(α) =

∫
Ω

X+(ω,α)dP. (2)
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A fuzzy number with α-indices (2) is called the fuzzy expectation of an FRV X̃; for example,
see [9]. In what follows, it will be denoted by M(X̃) and its indices by [M(X̃)]±α .

For FRVs X̃1 and X̃2 on the set X−, we consider the metric

ρ(X̃1, X̃2) =

⎛⎝ 1∫
0

∫
Ω

(
(X−

1 (ω,α)−X−
2 (ω,α))2 + (X+

1 (ω,α)−X+
2 (ω,α))2

)
dPdα

⎞⎠1/2

. (3)

The fuzzy expectation defined by (2) has similar properties as the expectations of real random
variables.

Proposition 1 (e.g., see [17, 18]). The fuzzy expectation defined by (2) possesses the following
properties:

1. If X̃(ω) = X̃ for almost all ω ∈ Ω, then M(X̃) = X̃ (idempotency).

2. The fuzzy expectationM : X−→J is additive, i.e.,M(X̃1 + X̃2) =M(X̃1) +M(X̃2) ∀X̃1, X̃2 ∈ X−.

3. The fuzzy expectation M : X− → J is homogeneous, i.e., M(CX̃) = CM(X̃) ∀ X̃ ∈ X−, ∀C ∈ R.
4. The fuzzy expectation M : X− → J is continuous as a mapping from X with the metric (3) into J
with the metric (1).

5. The fuzzy expectation M(X̃) of a given FRV X̃ ∈ X− satisfies the inequality

ρ2(X̃,M(X̃)) =

1∫
0

∫
Ω

((
X−(ω,α) − [M(X̃)]−α

)2
+
(
X+(ω,α)− [M(X̃)]+α

)2)
dPdα

�
1∫

0

∫
Ω

(
(X−(ω,α)− V −

α )2 + (X+(ω,α) − V +
α )2

)
dPdα = ρ2(X̃, Ṽ ) ∀ Ṽ ∈ J,

where X±(ω,α) and V ±
α are the indices of the FRV X̃(ω) and the fuzzy number Ṽ , respectively

(the extremal property).

Consider now the defuzzification of fuzzy expectations.

According to [19], within the interval approach, the mean value of a fuzzy number z̃ is given by

zmean =
1

2

1∫
0

(z−(α) + z+(α))dα, (4)

where z±(α) are the indices of z̃.

In view of (4), the expectation m(X̃) of an FRV X̃ ∈ X− is defined as an averaging functional by

m(X̃) =
1

2

1∫
0

(
[M(X̃)]−(α) + [M(X̃)]+(α)

)
dα, (5)

whereM±(α) are the indices of the fuzzy expectation M(X̃) given by (2). As a matter of fact, this
is a defuzzification method for fuzzy expectations.

The next result is immediate from the definition (5) and Proposition 1.

Proposition 2 (e.g., see [17, 18]). The expectation (5) of an FRV possesses the following proper-
ties:

1. If X̃(ω) = X̃ for almost all ω ∈ Ω, then m(X̃) = Xmean (idempotency).

2. The expectation m : X− → R is additive, i.e., m(X̃1 + X̃2) = m(X̃1) +m(X̃2) ∀ X̃1, X̃2 ∈ X−.
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3. The expectation m : X− → R is homogeneous, i.e., m(CX̃) = Cm(X̃) ∀ X̃ ∈X−, ∀C ∈ R.

4. The expectation m : X → R is continuous.

5. For X̃ ∈X−, the expectation m(X̃) satisfies the inequality

ρ
(
X̃,m(X̃)

)
� ρ(X̃, a) ∀ a ∈ R,

where a−α = a+α = a for a real number a (the extremal property).

The covariance of FRVs X̃ and Ỹ is defined by [20]

cov(X̃, Ỹ ) =
1

2

1∫
0

(
cov(X−

α , Y
−
α ) + cov(X+

α , Y
+
α )
)
dα; (6)

the variance of an FRV X̃, by the formula D(X̃) = cov(X̃, X̃). In (6), the covariances of real
random variables X±

α and Y ±
α are defined in the standard way [21, Chapter I]:

cov(X±
α , Y

±
α ) = E(X±

α − E(X±
α ))(Y

±
α − E(Y ±

α )).

Hereinafter, the symbol E stands for the expectation of a scalar random variable: Eξ =
∫
Ω ξ(ω) dP

for a random variable ξ(ω).

Proposition 3 [20]. The covariance (6) of an FRV possesses the following properties:

1. cov(X̃, Ỹ ) = cov(Ỹ , X̃), ∀ X̃, Ỹ ∈ X− (symmetry).

2. cov(X̃ + Ỹ , Z̃) = cov(X̃, Ỹ ) + cov(Ỹ , Z̃), ∀ X̃, Ỹ , Z̃ ∈ X− (additivity).

3. cov(C1X̃, C2Ỹ ) =C1C2cov(X̃, Ỹ ), ∀ X̃, Ỹ ∈X−, ∀C1, C2 ∈R : C1C2 > 0 (positive homogeneity).

4. D(CX̃) = C2D(X̃), ∀ X̃ ∈X−, ∀C ∈ R.

5. D(X̃ + Ỹ ) = D(X̃) +D(Ỹ ) + 2cov(X̃, Ỹ ), ∀ X̃, Ỹ ∈X−.

3. CONTINUOUS RANDOM PROCESSES WITH FUZZY STATES

Let [t0, T ] be an extended segment of the real axis. As in Section 2, (Ω,Σ, P ) is a probability
space and X− is the set of FRVs with square summable indices on Ω× [0, 1].

A continuous random process with fuzzy states or a fuzzy random process (FRP) is a mapping
X̃ : [t0, T ] → X−, i.e., a function X̃(ω, t) with FRVs as its values ∀ t ∈ [t0, T ]. The α-indices of an
FRP X̃(ω, t) will be denoted by X±

α (ω, t).

For the FRPs considered below, the functions X±
α (ω, t) are jointly square summable on Ω ×

[0, 1] × [t0, T ].

For each t ∈ [t0, T ], the fuzzy expectation M(X̃(ω, t)) of an FRP X̃(ω, t) is defined as the fuzzy

expectation of the corresponding FRV, i.e., a fuzzy-valued function with the indices
[
M(X̃(ω, t))

]±
α
=∫

ΩX
±
α (ω, t) dP .

The definition of the fuzzy expectation of an FRP and the properties of the fuzzy expectations
of FRVs imply the following result.

Proposition 4. 1. The fuzzy expectation of a nonrandom fuzzy-valued function z̃ : [t0, T ] → J co-
incides with this function: M(z̃(t)) = z̃(t).

2. A nonrandom scalar function ϕ : [t0, T ] → R can be factored outside the fuzzy expectation
sign:

M(ϕ(t)X̃(t)) = ϕ(t)M(X̃(t)),

where X̃(t) is a fuzzy random process.
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3. The fuzzy expectation of the sum of two FRPs equals the sum of their fuzzy expectations:

M(X̃(t) + Ỹ (t)) =M(X̃(t)) +M(Ỹ (t)).

4. For an FRP X̃(t), the fuzzy expectation M(X̃(t)) satisfies the inequality

T∫
t0

ρ2
(
X̃(t),M(X̃(t))

)
dt �

T∫
t0

ρ2
(
X̃(t), Ṽ (t)

)
dt.

(the extremal property). Here Ṽ : [t0, T ] → J is an arbitrary nonrandom fuzzy-valued function with
square summable indices on [t0, T ] and the metric ρ is given by (3).

In accordance with (5), the expectation of an FRP X̃(t) is defined as

m(X̃(t)) =
1

2

1∫
0

(
[M(X̃(t))]−α + [M(X̃(t))]+α

)
dα.

Note that Proposition 2 holds for m(X̃(t)) ∀ t ∈ [t0, T ].

This paper involves the mean-square differentiability of a scalar random process [21, Chapter II].
A scalar random process ξ(t) is said to be mean-square differentiable at a point t ∈ R if there exists
a random variable ξ′(t) such that the expectation

E

∣∣∣∣ξ(t+ h)− ξ(t)

h
− ξ′(t)

∣∣∣∣2 → 0 as h→ 0.

Also, the derivative of a fuzzy-valued function will be used; for example, see [10, 11].

An FRP X̃(ω, t) with α-intervals [X−
α (ω, t),X

+
α (ω, t)] is said to be differentiable at a point t

(in the Seikkala sense) if its α-indices are mean-square differentiable with respect to t as scalar
random processes and ∂

∂tX
−
α (ω, t) and

∂
∂tX

+
α (ω, t) are the lower and upper α-indices of some FRV

called the derivative (cf. with [11] for a fuzzy-valued function). In this case, the time derivative of
an FRP X̃(t) will be denoted by X̃ ′(t) = ∂

∂tX̃(ω, t).

Theorem 1. Let an FRP X̃(t) be differentiable for t ∈ (t0, T ). Assume that ∀α ∈ [0, 1] there

exist summable functions ϕ±
α (ω) on Ω such that

∣∣∣ ∂∂tX±
α (ω, t)

∣∣∣ � ϕ±
α (ω) ∀ t ∈ (t0, T ), ω ∈ Ω. Then

the fuzzy expectation of the derivative of this FRP equals the derivative of its fuzzy expectation:

MX̃ ′(t) =
(
MX̃(t)

)′
. (7)

Indeed, by the definition of derivative and fuzzy expectation,
[
M(X̃ ′(t))

]±
α
=
∫
Ω

∂
∂tX

±
α (ω, t) dP

∀α ∈ [0, 1].

Under the conditions of Theorem 1, the derivative on the right-hand side of this equality can
be taken outside the sign of the integral; see the theorem on differentiation by a parameter under
the sign of a Lebesgue integral. Then, using the interval test of equality for fuzzy numbers, we
obtain (7).

The considerations below will employ the integral of a fuzzy-valued function; for example,
see [12, 13].

The integral of an FRP X̃(ω, t) between the limits of a segment [t0, T ] is an FRV Ỹ (ω) =∫ T
t0
X̃(ω, t) dt with the α-indices

Y ±
α (ω) =

T∫
t0

X±
α (ω, t) dt,
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where X±
α (t) denote the corresponding α-indices of the FRP X̃(t) and the integrals of the random

processes X±
α (t) are understood in the mean-square sense [21, Chapter II]. If such an integral

exists, then the FRP is said to be integrable on [t0, T ].

Theorem 2. Let X̃(ω, t) be an integrable FRP on [t0, T ]. Then

M

⎛⎝ T∫
t0

X̃(ω, t) dt

⎞⎠ =

T∫
t0

M
(
X̃(ω, t)

)
dt. (8)

Indeed, by the definition of fuzzy expectation, the left-hand side of (8) has the α-indices[
M
(∫ T
t0
X̃(ω, t) dt

)]±
α

=
∫
Ω

[∫ T
t0
X̃(ω, t) dt

]±
α
dP =

∫
Ω

(∫ T
t0
X̃±
α (ω, t)dt

)
dP . Since the random vari-

ables X±
α (ω, t) are square summable on Ω× [t0, T ], the order of integration in the last expression

can be interchanged by Fubini’s theorem. As a result, based on the definition of fuzzy expectation,⎡⎣M
⎛⎝ T∫
t0

X̃(ω, t) dt

⎞⎠⎤⎦±
α

=

T∫
t0

⎛⎝∫
Ω

X±
α (ω, t) dP

⎞⎠dt= T∫
t0

[
M(X̃(ω, t))

]±
α
dt=

⎡⎣ T∫
t0

M
(
X̃(ω, t)

)
dt

⎤⎦±
α

.

Then formula (8) follows from the equality of the corresponding indices ∀ [0, 1].
Example 1. Let numerical random processes ξi(ω, t) (i = 1, 2, 3; ω ∈ Ω, t ∈ [t0, T ]) be square

summable on Ω× [t0, T ] and ξ1(ω, t) < ξ2(ω, t) < ξ3(ω, t) for all ω ∈ Ω, t ∈ [t0, T ].

Consider an FRP X̃(t) in which the fuzzy number X̃(ω, t) for each ω ∈ Ω, t ∈ [t0, T ], has the tri-
angular form (ξ1(ω, t), ξ2(ω, t), ξ3(ω, t)). In other words, for any ω ∈ Ω, t ∈ [t0, T ], the membership
function X̃(ω, t) is described by

μω,t(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x− ξ1(ω, t)

ξ2(ω, t)− ξ1(ω, t)
if x ∈ [ξ1(ω, t), ξ2(ω, t)];

x− ξ3(ω, t)

ξ2(ω, t)− ξ3(ω, t)
if x ∈ [ξ2(ω, t), ξ3(ω, t)];

0 otherwise.

In this case,

X−
α (ω, t) = (1− α)ξ1(ω, t) + αξ2(ω, t), X+

α (ω, t) = (1− α)ξ3(ω, t) + αξ2(ω, t).

Then the fuzzy expectation M(X̃(t)) is given by the formulas for the α-indices

[M(X̃)]−α (t) = (1− α)

∫
Ω

ξ1(ω, t) dP + α

∫
Ω

ξ2(ω, t) dP = (1− α)Eξ1(t) + αEξ2(t) ∀α ∈ [0, 1]

and

[M(X̃)]+α (t) = (1− α)

∫
Ω

ξ3(ω, t) dP + α

∫
Ω

ξ2(ω, t) dP = (1− α)Eξ3(t) + αEξ2(t) ∀α ∈ [0, 1],

where E denotes the expectation of a real random variable.

Example 2. Within Example 1, let the random processes ξi(ω, t), i = 1, 2, 3, be mean-square dif-
ferentiable with respect to t. In addition, assume that the derivatives satisfy the relation ∂

∂tξ1(ω, t) �
∂
∂tξ2(ω, t) �

∂
∂tξ3(ω, t) for all ω ∈ Ω, t ∈ [t0, T ]. Then the derivative X̃ ′(t) of the FRP X̃(t) has the

triangular form
(
∂
∂tξ1(ω, t),

∂
∂tξ2(ω, t),

∂
∂tξ3(ω, t)

)
.
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In particular, let random variables ξ1(ω) < ξ2(ω) < ξ3(ω) be given. Consider the triangular
fuzzy process (etξ1(ω), e

tξ2(ω), e
tξ3(ω)). Its derivative exists and coincides with the initial FRP.

Example 3. Within Example 1, let the random processes ξi(ω, t) be integrable in t on a segment

[t0, T ]. Then the FRP
∫ T
t0
X̃(t)dt has the triangular form

(
∂
∂tξ1(ω, t)dt,

∂
∂tξ2(ω, t)dt,

∂
∂tξ3(ω, t)dt

)
.

In what follows, we present the covariance function of an FRP and its properties. The covariance
function of an FRP X̃(t) is the value

K
X̃
(t, s) = cov(X̃(t), X̃(s)) =

1

2

1∫
0

(
KX−

α
(t, s) +KX+

α
(t, s)

)
dα. (9)

Here, KX−
α
(t, s) and KX+

α
(t, s) are the covariance functions of random processes X−

α (ω, t) and

X+
α (ω, t), respectively:

KX±
α
(t, s) = E

[
(X±

α (ω, t)− EX±
α (ω, t))(X

±
α (ω, s)− EX±

α (ω, s))
]
. (10)

The variance of an FRP X̃(t) is given by D
X̃
(t) = K

X̃
(t, t).

Note that (9) is a fuzzy modification of the conventional covariance function of scalar random
processes; for example, see [21, Chapter II].

The expressions (9) and (10) and the properties of the covariance of an FRV (Proposition 3)
lead to the following result.

Proposition 5. The covariance function of an FRP possesses the following properties:

1. For a continuous FRP X̃(t), K
X̃
(t1, t2) = K

X̃
(t2, t1) ∀ t1, t2 ∈ [t0, T ] (symmetry).

2. If X̃(t) is a continuous FRP and ϕ(t) is a nonrandom numerical function, then the covariance
function K

Ỹ
(t1, t2) of the FRP Ỹ (t) = ϕ(t)X̃(t) has the form K

Ỹ
(t1, t2) = ϕ(t1)ϕ(t2)KX̃

(t1, t2).

3. If Ỹ (t) = X̃(t) + ϕ(t), then K
Ỹ
(t1, t2) = K

X̃
(t1, t2).

4. |K
X̃
(t1, t2)| �

√
D
X̃
(t1)DX̃

(t2).

The next result characterizes the connection between the correlation functions of a differentiable
FRP and its derivative.

Theorem 3. Let the second derivatives
∂2K

X
−
α
(t,s)

∂t∂s and
∂2K

X
+
α
(t,s)

∂t∂s of the covariance functions (10)

of an FRP X̃(t) be defined and jointly continuous in the variables t, s, α. Then the covariance
function K ′

X̃
(t, s) of the derivative X̃ ′(t) of the FRP X̃(t) is given by

K ′
X̃
(t, s) =

∂2K
X̃
(t, s)

∂t∂s
. (11)

Proof. By definition (9),

K
X̃′(t, s) =

1

2

1∫
0

(
K

(X̃−
α )′(t, s) +K

(X̃+
α )′(t, s)

)
dα.

According to the well-known property of (scalar) random processes,

K
(X̃−

α )′(t, s) =
∂2KX−

α
(t, s)

∂t∂s
, K

(X̃+
α )′(t, s) =

∂2KX+
α
(t, s)

∂t∂s
.

Then K
X̃′(t, s) =

1
2

∫ 1
0

∂2

∂t∂s

(
KX−

α
(t, s) +KX+

α
(t, s)

)
dα. Taking the second mixed variable out-

side the integral sign yields formula (11).
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Note that the last operation is valid due to the joint continuity of
∂2K

X−
α
(t,s)

∂t∂s and
∂2K

X+
α
(t,s)

∂t∂s in
the variables t, s, α.

Consider the integral Ỹ (t) =
∫ t
t0
X̃(ω, s) ds of an FRP X̃(t) with a variable upper limit.

Theorem 4. Let the covariance functions KX±
α
(t, s) of the α-indices X±

α (t) of an FRP X̃(t) be

jointly summable in the variables t, s, α. Then the covariance function of the integral Ỹ (t) is

K
Ỹ
(t, s) =

t∫
t0

s∫
t0

K
X̃
(τ1, τ2) dτ1dτ2. (12)

Proof. By definition (9), K
Ỹ
(t, s) = 1

2

∫ 1
0

(
KY −

α
(t, s) +KY +

α
(t, s)

)
dα. Due to the definition of

a fuzzy integral, Y ±
α (t) =

∫ t
t0
X±
α (τ) dτ . Using the well-known property of the integral of a scalar

random process, we obtain

KY −
α
(t, s) =

t∫
t0

s∫
t0

KX−
α
(τ1, τ2) dτ1dτ2, KY +

α
(t, s) =

t∫
t0

s∫
t0

KX+
α
(τ1, τ2) dτ1dτ2.

Hence, K
Ỹ
(t, s) = 1

2

∫ 1
0

(∫ t
t0

∫ s
t0
(KX−

α
(τ1, τ2) +KX+

α
(τ1, τ2)

)
dτ1dτ2) dα. The desired result (12) is

established by interchanging the order of integration on the right-hand side (based on Fubini’s
theorem) and employing (9).

Note that the last operation is valid due to the joint summability of KX−
α
(τ1, τ2) and KX+

α
(τ1, τ2)

in the variables τ1, τ2, α.

4. TRANSFORMATION OF A FUZZY RANDOM SIGNAL
BY A LINEAR DYNAMIC SYSTEM

Consider some device A (Fig. 1) with continuous random signals y(t) and z(t) at its input and
output, respectively.

Device A is called a linear dynamic system if the relationship between the input and output
signals is described by an nth order differential equation with constant coefficients.

The literature (e.g., see [6, Chapter 7]) considers the problem of establishing connections be-
tween the numerical characteristics (expectations and covariance functions) of the input and out-
put random signals. Assuming the stationarity of the random signals, this problem is solved using
the frequency response of the system, the direct and inverse Fourier transforms, and the Wiener–
Khinchin theorem. A random process is called stationary (in the broad sense) if its expectation does
not depend on time and the covariance function depends only on the difference of the arguments.

Consider a similar problem when the input and output signals are continuous random signals
with fuzzy states (fuzzy random signals, FRSs). In this case, stationarity in any sense is not
supposed. In contrast to well-known techniques, the Green function method is used below. The
proposed approach will be illustrated on examples.

y(t) z(t)
A

Fig. 1.
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y(t) z(t)

R

C

Fig. 2.

Example 4. Consider an RC circuit (Fig. 2) described by the differential equation

z′(t) + βz(t) = βy(t), β =
1

RC
> 0,

where R and C denote the resistance and capacity, respectively.

Let a continuous FRS Ỹ (t) be supplied to the input. We will determine the connection between
the fuzzy expectations (as well as expectations) of the output and input signals of this system. By
convention, the output FRS X̃(t) satisfies the fuzzy random differential equation

X̃ ′(t) + βX̃(t) = βỸ (t). (13)

Note that fuzzy differential equations were studied, e.g., in [22–24].

In view of the additivity and homogeneity of the expectation of an FRP (Proposition 4) and
Theorem 1, taking the fuzzy expectation of both sides of (13) gives

(MX̃)′(t) + βMX̃(t) = βMỸ (t).

By the definition of equality for fuzzy numbers and operations between them, the definition of
derivative for α-indices, and β > 0, this equation is equivalent to the following set of relations for
the indices:

∂

∂t
(MX̃)±α (t) + β(MX̃)±α (t) = β(MỸ )±α (t) ∀α ∈ [0, 1]. (14)

In addition, assume that the functions (MỸ )±α (t) are bounded in t on the entire real axis.
According to [25, Chapter II], there exists a unique and asymptotically Lyapunov stable solution
of Eq. (14) that is bounded on the entire real axis. This solution has the form

(MX̃)±α (t) = β

∞∫
−∞

G1(t− s)(MỸ )±α (s) ds = β

t∫
−∞

e−β(t−s)(MỸ )±α (s) ds ∀α ∈ [0, 1], (15)

where G1 =

{
e−βt for t > 0;
0 for t < 0

is the Green function of the problem on bounded solutions of the

(scalar) Eq. (14).

Formula (15) characterizes the connection between the fuzzy expectations of the input and
output FRSs of the system described by Eq. (13).

Due to (15) and (5), the expectations of the input and output FRSs of system (13) have the
connection

m
(
X̃(t)

)
= β

t∫
−∞

e−β(t−s)m
(
Ỹ (s)

)
ds.
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By the definition of equality for fuzzy numbers and the definition of derivative for FRPs,
from (13) it follows that the α-indices of X̃(t) satisfy

(X±
α )

′(t) + βX±
α (t) = βY ±

α (t) ∀α ∈ [0, 1]. (16)

The relation (16) can be treated as an equation in the Hilbert space H of all random variables
with a finite second moment. In addition, assume that the functions Y ±

α (t) are bounded in t in
the space H on the entire real axis. According to [25, Chapter II], there exists a unique and
asymptotically Lyapunov stable solution of Eq. (16) that is bounded on the entire real axis. This
solution has the form

X±
α (t) = β

t∫
−∞

e−β(t−s)Y ±
α (s)ds ∀α ∈ [0, 1]. (17)

Note that X±
α (t) in (17) determine the α-indices of the fuzzy number X̃(t). In particular,

X+
α (t) and X

−
α (t) are monotonically nonincreasing and nondecreasing in α, respectively, due to the

monotonicity of the integral and the corresponding properties of the α-indices Y +
α (s) and Y −

α (s),
respectively; for details, see [1, Chapter 5].

Now, we calculate the covariance function of the output FRP X̃ of the system described by
Eq. (13). (Recall that this process is bounded on the entire real axis.) By (10) and (17), the
covariance function KX±

α
(t, s) has the form

KX±
α
(t, s) = β2E

⎡⎣⎛⎝ t∫
−∞

e−β(t−τ1)Y ±
α (ω, τ1) dτ1 − E

t∫
−∞

e−β(t−τ1)Y ±
α (ω, τ1) dτ1

⎞⎠
×
⎛⎝ s∫

−∞
e−β(s−τ2)Y ±

α (ω, τ2) dτ2 − E

s∫
−∞

e−β(s−τ2)Y ±
α (ω, τ2) dτ2

⎞⎠⎤⎦ .
Interchanging the expectation (E) and integration operations in the inner parentheses yields

KX±
α
(t, s) = β2E

⎡⎣⎛⎝ t∫
−∞

e−β(t−τ1)
(
Y ±
α (ω, τ1)− E(Y ±

α (ω, τ1))
)
dτ1

⎞⎠
×
⎛⎝ s∫

−∞
e−β(s−τ2)

(
Y ±
α (ω, τ2)− E(Y ±

α (ω, τ2))
)
dτ2

⎞⎠⎤⎦
= β2

t∫
−∞

s∫
−∞

e−β(t−τ1)e−β(s−τ2)KY ±
α
(τ1, τ2) dτ1dτ2.

(18)

Due to (18) and (9), the covariance functions of the output and input FRSs of system (13) are
related by

K
X̃
(t, s) =

β2

2

t∫
−∞

s∫
−∞

e−β(t−τ1)e−β(s−τ2)
1∫

0

(
KY −

α
(τ1, τ2) +KY +

α
(τ1, τ2)

)
dαdτ1dτ2

= β2
t∫

−∞

s∫
−∞

e−β(t−τ1)e−β(s−τ2)K
Ỹ
(τ1, τ2)dτ1dτ2.

The convergence of these improper integrals and the validity of the considerations above are
ensured by the exponential estimates of the corresponding integrands.
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Example 5. An FRS Ỹ (t) is supplied to the input of a linear dynamic system described by the
differential equation

z′′(t) + a1z
′(t) + a2z(t) = y(t). (19)

It is required to characterize its output FRS X̃(t).

From (19) we have the fuzzy differential equation

X̃ ′′(t) + a1X̃
′(t) + a2X̃(t) = Ỹ (t). (20)

By analogy with Example 4, the expectation M(X̃)(t) of the output signal satisfies the differ-
ential equation

(MX̃)′′(t) + a1(MX̃)′(t) + a2M(X̃)(t) =M(Ỹ )(t).

Let the coefficients be a1, a2 > 0. Then, for the α-indices of the expectation,[
(MX̃)±α

]′′
(t) + a1

[
(MX̃)±α

]′
(t) + a2(MX̃)±α (t) =M(Ỹ )±α (t) ∀α∈ [0, 1]. (21)

Let the functions (MỸ )±α (t) be bounded in t on the entire real axis. In addition, suppose that the
roots of the characteristic equation λ2 + a1λ+ a2 = 0 corresponding to (19) are real, negative, and
λ1 < λ2 < 0. Then there exists a unique and asymptotically Lyapunov stable solution of Eq. (21)
that is bounded on the entire real axis. This solution has the form

(MX̃)±α (t) =
t∫

−∞
G2(t− s)(MỸ )±α (s) ds ∀α ∈ [0, 1], (22)

where G2 is the Green function of the problem on bounded solutions of the scalar Eq. (19); for
example, see [26, Chapter 2, § 8]. Under the assumptions accepted above, it has the form

G2(t) =

{
(eλ2t − eλ1t)(λ2 − λ1)

−1 for t > 0;
0 for t < 0.

Formula (22) characterizes the connection between the fuzzy expectations of the input and
output FRSs of the system described by Eq. (20).

Assume that the α-indices Y ±
α (t) are bounded in the space H on the entire real axis. Following

the considerations of Example 4, we easily arrive at

K
X̃
(t, s) =

1

2

t∫
−∞

s∫
−∞

G2(t− τ1)G2(s− τ2)×
1∫

0

(
K
Ỹ −
α
(τ1, τ2) +K

Ỹ +
α
(τ1, τ2)

)
dαdτ1dτ2

=

t∫
−∞

s∫
−∞

G2(t− τ1)G2(s− τ2)KỸ
(τ1, τ2) dτ1dτ2.

(23)

Formula (23) characterizes the connection between the correlation functions of the input and
output FRSs of the system described by Eq. (20).

Note that within Examples 4 and 5, the output processes are asymptotically Lyapunov stable in
the sense that their α-indices are asymptotically Lyapunov stable; for example, see [25, Chapter II].
Only such processes are physically realizable. Other approaches to the stability of solutions of fuzzy
differential equations are also considered in the literature; for example, see [3, Chapter 8].
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5. CONCLUSIONS

The starting point for this study is the paper [20], where the covariances of FRVs were discussed
and the covariance function of an FRP was introduced. Such functions have been investigated
above.

The properties of the fuzzy expectations of FRPs (Proposition 4) and covariance functions
(Proposition 5) naturally follow from the corresponding properties of the fuzzy expectations and
covariances of fuzzy random variables (Propositions 1–3).

The essential content and scientific novelty of this paper are Theorems 1–4, which present
the characteristics of differentiable and integrable FRPs. Their proof involves the definitions and
properties of differentiability and integrability of fuzzy-valued functions. Theorems 1–4 generalize
the well-known results for standard continuous random processes; for example, see [6]. Also, note
the extremal property of the fuzzy expectations of FRPs (Proposition 4), which seems new to the
author.

Examples 1–3 are illustrative. Examples 4–5 show the possible use of this theory in applications,
particularly the problem of transforming an FRS by a linear dynamic system. The results of
Section 4 can be extended to the case of periodic and almost periodic FRSs, including the problem
of spectral decompositions of FRSs.
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Abstract—This paper is devoted to the guaranteeing estimation method with application to
the calibration problem of a gyro unit. Mathematical models are constructed to describe the
kinematics of the gyro unit on a test bench. The applicability limits and errors of the models are
investigated. A numerical solution procedure is developed for guaranteeing estimation problems
based on their reduction to l1-approximation problems.
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1. INTRODUCTION

This paper proposes a calibration procedure for a unit of angular rate sensors (ARSs), i.e.,
gyros, based on the guaranteeing estimation method [1–5]. The purpose of calibration is to estimate
parametric errors (biases, scale factors, and misalignment angles) in a unit consisting of three ARSs.
These parameters are determined through a series of measurements on a bench with high-accuracy
control of the angular rate and orientation of the unit. During calibration, rotation modes are
selected and the resulting signals are processed.

Many traditional calibration methods involve dynamic models for estimating unknown parame-
ters based on measurements of inertial navigation system (INS) sensors (accelerometers and gyros);
for details, see [6–8]. Nevertheless [9], in some cases, it is preferable to determine ARS errors with-
out involving information from accelerometers. Such a situation arises, first, when the accuracy of
accelerometers is too low to use their signals in bench tests and, second, when calibrating laser gyros
on vibration suspensions. The Kalman filter and the least squares method [10] are the main tool
for estimation. The calibration problem includes a large number of unknown parameters (sensor
errors, bench errors) that nonlinearly affect the measurement results. Therefore, two questions are
essential here as follows. How can one construct a mathematical model of bench tests to consider
all these factors? How can one minimize the impact of errors on the estimation result? A possible
answer to these questions is presented in this paper, which continues the earlier research on the
application of the guaranteeing approach in inertial navigation; for example, see [11], where the
calibration of an accelerometer unit was considered. However, in contrast to the cited paper, this
method is applied below to a different class of systems with a large number of unknown parameters
and nonlinear effects. This class requires constructing other models and leads to other, structurally
more complex estimation problems.

The guaranteeing estimation method allows estimating unknown parameters under the “worst-
case” realizations of measurement errors with minimal estimation accuracy. In this case, typical
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maximum values of the bench errors are used instead of probabilistic hypotheses. The resulting
solution sets the directions of rotation of the gyro unit on the bench, i.e., explicitly describes the
optimal calibration modes.

This paper is organized as follows. In Section 1, the mathematical model of bench tests of
the gyro unit is constructed; the transition from the basic kinematic equations to several linear
models with signal averaging is performed; the applicability limits of these models are investigated.
Sections 2 and 3 formulate the guaranteeing estimation problems and the corresponding auxiliary
variational l1-approximation problems that can be solved numerically. In Section 4, we determine
optimal experiment plans, apply the estimation algorithms to model problems, and analyzing the
accuracy of the resulting solutions.

2. MATHEMATICAL MODEL

2.1. Basic Assumptions and Kinematic Relations for a Gyro Unit

Consider a mathematical model describing the basic kinematic relations of a gyro unit on a test
bench during calibration [12]. Let an experiment be conducted at the point M rigidly coupled to
the Earth on its surface. We introduce the following notations:

Mz =Mz1z2z3 is the instrumental frame rigidly coupled to the gyro unit;

Mx =Mx1x2x3 is the frame rigidly coupled to the bench base fixed relative to the Earth;

D(t) is the orthogonal orientation matrix of Mz relative to Mx. By definition of an orienta-
tion matrix, for any vector l, its coordinates in the reference frames Mz,Mx have the relation
lz = D(t) lx and the rows of the orientation matrix consist of the coordinates of the basis vectors
of Mz in the frame Mx;

Ω(t) is the angular rate vector of the gyro unit relative to the bench;

ω(t) is the absolute angular rate vector of the gyro unit;

ux are the coordinates of the angular rate of the Earth in the frame Mx and u is the absolute
angular rate of the Earth.

The absolute angular rate of the gyro unit is described in projections onto Mx by the relation

ωx(t) = Ωx(t) + ux.

In projections onto the axis of the frame Mz, this equality takes the form

ωz(t) = D(t) (Ωx(t) + ux). (1)

At the initial time instant, the orientation matrix D is known with some accuracy. We denote
this estimate D(0) by Dinit:

D(0) = Dinit(I3 + β̂), β = (β1, β2, β3)
T, β̂ =

⎛⎜⎝ 0 β3 −β2
−β3 0 β1
β2 −β1 0

⎞⎟⎠ ,
|βi| � βmax, i = 1, 2, 3.

(2)

The initial alignment errors of the gyro unit, i.e., the small rotation angles βi, are unknown but
their absolute values are bounded by βmax. Throughout this paper, In stands for an identity matrix
of dimensions n× n and β̂ denotes the skew-symmetric matrix constructed from the vector β
according to the above rule.

For the gyro unit, the output signals (measurements) are the readings of each ARS, i.e., the
components of the vector ωz(t). Let us introduce the measurement model

ζ(t) = ωz(t) + Γωz(t) + ν0 + δν(t). (3)
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Here: ζ(t) ∈ R3 are measurement values; Γ ∈ R3×3 is an unknown matrix describing the scale
factor errors and the orientation errors of the sensitivity axes; ν0 ∈ R3 are unknown zero biases
in the sensor readings; finally, δν(t) ∈ R3 are nonparametric measurement errors (fluctuations).
Without loss of generality, the matrix Γ is supposed symmetric [5].

The calibration problem consists in determining the values of Γ and ν0 from the set of available
measurements ζ(t). Note that the angular rate Ωx(t) is controlled on the bench, and the optimal
strategy of the unit’s motion on the bench is one purpose of the mathematical calibration problem.
Let the angular rate Ωx(t) be written as

Ωx(t) = s′(t)w,

where s′(t)∈ R denotes the angular rate and w∈R3 is the unit direction vector of the angular
rate of Mz in projections onto Mx. The considerations below concern a special case of motion of
the gyro unit on the bench that consists of several same-type experiments. Within each of them,
the unit is rotated about a fixed axis with a given angular rate; then the unit is placed in a new
position, a new direction of its rotation is set, and the experiment is repeated. The direction of
the rotation axis and the angular rate are known with some errors. In other words, the function
s(t) � 0 and vector y (‖y‖2 = 1) are given in the expressions

s′(t) = s(t) + ε(t), w = (I3 + α̂)y, Ωx(t) = (s(t) + ε(t))(I3 + α̂)y, (4)

which relate them to their true counterparts. The small rotation angles α∈R3 and the correspond-
ing skew-symmetric matrix α̂ determine the unknown errors in the rotation vector of the gyro unit
whereas the scalar function ε(t) determines the error in the angular rate value. As in the case of
the angles β, the maximum possible values for α are known: |αi| � αmax, i = 1, 2, 3.

At each test stage, the errors α and β are constant but nonidentical in different experiments: by
assumption, the programmed (target) angular rate and the unit orientation are set independently in
each experiment. Thus, several series of measurements ζ(t) are formed that correspond to different
rotation modes and different error realizations.

2.2. Linearization of the Equations and Signal Averaging

Substituting (1) and (4) into (3) yields the measurements

ζ(t) = (I3 + Γ)D(t)
(
s′(t)w + ux

)
+ ν0 + δν(t). (5)

In addition to the signal ζ(t), two angular rate components, D(t)ux and s′(t)D(t)w, as well as
the uncertain errors δν(t) and ε(t) depend on time. This section considers a mathematical model
corresponding to the rotation mode of the gyro unit with a directionally constant angular rate on
a time interval T . The calibration procedure will consist of a sequence of such rotation modes with
different directions.

Next, we construct a “time-averaged” analog of the measurement equation by considering the
averaging effect when Mz rotates relative to Mx. Averaging means calculating arithmetic means
from a series of measurements on a long time interval T (several tens of minutes), during which
the system makes multiple complete revolutions.

Recall that D(t) is the transition matrix fromMx toMz, and Mz is rigidly coupled to the gyro
unit rotating relative to Mx with the angular rate Ωx. The transition from Mx to Mz consists of
three stages as follows.

1. Transition fromMx toMxfix, the stationary frame relative to the bench base, whose unit basis
vector efix3 coincides with w in direction. We denote by Dfix = (dfix1; dfix2; dfix3) the corresponding
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transition matrix; its third row is dfix3 = wT, and the first and second rows are orthogonal to it
and to each other and can be chosen in any suitable way.

2. Rotation about the axis Mxfix3 =Mzcir3 with the angular rate s′(t), translating Mxfix into
the frame Mzcir rigidly coupled to the gyro unit. We denote by ψ(t) the time-dependent rotation

angle in the plane Mxfix1xfix2. Therefore, dψ(t)
dt = s′(t), and the transition matrix from Mxfix to

Mz takes the form

Dcir(t) =

⎛⎜⎜⎝
cosψ(t) − sinψ(t) 0

sinψ(t) cosψ(t) 0

0 0 1

⎞⎟⎟⎠ .
3. Transition fromMzcir toMz through an inexactly known orthogonal matrix. For convenience

of further calculations, this matrix is represented as D′ = (d′1, d′2, d′3).
Thus, the matrix D(t) can be written as a product of the fixed and time-dependent transition

matrices:

D(t) = D′Dcir(t)Dfix.

By definition, the first two rows of the matrix Dfix are orthogonal to w. Using this fact, we obtain
the following expression for s′(t)D(t)w :

s′(t)D(t)w = s′(t)D′Dcir(t)Dfixw = s′(t)D′

⎛⎜⎝ cosψ(t) − sinψ(t) 0

sinψ(t) cosψ(t) 0

0 0 1

⎞⎟⎠
⎛⎜⎝ 0

0

1

⎞⎟⎠ = s′(t)d′3. (6)

By the definition of the transition matrix D′, the column d′3 consists of the projections of the unit
basis vectors of the instrumental frame onto the axis Mzcir3. Since the direction of Mzcir3 does not
change in time and the rotation is about this axis, the projections of the unit basis vectors of the
instrumental frame onto this direction will also remain constant. Therefore, d′3 can be determined
from the a priori information (2):

d′3 = D(t)w = D(0)w = Dinit(I3 + β̂)w. (7)

In other words, when rotating about a fixed axis, the direction of the vector D(t)Ωx(t) remains
constant; its averaging yields the vector s′Dinit(I3 + β̂)w, where s′ is the mean value of s′(t).

Due to the motion mode under consideration, the averaging result for the vector D(t)ux will
have a special structure as follows.

Lemma 1. Let the angular rate of the rotating frame be described by the function s′(t) = s+ ε(t),
the “programmed” angular rate s be constant and s > εmax, and the rotation occur about a fixed
direction w. Then, under the time averaging of the signal, the projections of the Earth’s rotation
rate onto the axes of Mz are described by

ūz = Dinit(I3 + β̂)wwTux + u⊥.

In addition, the unknown vector u⊥ is orthogonal to the vector Dinit(I3 + β̂)w and its components
can be estimated as

|u⊥i | � u

(
4

T (s− εmax)
+ C

εmax

s

)
def
= umax,

where C is a bounded value depending on the initial and final values of the rotation angle on the
bench.
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Table 1. The orders of values for model parameters

Parameter The order of value

α, αmax 1’ ≈ 2.9× 10−4

β, βmax 5’ ≈ 1.5× 10−3

ε(t) 5× 10−6 1/s

ε, εmax 1× 10−8 1/s

s 17.5 1/s

T 600–1200 s

Γii 5× 10−3 (5× 10−5)

Γij , i �= j 5× 10−3 (5× 10−5)

ν0 2.4× 10−7 1/s (5× 10−8 1/s)

νmax 1.2× 10−8 1/s

u 7.292115 ×10−5 1/s

We obtain an explicit form of the measurement equation by passing to the mean values in (5)
and using the expressions (4) and (7) with Lemma 1:

ζ̃ = (I3 + Γ)

(
s′Dinit(I3 + β̂)w +Dinit(I3 + β̂) wwTux + u⊥

)
+ ν0 + δν̃

= (I3 + Γ)Dinit(I3 + β̂)

(
(s+ ε)(I3 + α̂)y + (I3 + α̂)yyT(I3 + α̂)Tux

)
+ (I3 + Γ)u⊥ + ν0 + δν̃.

(8)

Here, ε (the mean value of the noise ε(t)) and the error δν̃ (the mean value of the noise δν(t))
are supposed to be bounded:

|ε| � εmax, |δν̃j | � νmax, j = 1, 2, 3,

where a known constant νmax characterizes the a priori knowledge of the gyro error.

Depending on the scales of the variables α, β, Γ, ε, and ν, the measurement model can be
simplified in different ways by neglecting one or another group of variables. In Table 1 below,
we fix the characteristic scales of the model parameters corresponding to the typical accuracies of
benches and gyros as well as the accuracy requirements for estimating the parameters Γ and ν0
(indicated in parentheses).

Note that in the case under consideration, the values νmax and εmax are much smaller than the
characteristic amplitudes of δν(t) and ε(t). This corresponds to the averaging of the original signal.
The approach proposed in this paper is applicable to other scales of variables as well; the original
measurement model can be simplified in other ways depending on the real problem.

With the selected values, the terms in the measurements expression are divided into several
groups: non-small terms, such as sy and ζ̃; terms with a linear dependence on the small parameters
α, β, ε, and u; negligibly small second- and third-order infinitesimals not exceeding νmax; nonlinear
terms that cannot be neglected due to their dependence on sΓDinitα̂, sΓDinitβ̂, sDinitα̂β̂, Γu

⊥, u⊥

and (possibly) higher values than νmax.

After eliminating the small terms, Eq. (8) takes the form

ζ̃ = Dinit

(
s(I3 + α̂+ β̂)y + sβ̂α̂y + εy + (I3 + α̂+ β̂)yyTux − yyTα̂ux

)
+ u⊥ + Γu⊥ + ΓDinit(sy + yyTux) + ΓDinits(α̂+ β̂)y + ν0 + δν̃.
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The terms syTβ̂α̂y and ΓDinits(α̂+ β̂)y can be neglected if their value is comparable with the
unremovable noise δν̃, i.e., ‖syTβ̂α̂y‖∞ � νmax and ‖ΓDinits(α̂+ β̂)y‖∞ � νmax. The components
of the matrix Γ have a known scale: |Γij | � Γmax; see Table 1. Therefore, we introduce an additional
constraint on the angular rate s:

s � νmax

2max{αmaxβmax,Γmax(αmax + βmax)}
def
= smax. (9)

In other words, the errors α and β will have a smaller effect on the estimation result when rotating
the gyro unit on the bench with a lower angular rate.

Under too slow rotation, it may turn out that the averaging error (the term Γu⊥) exceeds
the required estimation accuracy. Hence, we obtain the second constraint on the parameter s:
‖Γu⊥‖∞ � νmax. Due to the a priori known scale of the components of the matrix Γmax and
Lemma 1,

‖Γu⊥‖∞ � 3Γmax u

(
4

(s− εmax)T
+ C

εmax

s

)
� νmax.

The term ΓmaxC uεmax/s is small compared to νmax. Hence, the constraint on s takes the form

3Γmax u
4

(s− εmax)T
� νmax, or s � 12Γmaxu

νmaxT
+ εmax

def
= smin. (10)

The effect of u⊥ can be compensated by radically increasing T. However, see below, this is achieved
in a different way (through scalarization).

In addition to rotation with the angular rate sy, another mode of bench tests is possible: the ARS
unit is stationary relative to the bench base and the gyros measure the angular rate of the Earth’s
rotation. In this case, the expression for measurements can be obtained from (5) by substituting
s′ = 0, s = 0, ε(t) = 0, and D(t) = Dinit(I3 + β̂) and passing to the averaged signals ζ̃:

ζ̃ = (I3 + Γ)Dinit(I3 + β̂)ux + ν0 + δν̃ = Dinit ux + ΓDinitux +Dinitβ̂ ux + ν0 + δν̃

within second-order infinitesimals.

Summarizing the results of this section, we formulate the averaged gyro signal model with the
constraints (9) and (10):

ζ̃ = Dinit

(
s(I3 + α̂+ β̂)y + εy + (I3 + α̂+ β̂)yyTux − yyTα̂ux

)
+ ΓDinit(sy + yyTux) + u⊥ + ν0 + δν̃, s ∈ {0} ∪ [smin, smax].

(11)

2.3. Measurement Models and Scalarization

In Eq. (11), the input information is the terms ζ̃ and Dinit(sy + yyTux), whereas the “useful
signal” is the terms ΓDinit(sy + yyTux) + ν0. The measurement errors consist of the vector δν̃
arising when averaging the fluctuation noise δν̃(t), and unknown systematic errors due to bench
inaccuracy (varying with each new bench test). After rearranging the known terms to the left-hand
side of Eq. (11), we obtain the linear measurement model

z(s, y) = ΓDinit(sy + yyTux) + ν0 + r + δν ′, (12)

with the “measurements” z = z(s, y) and their errors r = r(s, y, α, β, ε) and δν ′ given by

z = ζ̃ −Dinit(sy + yyTux), r = Dinit

(
s(α̂+ β̂)y + εy + (α̂+ β̂)yyTux − yyTα̂ux

)
, (13)

δν ′ = δν̃ + u⊥, |δν ′j | � νmax + umax
def
= ν ′max, j = 1, 2, 3. (14)
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For definiteness, this model will be called three-dimensional (3D) (since z(s, y) ∈ R3) or Model-1.

In model (12)–(14), the component δν̃ has no intelligible spectrum due to averaging and is
therefore exhaustively described by the inequality |δν̃j | � νmax. The component u⊥ is not equally
arbitrary; see Lemma 1. Therefore, the constraint |δν ′j | � ν ′max in (14) is coarse.

We use the scalarization method [11]: the original 3D measurement equations are multiplied by
a known vector (in this case, ỹ = Dinity). After this step, all terms representing the product of a
skew-symmetric matrix by the vector y in r are reduced. The scalar product yTDT

initu
⊥ can also

be considered approximately equal to 0 by Lemma 1:

0 = wT(I3 − β̂)DT
initu

⊥ = yT(I3 − α̂)(I3 − β̂)DT
initu

⊥ ≈ yTDT
initu

⊥ (15)

(within the infinitesimals of order (αmax + βmax)u(
4

T (s−εmax)
+ C εmax

s )). This approximation accu-
racy is sufficient because

(αmax + βmax)u

(
4

T (s− εmax)
+ C

εmax

s

)
� νmax

for the scales of the parameters αmax, βmax, s, T, and εmax.

Consequently, it becomes possible to pass to a one-dimensional (scalar) measurement model
with smaller scale errors:

zscal = zscal(s, y) = ỹTΓDinit(sy + yyTux) + ỹTν0 + rscal + ỹTδν̃, (16)

where

zscal = ỹTζ̃ − s− yTux, rscal = ε− yTα̂ux. (17)

This measurement model will be called scalar or Model-2. It covers the specifics of the term
containing the value u⊥, which almost vanishes during scalarization (see (15)). Therefore, the model
for the measurement noise zscal is more adequate in this case than for Model-1 (the 3D model),
which explains its better accuracy.

3. GUARANTEED ESTIMATION: PROBLEM STATEMENTS

Following the ideas presented in [5, 11], we obtain the unknown matrix Γ and vector ν0 through
guaranteeing estimation. The vector of unknown parameters in this estimation problem consists of
the components of the errors Γ and ν0:

γ = (Γ11,Γ21,Γ31,Γ12,Γ22,Γ32,Γ13,Γ23,Γ33)
T, q = (γT, ν01, ν02, ν03)

T ∈ R12.

It is required to estimate the scalar value aTq with a given vector a∈R12. For example, a =
(1, 0, . . . , 0)T when estimating the component Γ11.

The desired estimate is a linear functional of the measurements:

l(Φ) =

∫
(y,s)∈S

ΦT
0 (y, s)z(y, s)dyds +

K∑
k=1

ΦT (k)z(y(k), s(k)),

where the integral is taken over the set

S = {y ∈ R3 : ‖y‖2 = 1} × {{0} ∪ [smin, smax]
}
,
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Φ0(·) : S → R3, Φ(k) ∈ R3, and the aggregate {y(k), s(k)}Kk=1 specifies the set of isolated positions
and angular rates of rotation within the experiment. (For brevity, the set over which the integral is
taken will be omitted below.) To each element (y, s) we assign the measurements z(y, s) obtained
by processing the gyro signals during rotation with the corresponding angular rate. The structure
of measurements can be defined by Model-1 or Model-2 (see the previous section). Let us first
formulate the guaranteeing estimation problem for the 3D model and then, by analogy, for the
scalar model.

With a formal notation using the Dirac delta function, l(Φ) can be compactly written as

l(Φ) =

∫
y,s

ΦT(y, s)z(y, s)dyds, Φ(y, s) = Φ0(y, s) +
K∑
k=1

ΦT (k) δ(y − y(k), s − s(k)).

We denote by F the set of all such functions Φ(·).
Consider the guaranteeing estimation problem for the scalar parameter aTq : find an estimator Φ

minimizing the (guaranteeing estimation) error [11]

I(Φ) → inf
Φ∈F

, (18)

where the objective functional I(Φ) is the supremum of the error |l(Φ)− aTq|, i.e.,
I(Φ) = sup

(q,α,β,ε,δν′)∈B′
|l(Φ)− aTq|. (19)

This supremum is calculated over B′, the set of all admissible values of the unknown parameters
(q, α, β, ε, δν̃):

q ∈R12, |αj |�αmax, |βj |�βmax, |δν ′j |� ν ′max, j = 1, 2, 3, |ε|� εmax. (20)

The solution of problem (18)–(20) determines the optimal plan of the experiment. In practice,
it is often necessary to estimate each component of the vector q. For these purposes, 12 separate
problems of the form (20) are solved; in each of them, only one component a is nonzero.

For the guaranteeing estimation problem, an equivalent l1-approximation problem can be for-
mulated and numerically solved.

Proposition 1. A function Φ(y, s)∈F is the solution of the guaranteeing estimation problem
(18)–(20) for Model-1 (12)–(13) if and only if it is the solution of the optimization problem∫ (

ν ′
max‖Φ‖1 + αmax‖CαΦ‖1 + βmax‖CβΦ‖1 + εmax

∣∣∣yTDT
initΦ

∣∣∣ )dyds→ inf
Φ∈F

(21)

subject to the constraints ⎛⎜⎝
∫
v(y, s)⊗ Φ dyds∫

Φ dyds

⎞⎟⎠ = a (22)

with the following notations:

v =Dinit(sy + yyTux),

Cα =
(
sŷ + yTuxŷ − ûxyy

T
)
DT

init,

Cβ =
(
sŷ + yTuxŷ

)
DT

init.

(23)
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Here, the symbol ⊗ stands for the Kronecker product; the vector v and the matrices Cα and Cβ
are functions of s, y. The proof of Proposition 1 is given in the Appendix.

Similarly, we formulate the guaranteeing estimation problems for Model-2 by defining the one-
dimensional estimator

χ(y, s) = χ0(y, s) +
K∑
k=1

χ(k) δ(y − y(k), s − s(k)).

The resulting estimate of the unknown scalar parameter aTq has the form

l(χ) =

∫
y,s

χ(y, s)zscal(y, s)dyds.

We denote by X the set of all such functions χ(y, s) with the described structure.

Proposition 2. A function χ(y, s)∈X is the solution of the guaranteeing estimation problem
(18)–(20) for Model-2 (16)–(17) if and only if it is the solution of the optimization problem∫

(νmax‖Dinity‖1 + αmax‖ûxy‖1 + εmax) |χ(y, s)| dyds → inf
χ∈X

(24)

subject to the constraints ∫
χ(y, s)

(
v(y, s)⊗Dinity

Dinity

)
dyds = a. (25)

Proposition 2 is established by analogy to Proposition 1.

4. DISCRETE OPTIMIZATION PROBLEMS

In the variational l1-approximation problem (21)–(22), the desired variable is the vector function
Φ(y, s) whose argument takes a continuum set of values. This fact complicates numerical solution.
For similar guaranteeing estimation problems, it was proved [5, 11] that the optimal estimator Φ
differs from zero on a finite set of points. In this paper, we will not obtain an analytical solution:
consider a discrete analog of the above problems and solve them numerically instead. Let a func-
tion Φ(y, s) be nonzero on a finite set of points {y(k), s(k)}Kk=1 corresponding to different values of
the angular rate vector of the unit on the bench and take values Φ(k) at them. This discrete set of
positions can be specified by introducing spherical coordinates to define the vector y and choose a
“value grid” for latitude and longitude with a given step.

Transition from integrals to finite sums in (21)–(22) yields the optimization problem

K∑
k=1

(
ν ′max‖Φ(k)‖1 + αmax‖Cα(k)Φ(k)‖1 + βmax‖Cβ(k)Φ(k)‖1

+ εmax|yT(k)DT
initΦ(k)|

)
→ inf

Φ(1),...,Φ(K)
(26)

subject to the constraints ⎛⎜⎜⎜⎜⎜⎝
K∑
k=1

v(k)⊗ Φ(k)

K∑
k=1

Φ(k)

⎞⎟⎟⎟⎟⎟⎠ = a, (27)
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where the vectors v(k) and the matrices Cα(k) and Cβ(k) depend on the known arguments y(k)
and s(k):

v(k) = Dinit(s(k)y(k) + y(k)yT(k)ux),

Cα(k) =
(
s(k)ŷ(k) + yT(k)uxŷ(k)− ûxy(k)y

T(k)
)
DT

init,

Cβ(k) =
(
s(k)ŷ(k) + yT(k)uxŷ(k)

)
DT

init.

Note that in this problem, the discrete value grid {y(k), s(k)}Kk=1 is considered a priori given
and only the values of Φ(k) have to be found. Multiplying the objective function (26) by the
constant ν ′−1

max and introducing the notations

αmax

ν ′
max

Cα(k)Φ(k) = xα(k),
βmax

ν ′
max

Cβ(k)Φ(k) = xβ(k),
εmax

ν ′
max

yT(k)DT
initΦ(k) = xε(k),

x =
(
ΦT(1), . . . ,ΦT(K), xTα(1), . . . , x

T
α (K), xTβ (1), . . . , x

T
β (K), xε(1), . . . , xε(K)

)T
∈ R10K ,

(28)

we write problem (26)–(27) in a compact form corresponding to the classical l1-approximation
problem

‖x‖1 → inf
x∈R10K

(29)

subject to the linear constraints Aeqx = aeq.

The matrix and vector from the constraint equation can be represented in the block form:

Aeq =

⎛⎜⎜⎜⎝
Aα I3K 03K×3K 0K×K
Aβ 03K×3K I3K 0K×K
Aε 0K×3K 0K×3K IK
AΦ 012×3K 012×3K 012×K

⎞⎟⎟⎟⎠ ∈ R(7K+12)×10K , aeq =

⎛⎝ 07K×1

a

⎞⎠ ∈ R7K+12,

where, due to (27) and (28),

Aα =
αmax

νmax

⎛⎜⎜⎜⎜⎝
Cα(1) 03×3 . . . 03×3

03×3 Cα(2) . . . 03×3

. . . . . .
. . . . . .

03×3 . . . 03×3 Cα(K)

⎞⎟⎟⎟⎟⎠ ,

Aβ =
βmax

νmax

⎛⎜⎜⎜⎜⎝
Cβ(1) 03×3 . . . 03×3

03×3 Cβ(2) . . . 03×3

. . . . . .
. . . . . .

03×3 . . . 03×3 Cβ(K)

⎞⎟⎟⎟⎟⎠ ,

Aε =
εmax

νmax

⎛⎜⎜⎜⎜⎝
yT(1)DT

init 01×3 . . . 01×3

01×3 yT(2)DT
init . . . 01×3

. . . . . .
. . . . . .

01×3 . . . 01×3 yT(K)DT
init

⎞⎟⎟⎟⎟⎠ ,

AΦ =

⎛⎜⎜⎜⎜⎝
v1(1) v1(2)I3 . . . v1(K)I3

v2(1)I3 v2(2)I3 . . . v2(K)I3

v3(1)I3 v3(2)I3 . . . v3(K)I3

I3 I3 . . . I3

⎞⎟⎟⎟⎟⎠ .
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A discrete analog of the scalarized model (24)–(25) can be formulated by analogy. In this
problem, it is required to minimize the sum of the moduli of the components of the unknown
vector under linear equality constraints:

K∑
k=1

(νmax‖Dinity(k)‖1 + αmax‖ûxy(k)‖1 + εmax) |χ(k)| → inf
χ(1),...,χ(K)

(30)

subject to

K∑
k=1

χ(k)

(
v(k)⊗Dinity(k)

Dinity(k)

)
= a. (31)

In matrix form, the problem is written as

‖xχ‖1 → inf
xχ∈RK

(32)

subject to the constraints Aχxχ = a.

Here, we adopt the notations

xχk = ρkχ(k), ρk = νmax‖Dinity(k)‖1 + αmax‖ûxy(k)‖1 + εmax, k = 1, . . . ,K;

Aχ =

⎛⎜⎜⎜⎜⎜⎝
ρ−1
1 v1(1)Dinity(1) ρ−1

2 v1(2)Dinity(2) . . . ρ
−1
K v1(K)Dinity(K)

ρ−1
1 v2(1)Dinity(1) ρ−1

2 v2(2)Dinity(2) . . . ρ
−1
K v2(K)Dinity(K)

ρ−1
1 v3(1)Dinity(1) ρ−1

2 v3(2)Dinity(2) . . . ρ
−1
K , v3(K)Dinity(K)

ρ−1
1 Dinity(1) ρ−1

2 Dinity(2) . . . ρ−1
K Dinity(K)

⎞⎟⎟⎟⎟⎟⎠∈R12×K .

Such convex optimization problems can be solved by various numerical methods, e.g., the interior
point method [13], ADMM [14], and the method of variationally weighted quadratic approxima-
tions [5]. Unlike the problem for the 3D model (29), problems (32) have a smaller dimension of
the unknown vector and constraint matrices (7–10 times less variables and constraints). Therefore,
they better suit numerical solution in the case of large values K.

Thus, the optimal estimators Φ(k) and χ(k) obtained by solving the l1-approximation prob-
lems (29) or (32) yield the target values of the angular rates s(k)y(k) of the gyro unit on the bench.
As a rule, a small number of angular rate positions correspond to non-zero values of Φ(k) or χ(k).
(This is a common property of guaranteeing estimation solutions; for example, see justification in
the book [5].) We denote this subset by K, K ⊂ {1, . . . ,K}.

The guaranteeing estimation algorithm for the ARS unit errors is a series of steps. At each step,
the following operations are carried out for each k ∈K:

(1) The gyro unit is rotated with the angular rate s(k)y(k), and the set of gyro readings ζ(t) ∈ R3

is formed.
(2) The signal ζ(t) is averaged on the time interval T of the fixed-rate rotation:

ζ̃ =

(
T∑
t=0

ζ(t)

)
/(T + 1).

(3) According to (13)–(17), the measurements z(y(k), s(k)) and zscal(y(k), s(k)) are formed for
the linear estimation models.

Then the unknown parameter aTq is estimated as∑
k∈K

ΦT(k)z(y(k), s(k)) or
∑
k∈K

χ(k)zscal(y(k), s(k)).
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5. NUMERICAL EXAMPLES

Consider several numerical examples illustrating the application of the guaranteeing estimation
methods proposed in this paper. The practical implementation of the algorithm includes several
stages as follows: solving the guaranteeing estimation problems; modeling the signal, i.e., the
measurements ζ(t) for given “true” values of the errors and the unknown parameters Γ and ν0;
building the estimates Γ and ν0 and comparing them with the “true” values. The corresponding
code was implemented in Python and standard procedures from CVXPY1 were used to solve the
l1-approximation problems (29) and (32).

The typical values of the errors and model parameters were selected according to Table 1. The
admissible limits for the angular rate were defined by formulas (9) and (10): smin = 1.25 ◦/s and
smax = 3.28 ◦/s. In the model example, we supposed the following: the absolute angular rate takes
the value s = 0 (no rotation) and two values from the segment [smin, smax], i.e., s1 = 1.5 ◦/s and
s2 = 2 ◦/s; the vectors y(k) are uniformly located on the unit sphere; Dinit = I3. Let us describe
the resulting solutions for each group of the unknown parameters Γ and ν0.

For the full and scalarized models, the optimal estimators for the diagonal components Γii have
the form

Φii(y, s) =χ0eiδ(y − ei, s− s2)− χ0eiδ(y + ei, s− s2),

χii(y, s) =χ0δ(y − ei, s − s2) + χ0δ(y + ei, s− s2),

where ei is a unit vector with ith component equal to 1 and χ0 is some value numerically determined
in the solution of the optimization problem.

In other words, to estimate, e.g., the component Γ11 (the scaling factor of the first gyro’s error),
it is necessary to carry out two series of measurements, rotating the unit along the sensitivity axis
of this gyro with the maximum angular rate s = s2 first in one direction (y(1) = (1, 0, 0)T) and
then in the other (y(2) = (−1, 0, 0)T).

For the off-diagonal elements Γ12 = Γ21, the optimal estimators are given by

Φ12(y, s) =

⎛⎜⎝ Φ1

Φ1

0

⎞⎟⎠ δ(y − e(π/4), s − s2) +

⎛⎜⎝ Φ2

−Φ1

0

⎞⎟⎠ δ(y − e(3π/4), s − s2)

+

⎛⎜⎝ −Φ2

−Φ2

0

⎞⎟⎠ δ(y − e(5π/4), s − s2) +

⎛⎜⎝ −Φ1

Φ2

0

⎞⎟⎠ δ(y − e(7π/4), s − s2),

χ12(y, s) =χ0δ(y − e(π/4), s − s2) + χ0δ(y − e(3π/4), s − s2)

+χ0δ(y − e(5π/4), s − s2) + χ0δ(y − e(7π/4), s − s2)

with the following notations: e(θ) = (cos θ, sin θ, 0)T are the unit vectors corresponding to the
rotation by the angle θ in the plane e1e2; Φ1 and Φ2 are the values numerically determined in
the solution of the optimization problem; χ0 is the same value as for the diagonal elements. The
estimators for the components Γ13 = Γ31 and Γ23 = Γ32 are determined by analogy within the
rearrangements of the indices in the corresponding vectors. Thus, the optimal experiment for
estimating the misalignment angles between the gyro sensitivity axes consists of four series of
measurements; in each of them, rotation is performed along the bisector of the angle between the
coordinate axes with the maximum admissible angular rate (by absolute value).

1 An open source Python-embedded modeling language for convex optimization problems;
https : //web.stanford.edu/ boyd/papers/pdf/cvxpyrewriting.pdf.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



THE GUARANTEEING ESTIMATION METHOD 803

Table 2. Guaranteed estimation errors

Model Variable

Γii Γij , i �= j ν0i
The order of value [0.7; 1.3]× 10−3 [4; 6]× 10−3 [2; 3]× 10−7

Required accuracy 5× 10−5 5× 10−5 5× 10−8

Model-1 2.01× 10−4 5.67× 10−4 7.01× 10−6

Model-2 2.23× 10−6 3.45× 10−6 5.16× 10−8

Table 3. Average estimation errors

Model Variable

Γii Γij , i �= j ν0i

The order of value [0.7; 1.3]× 10−3 [4; 6]× 10−3 [2; 3]× 10−7

Model-1 1.25× 10−6 (0.13%) 1.33× 10−6 (0.02%) 4.88× 10−8 (22%)

Model-2 1.20× 10−6 (0.13%) 1.24× 10−6 (0.03%) 2.89× 10−8 (14%)

The optimal estimators for the zero biases ν0i have the following structure:

Φνi(y, s) = φ1eiδ(y− ei, s− s2)+φ2eiδ(y+ ei, s− s2)+φ3eiδ(y− ei, s− s1)+φ4eiδ(y+ ei, s− s1),
χνi(y, s) = χ1δ(y − ei, s− s2)− χ2δ(y + ei, s− s2) + χ3δ(y − ei, s − s1)− χ4δ(y + ei, s− s1),

where the values φi > 0 and χi > 0 are numerically determined in the solution of the optimization
problem. They are close to 1/4.

Clearly, the rotation directions and weight coefficients obtained by guaranteeing estimation
have a simple geometric structure: the optimal motion modes imply rotation with the maximum
admissible angular rate, in the direction coinciding (within the initial alignment error) either with
the gyro sensitivity axes or with the bisectors of the angles between these axes. A similar result was
established using guaranteeing estimation in the calibration problem of an accelerometer unit [11].
However, unlike the latter problem, the mathematical model of measurements in this paper is
significantly more complex and depends on a larger number of parameters. Therefore, it is difficult
to justify the optimal structure of the estimator analytically, and numerical methods are employed
to find solutions.

The main quality indicator of the solutions is the guaranteeing estimation error, which does
not depend on particular realizations of errors and measurements. Table 2 shows the guaranteeing
estimation errors corresponding to the optimal estimators for the components Γ and ν0.

For the model parameters given in Table 1, the required guaranteeing estimation accuracy is
achieved for all components of the matrix Γ within Model-2. Model-1 can lead to errors of about
10% of the parameter estimated; for the components ν0i, the required accuracy is achieved within
Model-2.

We present the estimation results for the components Γ, ν0 from a series of numerical experi-
ments with this procedure under particular realizations of the systematic errors and noises in the
measurements. The “true” values of these parameters and errors α, β, ε(t), and δν(t) were out-
putted using a random number generator. For each parameter Γij, ν0i, the modeling and estimation
procedure was repeated 20 times to evaluate typical deviations of the estimate from the true value.
Table 3 shows the average absolute (|Γ0

ij − Γij|) and relative (|Γ0
ij − Γij |/|Γij |, in parentheses) de-

viations of the estimates obtained with Models-1 and -2 from the true values. Unlike guaranteeing
errors, these deviations do not determine an upper bound on the error but characterize both the
accuracy of the models and solutions of the estimation problems. This is important because the
input information ζ(t) is constructed using a nonlinear model of the original signal (3), and the
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optimal solution is the result of applying guaranteeing estimation to linearized Models-1 and -2.
In other words, this experiment reflects the effect of different factors on the estimation result: the
errors and noises in the measurements and the errors due to the transition to simpler linear models.

According to the series of numerical examples, the estimates of the unknown parameters based
on the proposed algorithm with the measurement information are close to their “true” values and
the deviations lie within the guaranteeing estimation errors.

Let us illustrate how the solution accuracy depends on the choice of the angular rate s2. Consider
an experiment in which, for the same pre-selected values Γ and νo, the unknown parameters are
estimated using the two models described above for 16 different values of s2. The relative accuracy
of the resulting estimates is presented in the graphs below: the estimation errors for Γ11 (Fig. 1;
for Γ12 the results are similar) and the estimation errors for ν01 (Fig. 2).

According to the graph, the critical drop in accuracy is observed under the minimum values
of the angular rate (less than the threshold smin obtained in Section 2.2). When estimating the
matrix Γ, the approaches appear to be insensitive to the increase in the angular rate s2. However,
when estimating ν0, the accuracy deteriorates as s2 increases, especially in the case of exceeding
the threshold s2 > smax = 3.28 ◦/s = 0.057 1/s.
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6. CONCLUSIONS

This paper has developed a calibration procedure for a gyro unit with three main ideas as fol-
lows: derivation of linear measurement models for averaged signals, scalarization, and guaranteeing
estimation. The guaranteeing estimation problems have been reduced to discrete l1-approximation
problems, which are solved using numerical algorithms. An important advantage is that this proce-
dure yields an optimal experiment plan as a result of solving the estimation problem. Guaranteed
estimation leads to simple-structure solutions: from a large set of admissible directions and angular
rates, an optimal combination contains 2–4 rotation modes. This calibration procedure and the
corresponding software implementations can be extended with minimum changes to more complex
systems, e.g., the ones with a limited number of rotation directions and with temperature-dependent
sensor errors.

Besides inertial navigation, the approach proposed above or its modifications can be used in
other applications requiring an optimal set of measurements to estimate unknown parameters or
an experiment plan from a set of admissible scenarios.

APPENDIX

Proof of Lemma 1. On the time interval T the rotation occurs about a fixed direction. Therefore,
the rotation matrix Dcir is decomposed by averaging as follows:

D̄cir = D̄cir1 + D̄cir2, D̄cir1 =

⎛⎜⎝ 0 0 0
0 0 0
0 0 1

⎞⎟⎠ , D̄cir2 =

⎛⎜⎝ c1 −c2 0
c2 c1 0
0 0 0

⎞⎟⎠ , (A.1)

where ci is the result of the time averaging of the functions sinψ(t) and cosψ(t).

Due to formulas (6), (7), and (A.1), in the course of averaging, the vector uz is represented as
the sum of two terms, one proportional to w and the other orthogonal to D(0)w:

ūz = D̄ux = D′D̄cir1Dfixux +D′D̄cir2Dfixux

= D′

⎛⎜⎝ 01×3

01×3

wT

⎞⎟⎠ux + u⊥ = d′3w
Tux + u⊥ = Dinit(I3 + β̂)wwTux + u⊥,

(A.2)

where u⊥ = D′D̄cir2Dfixux.

The orthogonality of u⊥ to the direction D(0)w = Dinit(I3 + β̂)w can be established using for-
mulas (2) and (6): D(0)w = D′Dcir(0)Dfixw = D′ (0, 0, 1)T; the corresponding scalar product is
explicitly calculated as

wTD(0)Tu⊥ = (0, 0, 1)D′TD′

⎛⎜⎝ c1 −c2 0
c2 c1 0
0 0 0

⎞⎟⎠Dfixux = (0, 0, 1)T

⎛⎜⎝ c1 −c2 0
c2 c1 0
0 0 0

⎞⎟⎠Dfixux = 0.

Using the component c1 as an example, we explain the idea of estimating from above the result
of the time averaging of the function cosψ(t). Consider the continuous case of averaging:

c1 =
1

T

T∫
0

cosψ(t)dt.
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The dynamics of the angle ψ are described by a differential equation and constraints on the functions
on its right-hand side:

dψ(t)

dt
= s+ ε(t), ψ(0) = ψ0, |ε(t)| � εmax, s+ ε(t) > 0.

The change of variables t = t(ψ), ε(ψ) = ε(t(ψ)), |ε(ψ)| � εmax, in the integral yields

T∫
0

cosψ(t)dt =

ψ(T )∫
ψ0

cosψ

s+ ε(ψ)
dψ.

This integral can be written as the sum of integrals on the half-periods of the function cosψ
(intervals where the function has a fixed sign) and two integrals corresponding to the time intervals
at the beginning and end of the interval [ψ0, ψ(T )]. For example, if ψ0 < π/2, this interval is
represented as follows:

[ψ0, ψ(T )] = [ψ0, π/2] ∪ [π/2, 3π/2] ∪ [3π/2, 5π/2] ∪ . . . ∪ [π/2 + 2πncir, ψ(T )],

where ncir is the number of complete revolutions of the system about the axis of rotation and the
length of the last interval does not exceed π, i.e., π/2 + 2πncir � ψ(T ) � 3π/2 + 2πncir.

The integrand on each such interval has a fixed sign, and the maximum value of the integrand
(hence, that of the integral) is achieved at ε(ψ) = −sgn(cosψ) εmax:∫

cosψ

s+ ε(ψ)
dψ �

∫
cosψ

min|ε|�εmax
(s+ ε)

dψ =

∫
cosψ

s− sgn(cosψ) εmax
dψ.

Therefore, each integral can be estimated bilaterally (from below and above):∣∣∣∣∣∣∣
π/2∫
ψ0

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣ �
2

s− εmax
,

∣∣∣∣∣∣∣
ψ(T )∫

π/2+2πncir

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣ �
2

s− εmax
,

−2

s− εmax
�

3π/2∫
π/2

cosψ

s+ ε(ψ)
dψ � −2

s+ εmax
,

2

s+ εmax
�

5π/2∫
3π/2

cosψ

s+ ε(ψ)
dψ � 2

s− εmax
.

As a result, the absolute value of the integral on the averaging interval admits the following
upper bound: ∣∣∣∣∣∣∣

ψ(T )∫
ψ0

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣
π/2∫
ψ0

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣

ψ(T )∫
π/2+2πncir

cosψ

s+ ε(ψ)
dψ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
ncir∑
j=1

⎛⎜⎝ 3π/2∫
π/2

cosψ

s+ ε(ψ)
dψ +

5π/2∫
3π/2

cosψ

s+ ε(ψ)
dψ

⎞⎟⎠
∣∣∣∣∣∣∣

� 4

s− εmax
+

∣∣∣∣∣∣
ncir∑
j=1

−2

s+ εmax
+

2

s− εmax

∣∣∣∣∣∣ � 4

s− εmax
+

ncir 4εmax

(s + εmax)(s − εmax)
.

The angular rate and the number of complete revolutions of the system are related by

sT = 2π ncir +Δψ
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for some Δψ � 2π. Consequently,

|c1| =
∣∣∣∣∣∣ 1T

T∫
0

cosψ(t)dt

∣∣∣∣∣∣ � 4

T (s− εmax)
+

ncir 4εmax

T (s2 − ε2max)

=
4

T (s− εmax)
+

(sT −Δψ) 4εmax

2π sT s(1− ε2max/s
2)

=
4

T (s − εmax)
+

2 (1−Δψ/(sT ))

π (1− ε2max/s
2)

εmax

s
.

Thus, we obtain

|c1| � 4

T (s− εmax)
+C

εmax

s
,

where the parameter C = 2
π (1−ε2max/s

2) is an upper bound for the fraction 2(1−Δψ/(sT ))
π (1−ε2max/s

2) .

Proof of Proposition 1. We transform the integrand of the objective function into problem (18)
by substituting formulas (12) and (13) with the additional notation v = v(s, y) = Dinit(sy+yy

Tux):

ΦTz = ΦT
(
ΓDinit(sy + yyTux) + ν0 + r + δν ′

)
= ΦTΓv +ΦTν0 +ΦTδν ′ +ΦTDinit

(
−s(ŷα+ ŷβ) + εy + yTux(α̂+ β̂)y + yyTûxα

)
= (v ⊗ Φ)Tγ +ΦTν0 +ΦTδν ′ +ΦTDinit

(
−s(ŷα+ ŷβ) + εy − yTux(ŷα+ ŷβ) + yyTûxα

)
.

Hence,

ΦTz = (v ⊗ Φ)Tγ +ΦTν0 +ΦTδν ′ + εΦTDinity

+ΦTDinit

(
−sŷ − yTuxŷ + yyTûx

)
α+ΦTDinit

(
−sŷ − yTuxŷ

)
β.

(A.3)

These formulas involve, first, the properties of matrix operations

ΦTΓv = (ΦT ⊗ vT)γ = (v ⊗ Φ)Tγ, α̂y = −ŷα

and, second, the possibility of transferring the scalar product yTux to the other part of the corre-
sponding multiplier group: α̂yyTux = −yTux ŷα.

Let us define the matrices C ′
α and C ′

β :

C ′
α = Dinit

(
−sŷ − yTuxŷ − yTuxŷ

)
, C ′

β = Dinit

(
−sŷ − yTuxŷ

)
.

Then the right-hand side of (A.3) is represented as a function that linearly depends on the variables
q, α, β, ε, and δν̃:

ΦT(y, s)z(y, s) = (v ⊗ Φ)Tγ +ΦTν0 +ΦTδν ′ +ΦTC ′
αα+ΦTC ′

ββ + εΦTDinity. (A.4)

Substituting formula (A.4) into the original objective functional (19) yields

I(Φ) = sup
(q,α,β,ε,δν′)∈B′

|l(Φ)− aTq|

= sup
(q,α,β,ε,δν′)∈B′

∣∣∣∣∣
∫ (

(v ⊗ Φ)Tγ +ΦTν0 +ΦTδν ′ +ΦTC ′
αα+ΦTC ′

ββ + εΦTDinity
)
dyds− aTq

∣∣∣∣∣.
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Since q = col(γ, ν0), the function l(Φ)− aTq linear depends on q, and the multiplier at q is⎛⎜⎝
∫
v ⊗Φ dyds∫
Φ dyds

⎞⎟⎠− a.

Therefore, if condition (22) is violated, we have supq∈R12 |l(Φ)− aTq| = +∞ for a fixed Φ and
arbitrary admissible α, β, ε, and δν ′. Consequently,

sup
(q,α,β,ε,δν′)∈B′

|l(Φ)− aTq| = sup
(q,α,β,ε,δν′)∈B′

∣∣∣∣∫ (ΦTδν̃ +ΦTC ′
αα+ΦTC ′

ββ + εΦTDinity
)
dyds

∣∣∣∣ .
In other words, it is necessary to maximize the absolute value of a linear function where each term
depends on only one variable not figuring in the other terms. This means that the maximum can
be found independently in each of the variables. For a fixed Φ, the maximum is determined in an
explicit form:

sup
α: |αi|�αmax

∫
ΦTC ′

ααdyds = sup
α: |αi|�αmax

∫ ( 3∑
i=1

(C ′T
α Φ)iαi

)
dyds

=
3∑
i=1

sup
αi: |αi|�αmax

∫
(C ′T

α Φ)iαidyds

=

∫ ( 3∑
i=1

αmax sgn((C
′T
α Φ)i) (C

′T
α Φ)i

)
dyds =

∫
‖CαΦ‖1 dyds.

A similar chain of considerations applies to the other terms in the objective functional (18). Thus,
the explicit calculation of the supremum of the original objective functional finally leads to the
optimization problem (21)–(22).
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Abstract—With regard to location and navigation tasks for single-position passive observer,
a bearing-free method for identifying parameters of a polynomial model of object motion has
been developed taking into account evolution of the discrepancy between the periodic radiated
and received quasi-periodic signal. The passage of a signal in an arbitrary physical environment
is considered, at the same time, knowledge of the period of the emitted signal and assessing the
current Doppler frequency are not required. The method is based on counting the number of
periods of the received signal in a given surveillance intertissue. The issues related to the analysis
of the resulting discrepancy by the observability of the method and its accuracy characteristics
are considered. Useful practical recommendations and an illustrative context are given.

Keywords : radiating target, periodic signal, quasi-periodic signal, single-position passive ob-
server, bearing-free method, time mistie, period-time method, polynomial motion, parametric
identification, observability of the method, complete correlation matrix of estimation errors,
adaptation
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1. INTRODUCTION

Methods of passive location and navigation of a radiating target based on a single-position pas-
sive observer are widely reflected in the well-known literature [1–20]. Among them, doppler-time
bearing-free methods are quite popular, operating with periodic signals and geared towards mea-
surement capability the continuous displacement of the doppler frequency the received signal at the
observation point caused by target movement (for location tasks) motion of the observer (for nav-
igational tasks); [6] on pp. 169–173 an exhaustive list of literature on this issue is given, and it is
available in the open press. In this case, measurements can be implemented at any characteristic
frequency from the spectrum of the emitted signal (for example, on the central) or modulating func-
tion; as well as by comparing the moments of the arrival of the fronts of consecutive pulses taking
into account the known period. These methods are based on the idea of “base synthesis,” which
ultimately leads to the formation of several observation points on the guidepath and possibilities
of using well-known methods of multi-position location and navigation (for example, triangulation,
difference-rangefinder, trilateration and their combinations [21, 22]). In this case, as a rule, such
path functions are considered, which are either known at the observation site (for example, orbital
ones with known motion parameters), or are approximated with sufficient accuracy for practice
by a model of straight-line uniform motion (both with known and unknown motion parameters).
At the same time, the fundamental point is accounting of information given a priori about the
speed of the target or observer, which is often unacceptable for practice.
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In [20] the period-time method is developing (PTM), which removes the restriction, related to
obtaining of information given a priori about the speed value, and also the question of parametric
identification is considered in relation to the model of nonlinear motion, taking into account the
possible maneuver of the target or observer. At the same time, a preliminary current estimate of
the Doppler frequency is not required, which is equivalent to finding the derivative of time mistie
between the periods of the radiated (periodic) and accepted (quasi-periodic) signal. However,
the results obtained in [20], apply only to radio signals (spreading as an electromagnetic wave at
the speed of light) with a known period, and the dependence of the resulting time mistie on the
parameters of the target movement has not been investigate. This article is a further development
of the well-known PTM in terms of eliminating these shortcomings in relation to signals, spreading
in arbitrary physical environments.

2. PROBLEM STATEMENT

Let the moving RT form in the current t periodic signal S0(t) (periodic signal TS = const
may be unknown), spreading in a given physical medium in the form of a wave at a speed of vS
(we can talk about different waves, for example, electromagnetic or acoustic). At the observation
point associated with SOPO, at the surveillance intertissue [0, T ] a quasi-deterministic signal is
received S(t) with a variable period.

According to the PTM, the observation segment is represented as

[0, T ] =
N⋃
n=1

[tn−1, tn] , tn > tn−1, t0 = 0, tN ≤ T, (2.1)

where t0 = 0 is a fixed moment of time corresponding to the beginning of the received signal (for
example, the arrival of the first pulse), tn is a fixed time of receipt Mn =

∑n
p=1ΔMp periods of the

received quasi-periodic signal (ΔMp — the number of periods counted on the segment [tp−1, tp]), at
the same time, at the moment of time tn number Mn the whole period fits into the segment [0, tn].

Theoretical and practical issues related to the calculation of these periods, are solved using
electronic digital frequency meters and are described in detail in the well-known technical literature
[23, pp. 148–161].

At the observation point (where the SOPO is located) taking into account the movement of
the RT, the signal becomes quasi-periodic, because there is a time mistie δ(t) between the periods
of the emitted and received signals

δ(t) = v−1
S ΔR(t) = v−1

S [R(t)−R0] , t ∈ [0, T ] , (2.2)

where R(t) — current range to RT, R0 = R(0) — initial range.

In a rectangular cartesian reference system XY Z (in the center of which there is SOPO) the
motion of the RT is described by a polynomial model (to simplify the calculations and clarity of
the method instead of a generalized finite polynomial with arbitrary basis functions, we restrict
ourselves to a power polynomial of the second degree with an initial condition r0 = r (0), ‖r0‖ = R0)

r(t) = r0 + v0t+ 2−1a0t
2, t ∈ [0, T ] , (2.3)

where r(t) = r = [x, y, z]T — position vector (‖r(t)‖ = R(t)),

v0 = [vx0, vy0, vz0]
T — initial velocity vector (v0 = ‖v0‖ — speed value),

a0 = [ax0, ay0, az0]
T — acceleration vector (a0 = ‖a0‖ — acceleration value), while the vec-

tors r0, v0 and a0 are a priori unknown.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023
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If we take the value tn as the measured parameter, then we can use the following vector equation
of observation:

h = t+ ξ = t̄+ δ+ ξ, (2.4)

where h =
[
hn, n = 1, N

]T
, t =

[
tn, n = 1, N

]T
, t̄ =

[
t̄n, n = 1, N

]T
, δ =

[
δn, n = 1, N

]T
,

ξ =
[
ξn, n = 1, N

]T
, hn = h(tn), ξn = ξ (tn).

In (2.4), ξ =
[
ξn, n = 1, N

]T
is understood as the Gaussian measurement with zero mathemat-

ical expectation and the correlation matrix Kξ, measured parameter tn connected with number of
counted periods by the ratio

tn =MnTS + δn = t̄n + δn = t̄n + v−1
S [Rn −R0] , (2.5)

where δn = δ(tn) is unknown time discrepancy, t̄n =MnTS , Rn = R (tn), t0 = 0.

Formula (2.5) can be commented as follows [6, p. 154]: during the time t̄n =MnTS the distance
between the RT and SOPO the range will change by ΔRn = Rn −R0, which corresponds to the
time mistie δn = v−1

S ΔRn between the periods of the emitted and received signals. If the target
was stationary or moving in a circle (in the center of which there is SOPO) that range increment
would be missing and δn = 0 for all n. It is the passage of an additional section of the path length
by the wave ΔRn with speed vS is the cause of the time mistie δn.

Recall that for a known period TS as a measured parameter, it was possible to take the value
δn = tn −MnTS (this is how the observation equation was formed in [6, 20]), for an unknown
period TS only the values tn and Mn are available for measurement.

If the distance between the RT and the SOPO decreases, then δn < 0, otherwise δn > 0. The
appearance of the time mistie δn = δ(tn) is due to the effect of compression or stretching of the
initial periodic signal at the observation point due to the movement of the RT.

It is required, taking into account (2.1)–(2.5) to develop a method of parametric identification
of RT with a curved (polynomial) movement based on a period-a temporary SOPO that does not
require knowledge of the period TS the emitted signal and the calculation of the current Doppler
frequency. The method should include solving the following issues:

— obtaining dependencies that allow us to assess the nature of the evolution of the received
signal period (caused by the movement of RT), is fundamental for this method;

— formation of an algorithm for identification of the inclined range and a number of character-
istic parameters of the RT movement based on accurate data (taking ξn = 0, n = 1, N );

— determination of the conditions for the correct application of the method on accurate data
(i.e., determination of the observability conditions of the method);

— accounting for random measurement errors;

— solving the identification problem on redundant data (h) taking into account measurement
noise (smoothing problem based on the least squares method (PTM)) and obtaining a ratio for
calculating the correlation matrix of identification errors;

— conducting a computational experiment to demonstrate the capabilities of the method.

3. INVESTIGATION OF THE EVOLUTION OF THE SIGNAL PERIOD

The foray δ(t) is described by the expression (for the case of rectilinear uniform motion)

δ(t) = v−1
S

{[
R2

0 + 2tR0v0 cos γ0 + t2v20

]1/2 −R0

}
, t ≥ 0, δ (0) = 0, (3.1)

where γ0 — angle between vectors r0 and v0.
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For 0 < γ0 ≤ π/2 the function δ(t) is non-negative, smooth and strictly convex, δ(1)(t) =
dδ(t)/dt = 0 at the point t = 0. Ror π/2 < γ0 < π the function δ(t) is smooth and strictly convex,
has two roots (t = 0 and t = −2R0 cos γ0/v0), at the point t = −R0 cos γ0/v0 reaches the minimum
value (v−1

S R0 (sin γ0 − 1)). For γ0 = 0 we have δ(t) = (v0/vS) t, the raid is a linear non-negative
function independent of R0. For γ0 = π we have δ(t) = − (v0/vS) t for 0 ≤ t ≤ R0/v0, so δ(t) is a
linear function and reaches its minimum (−R0/vS) at the point t = R0/v0. Since for γ0 = 0 and
γ0 = π the foray δ(t) does not depend on R0, then, for these incorrect cases associated with the
movement of the RT along the line of sight, it is impossible to determine the range taking into
account the evolution of the signal period at the observation point.

For a more detailed study of δ(t) we will find the first few occurrences in time (at the point
t = 0): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ
(1)
0 = v−1

S vR,

δ
(2)
0 = (vSR0)

−1 v2τ ,

δ
(3)
0 = −3

(
vSR

2
0

)−1
v2τvR,

(3.2)

where vR = R0 cos γ0 and vτ = v0 sin γ0 — respectively, the values of the radial and tangential
velocity.

As a result, you can use the decomposition based on the Taylor series

δ(t) = v−1
S t

(
vR +

v2τt

2R0
− v2τvRt

2

2R2
0

+ . . .

)
= v−1

S t

[
vR +

v2τt

2R0

(
1− vRt

R0

)
+ . . .

]
, (3.3)

from which it follows that the spectral composition of the function δ(t) significantly depends on
the observation conditions, and in many practically important cases it is not possible to neglect
derivatives of the second and higher orders, especially for long observation intervals and short
ranges.

Formulas (3.1)–(3.3) are very useful in substantiating the possibility of practical implementation
of the developed PTM in each specific case, taking into account the accepted initial data.

4. BUILDING A PARAMETRIC IDENTIFICATION ALGORITHM
BASED ON ACCURATE DATA

Taking into account (2.3) we can use the following dependency

R2(t)−R2
0 = 2t 〈r0,v0〉+ t2

(
v20 + 〈r0,a0〉

)
+ t3 〈v0,a0〉+ 4−1t4a20, (4.1)

where 〈·, ·〉 is the symbol of the scalar product of two vectors, ‖·‖ is the symbol of the vector norm.

Formula (4.1) represents the first basic ratio of the developed PTM.

The second basic relation follows directly from the formula (2.2):

R2(t)−R2
0 = 2vSR0δ(t) + v2Sδ

2(t). (4.2)

Equating expressions (4.1) and (4.2), after simple transformations we obtain the equation

−2vSδ(t)χ1 + 2tχ2 + t2χ3 + t3χ4 + 4−1t4χ5 = v2Sδ
2(t), (4.3)

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



814 BULYCHEV, MOZOL

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

χ1 = R0,

χ2 = 〈r0,v0〉 ,
χ3 =

(
v20 + 〈r0,a0〉

)
,

χ4 = 〈v0,a0〉 ,
χ5 = a20

(4.4)

— unknown fraction that have a clear physical meaning and are subject to identification.

Since the values of δn are unknown, then, taking into account (2.5) for discrete time, we write
down the equation with respect to unknown quantities TS and χi, i = 1, 5:

−2vS (tn −MnTS)χ1 + 2tnχ2 + t2nχ3 + t3nχ4 + 4−1t4nχ5 = v2S [(tn −MnTS)]
2 . (4.5)

After simple but cumbersome transformations, formula (4.5) can be represented as a new equa-
tion (relative to the coefficients Ai)

6∑
i=1

BinAi = Dn, (4.6)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = (vSχ1 − χ2)v
−2
S T−1

S , A2 = −χ1v
−1
S ,

A3 =
(
v2S − χ3

) (
2v2STS

)−1
, A4 = 2−1TS,

A5 = −χ4
(
2TSv

2
S

)−1
, A6 = χ5

(
8TSv

2
S

)−1
,

B1n = tn, B2n =Mn, B3n = t2n,

B4n =M2
n, B5n = t3n, B6n = t4n,

Dn =Mntn.

(4.7)

The relations (4.6) and (4.7) are the basis for identifying the parameters of the curvilinear
motion of the RT at an unknown period of the emitted signal. In (4.6) the unknown coefficients
are Ai, i = 1, 6, those that are uniquely related to the desired parameters of the motion of the RT
and the period of the emitted signal. If Eq. (4.6) n = 1, N , where N ≥ 6, then we get a system of
linear algebraic equations (SLAE) (with a rectangular matrix B)

BA = D, (4.8)

where B =
[
Bin, n = 1, N, i = 1, 6

]
, A =

[
ai, i = 1, 6

]T
, D =

[
Dn, n = 1, N

]T
.

This SLAE allows us to solve the problem of estimating these coefficients and parameters, as
well as the signal period for redundant measurements. For N > 6 we are talking about the problem
of smoothing based on OLS using orthogonal-singular decomposition [24].

Consider a special case when the RT moves rectilinearly and uniformly, and the signal period is
unknown. Now instead of (4.3) we have the equation

−2vSδ(t)χ1 + 2tχ2 + t2χ3 = v2Sδ
2(t), (4.9)

where ⎧⎪⎪⎨⎪⎪⎩
χ1 = R0,

χ2 = 〈r0,v0〉 ,
χ3 = v20 .

(4.10)
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In this case, instead of (4.6) we have

tnA1 +MnA2 + t2nA3 +M2
nA4 =Mntn. (4.11)

If we assume that the signal period is known, i.e., the values are known δn, then, taking into
account (4.9) to find the parameters of a rectilinear uniform motion of the RT, it is sufficient to
solve the SLAE (regarding χi, i = 1, 3)

−2vSδnχ1 + 2tnχ2 + t2χ3 = v2Sδ
2
n, n = 1, N. (4.12)

At the same time, we find the range R0, the speed value v0 = ‖v0‖ and the angle γ0 between the
vectors r0 and v0 taking into account the obvious relations:⎧⎪⎪⎨⎪⎪⎩

R0 = χ1,

v0 =
√
χ3,

γ0 = arccos
[
χ2 (R0v0)

−1
]
.

(4.13)

In the case of rectilinear equidistant motion of the RT (when the vectors v0 and a0 are collinear)
it is necessary to solve the SLAE (regarding χi, i = 1, 5)

−2vSδnχ1 + 2tnχ2 + t2nχ3 + t3nχ4 + 4−1t4nχ5 = v2Sδ
2
n. (4.14)

Now we have ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

χ1 = R0,

χ2 = R0v0 cos γ0,

χ3 =
(
v20 +R0a0 cos γ0

)
,

χ4 = v0a0,

χ5 = a20.

(4.15)

Based on the found values χ1, . . . ,χ5 we calculate the following parameters of the movement of
the RT: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R0 = χ1,

a0 =
√
χ5,

v0 = χ4a
−1
0 ,

γ0 = arccos
[
χ2 (R0v0)

−1
]
.

(4.16)

Expressions (4.1)–(4.16) form the mathematical basis of the developed PTM.

In the next section we will analyze the observability conditions of the developed method, i.e.,
we will identify situations in which it becomes incorrect from a computational point of view.

5. ANALYSIS OF THE OBSERVABILITY OF THE METHOD

The developed PTM can be implemented on any set of nodes from the set {t1, . . . , tN}, which
allows not only to reduce the amount of calculations, but also in some cases to increase the reliability
of the generated estimates (especially in the absence of reliable a priori information about the
weighting factors necessary for the implementation of LSM). To do this, we introduce vectors of

temporary nodes t[l] =
[
t[l]p, p = 1, P[l]

]T
, where l = 1, L, t[l]p ∈ {t1, . . . , tN}, t[l]p+1 > t[l]p. Here L is
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the number of sets, P[l] — the number of nodes in the l set, t[l]p is the node with number [l] p (this
is a natural number belonging to the set {1, . . . , N}). Based on (4.12) we will form the following
SLAE:

C[l]χ[l] = Y[l], (5.1)

where Y[l] =
[
δ2[l]p, p = 1, P[l]

]T
, χ[l] =

[
χi[l], i = 1, 5

]T
, and the matrix C[l] (size P[l] × 5) is formed

by strings v−2
S

(
−2vSδ[l]p, 2t[l]p, t

2
[l]p, t

3
[l]p, 4

−1t4[l]p

)
, p = 1, P[l].

The introduction of t[l] makes it possible to find such sets of nodes taking into account the
observation geometry, the characteristics of the RT and the SOPN, to find such sets of nodes on
which the identification issue is solved most qualitatively (this refers to the well-known problem of
experiment planning [25]).

Without reducing the generality of reasoning, we will limit ourselves to the flat case (assuming
z = 0) and a signal with a known period, and also, we will ask P[l] = 5, what corresponds to a
square matrix C[l]. It is obvious that for the correct application of the developed method, related
to the SLAE solution (5.1), it is necessary and sufficient to fulfill the condition detC[l] �= 0, what

leads to the desired result χ[l] = C−1
[l] Y[l]. To identify cases in which this condition is violated, we

write down the columns of the matrix C[l] in the form of vectors:

C[l]1 =
[
−2vSδ[l]p, p = 1, 5

]T
, C[l]2 =

[
2t[l]p, p = 1, 5

]T
,

C[l]3 =
[
t2[l]p, p = 1, 5

]T
, C[l]4 =

[
t3[l]p, p = 1, 5

]T
, C[l]5 =

[
4−1t4[l]p, p = 1, 5

]T
.

It is light to notice that the columns C[l]2, C[l]3 and C[l]4 are linearly independent, therefore, to
check the condition detC[l] �= 0 it is enough to show that the column C[l]1 cannot be represented
as a linear combination of these columns.

Since R[l]p =
[
x2[l]p + y2[l]p

]−2 (
where R[l]p = R

(
t[l]p
)
, x2[l]p =

(
x0 + vx0t[l]p + 2−1ax0t

2
[l]p

)2
and

y2[l]p =
(
y0 + vy 0t[l]p + 2−1ay0t

2
[l]p

)2 )
, that violation of the condition detC[l] �= 0 it is equivalent

to the fact that the vectors μ[l] =
[
x2[l]p, p = 1, 5

]T
and η[l] =

[
y2[l]p, p = 1, 5

]T
are not bound by the

collinearity condition: μ[l] = kη[l], where k — where is the proportionality coefficient. Otherwise
we have

R[l]p =
[
x2[l]p + y2[l]p

]−2
=
[
k2y2[l]p + y2[l]p

]−2
= q

∣∣∣y[l]p∣∣∣ , (5.2)

−2vSδ[l]p = −2
[
R[l]p −R0

]
= −2

[
q
∣∣∣y[l]p∣∣∣−R0

]
, (5.3)

where q =
(
k2 + 1

)−2
.

It follows from (5.2) and (5.3) that the coordinates of vector C[l]1 can be represented by a
linear combination of the coordinates of vectors C[l]2, C[l]3 and C[l]4. The physical meaning of the
condition μ[l] = kη[l] (the condition of computational incorrectness of the method) is that the RT
moves rectilinearly along the line of sight SOPN.

Thus, for the correctness of the method, it is necessary to exclude cases when the RT moves
along the specified line or in its vicinity. This imposes certain restrictions on the conditions for
monitoring RT, which must be provided for in practice.

If we limit ourselves to the model of rectilinear uniform motion and a signal with a known period

in this case,
(
in (5.1) we must put p = 1, 3 and t[l] =

[
t[l]1, t[l]2, t[l]3

]T)
, the solution of SLAE (5.1)
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with the correct application of the method, allows us to determine the desired parameters of the
motion of the RT ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0[l] = 2−1vS

(
δ2[l]1Δ

t
[l]23 − δ2[l]2Δ

t
[l]13 + δ2[l]3Δ

t
[l]12

−δ[l]1Δ
t
[l]23 + δ[l]2Δ

t
[l]13 − δ[l]3Δ

t
[l]12

)
,

〈r0,v0〉[l] = 2−1v2S

(
t2[l]1Δ

δ
[l]23 − t2[l]2Δ

δ
[l]13 + t2[l]3Δ

δ
[l]12

−δ[l]1Δ
t
[l]23 + δ[l]2Δ

t
[l]13 − δ[l]3Δ

t
[l]12

)
,

v0[l] =

[
t[l]3Δ

δ
[l]12 − t[l]2Δ

δ
[l]13 + t[l]1Δ

δ
[l]23

δ[l]1Δ
t
[l]23 − δ[l]2Δ

t
[l]13 + δ[l]3Δ

t
[l]12

]1/2
,

γ0[l] = arccos

[ 〈r0,v0〉[l]
R0[l]v0[l]

]
,

(5.4)

where Δt
[l]12 = t[l]1t[l]2

(
t[l]1 − t[l]2

)
, Δδ

[l]12 = δ[l]1δ[l]2

(
δ[l]1 − δ[l]2

)
and, if you do not take into ac-

count measurement and calculation errors, R0[l] =R0, v0[l] = v0, 〈r0,v0〉[l] = 〈r0,v0〉, γ0[l] = γ0.

Therefore, it becomes possible to determine the motion parameters R0, v0 and γ0
(
where

R0 = χ1, v0 =
√
χ3, γ0 = arccos

[
χ2 (R0v0)

−1
])
, without resorting to the numerical solution of

SLAE, which is an undoubted advantage of the developed PTM.

6. ACCOUNTING FOR RANDOM MEASUREMENT ERRORS

Assuming the signal period is known, we use the traditional procedure for calculating the ele-
ments of the correlation matrix to assess the effect of random measurement errors on the accuracy
characteristics of the method Kχ[l] errors in estimating the coordinates of the vector χ in linear
approximation [26]. To do this, taking into account SLAE (5.1) (assuming for simplicity the ma-

trix C[l] square size 5× 5) let’s use the representation χ[l] = C−1
[l] Y[l] =

[
χk
(
δ[l]

)
, k = 1, 5

]T
(where

δ[l] =
[
δ[l]p, p = 1, 5

]T
) and partial derivatives of the following form: ∂χk[l]

(
δ[l]

)
/∂δ[l]p. The corre-

lation matrix is found by the rule

Kχ[l] = Fχ[l]KξF
T
χ[l], (6.1)

where Fχ[l] =
[
∂χk[l]

(
δ[l]

)
/∂δ[l]p, k = 1, 5, p = 1, 5

]
.

Expression (6.1) allows a priori, based on the mathematical expectations of the measured pa-
rameters, to assess the potential capabilities of the developed PTM and develop practical recom-
mendations for its best use under specific conditions of observation of RT, and also reasonably
approach the choice of the main parameters of the method (the length of the observation inter-
val (T ), the number of nodes (N) and time sets (t[l])). So, the number l∗ ∈ {1, . . . , L} of optimal
set δ[l∗], ensuring the minimization of the estimation error, is found according to the following
adaptive rule:

l∗ = argmin
l

∥∥∥Kχ[l]

∥∥∥ , (6.2)

where
∥∥∥Kχ[l]

∥∥∥ — this is any of the norms of the matrix Kχ[l], used in evaluation tasks.

In the practical implementation of the developed PTM, the factor should be taken into account
that for large values of vS (for example, when vS = c, where c is the speed of light), the solution of
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the square SLA (4.8) in the presence of random measurement errors can lead to incorrect results.
Let us explain this fact for the case N = 6 by the example of calculating the velocity v0. Because
v0 = c

√
1− 2TSA3, that’s a mistake Δ3 = Â3 −A3 (where Â3 — calculated coefficient value A3 by

solving SLAE (4.8) taking into account measurement errors) leads to the following speed estimate:

v̂0 =
√
v20 + 2c2TSΔ3. That is, a correct assessment of the speed is possible only if the condition is

met Δ3 > −v20
(
2c2TS

)−1
, which imposes a very strict restriction on the magnitude of the error Δ3.

This effect also applies to all SLOUGH coefficients (4.8), except A2 and A4.

To overcome this incorrectness (at high vS speeds), a two-step approach to identification is
recommended. At the first stage, SLAE is solved (4.8), of which only an assessment will be
required Â4 for A4. This allows you to form the desired estimate T̂S = 2Â4 for period TS , and
based on it, estimates for residuals δ̂n = tn −MnT̂S . All estimates of the parameters of the RT
movement are based on the SLAE (5.1), in which the value of δn is substituted instead of δ̂n.

7. ACCOUNTING FOR REDUNDANT MEASUREMENTS

Now consider the case of redundant measurements when the matrix C[l] and the vector Y[l]

in (5.1) have an arbitrary number of lines P[l] ≤ N , which, as a rule, significantly exceeds the num-
ber of estimated parameters. To simplify the calculations, we will consider in SLAU (5.1) the com-

ponent. Y[l] =
[
v2Sδ

2
[l]p, p = 1, P[l]

]T
as a vector of secondary measured parameters h[l]1, . . . , h[l]P[l]

and primary measurements (5.1) the correlation matrix of measurement errors of the coordinates
of the vector Y[l] we can imagine it like this

KY[l] = Fδ[l]KξF
T
δ[l]. (7.1)

Assuming that the matrix Kξ is diagonal, we have KY [l] = diag
[
4δ2[l]1, 4δ

2
[l]2, . . . , 4δ

2
[l]P[l]

]
. Under

the condition of sufficiently small measurement errors, the least squares method can be used to
construct a smoothed estimate of the vector χ [25]

χ∗
[l] =

(
CT

[l]K
−1
Y [l]C[l]

)−1
CT

[l]K
−1
Y[l]hY[l], (7.2)

where hY[l] =
[
hY[l]p, p = 1, P[l]

]T
— the vector of secondary measurements.

The correlation matrix of estimation errors is found as follows:

Kχ∗
[l]
=
(
CT

[l]K
−1
Y[l]C[l]

)−1
. (7.3)

To select the optimal set with a number l∗∈ {1, . . . , L} we use an adaptive algorithm of type (6.2).

It should be noted that the approach (7.1)–(7.3) is not strictly optimal, since the elements of
the matrix C[l] depend on the results of observations. But with certain limitations on measurement
errors, it gives a completely acceptable result.

For more accurate smoothing, well-known nonlinear optimal estimation procedures can be used,
which in practice lead to time-consuming recurrent computational algorithms involving the setting
of a sufficiently high-quality initial condition.

Another simplest and fairly reliable way to construct a smooth estimate of χ∗
[l] is to pre-smooth

the primary measurements h[l]1, . . . , h[l]P[l]
by the corresponding polynomial δ∗[l](t) and the applica-

tion of the results obtained to the solution of SLAE (5.1). In addition, you can find a smoothed
range estimate for any t ∈ [0, T ], exactly,

R[l](t) = R∗
0[l] + cδ∗[l](t). (7.4)

Here we take a set with a number as the optimal one l = l∗ ∈ {1, . . . , L}.
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8. SOME GENERALIZATIONS AND PRACTICAL RECOMMENDATIONS

The case of estimating the initial range was considered above R0 = R (0) for time t = 0. However,
if the Taylor series used to describe the curvilinear motion of the RT is written with respect not
to the initial, but to any arbitrary t = t∗ ∈ [0, T ], then, by analogy with the above, it is possible
to solve the identification problem precisely for the moment of time t∗, in particular, to find the
range R∗ = R (t∗).

The developed method is easy to implement in the form of the following algorithms: by sampling
an increasing volume, on a “sliding grid” or in the form of a filter [25]. At the same time, the
movement of RT in the observation interval can be considered as piecewise polynomial (in [20] it
was considered as piecewise linear).

During the practical implementation of the method, questions arise (for example, the choice of
the degree of the polynomial describing the motion of the RT or the number of counted pulses)
related to the organization of the measuring experiment. [25] provides practical recommendations
for solving these issues in full. It is obvious that the developed method is most effective when
it comes to large distances traveled (i.e., a base of sufficient size is “synthesized”), and this sets
certain restrictions on the type of RT (in particular, on his speed, maneuverability, etc.), on the
adequacy of the polynomial used at a given observation interval and on the technical characteristics
of the SOPN.

For cases related to the movement of RT along the line of sight, a hybrid variant of using the
developed and well-known energy method can be proposed [27]. It is proved that this method,
operating with the relative level of the received signal, implements its potential capabilities when
moving RT along the line of sight. In a sense, the developed and energetic methods are “orthogonal”
to each other in terms of accuracy. Therefore, by combining these methods, it is possible to align
the working area of the hybrid method and achieve acceptable accuracy characteristics for various
conditions of observation of the RT.

For a more effective application of the energy method, clustering and majority processing pro-
cedures should be used to reduce and eliminate unreliable measurements.

9. ILLUSTRATIVE EXAMPLE

Suppose that the RT carries out a planar movement x(t) = x0 + vx0t, y(t) = y0 + vy0t, where
x0 = y0 = 11× 103, vx0 = −5× 102, vy0 = 6× 102, γ0 = 85. Here and further, the time and mea-
surement errors of time intervals are set in seconds (s), coordinates and range — in meters (m),
speed — in m/s, acceleration — in m/s2, frequency — in hertz (Hz), angle — in degrees, relative
error — as a percentage.

The RT generates a pulsed radio signal

S0(t) =
K∑
k=1

rect
[
(t− kTS) τ

−1
]
cos (2πf0t),

where TS = 10−2, τ = 10−5, f0 = 1010. Parameters of the SOPN operation: T = 18, vS = c =
3× 108, L = 1 (that is, one single set of nodes is used), P[1] = 4 (set size), ΔMp = ΔM = 10,
Kξ = diag

[
σ 2, . . . ,σ 2

]
, at the same time, the measurement errors of the time position of the pulse

fronts were assumed to be uncorrelated and were set according to the normal distribution law with
zero mathematical expectation and the value of the standard deviation σ = 10−9.

The method was implemented in two stages using a random number sensor and averaging over a
thousand experiments. At the first stage, SLAE (4.8) was solved with a square matrixB of size 4× 4
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(since the RT with zero acceleration is considered), at the same time, a vector is used to calcu-

late the elements of matrix B and column D t[1] = t̄[1] + δ[1] =
[
t[1]p, p = 1, 4

]T
with node num-

bers: [1]1 = 12, [1]2 = 65, [1]3 = 118, [1]4 = 171, t̄[1] =
[
t̄[1]p, p = 1, 4

]T
=
[
[1]p × 10−1, p = 1, 4

]T
.

From all four estimates of unknown coefficients, only the estimate of the signal period is selected
T̂S[1] = 9.999999731646 × 10−3 (obtained based on the set t[1] = t̄[1] + δ[1]), which corresponds to
the relative error δTS[1] = 2.683540941544882 × 10−6.

At the second stage, taking into account δ̂[1]p = t[1]p −M[1]pT̂S[1] = t[1]p − [1] pΔMT̂S[1] The
SLAE (5.1) was solved with a square matrix C[l] (3× 3 in size), with χ4 = χ5 = 0 and a

set was used t̄[1] =
[
t̄[1]p, p = 1, 3

]T
= [1.1; 9.1; 17.1]T. The matrix itself is formed by strings

c−2
(
−2cδ̂[1]p, 2t[1]p, t

2
[1]p

)
, p = 1, 3. As a result of the true range R0 = 1.555634918 × 104

match rating R̂0[1] = 1.559672203 × 104 measure of inaccuracy ΔR0[1] = 0.259526489, true speed
v0 = 7.810249675 × 102 — assessed value v0[1] = 7.821417156 × 102 measure of inaccuracy Δv0[1] =
0.142984942, true angle γ0 = 84.805571092 — assessed value γ0[1] = 84.761511501 measure of in-
accuracy Δγ0[1] = 0.051953650.

The figure shows a graph of the dependence of the relative error of the range estimation, obtained
taking into account (7.4).

For more effective use of the method developed in the article, the question of choosing the size
of the observation interval and the nodes of the time grid is, as well as their coordination with the
dynamics of the RT movement and the magnitude of measurement errors should be solved in the
optimization formulation. When solving SLAE, well-known regularization methods should be used.
The results of the numerical experiment show that the greater the distance between the nodes of
the time grid used, the less influence random measurement errors have on the resulting estimation
accuracy. This distance must be consistent with the dynamics of the RT, namely: the lower the
speed of movement of the RT, the greater the step of this grid and the duration of the observation
interval should be.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



PERIOD-TIME PARAMETRIC IDENTIFICATION METHOD 821

10. CONCLUSION

The developed PTM makes it possible to identify a model of curvilinear polynomial motion of
the RT based on the results of recording the time discrepancy between the periods of the emitted
signal and the same periods, calculated at the observation point. The method does not require
knowledge of the signal period and a preliminary estimate of the current Doppler frequency, as well
as knowledge of any a priori data on the parameters of the accepted motion model of the RT. The
observability and the main limitations of the method, the conditions for its most effective application
are investigated. Analytical relations are obtained that allow us to estimate the evolution of the
time discrepancy taking into account the characteristics of the RT and the SOPO, as well as the
accuracy characteristics of the method for various observation conditions.

The method can be implemented in various ways: by a fixed sample of measurements, by a
sample of measurements of increasing volume, in the form of a dynamic filtration algorithm (linear,
quasi-linear or nonlinear), etc.

The method can be implemented either independently or as part of a hybrid method, combining
other well-known approaches of passive single-position and multi-position location and navigation
of RT. Since the developed method allows you to determine the range, it can be used in rangefinder-
rangefinder systems of multi-position location when solving the well-known trilateration problem
[21, 22].

If there are not only fluctuation errors in the period-time measurements, but also singular errors,
it is advisable to initially subject these measurements to the procedure of generalized invariant-
unbiased estimation [28], compensation for these errors, achieving the smoothing effect and optimal
estimation of various numerical characteristics (linear functionals, e.g., derivatives, integrals, spec-
tral coefficients, etc.), useful not only for improving the computational stability of the method,
but also for evaluating its effectiveness. To solve the SLAE using the regularization procedure, a
well-known approach can be applied [29].
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Abstract—This paper considers the use of machine learning for diagnosis of diseases that is
based on the analysis of a complete gene expression profile. This distinguishes our study
from other approaches that require a preliminary step of finding a limited number of relevant
genes (tens or hundreds of genes). We conducted experiments with complete genetic expression
profiles (20 531 genes) that we obtained after processing transcriptomes of 801 patients with
known oncologic diagnoses (oncology of the lung, kidneys, breast, prostate, and colon). Using
the indextron (instant learning index system) for a new purpose, i.e., for complete expression
profile processing, provided diagnostic accuracy that is 99.75% in agreement with the results of
histological verification.

Keywords : pattern recognition, machine learning, inverse patterns, gene expression profiles,
diagnosis of diseases
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1. INTRODUCTION

The common denominator of existing approaches to the diagnosis of oncologic diseases based on
gene expression profiles is the use of a limited set of genes; see, for example, methodological and
review papers [1–6]. With this approach, it is also necessary to perform a preliminary analysis and
identify individual genes or combinations of genes whose expression activity is most characteristic in
the case of specific diseases. However, the diagnostic accuracy achieved does not exceed 95% on sets
that include up to 90 genes [4], which is presumably due to the limited number of genes used. For
example, in [5], this number is reduced to just 10 genes. Thus, the data analysis process consists of
two stages. For example, in [6], in the first stage, researchers use the principal component analysis,
selecting 103 genes. They carry out the final diagnosis in the second stage, where a Bayesian
neural network provided 93.66% accuracy, a deep neural network provided 93.41%, and logistic
regression — 92.82%. Furthermore, the third stage can take place. It would reject questionable
results based on a decision threshold that allows to almost completely eliminate wrong diagnoses [6]
at the cost of not diagnosing some cases, which is considered to be more acceptable than a wrong
diagnosis.

This study examines the use of machine learning for disease diagnosis based on the analysis of
the complete gene expression profile, i.e., the activity of all 20 531 known genes, which simplifies
the process by eliminating the need for preselection of relevant genes. This paper discusses the
details of the operation of the machine learning system used.
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Fig. 1. HiSeq 2500 system.

In biology, the expression level estimates the transcriptional activity of a gene as the amount of
messenger RNA (mRNA) it produces. Obtaining gene expression profiles is a minimally invasive
or completely non-invasive procedure, such as saliva sampling, which determines the comfort of
such a procedure for the patient. The quality of diagnosis depends on the completeness of the
profile, i.e., the number of genes considered. However, the use of complete gene expression profiles
is more of a future of medical diagnosis, as currently there is a lack of inexpensive equipment
for mass application to obtain such profiles. Currently, we can obtain profiles using the following
technologies, among others [7]:

— PCR tests;

— DNA microarrays;

— sequencing.

If the analysis involves the expression level of a relatively small number of genes, we can use
the available and relatively inexpensive real-time quantitative PCR (qPCR) method. The second
technology, DNA microarrays, provides a more accurate assessment of gene expression. However,
when it comes to the expression profile of all genes, sequencing is currently required. One of the
most popular platforms for high-throughput sequencing is Illumina equipment [8]. The HiSeq 2500
system utilizes next-generation SBS technology, which supports massively parallel sequencing using
fluorescently labeled nucleotides, allowing the reading of individual bases as they are incorporated
into growing DNA strands. Figure 1 shows an example of equipment that utilizes this method.

Illumina HiSeq performs two functions, such as genome sequencing and determination of ex-
pression level. The latter is achieved by reading not DNA but mRNA code. The expression level
is inferred from the number of mRNA copies. Considering the decreasing cost of RNA sequenc-
ing, it is possible in the future to create simpler and less expensive equipment for installation in
widely spread laboratories such as INVITRO. With the widespread availability of such equipment,
prospective diagnostics could be discussed as the use of the complete expression profile automat-
ically takes into account all possible active gene combinations, which are difficult to predict and
that influence the onset of various diseases. Additionally, gene expression profiles serve as valuable
materials not only in diagnostics but also in various scientific and clinical research.

The second component of the considered methodology is machine learning, which allows auto-
matic learning from complete biological profiles without analyzing genetic combinations for subse-
quent classification and diagnosis. Artificial neural networks [9] are traditionally used for machine
learning and have become a popular method applied to solve a variety of prediction and pattern
recognition problems. However, training such networks takes a long time and requires significant
computational resources, as it involves the calculation of a large number of coefficients to adapt
the multilayer network architecture to a specific task. Nevertheless, we can significantly accelerate
training and make it borderline instantaneous if we use an image indexing system [10, 11], similar to
search engines like Google [12], where incremental learning is reduced to indexing new documents.
In 1998, the term indextron was introduced [13] — a term used only as the name of the image
indexing device, but not the name of the image indexing method. The difference between index-
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tron and search engines lies in the fact that it inverts numerical data instead of textual documents.
Section 3 discusses the specifics of inverting numerical images.

It should be noted that the approach used in [10] has similarities with the later proposed TF-IDF
method [14], developed for document retrieval by computing the inverse document word frequencies.
The TF-IDF method is utilized in search engines, where document name frequencies are calculated
in fully inverted files. However, textual search engines do not work with numerical data as the
document frequency of a word can change depending on the current set of documents, and the
keyword itself might completely disappear due to even slight noise.

It should be mentioned that the indexing approach to pattern recognition is hardly employed
in machine learning systems, where most methods utilize iterative learning, gradient descent, and
a significant number of adaptive coefficients, which ultimately leads to slow learning. At the same
time, the human brain can memorize new visual patterns at a glance. This study employ the
method of numerical data indexing instead of iterative learning to achieve almost instantaneous
learning when dealing with large volumes of data. Previous work on indexing non-textual numerical
data can be found in [15], where the authors use such fast methods for image recognition in movies.
However, the study [15] reduces the recognition of noisy numerical patterns representing images to
converting the numerical patterns to textual form, followed by the use of existing methods for text
information retrieval. The approach we use in this paper is applying the index recognition method
[10, 11], which enables the indexing of noisy numerical patterns without intermediate conversion
into textual form. It is also worth noting that the objective of this article is not to develop a
new machine learning method, but to utilize the indexing recognition method for a new purpose,
namely, for nearly instantaneous learning when working with large databases of biological data.

2. SOURCE DATA

In the experiment, we used a dataset called Gene Expression Cancer RNA-Seq [16] to compare
the effectiveness of training and classifying data using a neural network and an indextron. This data
set consists of 801 rows, each containing 20 531 floating point numbers (see Table 1). Each number
with profile/gene coordinates represents the level of activity of the corresponding gene, measured
in arbitrary units ranging from 0 (no activity or absence of the gene) to a maximum activity of 15.
The numbers in each nth row represent the activity levels of the corresponding genes of the nth
patient. The diagnoses of all patients in the dataset [15] are known and were determined using
other clinical methods. In the experiment, we used the 401 odd rows for training, during which we
provided the system with the diagnosis associated with the corresponding row. During testing, we
used the 400 even rows, which were classified by assigning them to one of the five classes, and the
class found was compared with the known diagnosis of the corresponding patient.

Table 1. Gene activity of patients

Profile Gene 0 Gene 1 Gene 2 . . . Gene 20 529 Gene 20 530 Class
(diagnosis)

0 0.0 2.017 3.266 . . . 5.287 0.0 3

1 0.0 0.592 1.588 . . . 2.094 0.0 1
. . . . . . . . . . . . . . . . . . . . . . . .

800 0.0 2.325 3.806 . . . 4.551 0.08 5

3. RECOGNITION PROBLEM STATEMENT AND SOLUTION METHOD

In this study, we use the index recognition method, proposed and considered in [10] and improved
in [11] and other works, for a new purpose, namely diagnosing diseases by classifying gene expression
profiles. We discuss the specifics of this method application in this problem below.
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Fig. 2. Inverse patterns shown as K column groups.

Let all variables be integers, and let there be N patterns, where each pattern is represented by
a K-dimensional feature vector

xn = (xn,1, . . . , xn,k, . . . , xn,K), n = 1, . . . , N. (1)

Here, Chebyshev distance between any two patterns xp and xq (p, q � N) is greater than a certain
predetermined number R, i.e. |xp − xq| > R, and variable xn,k (0 � xn,k < X) is a value of kth
feature of the vector that represents nth pattern. Inequality |xp − xq| > R means that for vec-
tors xp, xq there exists at least one dimension k such that |xp,k − xq,k| > R. In this case, every
nth vector represents the nth class, which includes all vectors x such that |x− xn| � R. Value R
determines the size of the class and is called a radius of generalization.

Classification problem. For given vector x = (x1, . . . , xk), find class n such that |x− xn| � R.
If such a class does not exist then add a new vector xN+1 = x to the list (1) and increase the
number of classes by 1.

Obviously, we can solve this problem by comparing the given vector x with vectors that represent
classes, i.e., by exhaustive enumeration of classes. However, solving the classification problem with
the inverse pattern method allows a significantly accelerated search, especially in the case of a large
number of classes.

Consider solving the classification problem with inverse patterns. When using this method an
unknown pattern x belongs to class m such that

m : HR(m|x) = N
max
n=1

HR(n|x).

Here, HR(m|x) is a histogram of class names contained in inverse patterns of features of vector x.
Thus, HR(m|x) is a conditional histogram of classes, as it depends on vector x.

Note that if radius of generalization R is equal to zero, then the number of classes would be
equal to number N of vectors in the list (1). If the number of actual externally determined classes
is less than N then we use table function class(n), n = 1, . . . , N that settles the mapping between
the classes in the list (1) and external classes which are always known during supervised learning.
Studies [10, 11] determine inverse patterns of features such as certain sets of class names. We index
such sets with two-dimensional indices. Each two-dimensional index is determined by a pair of
numbers (x, k), where x is a feature value, and k is a measurement number. The set of names
of {n} classes in the left part of equality (2) is an inverse pattern of feature x in measurement k.

{n}x,k = {n : xn,k = x}, k = 1, . . . ,K, x = 0, 1, . . . ,X − 1. (2)

Figure 2 graphically illustrates the concept of inverse patterns. There, they are represented
by columns of points, heights of which equal energies of the corresponding inverse patterns. As
mentioned above, the elements of columns are class names. Due to the fact that inverse sets have
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two-dimensional indices, we split all columns into K groups where each group k can contain up
to X columns and each column up to N classes. Here, X is a feature value range. What remains
to be done to solve the classification problem with inverse patterns is to find the class histogram
HR(n|x). Let the input pattern be presented by vector x = (x1, . . . , xk). Then we can find the
histogram of classes contained in inverse patterns using the following algorithm:

∀n ∈ {n}x(k)+r,k, HR(n|x) = HR(n|x) + 1. (3)

Here r = −R, . . . ,−1, 0, 1, . . . , R, k = 1, . . . ,K , x(k + r), k = xk+r,k. Therefore, the classifica-
tion criterion presented above is a class histogram, the maximum position of which we have to find.
To understand the algorithm we need to use the concept of “inverse patterns.” Expression (2)
defines it and is equipped with the necessary commentaries. Inverse patterns that contain sets of
pattern classes act as input information for loop (3). This loop histograms classes and yields the
required histogram as its output. The position of its maximum corresponds to the desired class.
In terms of programming, this is a loop on macrocolumns r, measurements k, and classes n that
are contained in inverse patterns.

During the indextron training, if the histogram maximum for input x is lower than a certain
chosen threshold then the number of classes is increased by 1, N = N + 1, and this new number
gets stored in corresponding inverse patterns

{n}x(k),k = {n}x(k),k
⋃
N, k = 1, . . . ,K.

The initial condition is always N = 0. However, we do not calculate the class histogram (3) if the
training uses a zero-valued radius of generalization R = 0. At the same time, every iteration the
number of classes increases by 1. The study [17] presents a graphical illustration of this algorithm.

During recognition, if the histogram maximum for input x is lower than a certain threshold,
then the input patterns remain unrecognized.

Note that the histogram maximum equals the dimension K of pattern x. It is possible to show
that it is derived from the following properties of inverse patterns: the columns of each group

• contain strictly N different class names:
X−1∑
x=0

|{n}x,k| = N ,

• do not intersect: {n}x,k ∩ {n}y,k = ∅.

During learning and recognizing a pattern, we use the value of its features xk, k = 1, . . . ,K as
an address of a column located in the kth dimension. At the same time, we coerce the real feature
values x into an integer range of [0–255]:

x = 255(x − xmin)/(xmax − xmin).

Experience suggests that such continuous value sampling usually does not reduce the accuracy
of classification. Table 2 presents an example of normalization of Table 1 data.

Therefore, the features of each received K-dimensional pattern isolate K columns — one column
in each group. The issue is that, usually, for numerical features, the column intersection appears

Table 2. Normalized data

Profile Gene 0 Gene 1 Gene 2 . . . Gene 20 529 Gene 20 530 Class
(diagnosis)

0 0 82 137 . . . 112 0 3

1 0 24 66 . . . 36 0 1
. . . . . . . . . . . . . . . . . . . . . . . .

800 0 95 160 . . . 95 0 5
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to be empty due to measurement errors and pattern deformations alter the column addresses. For
this reason, we introduce macrocolumns, i.e., along with the column with address x we consider
its neighbors with addresses x ∈ [−R,R]. The possibility of using macrocolumns is the result of
inverse pattern properties mentioned above. As noted previously, we find the column intersections
by calculating a histogram that determines the frequencies of class appearances. At the same time,
the input pattern belongs to the most frequently appearing class.

4. SOFTWARE AND HARDWARE IMPLEMENTATION OF INDEXTRON

We implemented the parallel version of the algorithm in Python and ran it on the Nvidia GeForce
GTX 1660 Super GPU. This graphics card has 44 multiprocessors and 1408 cores, allowing for
parallelization of one process into 1408 parallel subprocesses. In the problem considered, training
can be parallelized into 20 531 processes, corresponding to the number of all genes in the profile.
The maximum possible parallelization is 20 531 ∗ (2R+ 1) processes, as for each gene, all values
within the generalization radius can be checked in parallel.

We achieved parallelization using the cuda module from the numba library. To process threads
by the GPU multiprocessors, the threads were divided into blocks using the following formula:

blocks per grid = (number of iterations| + (threads per block − 1 ))//threads per block ,

where number of iterations is the number of parallel iterations.

Before the execution of the program, we copied the arrays of input data from the main memory
to the GPU memory using the cuda.to device() function, and upon completion of the program,
we copied the execution results back to the main memory using the device array.copy to host()
function.

We used a decorator to parallelize the write and read functions. Within the parallelized func-
tions, we call a function returning the index of the thread on which the corresponding parallel
iteration should be executed.

5. RESULTS

Table 3 presents the accuracy and the number of operations for the indextron and the neural
network training for the disease diagnosis problem based on data from 801 patients.

Table 3. Results comparison.

Neural network Indextron

Accuracy (%) 99.5 99.75

Number of operations 46 bln addition/
multiplication operations

8 mil memory write
operations

The indextron training time on a single-core 1.6 GHz laptop is 0.43 s. Training time of the
four-layer neural network on the same hardware increases, according to the increase in the number
of operations, 46 ∗ 109/8 ∗ 106 = 5750 times. Note that the architecture of the indextron is ideal
for parallel implementation. It allowed us to achieve almost instant learning in 75 ms for the
problem considered. Generalization radii R in the training and recognition modes are 0 and 84
correspondingly, i.e., 33% of the feature variation range (0–255).

6. CONCLUSION

1. The simplicity of the indextron algorithm, which only requires writing K integers to memory
for training each pattern and has classification complexity of O(hK) operations for reading and
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summation, allows the creation of large gene expression databases to diagnose various diseases
(h is the average column height, where h = N/X).

2. With the wide availability of equipment for finding gene expression profiles, it becomes
possible to create a search diagnostic system similar to Google for mass use, where queries are in
numerical form rather than text.

3. The experiments carried out confirm the existence of such a possibility, as fast training with
the addition of new data to the database, even at the software level, takes only 0.43/800 = 0.00054 s,
and the accuracy of diagnosing five types of cancer was 99.75%. However, diagnosing many other
diseases will require the creation of a large number of different databases.
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Abstract—The article describes a method for automatically recognizing the target points of
the trajectories of unmanned vehicles moving underwater, such as autonomous submarines
and flying underwater vehicles of aircraft-like structures. The coordinate of the center of an
object with radial symmetry properties is considered a terminal control point. A method for
constructing a multiscale weighted image model based on the developed fast radial symmetry
transformation and the Hough method is proposed, which ensures noise stability and high speed
of calculating the coordinates of the desired point. When the object of interest has a contour
of a specific color, a model is based on our proposed chromatic and weight components. As an
example of detection, we have given an algorithm for detecting a base underwater station with
light markers as a signal luminous ring.

Keywords : automatic transport systems, unmanned underwater vehicle, unmanned flying un-
derwater vehicle, computer vision, image processing, object detection in images, Hough method,
fast radial symmetry transformation, image weight model, multiscale image weight model
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1. INTRODUCTION

When building automatic control systems for unmanned vehicles, a necessary condition is to
set the final position of the device in space. In most works on automatic control of unmanned
vehicles, the researcher sets the final position in the form of a set of specific coordinates [1, 2].
However, in actual conditions, problems arise when the device must independently detect an object
of interest, the position of which will set the final position of the device during control. Transport
systems, where the device independently determines the end point of its movement and calculates
the trajectory of movement to it, are usually called intelligent transport systems [3]. The method
for determining the terminal point and constructing the optimal trajectory does not necessarily
have to include elements of artificial intelligence (AI), such as machine learning models, neural
networks, etc. However, if the calculation method does not involve AI, the system is more often
defined as “automatic” or “automated.”

The most common unmanned vehicles are unmanned aerial vehicles (UAVs) [4]. The most com-
mon unmanned vehicles are unmanned aerial vehicles (UAVs) [5, 6]. For unmanned vehicles moving
underwater, the so-called autonomous uninhabited underwater vehicles (AUV) [7], positioning in
most cases is carried out using ultrasonic signals [8]. The main disadvantage of this approach is
the mandatory presence of special navigation equipment on board the vehicle and the need for a
response signal from the target positioning point, which makes the vehicle vulnerable to external
detection.
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Fig. 1. The design of a diving aircraft with a folding wing (source—see [16]).

Fig. 2. The mechanics of moving guillemots in the air and underwater, applied to simulate the UAV dynamics
(source—see [18]).

Positioning systems based on computer vision do not have these disadvantages. They can provide
high recognition accuracy and, at the same time, do not give out their presence by external signals.
In addition, visual positioning is only possible during underwater target setting for such modern
unmanned systems as hybrid unmanned aerial underwater vehicles (HUAUVs) [9]. HUAUVs can
overcome distances first by air, dive into the water, and perform underwater maneuvers. Due to
signal propagation and dispersion characteristics at the junction of two air-water media, positioning
using ultrasonic signals is challenging to implement.

For UAVs and unmanned ground vehicles, the problem of object detection based on computer
vision has been well studied [10–12]. There are works on visual positioning of the UAV landing
point [13], determining the position of an aircraft based on previously made satellite images of
the terrain and neural network recognizers [14] etc. A common disadvantage of the proposed
approaches is the need to have additional information for positioning and high requirements for
computing power equipment on board the UAV.

For unmanned vehicles moving underwater, computer vision algorithms must meet additional
requirements due to the peculiarities of light propagation in water and additional interference due
to the turbidity of natural water bodies [15]. In the case of HUAUVs, the speed of the algorithm
is also of great importance due to the relatively high speeds of movement of the vehicle and the
number of calculations necessary for detecting an object since flying underwater vehicles are not
capable of carrying high-power computers and their energy consumption is high relative to AUVs.
Therefore, developing a visual positioning algorithm for a target set underwater with minimal
energy and computational costs is especially relevant for hybrid UAUVs.

The case when the final target position of the device is underwater is more typical for flying
underwater vehicles of the “diving aircraft” type [16], than, for example, for floating quadro-
copters [17]. Aircraft-like structures are mainly adapted only to the direct air-to-water transition
and experience significant difficulties or cannot carry out the reverse water-to-air transition at all.
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Fig. 3. UAV tail configuration in various environments (source—see [19]).
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Fig. 4. The authors propose a control system for reaching the endpoint underwater by the vehicle (source—
see [19]).

In [16] a design of a diving aircraft with wings deviating by 65 degrees during diving was proposed
(see Fig. 1).

The design includes a variable-sweep wing and a compressed carbon dioxide engine. In [18] a
design of a diving HUAUV simulating the flight and diving of a guillemot was proposed (see Fig. 2).

In [19] the automatic control system of a diving aircraft with a folding tail is described (see
Fig. 3).

In [19] the authors propose a control system for reaching the endpoint underwater by the vehicle
(see Fig. 4).

The control optimality criterion is the accuracy of reaching a given position (xtarget, ytarget) at
the final time tf .

J =
√
(xh(tf )− xtarget)

2 − (yh(tf )− ytarget)
2. (1)

The control parameters are the initial pitch angle θ0 and the initial velocity along the axis OX vx0 ,
the trajectory is calculated without the possibility of maneuvering. As the target coordinates
(xtarget, ytarget) the authors define a specific point underwater. However, in the case of adaptive
control, the device can calculate these coordinates independently in an automatic mode based
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Fig. 5. An example of docking an autonomous uninhabited underwater vehicle with a docking station (source—
see [20]).

on machine vision. Thus, the problem arises of recognizing the coordinates of a specific target
object underwater, the mathematical center of gravity of which will be the target control point
(xtarget, ytarget). This problem is one of the possible typical examples of a recognition problem to
solve the optimal control problem.

For underwater unmanned vehicles, setting objects of interest underwater is the only possible
one. Such an object of interest can mainly be a particular docking station [20], sed to recharge the
AUV battery and/or transmit data (see Fig. 5).

In this case, the positioning features of the AUV and HUAUV will be the same since the target
is underwater in both cases. The fact that the target is under water is vital for developing a target
object detection method since water turbidity, the presence of suspension, and image distortion due
to light refraction impose stringent requirements on the detection method for resistance to external
noise. For example, optical positioning methods for underwater targets are described in [21, 22].
One [23] and two [24] cameras can be used in this case. The main limitation of the proposed
methods is their high consumption of computing and energy resources since almost all of them are
designed for AUVs. This circumstance makes the proposed methods poorly applicable to HUAUVs.
So, in [20] a convolutional neural network CNN is used as a mathematical recognition model. The
efficiency of such networks is high if they are specially trained for a relatively narrow class of objects.
For example, it has been shown that CNNs can recognize handwritten text with an accuracy of
up to 99% [25]. However, their accuracy drops to 70% or less when recognizing arbitrary natural
objects. In addition, CNNs require powerful computing devices for training, which can last from
several hours to several days [26]. Modern modifications can give either higher accuracy or higher
speed but cannot yet combine both of these qualities. So, in [27] the so-called two-pass algorithms
of the FASTER RCNN type are described, reaching an accuracy of 73.2% (VOC071 dataset). The
network training time is not described, but the network has a relatively low recognition rate of
17 images per second. Single-pass networks like YOLO achieve a recognition rate of 155 images
per second, but their accuracy is only 52.7% on the same VOC07 dataset.

Thus, developing an algorithm for detecting objects underwater with minimal computational
and time costs is relevant, especially for HUAUVs.

2. FORMULATION OF THE PROBLEM

Consider the problem of recognizing an underwater object in automatic mode from an unmanned
vehicle by detecting a base docking station with light markers in the form of a signal luminous ring.
The center of the ring defines the target point of the optimal control trajectory without maneuvering

1 VOC07 is a free access data set containing classified images (Visual Object Classes-VOC) for 20 classes, edition
2007

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



METHOD FOR UNMANNED VEHICLES AUTOMATIC POSITIONING 835

(xtarget, ytarget) according to the example of the problem (1). In the general case, the task can be
solved simultaneously for several possible Ntarget targets.

Given:

(a) color image I = (Iij)Nx×Ny in RGB color model;
(b) the set of radii of circles N to be found;
(c) the set of admissible colors C, in shades of which the desired circles can be colored;
(d) allowable mismatch between the positions of the centers of the circles Δ.

Find:

(e) the set of centers of circles with their radii defining the terminal point of the optimal control

Ã =
{(
xktarget, y

k
target

)
, rk
}
, k = 1, Ntarget.

This study aims to develop a computational algorithm that takes positions (a)–(d) as input
and generates positions (e) as output. An additional requirement for the algorithm is resistance to
external noise and minimization of computational costs and computation time.

When the actual size of a circle (for example, a docking ring) is known, several decreasing
values from the real to the minimum possible radius should be chosen as the desired image radii.
Subsequently, based on the found value of the radius on the image, it will be possible to determine
the distance to the object using additional measuring instruments.

The method should provide recognition under slight deformations of the circle into an ellipse
with a ratio of the minor and significant semiaxes of at least 0.95, corresponding to a shift of the
direct projection of the view by no more than 20◦ [28].

3. METHOD FOR SOLVING THE PROBLEM OF RECOGNITION
OF COLORED ROUND OBJECTS

An important task solved using computer vision is processing images from an unmanned vehicle
to detect and localize given objects — light markers. These objects are characterized by shape and
color. Therefore, methods for analyzing color and shape features are used to detect and recognize
them.

Recently popular algorithms based on deep neural networks for this problem statement will be
redundant since a simple geometric figure is subject to recognition rather than a complex multi-
color object. In addition, the generalization complexity and the training stage’s duration remain
topical problems when using neural networks. Therefore, classical methods in which image analysis
is performed remain relevant.

Many practical approaches to the analysis of the shape of objects in images are based on the
methods of contour analysis [29]. Light markers for docking underwater vehicles are colored objects
with a radially symmetrical shape. For their detection and localization, methods based on analyzing
the properties of radial symmetry can be applied. The proposed method is based on the joint use
of the well-known Hough method [30] and the transformation of fast radial symmetry using the
construction of the Gaussian pyramid.

3.1. Fast Radial Symmetry Transformation

This paper proposes an efficient approach to solving the problem under consideration based on
the fast radial symmetry transformation FRST (Fast Radial Symmetry Transform). The FRST
transformation makes constructing a weighted image model possible, which can effectively localize
the center of a radially symmetric object [31, 32].

To obtain a weighted image model, you must perform the following steps:

1) convert the image to grayscale;
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2) calculate the gradients of the brightness function on the image;

3) calculate the values of the weight matrix elements;

4) normalize the values of weight matrix elements;

5) calculate the values of the elements of the matrices of generalized weights;

6) perform low-pass filtering of generalized weight matrices;

7) calculate the values of the matrix elements of averaged weights.

The first step is to convert the image to grayscale, in which each pixel is assigned a brightness
value. In the simplest case, the transformation calculates the average values of the intensities of the
red, green, and blue color components. Thus, as a result of the first step, the image is represented
as a brightness function, the arguments of which are the values of the pixel coordinates.

In the second step, the gradients of the brightness function on the image are calculated using
the following operators:

gx(p) := Î(i+ 1, j)− Î(i, j); (2)

gy(p) := Î(i, j + 1)− Î(i, j); (3)

|g(p)| =
√
g2x(p) + g2y(p), (4)

where g(p) = (gx(p), gy(p)) is the gradient at pixel p with coordinates (i, j); gx(p), gy(p) are the

components of the gradient for the horizontal and vertical directions at pixel p respectively; Î(i, j),
Î(i + 1, j), Î(i, j + 1) are the brightness values in pixels of the grayscale image with coordinates
(i, j), (i+1, j) and (i, j+1) respectively. In expressions (2)–(4), the sign := denotes the assignment
operator, which will be used in the future.

In the third step, the values of the elements of the weight matrices are calculated. For this, the
following procedure is applied:

1) the set of integer values N is determined, where N is the set of radii of the objects to be
found;

2) for each value n from the set N , the initial values of the elements of two weight matrices are
formed:

Mn(p) := 0; (5)

On(p) := 0, (6)

where p is the vector of coordinates (i, j).
3) for all elements of the weight matrices determined by the values n from the setN, the following

operators are applied:

p+ := p+

⌈
gx(p)

|g(p)| n
⌉
; (7)

p− := p−
⌈
gx(p)

|g(p)| n
⌉
; (8)

Mn (p+) := Mn (p+) + |g(p)|; (9)

Mn (p−) := Mn (p−)− |g(p)|; (10)

On (p+) := On (p+) + 1; (11)

On (p−) := On (p−)− 11, (12)

where �·� is the operator of rounding an actual number to the nearest no less than integer value.
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In the fourth step, the elements of the weight matrices are normalized:

Mn(p) :=
|Mn(p)|

max
q

{|Mn(q)}| ; (13)

On(p) :=
|On(p)|

max
q

{|On(q)}| . (14)

In the fifth step, the values of the elements of the matrices of generalized weights are calculated:

Fn(p) := (On(p))αMn(p), (15)

where α is the radial stiffness parameter.

In the sixth step, low-pass filtering of the generalized weight matrices is performed. In this case,
a Gaussian low-pass filter is used as a rule. Filtering is expressed using the convolution operator

Sn := Fn ∗Gn, (16)

where Gn is matrix of coefficients of the Gaussian low-pass filter, defined for the value n from the
set N.

In the last, seventh step, the values of the elements of the matrix of averaged weights are
calculated:

S(p) :=
1

|N|
∑
n∈N

Sn(p). (17)

The matrix of average weights obtained as a result of the FRST transformation is a weight
model of the image, the analysis of which makes it possible to determine the shape parameters of
objects, for example, the center coordinates and the radius of round objects.

3.2. Image Weight Model

When building a weighted image model using a fast radial symmetry transformation, it is nec-
essary to perform a relatively large number of calculations, which is determined by the power of
the set of integer values N. The elements of this set are used to analyze significant changes in
brightness at the corresponding distances from the current pixel, i.e., have the meaning of radii for
radially symmetrical objects centered in image pixels.

Objects in actual images have a multiscale nature since they have different sizes. For the problem
under consideration, this means using a set N with many elements, which are determined by the
range of changes in the radii of objects of interest. Therefore, analyzing the original image presented
in a multiscale form is advisable. Such a multiscale analysis reduces the number of calculations
and improves object detection accuracy in the image.

To build a multi-scale image weight model, you must perform the following steps:

1) convert the image to grayscale;
2) construct a Gaussian pyramid;
3) calculate the values of the average weight matrices’ elements for all Gaussian pyramid levels;
4) bring the matrices of averaged weights to the size of the original image;
5) calculate the values of the elements of the integral matrix of averaged weights.

The first step is to convert the image to grayscale, in which each pixel is assigned a brightness
value.
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In the second step, the Gaussian pyramid is built [33]. It is a set of images P=
{
Pl

∣∣ l=0, L−1
}
,

where L is the number of levels in the pyramid. The original grayscale image Î is considered as the
zero level of the pyramid P0. The remaining levels of the pyramid are formed as follows:

Pl := G ∗ (2 ↓ [Pl−1]) , (18)

where G is the coefficient matrix of the Gaussian low-pass filter; 2 ↓ [·] is the image downsampling
operator, for example, by removing every second pixel in a row and column. An element of the
Gaussian pyramid of level l will have dimensions four times smaller compared to the dimensions of
an element of level l − 1.

In the third step, with the help of operators (5)–(17), weight models of images of all levels of the

Gaussian pyramid are formed, i.e., a set of matrices of averaged weights
{
S(0), S(1), . . . , S(L−1)

}
is

built.

In the fourth step, the set
{
S(0),S(1), . . . ,S(L−1)

}
is transformed into the set

{
R(0),R(1), . . . ,

R(L−1)
}
, each element which R(l) is the result of reducing the matrix S(l) to the dimensions of the

original image, i.e., to the dimensions S(0). The specified transformation is performed as follows:

R(l) := G ∗
(
2 ↑
[
S(l)
])
, (19)

where G is the coefficient matrix of the Gaussian low-pass filter; 2 ↑ [·] is the image upsampling
operator (the matrix S(l) is considered as an image with each pixel which is associated with a weight
value), for example, by duplicating each pixel in a row and column.

In the last, fifth step, the resulting matrices R(0), R(1), R(L−1) are added to construct an integral
matrix of averaged weights:

S(p) :=
1

L

L−1∑
l=0

R(l)(p), (20)

where p is a pixel of the original image corresponding to the coordinates of the weight matrix
elements.

As a result of the above steps, a multiscale weight model is formed, the analysis of which makes
it possible to determine the shape parameters of objects in the image. The use of this model makes
it possible to increase the accuracy of work and reduce computational complexity due to the smaller
image area at the upper level of the pyramid.

3.3. Chromatic Image Model

When analyzing images of light markers from an unmanned underwater vehicle, it is advisable
to use a model containing chromatic and weight components. The first allows you to consider the
color characteristics of objects of interest, and the second is the geometric features of their shape.

Then the image model can be represented as 〈C, S〉, where C is the chromatic component, and
S is the weight component. The weight component of the model is formed using the procedures
described in the previous sections. The chromatic component is formed due to color transformation
and color segmentation.

To describe the chromatic component of the model, the advantages and disadvantages of several
color spaces were investigated: RGB, Lab, and HSV. These spaces were compared in terms of
description methods to highlight areas of the image, the color of which lies in a specific range [34].
As a result, it was noted that the main factor limiting and complicating the use of the RGB color
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model for color segmentation is a single description of both the illumination and the color compo-
nent of the object, which makes it difficult to clearly define the ranges of the desired colors [35].
The indisputable advantage of the L*a*b* color model is a separate L* channel responsible for
illumination and planes (a*, b*), responsible for color. However, this model describes color ranges
(chromatic characteristics) as geometric figures on a plane, possibly having a complex structure.
This fact complicates constructing a color distribution model for segmentation [36]. The HSV color
model, in contrast to L*a*b*, allows you to set the range of desired colors by specifying the range of
values of the H channel (in most cases, it is enough to specify the threshold value of the saturation
set in the S channel above the value whose color purity becomes acceptable), which significantly
simplifies the implementation of the method [37].

Thus, the HSV color space (model) was chosen as the color space for analyzing color images. This
model is based on the characteristics of information perception by the human visual system and is
represented as a set of color channels H, S, and V , which determine the color’s tone, saturation,
and value (brightness).

The chromatic component C of the image model is represented as follows:{
(h(p), s(p), v(p)), ∃ k, l, m : h(p) ∈ Hk ∧ s(p) ∈ Sl ∧ v(p) ∈ Vm;

(0, 0, 0), ∀ k, l, m : h(p) /∈ Hk ∨ s(p) /∈ Sl ∨ v(p) /∈ Vm,
(21)

where p is the pixel of the original image; Hk, Sl, Vm are the kth, lth, and mth intervals of the
H, S and V channels, respectively, from the set of color intervals of the given objects.

3.4. Algorithm for Detecting Round Objects on Images of Light Markers

In general, the procedure for detecting round objects of a given color is as follows:

1) convert the original image from the RGB to the HSV color model;
2) build the chromatic component of the image model;
3) convert the original image to grayscale, considering the chromatic component;
4) find circles using the Hough method on the image by the chromatic component;
5) build the weight component of the image model (weight image);
6) threshold the weight image;
7) find contours on the weight image;
8) calculate the centers of mass for each contour;
9) find circles on the image by the weight component;
10) remove falsely found circles on the halftone image by the Hough method, the centers of

which do not coincide with the permissible error with any center of mass of the contours on the
weighted image;

11) generate a set of coordinates of target control points with radii Ã =
{(
xktarget, y

k
target

)
, rk
}
.

4. COMPUTATIONAL EXPERIMENTS

The presented algorithm was tested on the problem of recognizing circular luminous markers of
an underwater docking station at different angles in turbid water conditions. For computational
experiments, images of the docking station were obtained during the experiments of Liu S., Ozay M.,
Okatani T., published in [20]. Examples of images of the docking station docking block in the form
of illuminated circles, which were recognized as a result of the experiments, are shown in Fig. 6.

The images were taken with a 620 TVL (0.8 Mpx) NanoSeaCam monocular color camera with
viewing angles of 59◦ × 44◦ × 72◦ (up-down-sideways).
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(a) (b)

(c) (d)

Fig. 6. Variants of images of circles — the docking luminescent ring of the underwater docking station:
(a) a single object in the central part of the image, the area of the object of interest relative to the image
is more than 5%; (b) a single object displaced relative to the center of the image, the area of the object of
interest relative to the image is more than 5%; (c) a single object displaced relative to the center of the image,
the area of the object of interest relative to the image is less than 5%; (d) multiple objects of interest in one
image. (source: freely available dataset http://vision.is.tohoku.ac.jp/liushuang/a-vision-based-underwater-
docking-system/dataset).

4.1. The Criterion for Assessing the Accuracy of the Algorithm

The effectiveness of the developed algorithm was evaluated based on the so-called pixel-oriented
technique described in [38].

This is a statistical evaluation measure based on the count of misclassified pixels. To obtain
such an estimate, we must calculate the probabilities that a randomly selected pixel in an im-
age segmented using the algorithm belongs either to the desired object or, respectively, to the
background.

Unlike generally accepted metrics such as Accuracy, Precision, or Recall, followed by ROC
analysis, the pixel-based metric evaluates not the accuracy of object classification (object detected
or not detected) but the detection quality. Evaluation of the detection quality includes assessing
the accuracy of object localization (determining the coordinates of the center) and determining
its geometric characteristics, i.e., the radius. Therefore, for the problem posed, the pixel-oriented
estimate is preferable [39].
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Table 1. Initial data and preliminary results of experiments on the recognition of test images

Experiment
number

Prior data
Data obtained after applying

the algorithm

p(o) p(b)

Data obtained
after applying
the algorithm,

%

Estimation
of the object’s
relative area

Percentage
of erroneous
recognitions
algorithm

by criterion p(b|o)

Percentage
of erroneous
recognitions
algorithm

by criterion p(o|b)
1 0.01 0.99 1% ≤ 5% 1 1

2 0.01 0.99 1% ≤ 5% 1 5

3 0.01 0.99 1% ≤ 5% 1 10

4 0.01 0.99 1% ≤ 5% 1 25

5 0.05 0.95 5% ≤ 5% 1 1

6 0.05 0.95 5% ≤ 5% 1 5

7 0.05 0.95 5% ≤ 5% 1 10

8 0.05 0.95 5% ≤ 5% 1 25

9 0.1 0.9 10% > 5% 1 1

10 0.1 0.9 10% > 5% 1 5

11 0.1 0.9 10% > 5% 1 10

12 0.1 0.9 10% > 5% 1 25

13 0.25 0.75 25% > 5% 1 1

14 0.25 0.75 25% > 5% 1 5

15 0.25 0.75 25% > 5% 1 10

16 0.25 0.75 25% > 5% 1 25

17 0.5 0.5 50% > 5% 1 1

18 0.5 0.5 50% > 5% 1 5

19 0.5 0.5 50% > 5% 1 10

20 0.5 0.5 50% > 5% 1 25

According to the chosen method, the segmentation error probability of the entire image is
determined as follows:

perr = p(b|o)p(o) + p(o|b)p(b). (22)

Here: p(o) is the a priori probability that a randomly selected pixel of the original image belongs
to the object (the ratio of the area of the object to the area of the entire image); p(b) is the a
priori probability that a randomly selected pixel of the original image belongs to the background
(the ratio of the background area to the area of the entire image); p(o|b) is the probability that a
pixel belonging to the background is erroneously assigned to the object during segmentation (the
ratio of the part of the background area erroneously assigned by the algorithm to the object to the
entire background area). In the theory of statistical hypotheses, such an error is called an error
of the first kind; p(b|o) is the probability that a pixel belonging to an object will be erroneously
assigned to the background (the ratio of the part of the object’s area erroneously assigned by the
algorithm to the background to the area of the object) — an error of the second kind.

So p(o|b) and p(b|o) are cumulative segmentation errors.

In this case, the area is understood as the number of pixels of a given area.

For cases when the desired objects are small in size relative to the entire image (occupying less
than 5% of the image area), i.e.,

#(o) � #(D),
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Fig. 7. Probability of the error of the algorithm calculated by the method (22) depending on the a priori
probability (22) depending on the a priori probability p(o) and a posteriori probability p(b|o).
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Fig. 8. Probability of an algorithm error calculated by method (23) depending on a priori probability p(o) and
a posteriori probability p(b|o).

where #(o) is the power of the set of pixels belonging to the desired object, and #(D) is the power
of the set of pixels of the entire image, it is advisable to use estimate (22) instead of formula (23):

perr :=
#(os)−#(o)

#(D)
, (23)

where os is the set of found objects as a result of segmentation.

To determine the optimal way to calculate the algorithm’s accuracy, we conducted 20 indepen-
dent experiments on recognizing circles in images. Among them, in 8 images, the object of interest
occupied 5% or less of the area, and in 12 images, it occupied more than 5%. After image processing
by the developed algorithm, posterior recognition errors p(o|b) and p(b|o) were obtained. A priori
and a posteriori experimental data are presented in Table 1.

Then, based on the obtained data, the accuracy was calculated according to the methods (22)
and (23). The results are presented in Figs. 7–10.
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Fig. 10. Difference in accuracy of method (22) relative to method (23).

The results show that for objects with an area of up to 5% of the area of the entire image,
inclusive, the correctness estimates calculated by both methods with a fixed type 2 error level
of 0.01, generally have minor differences. However, if the desired object occupies an area of more
than 5% of the area of the entire image, it is advisable to apply the estimate according to the
Eq. (22). Thus, method (22) is preferred.

For all further studies, the accuracy was calculated according to (22).

4.2. Influence of Radial Symmetry Transformation Parameters

The dependence of the circle detection accuracy on the radial stiffness parameter α is studied.
We generated and examined 100 images of circles with radii from 1 to 100 pixels on the 2400× 8400-
pixel original image. ext, we conducted experiments with a change in the stiffness parameter from
α = −3 to α = +7. The results are presented in Fig. 11a. It can be seen that with an increase in
the radial stiffness parameter α to a value of +2, the detection accuracy reaches 75% (0.75). With a
further increase in α an accuracy of 95% is achieved at a value of +4 and then asymptotically tends
to 100%. On Fig. 11b hows the influence of the standard deviation on the accuracy of detecting
circles at the value of the radial stiffness parameter α equal to 2. It can be seen that this parameter
has an insignificant effect on the result under these conditions.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



844 SHAKIRZYANOV et al.

0
0 1 2 3

Parameter � Standard deviation

(a)

(b)

4 5 6 7 0 0.05 0.10 0.20 0.250.15�1�2�3

20

40

60

80

100

A
cc

u
ra

cy

%

0
10
20
30
40
50
60
70
80
90

A
cc

u
ra

cy

%
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Fig. 12. Influence of impulse noise on the accuracy of circle recognition for different radii: (a) for all circles;
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4.3. Influence of Noise on Recognition Accuracy

The turbidity of the water, the presence of slight organic and inorganic inclusions, and distor-
tions caused by the refraction of light between the water and the camera lens are mathematically
described as additive noise. In particular, a refined solid suspension in water is modeled as an im-
pulse noise of the “salt” and “pepper” types. The effects of distortion and turbidity were modeled
using masks as Gaussian and “blurring” noises. The impact on the recognition of each type of noise
is discussed below.

4.3.1. Influence of Impulse Noise

To determine the effect of impulse noise on the algorithm’s operation, 84 images of circles with
radii from 1 to 84 pixels were examined. The original image was noisy, with noise at 25% intensity
and 10% of the image area. The results of the algorithm are shown in Fig. 12.

It can be seen that impulse noise has a significant effect on objects of small sizes. Its influence
on the result of the recognition of larger objects is less significant.

4.3.2. Influence of Gaussian Noise

To study the effect of Gaussian noise on the operation of the algorithm, we imposed noise
on the original image by filling image pixels with normally distributed random numbers with
mathematical expectation μ = 0 and standard deviation σ = 5. Then the image was processed by
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Fig. 14. Influence of image blur by filters on circle recognition accuracy: (a) comparative accuracy for vari-
ous blur filters; (b) the relative average increase in the recognition error for various filters compared to the
undistorted image.

a radial symmetry detector with a radial stiffness parameter α, equal to 2. The results are presented
in Fig. 13.

Gaussian noise has a significant effect on small objects. For large objects, the effect of this kind
of noise is insignificant.

4.3.3. Influence of Blur-Type Noise

To study the influence of noise of the “blur” type, we subjected the original image to blurring
with filters of dimensions 3× 3, 5× 5 and 7× 7. The results of changing the accuracy of circle
recognition are shown in Fig. 14.

The blur-type noise practically does not affect the result of object detection. The loss of accuracy
is no more than 0.09%.
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(a) (b)

Fig. 15. Light Marker Detection Example: (a) the original image of the marked ring of the docking station at
an angle; (b) a recognized circle with a calculated center.

An interesting fact is the increase in recognition accuracy in the presence of “blur” type noise
compared to a non-noisy image in several experiments. This is due to the problem of false detection
when the algorithm erroneously refers to the found circles of a given radius and also closely spaced
circles of other, close in value, radii. With blur noise applied, the probability of such a false positive
detection is reduced in some cases.

The obtained results of studying the influence of various types of noise on the accuracy of
recognition of radial images show that it is not required to apply additional sharpening algorithms
since the developed method is sufficiently resistant to noise within the framework of the problem
being solved.

4.4. Image Detection

The image of a light docking ring in turbid water refers to images with a high degree of blurring
distortion and, to a lesser extent, Gaussian and impulse noise. Thus, for objects with a radius of
more than 10 pixels (large objects), the developed algorithm provides high resistance to all types
of noise, and according to the main distorting criterion, blur, it provides stability for recognizing
an underwater docking luminescent ring of all sizes.

An example of the image of a light marker in turbid water at an angle of 16◦ o the camera with
a recognized docking center is shown in Fig. 15.

In the course of numerical experiments, both the circles themselves were recognized, and their
centers were found, the coordinates of which can potentially serve as the coordinates of the final
optimal position of the unmanned vehicle during automatic control. For the image presented in
Fig. 15, in particular, we have:

Original image parameters:

(a) a color image with a dimension of 448 × 448 pixels in *.jpeg format;

(b) the number of desired circles is 1, the desired radius is 85 pixels;

(c) the set of acceptable colors — shades of yellow;

(d) allowable mismatch between the positions of the centers of the circles — 5 pixels;

found a circle centered at a point:

• xtarget = 282;

• ytarget = 298.
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Table 2. Comparison of recognition accuracy for radial objects with a uniform increase in radii

Minimum distance
between circle centers,

pix.

The actual number
of circles in the image

Found by the
Hough method

Found by the
developed algorithm

5 7 21 8

10 7 7 7

15 7 7 7

20 7 7 7

25 7 7 7

30 7 7 7

35 7 7 7

40 6 7 6

45 7 8 8

50 6 6 6

Table 3. Comparison of recognition accuracy for radial objects with a random change in radii

Minimum distance
between circle centers,

pix.

The actual number
of circles in the image

Found by the
Hough method

Found by the
developed algorithm

5 8 152 12

10 8 53 8

15 8 30 8

20 8 22 8

25 8 14 8

30 8 10 8

35 8 10 8

40 8 10 8

45 8 8 8

50 8 6 8

4.5. Comparison of the Efficiency of Algorithms

In this section, we will be comparing the accuracy and speed of the developed algorithm with
the Hough and fast radial symmetry algorithms that were used separately. It’s worth noting that
methods such as neural network recognition require additional computational costs and memory
costs of the computing device at the training stage. This is mainly because of the need to have
a relevant training dataset that includes all possible combinations of input parameters to obtain
an adequate model. Due to this, the use of such machine-learning algorithms is unsuitable for
low-performance computing devices that are installed on board HUAUVs or similar unmanned
vehicles.

4.5.1. Comparison of Accuracy of Radial Objects Detection

To illustrate the method’s effectiveness for detecting radial objects in images based on the
proposed algorithm, we conducted two computational experiments: images of circles with uniform
and random changes in radii.

Tables 2 and 3 show the results of comparing the accuracy of the algorithms when varying the
minimum distance between the centers of the circles. An image is considered correctly recognized
if the deviation of the found centers from the real ones does not exceed 15 pixels.
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Table 4. Characteristics of image datasets for experiments comparing the speed of algorithms

Dataset name Short description

LISA Traffic Light Dataset 100 images from a set of size 1280×960 in JPG format

Bosch Small Traffic Lights Dataset PNG-format images from a set of various sizes

Selective set from Kaggle 200 PNG-format images from a set of various sizes

Table 5. Comparison of the speed of recognition of radial objects of different ranges of circles

Range of circles
for recognition

FRST algorithm
running time, ms

Proposed algorithm
running time, ms

Speed gain
of the developed
algorithm, times

1–10 89 988 50 569 1.8

1–20 171 902 79 753 2.1

1–30 253 435 111 020 2.3

1–50 465 673 128 970 3.6

The comparison results show that the accuracy of the developed algorithm is, on average,
35% higher than the accuracy of classical methods used separately.

4.5.2. Comparison of the Speed of Radial Objects Detection

For a relative comparison of the speed of the developed algorithm, we used a computer with the
following characteristics:

• processor: Intel Core i5-3230M 2.60 GHz;
• RAM: 8 GB;
• operating system: Windows 10, 64-bit.

The experiments were carried out for three test sets of images: 2 complete datasets, “LISA
Traffic Light Dataset” and “Bosch Small Traffic Lights Dataset” of the Kaggle open type dataset,
as well as 200 sample images from various Kaggle datasets relevant to the study. A description of
the test set of images from these databases is given in Table 4.

We conducted computational experiments on circle recognition in four ranges: from 1 to 10
pixels, from 1 to 20 pixels, from 1 to 30 pixels, and from 1 to 50 pixels. Table 5 shows the results
of estimating the speed of the algorithm proposed by us in comparison with the primary method
based on the radial symmetry transformation FRST.

It is evident that with the increase in the range of desired circles, the advantage of the proposed
method’s speed increases compared to the basic one.

It should be noted that the computer used for the experiments had excess power for the practical
implementation of the proposed algorithm and was used solely to compare the author’s algorithm
with the classical one. In natural conditions, the power of HUAUV onboard computers is sufficient
for the algorithm due to the simplicity of the implemented calculations.

5. CONCLUSION

We have proposed a method that can be used to detect and localize objects of a given shape
and color in images of light markers. For example, our method can be used to detect an object of
interest in an unmanned underwater or aerial underwater vehicle. The described method is easy
to implement and resistant to interference. It can be supplemented with various image process-
ing operations at all stages to improve performance, vital for detecting an object in an aquatic
environment with reduced visibility.
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In addition, it should be noted that the procedure for generating a multiscale image weight
model has the properties of natural parallelism. This determines the possibility of increasing the
processing speed through hardware and software tools for high-performance parallel computing,
essential for effective real-time control of an unmanned vehicle and reducing power consumption.

The limitation of the algorithm’s applicability in water turbidity conditions is the size of the
detected radial object. In particular, objects with a radius of less than 10 pixels are difficult to
detect by the developed algorithm. Larger objects are recognized with a high accuracy of over 95%.
In this case, the radial stiffness parameter α should equal +4. For effective detection of objects,
the level of impulse noise in images should not exceed 25%, while Gaussian noise has little effect on
detecting objects whose radius exceeds 5 pixels. The developed algorithm is resistant to blurring
noise with averaging filters. Because of the preceding, the algorithm does not require additional
methods to improve image clarity, which is its undeniable advantage over analogs.

This advantage is obtained through the joint application of several basic algorithms, such as
the Hough method, the fast radial symmetry transformation, and the construction of the Gaussian
pyramid. The resulting unified model outperforms each of the basic algorithms individually and,
when applied in pairs, in performance and computing resource requirements.
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Abstract—Three variants of the statistical complexity function, which is used as a criterion in
the problem of detection of a useful signal in the signal-noise mixture, are considered. The prob-
ability distributions maximizing the considered variants of statistical complexity are obtained
analytically and conclusions about the efficiency of using one or another variant for detection
problem are made. The comparison of considered information characteristics is shown and
analytical results are illustrated on an example of synthesized signals. A method is proposed
for selecting the threshold of the information criterion, which can be used in decision rule for
useful signal detection in the signal-noise mixture. The choice of the threshold depends a priori
on the analytically obtained maximum values. As a result, the complexity based on the total
variation demonstrates the best ability of useful signal detection.
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1. INTRODUCTION

The concept of information entropy was firstly introduced in Claude Shannon’s article [1] in 1948.
This work marked the beginning of a new field of science called information theory [2]. The develop-
ment of information theory made possible an analytical and practical research in many applied fields
of science and technology. Such terms as Gibbs and von Neumann entropies, Kullback–Leibler dis-
tance, Jensen–Shannon divergence, information divergences and some others were introduced and
interpreted and later began to serve as criteria for various optimization problems of recognition [3],
classification [4] and filtering.

By the end of the last century various information criteria, mainly Shannon information en-
tropy, had began to be actively applied in the tasks of digital signal processing, in particular
in the problem of detection of a useful signal in a noise environment [5]. The concept of spec-
tral entropy [6], associated with the Fourier spectrum of the considered signal, has appeared and
proved to be especially relevant in the analysis of acoustic signals [7]. In addition, the entropic
approach has been successfully applied in the analysis of time series in the medical field, such
as ECG or EEG [8]. Later, a statistical complexity function was proposed as a development of
the entropy concept [9–11]. However, the articles mostly do not provide an analytical study of the
properties of these functions, which turns out to be especially important when solving the problem
of hypothesis testing.
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It should be noted that there are several classical ways of solving the detection problem. The first
of them is based on solving the problem of optimal filtering and requires knowledge of the properties
of the signal: periodicity, bandwidth, etc. [12]. The second way is based on the Neumann–Pearson
lemma, solves the problem of hypothesis testing, and determines the fact of exceeding the optimal
threshold at a given false alarm probability and requires estimation of statistical properties of
sample distributions of noise and mixture of signal and noise [13]. The third way is equivalent
to solving the changepoint detection problem when the unknown statistical characteristics of the
signal distributions change. The anomaly detection problem [14] has a similar formulation. All
these methods demonstrate qualitative and reliable performance when the signal exceeds the noise,
but for small signal-to-noise ratios often give the wrong answer.

The article is devoted to the problem of detection of useful signal in the signal-noise mixture
and combines all three previously listed ways of solving the detection problem. We propose to
use a variant of the Neumann–Pearson lemma for the problem of hypothesis testing [13], which
is indeed valid when the error probability is close to one and depends on the total variation of
the measure of two distributions of the null and alternative hypotheses. Based on the analytical
expression of this error function, the criterion of the signal detection problem is formalized as
one of the variants of the statistical complexity [15], which takes into account the deterministic
nature of the signal mixed in with the noise. The peculiarity of the statistical complexity is that
it is multiplicative and consists of two multipliers, one of which is zero on deterministic sinusoidal
signals of the same frequency (in physics these are objects of a given structure, such as crystals [9])
and the other is zero on uniform distribution functions [10], corresponding, for example, to white
noise. Then the introduced criterion is compared with the already known two variants of statistical
complexity based on Euclidean distance square and Jensen–Shannon divergence, their properties
are established, and optimization as a function of many variables on a set of discrete distributions
is performed. As a result, families of optimal distributions are identified and maxima of statistical
complexity functions are calculated.

The article has the following structure. Section 1 provides a literature review and highlights the
current state of research on the topic of the article. Section 2 is devoted to the connection of the
considered information criteria with the classical criterion of the signal detection problem. Section 3
investigates the properties of the three types of statistical complexity. In 4 the analytical results
of the previous section are supported by numerical simulations for synthesized signals. Section 5
summarizes the results obtained in the paper and lists plans for the future.

2. NEYMAN-PEARSON LEMMA AND STATISTICAL COMPLEXITY

The problem of signal detection s(n) is traditionally reduced to the problem of hypothesis testing

{
Γ0 : x(n) = w(n),

Γ1 : x(n) = s(n) + w(n), n = 1, . . . , N.

Hypothesis Γ0 corresponds to the decision of receiving only noise, and hypothesis Γ1 — of
receiving a mixture of useful signal and noise, where the sequences {x(n)}, n = 1, . . . , N are time
series of the received data, {s(n)} — useful signal, {w(n)} — additive white Gaussian noise, N —
the length of the time series of data.

The random variables of the time series (x(1), . . . , x(n), . . . , x(N)) take values (x1, . . . , xn, . . .
. . . , xN ) ∈ RN .

In order to obtain an analytical expression for estimating the error probability in hypothesis
testing, we can apply a variant of the Neyman–Pearson lemma [13, 16].
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Lemma 1 Neyman–Pearson. Let there be an arbitrary, called a decision rule or test, measurable
function of many variables (x1, . . . , xN ) ∈ RN such that

d(x1, . . . , xN ) =

{
1, hypothesis Γ0 is true,

0, hypothesis Γ1 is true,

by which the following probabilities can be determined:

α(d) = Probability (accept Γ0|Γ1 is true),

β(d) = Probability (accept Γ1|Γ0 is true).

Then the decision rule d∗ is optimal if

α(d∗) + β(d∗) = inf
d
[α(d) + β(d)] = Er(N ; Γ0,Γ1) — error function, (1)

where the infinum is taken for all tests.

Here α(·) is the probability of a false alarm, and β(·) is the probability of a useful signal missing.

The exact formula for the error function is as follows:

Er(N ; Γ0,Γ1) = 1− 1

2
‖P (N)

0 − P
(N)
1 ‖ = 1− TV (P0, P1), (2)

where P
(N)
0 is the multivariate distribution function of the observation statistics by hypothesis Γ0,

P
(N)
1 is the multivariate distribution function of the observation statistics by hypothesis Γ1, and
TV (P0, P1) is the total variation of the signed measure, ‖Q‖ = 2 supA |Q(A)|. Thus, if the supports
of measures P0, P1 do not overlap, then error-free distinguishing of hypotheses is possible. If the

measures P
(N)
0 and P

(N)
1 are close, then ‖P (N)

0 − P
(N)
1 ‖ ≈ 0, leading to Er(N ; Γ0,Γ1) ≈ 1.

For the problem of detecting a deterministic useful signal, for example, at a small signal-to-noise

ratio, the case ‖P (N)
0 − P

(N)
1 ‖ = 2TV (P0, P1) ≈ 0 is of interest and the possibility of reasonable

estimation of this value. Therefore, when the probability of the total error of distinguishing two
hypotheses is close to one, it becomes possible to use the analytical expression TV (P0, P1) to design
a criterion in the problem of detecting a useful signal in a mixture. But first let us turn to already
known criteria and establish their properties.

Most often, for the convenience of mathematical investigation, both of the useful signal and noise
are modeled by Gaussian random processes with different parameters. In that case the problem of
finding the moment of appearance of the signal s(n) in the received sequence of samples is called
the the problem of changepoint detection [13].

Here and below, we consider discrete probability distributions p = (p1, . . . , pi, . . . , pN ), that by
definition have the following properties:

∀ pi ∈ [0, 1],
N∑
i=1

pi = 1. (3)

To formalize criterion that takes into account the deterministic component of the signal as
well as the random one, let us explore the concepts of disequilibrium function D and statistical
complexity C of the distribution. The simplest example of the disequilibrium function is the square
of Euclidean distance in the space of discrete probability distributions [10].

Definition 1. The disequilibrium DSQ has the meaning of the variance of a distribution relative
to a uniform distribution

DSQ(p) =
N∑
i=1

(
pi − 1

N

)2

=
N∑
i=1

p2i −
1

N
. (4)
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Definition 2. The statistical complexity, defined through the expression of disequilibrium by the
Definition 1, is equal to

CSQ(p) = H(p)×DSQ(p), (5)

where

H(p) =
1

logN

(
−

N∑
i

pi log pi

)
(6)

— Shannon’s normalized entropy [1].

In evaluating the sum (6), it is assumed that 0
log 0 = 0 by continuity, and this assumption holds

for all subsequent equations.

It follows from the Definition 1 that disequilibrium of the form (4) and complexity of the form (5)
are convenient to apply in estimation and comparison of signals having spectral distribution close
to uniform. In general, instead of a uniform distribution qi = 1/N at i = 1, . . . , N , the formula (4)
may include an arbitrary discrete distribution.

The formula (4) is proposed in [10] for computing the disequilibrium with respect to a uniform
distribution, but most studies use the Jensen–Shannon divergence JSD(p||q) [17] instead.

Definition 3. The Jensen–Shannon disequilibrium equals

DJSD(p) = JSD(p||q), (7)

where q = (1/N, . . . , 1/N) is the uniform distribution.

Definition 4. Statistical complexity defined through the expression of disequilibrium from Defi-
nition 3, is expressed as

CJSD(p) = H(p)×DJSD(p). (8)

Remark 1. It was noted above that
√
DSQ is a Euclidean metric on the space of discrete distri-

butions. At the same time
√
DJSD is also a metric which is proportional to the Fisher metric.

Since the error function of distinguishing between two hypotheses depends on the total variation
TV (p, q), which is obtained in the Neyman–Pearson lemma 1, we introduce another notion of
disequilibrium.

Definition 5. The disequilibrium based on the total variation of signed measure is equal to

DTV (p) = TV 2(p, q), (9)

where q = (1/N, . . . , 1/N).

Definition 6. The statistical complexity, defined through the disequilibrium expression according
to the Definition 5, is equal to

CTV (p) = H(p)×DTV (p). (10)

The information divergence functions presented above, which define different variants of the
disequilibrium function, can be unified by the general concept of f-divergence [18]:

Df (p||q) =
∑
x∈RN

q(x)f

(
p(x)

q(x)

)
. (11)
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The choice of function f gives rise to a whole family of different divergences:

• The Kulback–Leibler divergence DKL(p, q) is obtained from (11) by choosing f(x) = x log(x),
x > 0.

• The Jensen–Shannon divergence is obtained from (11) by choosing

f(x) = x log
2x

x+ 1
+ log

2

x+ 1
, x > 0. (12)

• The total variation is obtained when f(x) =
1

2
|1− x|:

TV (p, q) =
1

2

∑
x∈RN

|p(x)− q(x)|; (13)

TV (p, q) is also a metric on the space of probability distributions. The total variation is related
to the Jensen–Shannon divergence by the following relation:

JSD(p||q) � TV (p, q). (14)

It follows from the inequality (14) that the total variation is the upper bound of Jensen–Shannon
divergence.

Next, let us investigate the possibility of using each variant of statistical complexity as a criterion
for indicating the appearance of a signal, but at first their properties must be established.

3. STATISTICAL COMPLEXITY OPTIMIZATION

3.1. Optimization of CSQ

Let us formulate the problem of maximizing the statistical complexity function on the set of
discrete distributions p = (p1, . . . , pN )

CSQ(p) =
1

logN

(
−

N∑
i=1

pi log pi

)(
N∑
i=1

(
pi − 1

N

)2
)

−→ max
p

(15)

with the condition

N∑
i=1

pi = 1. (16)

An auxiliary result will be needed to formulate the lemma about the maximum value of statistical
complexity.

Lemma 2. Let 0<x� y� z� 1, then f(x, y, z) = xyy−xzxx−zyzz−y � 1, with equality possible
only when either x = y or y = z.

Proof. Let us introduce a new function g(x, y, z) = ln f(x, y, z),

g(x, y, z) = y lnx− x ln y + x ln z − z lnx+ z ln y − y ln z.

Then it is required to prove that g(x, y, z) � 0, 0 < x � y � z � 1.

By the Kuhn–Tucker theorem, the solution of the conditional optimization problem of a function
of three variables is either at the interior point of the constraint manifold or at its boundary. The
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necessary conditions for the unconditional extremum of the function g(x, y, z) take the following
form

∂g

∂x
= ln z − ln y +

y − z

x
= 0,

∂g

∂y
= lnx− ln z +

z − x

y
= 0,

∂g

∂z
= ln y − lnx+

x− y

z
= 0.

(17)

Let us summarize all the equations of the last system:

y − z

x
+
z − x

y
+
x− y

z
= 0,

which can be rewritten as

(y − z)(x− y)(z − x)

xyz
= 0.

This means that when one of the equalities either x = y or y = z is satisfied, the function g(x, y, z)
possibly has a minimum. Let x = y, then the third equation from (17) is fulfilled identically, and
the first and second equations are identical and can be written as

ln η = η − 1, η =
z

y
.

The last equation has only one root η = 1, i.e., y = z.

Let us calculate the second derivatives and write the Hesse matrix:

G(x, y, z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z − y

x2
1

x
− 1

y

1

z
− 1

x

1

x
− 1

y

x− z

y2
1

y
− 1

z

1

z
− 1

x

1

y
− 1

z

y − x

z2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

Minors of the Hesse matrix are equal to

M1(x, y, z) =
z − y

x2
,

M2(x, y, z) = −(x− y)2 + (z − x)2 + (y − z)2

2x2y2
,

M3(x, y, z) = 0.

(19)

The Hesse matrix is not sign-defined, moreover, its determinant equals zero. Therefore, let us
consider a small vicinity of the extremum point.

In a small vicinity x = y = z, provided that δx � δy � δz, the variation δg of the function
g(x, y, z) is written in the form of

δg = (x+ δy) ln(x+ δx)− (x+ δx) ln(x+ δy) + (x+ δx) ln(x+ δz)

− (x+ δz) ln(x+ δx) + (x+ δz) ln(x+ δy)− (x+ δy) ln(x+ δz)

= (δz − δx)(δy − δx)(δz − δy) + o(((δx)2 + (δy)2 + (δz)2)3/2) � 0,
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where values in the cubes of variations of the independent variables are nonzero, and the variation
of the function g(x, y, z) itself is positive by virtue of the lemma conditions. In the case when,
for example, δy = δx, we have g(x, y, z) ≡ 0, and f(x, y, z) ≡ 1. Therefore, the extremum of the
function is its non-strict minimum. �

Lemma 3. The maximum statistical complexity (15) is achieved on the distribution of the form⎧⎨⎩ pi =
1− pmax

N − 1
, i = 1, N \ k,

pk = pmax,
(20)

where pmax = const, i.e., at the appearance of a single component of an arbitrary index k over the
uniform distribution.

Proof. Without loss of generality, let us assume k = N . From Eq. (16) one variable pN from
the set pi can be expressed through all the others:

pN = 1−
N−1∑
i=1

pi. (21)

Let us rewrite the Eq. (15) in the form

CSQ = − 1

logN

(
N−1∑
i=1

pi log pi + pN log pN

)(
N−1∑
i=1

(
pi − 1

N

)2

+

(
pN − 1

N

)2
)
. (22)

A necessary condition for the extremum of a function at an interior point of the domain (simplex 3)
is that all partial derivatives of pi are equal to zero:

∂CSQ
∂pi

= 0, i = 1, . . . , N − 1. (23)

Substituting the function (22) into (23) gives (provided that ∂pN
∂pi

= −1):

∂CSQ
∂pi

= − 1

logN
(log pi − log pN )×

(
N−1∑
i=1

(
pi − 1

N

)2

+

(
pN − 1

N

)2
)

− 2

logN

(
N−1∑
i=1

pi log pi + pN log pN

)
× (pi − pN ) = 0, i = 1, . . . , N − 1.

(24)

In a more convenient form the equations can be rewritten as

∂CSQ
∂pi

=
1

logN
(− log pi + log pN)×D + 2H × (pi − pN ) = 0, i = 1, . . . , N − 1. (25)

Let us write the difference of any two equations from the system above for indices i and j:

∂CSQ
∂pi

− ∂CSQ
∂pj

=
1

logN
(− log pi + log pj)×D + 2H × (pi − pj) = 0. (26)

Given that the values of D and H are positive, the following equations can be constructed from the
Eqs. (25) and (26), provided that the considered probabilities pj, j = 1, . . . , N − 1 are not equal
to pN :

log pi − log pj
log pN − log pj

− pi − pj
pN − pj

= 0, (27)

(pN − pj) log pi + (pi − pN ) log pj + (pj − pi) log pN = 0, (28)

p
pN−pj
i × ppi−pNj × p

pj−pi
N = 1. (29)
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Fig. 1. Level surfaces of statistical complexity CSQ(ω, pmax).

After applying the Lemma 2 we conclude that the last equation can be satisfied when pi = pj.

Thus, it is obtained that each of the probabilities pi can take one of two different values, which
define a distribution of the form⎧⎪⎨⎪⎩

pi =
1− pmax

K
, ∀ i = 1, . . . ,K,

pi = pN =
pmax

N −K
, ∀ i = K + 1, . . . , N.

(30)

Now we need to show that the maximum complexity corresponds to values K = 1 and K = N − 1.
For this purpose, let us calculate the value of the disequilibrium (4) on the distribution (30), which
we denote by D(K)(ω, pmax):

D(K)(ω, pmax) =
1

N

(pmax + ω − 1)2

ω(1− ω)
, ω =

K

N
. (31)

In turn, entropy is equal to

H(K)(ω, pmax) = 1− 1

logN

(
(1− pmax) log

1− pmax

ω
+ pmax log

pmax

1− ω

)
. (32)

The maximum of CSQ(ω, pmax) at N � 100 was investigated numerically, and it was reached
at K = 1. From the expression for D(K)(ω, pmax) (31), it can be seen that at N � 101 and when
changing from K = 1 to K = 2 or from K = N − 1 to K = N − 2, its value changes by almost a
factor of two, while the entropy (32) changes only slightly. Thus, the probability distribution (30)
that delivers the complexity function to the extremum value at K = 1 or K = N − 1 is of the
form (20). �

For clarity, Fig. 1 shows the graph CSQ = CSQ(ω, pmax) at N = 1024, where ω is changing
continuously (although K is changing discretely).

Corollary 1. Let us substitute the values of pi and pN = pmax from (20) into (22) and consider
the complexity CSQ as a function of pmax. For sufficiently large values of N , it will take the following
form

CSQ ≈ (1− pmax)× p2max.

Whence it follows that this function takes the maximum value C∗
SQ ≈ 4/27 when pmax = 2/3.
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Fig. 2. Level surfaces of statistical complexity CSQ(x, y) for p = {p1 = x, p2 = y, p3 = 1− x− y}.

Corollary 2. The minimum value of CSQ = 0 is achieved on a uniform distribution p =
(1/N, . . . , 1/N).

The validity of the Lemma 3 for the case when the discrete distribution p = {p1, p2, p3} consists
of three samples is demonstrated in Fig. 2. The complexity depends on two variables, since one of
the probabilities can be expressed through the others. Here CSQ has three identical pronounced
maxima and three identical local minima pertaining to the cases p1 = p2, p2 = p3, p1 = p3 when
the necessary extremum conditions are met, and a global minimum when p1 = p2 = p3.

Table 1 shows the change of optimal parameters CSQ(w, pmax) with increasing N .

Table 1. Optimal parameters CSQ(ω, pmax) for different values of N

N CSQ(ω
∗, p∗max) p∗max ω∗ N −K∗

3 0.1932 0.8315 0.6666 1

256 0.1994 0.7044 0.9960 1

512 0.1942 0.7008 0.9980 1

1024 0.1898 0.6979 0.9990 1

2048 0.1861 0.6955 0.9995 1

The necessary extremum conditions CSQ for the discrete distribution p = {p1 = x, p2 = y, p3 =
1− x− y} are written out according to (25) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(− log x+ log(1− x− y))

((
x− 1

3

)2

+

(
y − 1

3

)2

+

(
1− x− y − 1

3

)2
)

− 2(x log x+ y log y + (1− x− y) log(1− x− y)) (−1 + y)) = 0,

(− log y + log(1− x− y))

((
x− 1

3

)2

+

(
y − 1

3

)2

+

(
1− x− y − 1

3

)2
)

− 2(x log x+ y log y + (1− x− y) log(1− x− y)) (−1 + x) = 0.

(33)

The implicit equations of the system (33) describe the curves shown in Fig. 3.
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Fig. 3. Curves corresponding to the necessary conditions of extremum CSQ for p = {p1 = x, p2 = y, p3 =
1− x− y}.
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Fig. 4. Statistical complexity CSQ for p = {p1 = x, p2 = x, p3 = 1− 2x}.

The black and green curves correspond to the first and second implicit equations of the (33)
system, respectively. In Fig. 3 seven extremum points are marked, for which the value of statistical
complexity is calculated. All the obtained data is summarized in Table 2.

The first, third and fifth points of maximum correspond to the same value of the maximum
of the function. The second, fourth and sixth minimum points correspond to the same value of
the minimum of the function. It is worth noting that the extremum points correspond to the
case K = N − 1 = 2 except for the global minimum, where all probabilities are equal to each
other, and thus describe three local minima, one global minimum, and three equal maxima of
statistical complexity in Fig. 2. We can separately plot the statistical complexity in the case
p = {p1 = x, p2 = x, p3 = 1− 2x}.

In Fig. 4 the extremum points are marked according to Table 2, which cover all cases p =
{p1 = x, p2 = y, p3 = 1− x− y}.

Table 2. Extremum points of statistical complexity at N = 3
p 1 2 3 4 5 6 7

p1 0.08425 0.006 0.08425 0.497 0.8315 0.497 0, (3)

p2 0.08425 0.497 0.8315 0.497 0.08425 0.006 0, (3)

p3 0.8315 0.497 0.08425 0.006 0.08425 0.497 0, (3)

CSQ 0.1932 0.1062 0.1932 0.1062 0.1932 0.1062 0
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3.2. Optimization of CJSD

Let us apply a similar approach using the Jensen–Shannon divergence as the disequilibrium to
the statistical complexity CJSD

CJSD(p) = H(p)× JSD(p||q), qj = 1/N, j = 1, . . . , N, (34)

which can be written by considering the expression JSD(p||q) through entropy

CJSD(p) = H(p)×
(
H(m)− 1

2
(H(p) +H(q))

)
× logN, m =

p+ q

2
. (35)

It is possible to write out the necessary conditions of extremum for the statistical complexity of
the form (35), but at the same time a lemma similar to the Lemma 3 cannot be proved.

Equation (35) is written in variables pi and pN in accordance with the approach of the Lemma 3

CJSD(p) = −
(
N−1∑
i=1

pi log pi + pN log pN

)

×
(
H(m)− 1

2

(
− 1

logN

(
N−1∑
i=1

pi log pi + pN log pN

)
+ 1

))
,

(36)

where

H(m) = − 1

logN

(
N−1∑
i=1

pi +
1
N

2
log

pi +
1
N

2
+
pN + 1

N

2
log

pN + 1
N

2

)
. (37)

Then taking into account (21)

∂H(m)

∂pi
= − 1

logN

(
1

2
log

pi +
1
N

2
− 1

2
log

pN + 1
N

2

)
, i = 1, . . . , N − 1. (38)

The necessary conditions of extremum are obtained in the following form after combining all partial
derivatives:

∂CJSD(p)

∂pi
=
H(p)

2
×
(
−
(
log

pi +
1
N

2
− log

pN + 1
N

2

)
+ (log pi − log pN )

)

− (log pi − log pN )× JSD(p||q) = 0, i = 1, . . . , N − 1.

(39)

The equations after simplification are given:

H(p)×
(
log

pi +
1
N

2
− log

pN + 1
N

2

)

+(log pi − log pN )× (2JSD(p||q)−H(p)) = 0, i = 1, . . . , N − 1.

(40)

Then the difference of Eqs. (40) for indices i, j takes the following form

(log pi − log pj)× (2JSD(p||q)−H(p)) +H(p)×
(
log

pi +
1
N

2
− log

pj +
1
N

2

)
= 0. (41)

Remark 2. It follows from the form of the system of Eqs. (41) that the system is satisfied if
pi = pj, which is one of the necessary conditions for the extremum of the function (35). Due to the
nonlinearity of the system consisting of Eqs. (41), it may have other roots.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



STATISTICAL COMPLEXITY 863

СJSD (x, y)

y x

0.12

0.10

0.08

0.06

0.04

0.02

0.2
0.4

0.6
0.8

1.0

0.8
0.6

0.4
0.2

00

Fig. 5. Level surfaces of statistical complexity CJSD for p = {p1 = x, p2 = y, p3 = 1− x− y}.

Figure 5 shows a surface plot of the statistical complexity level of the form (35) when the discrete
distribution p = {p1, p2, p3} consists of three samples to illustrate the Remark 2.

It can be seen from Fig. 5 that the points satisfying p1 = p2, p2 = p3 and p2 = p3 are the saddle
points of the surface if the necessary extremum conditions are satisfied.

It was previously established that the distribution (30) delivers an extremum to CSQ at K =
N − 1. Next, it will be shown that it also delivers the extremum to the complexity based on the
total variation of the measure TV (p, q). Therefore, we propose to find the maximum of CJSD on
this distribution and compare the obtained optimal distribution parameters at fixed N . Let us
write out the complexity explicitly and obtain

C
(K)
JSD = H(K) ×

(
H(K)(m)− 1

2
(H(K) + 1)

)
× logN, (42)

where H(K) is corresponding to (32), and H(K)(m) is given by the following formula:

H(K)(m) = 1− 1

logN

(
(1− pmax + ω)

2
log

(1− pmax + ω)

2ω

+
(1 + pmax − ω)

2
log

(1 + pmax − ω)

2− 2ω

)
.

(43)

Table 3 shows the change of optimal parameters CJSD with the growth of N .

Table 3. Optimal parameters CJSD(ω, pmax) for different values of N

N CJSD(ω∗, p∗max) p∗max ω∗ N −K∗

3 0.1266 1 0.4083 1 or 2

256 0.4482 1 0.8703 33

512 0.4790 1 0.8897 56

1024 0.5065 1 0.9051 97

2048 0.5312 1 0.9171 170
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Fig. 6. Level surfaces of statistical complexity CJSD(ω, pmax).

For clarity, Fig. 6 shows the graph CJSD = CJSD(ω, pmax) at N = 1024, where ω is changing
continuously (although K is changing discretely).

The results shown in Table 3 demonstrate that for the chosen class of distributions (30) the set
of N components, where K is equal to each other and the rest are zero, is optimal. It is worth
noting that for the resulting distribution CJSD is not zero, as well due to the summand H(K)(m),

which corresponds to the already “shifted” distribution consisting of K elements equal to
1
K
+ 1

N
2 ,

and N −K samples of 1
2N each.

3.3. Optimization CTV

Let us proceed to analyze statistical complexity based on total variation

CTV (p) = − 1

4 logN

(
N∑
i=1

pi log pi

)
×
(

N∑
i=1

∣∣∣∣pi − 1

N

∣∣∣∣
)2

. (44)

Proposition 1. According to the expression for the error function (2) from the Neyman–Pearson
Lemma 1 and the definition of (44), we propose to use CTV as a criterion to solve the problem of
hypothesis testing and indicating the appearance of a deterministic component of a useful signal in
noise.

The following lemma is valid.

Lemma 4. The maximum statistical complexity (44) is achieved on the family of distribu-
tions (30).

Proof. Given the symmetry of the function (44) and the simplex (3), without restriction of
generality, we find an integer K ∈ {1, . . . , N − 1} for which the maximum of this lemma is achieved
on the part of the simplex (3) defined by the constraints pi � 1/N for i = 1, . . . ,K and pi � 1/N
for i = K + 1, . . . , N . Let us rewrite the Eq. (44) in the form of

CTV = − 1

4 logN

(
N−1∑
i=1

pi log pi + pN log pN

)
×
⎛⎝ K∑
i=1

(
−pi + 1

N

)
+

N∑
i=K+1

(
pi − 1

N

)⎞⎠2

. (45)
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Fig. 7. Level surfaces of statistical complexity CTV (ω, pmax).

Then for i = 1, . . . ,K the necessary conditions of extremum take the form

∂CTV
∂pi

= − 1

logN
(log pi − log pN )×DTV − 2H(p)

√
DTV = 0, i = 1, . . . ,K, (46)

and for i = K + 1, . . . , N the following is true

∂CTV
∂pi

= − 1

logN
(log pi − log pN )×DTV = 0, i = K + 1, . . . , N. (47)

Let us compose the difference of two equations from (46) for indices i and j. Whence it fol-
lows that if DTV �= 0, then pi = pj at i = 1, . . . ,K. Whereas it follows from (47) that pi = pN at
i = K + 1, . . . , N . Again we obtain that the family of distributions (30) delivers the maximum of
the complexity function, now CTV . �

Next, we need to determine the optimal values of K and pmax. For this purpose, let us calculate

the disequilibrium value D
(K)
TV on the distribution (30):

D
(K)
TV = (pmax + ω − 1)2, ω =

K

N
. (48)

In turn, entropy is equal to

H(K) = 1− 1

logN

(
(1− pmax) log

1− pmax

ω
+ pmax log

pmax

1− ω

)
. (49)

For clarity, Fig. 7 shows the graph CTV = CTV (ω, pmax) at N = 1024, where ω is changing contin-
uously (although K is changing discretely).
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Fig. 8. Curves of necessary conditions of extremum CTV for N = 3 and N = 128. Equations fN
1 (pmax, ω) and

fN
2 (pmax, ω) have common solution (pmax + ω − 1 = 0) (orange curve).

Let us compose the necessary conditions (46) and (47) of the extremum of the statistical com-
plexity CTV written out through the variables pmax, ω.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fN1 (pmax, ω):=2(pmax + ω − 1)

((
1− (1−pmax) log

1−pmax
ω

+pmax log
pmax
1−ω

logN

)
−(pmax + ω − 1)

2 logN

(
log

pmax

1− ω
− log

1− pmax

ω

))
= 0,

fN2 (pmax, ω):=2(pmax + ω − 1)

((
1− (1−pmax) log

1−pmax
ω

+pmax log
pmax
1−ω

logN

)
−(pmax + ω − 1)

2 logN

(
pmax

1− ω
− 1− pmax

ω

))
= 0.

(50)

The intersections of the curves corresponding to the implicit Eqs. (50) are related to to the ex-
tremum points of CTV . Let us compose the difference of two necessary conditions of the extremum

fN3 (pmax, ω):=f
N
1 (pmax, ω)− fN2 (pmax, ω)

=
(pmax + ω − 1)2

logN

(
− log

pmax

1− ω
+ log

1− pmax

ω
+

pmax

1− ω
− 1− pmax

ω

)
= 0.

(51)

Let us construct the implicit curves of equations fN1 (pmax, ω), f
N
2 (pmax, ω), f

N
3 (pmax, ω) for some

values of N . For convenience, the index N of fN3 (pmax, ω) can be omitted since the implicit curve
of the Eq. (51) is independent of N .

According to Fig. 8 the statistical complexity has, in addition to the minimum points (pmax +
ω − 1 = 0 = 0), where CTV = 0, also two maximum points for each value of N : (p∗max, ω

∗) and
(1 − p∗max, 1− ω∗), which lie on the curve f3(pmax, ω).
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Fig. 9. Level surfaces of statistical complexity CTV (x, y) for p = {p1 = x, p2 = y, p3 = 1− x− y}.

In Table 4 the optimal values of the parameters of the formulas (48) and (49) that maximize
the statistical complexity of CTV are given.

Table 4. Optimal parameters CTV (ω, pmax) for different values of N
N CTV (ω

∗, p∗max) p∗max ω∗ N −K∗

3 0.1289 0.8241 0.6751 1 or 2
256 0.4789 0.9976 0.8752 32
512 0.5120 0.9991 0.8901 56
1024 0.5410 0.9997 0.9022 100
2048 0.5667 0.9999 0.9122 180

Additionally, the case N = 3 is shown in Fig. 9, which shows a graph of the level surface CTV
when the discrete distribution p = {p1, p2, p3} consists of three samples.

4. STATISTICAL COMPLEXITY MODELING AND COMPARISON

We analyze the optimal parameters that maximize different types of statistical complexity and
compare the values in Tables 1, 3, and 4. Of main interest are the maximum complexity values and
the optimal values of K. The maximum values of CTV (ω

∗, p∗max) ∈ [0, 1], CJSD(ω
∗, p∗max) ∈ [0, 1]

are close to each other and grow with increasing N . The optimal values of K for these two types
of complexity are also close.

To demonstrate the analytical results obtained in the previous sections, the application of three
variants of statistical complexity in the problem of useful signal indication in a noise mixture
for synthesized signals is shown. An algorithm from [15] based on the computation of discrete
distributions p from the spectral representation of time series is applied.

The synthesized 10-second signal is the sum of a finite number of cosine oscillations mixed with
white noise:

x(t) = I(t)
K∑
i=1

Ai cos(2πfit+Δφi) + w(t), t ∈ [0, 10], (52)

where Ai, fi, Δφi are the amplitudes, frequencies, and random phases of the harmonic oscillations,
respectively, w(t) is the white noise, and I(t) is the indicator function for the presence of the useful
signal in the signal-noise mixture.
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Fig. 10. Three components, K = 3.

I(t) is chosen so that the harmonic signals are present in the middle of the final sequence x(t).

I(t) =

⎧⎪⎨⎪⎩
0, t ∈ [0, 3),
1, t ∈ [3, 7],
0, t ∈ (7, 10].

(53)

The algorithm has the following structure:

1. The signal synthesized with sampling frequency fs is divided into short windows containing
N = 2048 samples each.

2. Next, the spectrum for each window is calculated using the FFT algorithm.

3. Based on the spectrum, the discrete densities pi, i = 1, . . . , N are calculated by normalizing it.

4. The information characteristics CSQ(p), CJSD(p), CTV (p) are calculated for the obtained
set pi.

5. The obtained sequence of information characteristic values is shown along with the signal on
the time axis.

It should be noted that the parameters fs and N were chosen to exclude the effect of spectrum
spreading, i.e., to obtain clear spectral components corresponding to K harmonic functions from
the formula (52). The signal-to-noise ration is chosen to be close to one.
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The threshold γ for the decision rule is proposed to be chosen as 25% of the maximum criterion
value for selected N from the Tables 1, 3, 4:

γCQ = 0.25 × 0.1861 = 0.0465;

γJSD = 0.25× 0.5312 = 0.1328;

γTV = 0.25 × 0.5667 = 0.1417.

(54)

The convenience of choosing such a threshold is that it does not depend on a particular noise
realization and is based on analytically derived maximum values of statistical complexity functions.

In all plots, the blue color indicates the amplitude of the original signal, and the red color
indicates the statistical complexity, which is calculated using the algorithm described above. The
horizontal axis represents time in seconds, and the vertical axes represent the magnitude of the
signal amplitude (left) and the criterion (right). The black dashed line shows the value of the
selected threshold γ.

In the first experiment, the number of sinusoidal signals and respectively spectral components is
equal to K = 3 at N = 2048. Figure 10 shows the dependencies of statistical complexities on time
for the synthesized signal.

As can be seen, the values of CSQ and CTV exceed the selected threshold for the interval of
signal presence, which allows us to confidently conclude that the signal has occurred. As for CJSD,
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the a priori threshold selection was unsuccessful because the true value of its maximum is unknown,
as shown in Section 3.2. If we change the threshold value upwards by 20%, the detection based
on CJSD will be as successful as that based on CTV .

In the second experiment, the number of spectral components K = 30. In this case, CSQ ceases
to show a satisfactory result in the sense of exceeding the chosen threshold, since the function CSQ
degrades strongly with increasing of K, but still allows a signal indication, as can be seen in Fig. 11.
The complexity function CTV still confidently exceeds the threshold, as in the first experiment,
and CJSD exceeds the threshold on the whole signal, as in the first experiment.

Thus, we can conclude that CTV is the most convenient in a practical sense, since it works well
on signals with a large number of spectral components and allows one to decide on the appearance
of an useful signal, using a fairly simple rule, associated with the choice of threshold based on the
theoretical maximum value for the statistical complexity.

5. CONCLUSION

The article provides a theoretical justification for the usage of statistical complexity as a criterion
for solving the problem of hypothesis testing when its error probability is close to one. Three
variants of statistical complexity for different disequilibrium functions are considered. New notions
of disequilibrium and statistical complexity based on the total variation measure are introduced.
Information criteria are compared and the classes of discrete distributions which provide maximum
for different types of statistical complexity are discovered. The values of maxima for fixed numbers
of distribution samples are found. It is shown that the statistical complexity CTV based on total
variation is directly related to the problem of hypothesis testing, while the statistical complexity
CJSD based on Jensen–Shannon entropy gives a close estimate of CTV on sample distributions. In
turn, CSQ is most promising for detecting an individual component over a uniform distribution.
We propose a method for selecting the threshold for the decisive rule for the detection of a useful
signal, taking into account the maximum values of the criteria obtained and show the effectiveness
of this approach on the synthesized signals.

Future work will be devoted to the study of information criteria based on bivariate and multi-
variate distributions, as well as investigation of typical acoustic signals with realistic background
noise.

FUNDING

This work was supported by the Russian Scientific Foundation, project no. 23-19-00134.

REFERENCES

1. Shannon, C.E., A Mathematical Theory of Communication, Bell Syst. Tech. J., 1948, vol. 27, pp. 379–
423.

2. Gray, R.M., Entropy and Information Theory, New York: Springer, 2011. https://doi.org/10.1007/978-
1-4419-7970-4

3. Holub, A., Perona, P., and Burl, M.C., Entropy-based Active Learning for Object Recognition, Computer
Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE , 2008,
pp. 1–8. https://doi.org/10.1109/CVPRW.2008.4563068

4. Osisanwo, F.Y., Akinsola, J.E.T., Awodele, O., et al. Supervised Machine Learning Algorithms: Classi-
fication and Comparison, Int. J. Comput. Trends Technol. (IJCTT), 2017, vol. 48, no. 3, pp. 128–138.
https://doi.org/10.14445/22312803/IJCTT-V48P126

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



STATISTICAL COMPLEXITY 871

5. Shen, J., Hung, J., and Lee, L., Robust Entropy-based Endpoint Detection for Speech Recognition in
Noisy Environments, Proc. 5th International Conference on Spoken Language Processing (ICSLP), 1998.
https://doi.org/10.21437/icslp.1998-527

6. Ribeiro, M., Henriques, T., Castro, L., Souto, A., Antunes, L., Costa-Santos, C., and Teixeira, A., The
Entropy Universe, Entropy, 2021, vol. 23, no. 2, art. 222. https://doi.org/10.3390/e23020222

7. Ramirez, J., Segura, J.C., Benitez, C., et al., A New Kullback-Leibler VAD for Speech Recognition in
Noise, IEEE Signal Proc. Lett., 2004, vol. 11, no. 2, pp. 266–269. https://doi.org/10.1109/LSP.2003.
821762

8. Horie, T., Burioka, N., Amisaki, T., and Shimizu, E., Sample Entropy in Electrocardiogram During
Atrial Fibrillation, Yonago Acta Medica, 2018, vol. 61, no. 1, pp. 49–57. https://doi.org/10.33160/yam.
2018.03.007

9. Lamberti, P.W., Martin, M.T., Plastino, A., and Rosso, O.A., Intensive Entropic Non-Triviality Measure,
Phys. A: Stat. Mech. Appl., 2004, vol. 334, no. 1, pp. 119–131. https://doi.org/10.1016/j.physa.2003.
11.005

10. Lopez-Ruiz, R., Shannon Information, LMC Complexity and Renyi Entropies: A Straightforward Ap-
proach, Biophys. Chem., 2005, vol. 115, no. 3, pp. 215–218. https://doi.org/10.1016/j.bpc.2004.12.035

11. Zunino, L., Soriano, M.C., and Rosso, O.A., Distinguishing Chaotic and Stochastic Dynamics from Time
Series by Using a Multiscale Symbolic Approach, Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys., 2012,
vol. 86, no. 4, pp. 1–5. https://doi.org/10.1103/PhysRevE.86.046210

12. Ronald, L.A. and Duncan, W.M., Signal Analysis: Time, Frequency, Scale, and Structure, New Jersey:
IEEE Press, 2004.

13. Shiryaev, A.N., Veroyatnostno-statisticheskie metody v teorii prinyatiya reshenii (Probabilistic-Statis-
tical Methods in Decision-Making Theory), Moscow: MTSNMO: NMU, 2020.

14. Kishan, G.M., Chilukuri, K.M., and HuaMing Huang, Anomaly Detection Principles and Algorithms ,
Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-67526-8

15. Berlin, L.M., Galyaev, A.A., and Lysenko, P.V., Comparison of Information Criteria for Detection of
Useful Signals in Noisy Environments, Sensors , 2023, vol. 23, no. 4, art. 2133. https://doi.org/10.3390/
s23042133

16. Johnson, P., Moriarty, J., and Peskir, G., Detecting Changes in Real-Time Data: A User’s Guide
to Optimal Detection, Philos. Trans. Royal Soc. A, 2017, vol. 375, p. 16, art. 2100. https://doi.org/
10.1098/rsta.2016.0298

17. Li, Z., Li, Y., and Zhang, K.A., Feature ExtractionMethod of Ship-Radiated Noise Based on Fluctuation-
Based Dispersion Entropy and Intrinsic Time-Scale Decomposition, Entropy, 2019, vol. 21, no. 7,
art. 693. https://doi.org/10.3390/e21070693

18. Sason, I., On f-Divergences: Integral Representations, Local Behavior, and Inequalities, Entropy, 2018,
vol. 20, no. 5, art. 383. https://doi.org/10.3390/e20050383

This paper was recommended for publication by A.V. Nazin, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 7 2023



ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 7, pp. 872–888.
c© The Author(s), 2023 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c© The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 7, pp. 146–166.

OPTIMIZATION, SYSTEM ANALYSIS, AND OPERATIONS RESEARCH

On Asymptotically Optimal Approach

for Finding of the Minimum Total Weight

of Edge-Disjoint Spanning Trees

with a Given Diameter

E. Kh. Gimadi∗,a and A. A. Shtepa∗∗,b

∗Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences,
Novosibirsk, Russia

∗∗Novosibirsk State University, Novosibirsk, Russia
e-mail: agimadi@math.nsc.ru, bshoomath@gmail.com

Received January 23, 2023

Revised March 27, 2023

Accepted April 28, 2023

Abstract—We consider the intractable problem of finding several edge-disjoint spanning trees of
the minimum total weight with a given diameter in complete undirected graph in current paper.
The weights of edges of a graph are random variables from several continuous distributions:
uniform, biased truncated exponential, biased truncated normal. The approximation algorithm
with time complexity O(n2), where n is number of vertices in graph, is proposed for solving
this problem. The asymptotic optimality conditions for constructed algorithm is presented for
each considered probabilistic distribution.

Keywords : minimum spanning tree with given diameter, approximation algorithm, probabilistic
analysis, asymptotic optimality
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1. INTRODUCTION

The Minimum Spanning Tree (MST) Problem is one of well-known problems of discrete op-
timization. Is consists of finding spanning tree (connected acyclic subgraph on all vertices) of
minimum weight in given edge-weighted graph G = (V,E). Polynomial solvability of this problem
was proved by construction of polynomial algorithms Boruvka (1926), Kruskal (1956), and Prim
(1957). These algorithms have time complexities O(u log n), O(u log u), and O(n2) respectively,
where u = |E| and n = |V |. It is interesting to note, that expected value of MST’s weight in graph
with random edge weights can be surprisingly small. For example, MST’s weight with high proba-
bility is close to constant 2.02 for complete graph with edge weights from uniform distribution on
interval (0; 1) [1]. Similar results were obtained in [2, 3].

One possible generalization of the above problem is the bounded diameter version of the MST
problem. The diameter of a tree is the number of edges in the longest simple path within the tree
connecting a pair of vertices. This problem is as follows: given edge-weighted graph and parameter
d = dn, it is necessary to find MST in this graph with diameter bounded from above or below by
the parameter d. Both problems are NP -hard in general formulation.
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The bounded from above MST problem is polynomially solvable for diameters two or three, and
NP -hard for any diameter between 4 and (n− 1), even for the edge weights equal to 1 or 2 [4,
pp. 206]. The MST problem bounded from below is NP -hard, because its particular case for
d = n− 1 is the problem “Hamiltonian Path” [4].

Recently, the authors of this article have began to study another modification of the MST
problem with a bounded diameter, when the diameter of this tree is equal to a given number.
It is noteworthy that the algorithm for solving such a problem can be transformed into an algo-
rithm for solving a problem with a diameter bounded from above or from below. Thus, the scope
of such a problem covers the scope of problems with a bounded diameter both from above and
from below.

There are several applications for MST problem with bounded diameter from above in wireless
ad-hoc networks [5], network design [6], in development of data compression algorithm [7] and
distributed mutual exclusion algorithm [8] (for a detailed description see, for example, [9]).

The problem of finding several edge-disjoint spanning trees of minimum total weight with
bounded from below diameter in complete graph arises in the theory of reliability of communi-
cation networks, when it is necessary to construct m-connected graph of minimum total weight
for a set of objects excluding such configuration of graph, for which after failure of few nodes, the
total structure of the graph becomes unreliable. Thus it is necessary to bound the diameter of con-
structed trees forming m-connected graph. It must be noted that in [10, 11] a probabilistic analysis
of an approximation algorithm for this problem was carried out and conditions for its asymptotic
optimality were obtained.

In [12, 13] the probabilistic analysis of polynomial algorithm is carried out and asymptotically
optimal conditions for this algorithm were proposed for the problem of finding one and several
MST with given in the case of complete directed graph. Unfortunately, the algorithm analy-
sis is not accepted for the case of complete undirected graph. The appearance of the difficulty
for probabilistic analysis in the case of undirected graph arises from the need to take into ac-
count the possible dependence between different objects (random variables) in the course of the
algorithm.

We consider the problem of findingm edge-disjoint spanning trees of minimum total weight with
a given diameter d = dn in complete undirected graph (this problem is denoted asm-d-UMST). The
approximation algorithm for solving this problem and its conditions of asymptotic optimality are
presented. Probabilistic analysis is accomplished for the case of complete edge-weighted undirected
graph G without loops under assumption that weights of edges of a graph positive independent iden-
tically distributed random variables. The probability distribution functions (p.d.f.) of the weights
of graph G are considered from three probabilistic distributions: uniform distribution UNI(an; bn)
on the finite segment [an; bn], as well as biased truncated distributions: exponential EXP(an, λn)
and normal NORM(an, σn) on the unbounded semiopen interval [an;∞). The probabilistic density
functions for these distributions are as follows

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

bn − an
if an�x� bn for UNI(an; bn);

1

λn
exp

(
−x− an

λn

)
if an�x<∞ for EXP(an, λn);

2

σn
√
2π

exp

(
−(x− an)

2

2σ2n

)
if an�x<∞ for NORM(an, σn);

0 otherwise.

(1)
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2. THE FINDING OF SEVERAL EDGE-DISJOINT SPANNING TREES
OF MINIMUM TOTAL WEIGHT WITH GIVEN DIAMETER IN UNDIRECTED GRAPH

First of all, we formulate considered problem and then propose approximation algorithm for its
solution.

Given complete n-vertex edge-weighted undirected graph G = (V,E) and positive integer num-
bers m � 2, d � 4 such that m(d+ 1) � n. The m-d-UMST is to find m edge-disjoint spanning
trees T1, . . . , Tm such that the diameter of each of them is equal to d = dn and their total weight is
minimum. For solving this problem, the next deterministic algorithm is proposed.

Description of algorithm A
Preliminary Step 0. In graphG, choose arbitrary (n−m(d+ 1))-vertex subset V ′ and arbitrarily

split remaining m(d+ 1) vertex into m subsets V1, V2, . . . , Vm with (d+ 1) vertices in each set.

Step 1. In each subgraph G(Vs) s = 1, . . . ,m, beginning with arbitrary vertex construct (d+ 1)-
vertex Hamiltonian path Ps using greedy heuristic “go to the nearest unvisited vertex”.

Put Ts = Ps, s = 1, . . . ,m.

Step 2. Hereafter we assume without loss of generality that d is odd (see remark 1 below). For
each pair of paths Pi and Pj , 1 � i < j � m, add vertices from Pj to Ti and from Pi to Tj in such a
way that constructed subgraph consists of two edge-disjoint 2(d + 1)-vertex subtree with diameter
equals d. Each path Ps, 1 � s � m, is considered as two halves (subpaths) P 1

s and P 2
s , each of

which contains one end vertex and d−1
2 inner vertices of path Ps totally

d+1
2 vertices in each half.

Construction of edge-disjoint spanning trees Ti and Tj with help of vertices from halves P 1
i , P

2
i

and halves P 1
j , P

2
j is described in following items 2.1–2.6.

2.1. Connect each inner vertex of P 1
i by the shortest edge to the inner vertex of P 1

j . So we add
this edge to Tj .

2.2. Connect each inner vertex of P 2
i by the shortest edge to the inner vertex of P 2

j . We add
this edge to Tj .

2.3. Connect each inner vertex of P 1
j by the shortest edge to the inner vertex of P 2

i . Thus, we
add this edge to Ti.

2.4. Connect each inner vertex of P 2
j by the shortest edge to the inner vertex of P 1

i . We add
this edge to Ti.

2.5. Connect each end vertex of the path Pi by the shortest edge to the inner vertex of the
path Pj . We add this edge to Tj .

2.6. Connect each end vertex of the path Pj by the shortest edge to the inner vertex of the
path Pi. So we add this edge to Ti.

Step 3. For s = 1, . . . ,m each vertex of subgraph G(V ′) is connected by the shortest edge to
the inner vertex of the path Ps. Thus, we add this edge to corresponding tree Ts.

The construction of m edge-disjoint spanning trees T1, . . . , Tm is completed (see example in
Figs. 1–3).

Remark 1. In the case of even d algorithm must be slightly modified. On the Step 1 for the first
chosen vertex it is necessary to find the closest vertex vs, s = 1, . . . ,m in d actions. The first chosen
vertex is marked and used after all steps of algorithm. Hereafter all steps of the algorithm must be
carried out for d′ = d− 1, where the first vertex of each path is vs, and after Step 3 marked vertices
are connected with vs, s = 1, . . . ,m. Thus, desired spanning trees are constructed with property
that diameter of each tree equals exactly d, and time complexity of presented algorithm remains
the same.
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V1 V2

V '

V '

Fig. 1. Initial vertices of the graph and Step 0 of the work of the Algorithm A in 16-vertex complete graph,
m = 2, d = 5.

V2

P2P1

P1
2

P1

P1 P2

1

P2
2

P2
1

V1
V '

V '

Fig. 2. Steps 1 and 2 of the work of the algorithm A in 16-vertex complete graph, m = 2, d = 5. The hatched
vertices are end vertices. The solid edges belong to T1. The dotted edges belong to T2.

T1 T2

Fig. 3. Step 3 of the work of the Algorithm A in 16-vertex complete graph, m = 2, d = 5. The hatched vertices
are end vertices. The solid edges belong to T1. The dotted edges belong to T2.

Let us introduce the notations: WA is total weight of all spanning trees T1, . . . , Tm, which are
constructed by algorithm A, W1, W2, and W3 are total weights of edges, which are added to the
trees on Steps 1, 2, and 3 respectively. Then WA =W1 +W2 +W3.

Let’s formulate two statements concerning algorithm A.

Statement 1. Algorithm A constructs feasible solution for the m-d-UMST.

Statement 2. Time complexity of algorithm A is estimated by O(n2).
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3. PROBABILISTIC ANALYSIS OF ALGORITHM A
Let FA(I) and OPT (I) be approximation (obtained using some algorithm A) and optimal value

of objective function of problem on input I, respectively.

Definition 1. Algorithm A has estimates (performance guarantees)
(
εn, δn

)
on a set I of random

inputs of a n-sized problem (where n is amount of input data required to describe the problem,
see [4]), if

P
{|FA(I)−OPT (I)| > εnOPT (I)

}
� δn, (2)

where εn = εA(n) is an estimate of relative error of a solution obtained by algorithm A, δn = δA(n)
is an estimate of the failure probability of the algorithm, which is equal to the proportion of cases
when the algorithm does not hold the relative error εn or does not produce any answer at all.

Definition 2 [14]. Approximation algorithm A is called asymptotically optimal on a class of
input data of a problem, if there exist such performance guarantees that for all input I of size n

εn → 0 and δn → 0 as n→ ∞.

Hereafter random variable, which is equal to minimum over k independent identically distributed
random variables η1, . . . , ηk, is denoted as ηk.

According to the description of algorithm A for Steps 1–3 the following relations are true:

W1 =
m∑
s=1

d∑
k=1

ηk, since m paths P1, . . . , Pm with d edges in each path are constructed on Step 1.

W2 = C2
m

(
4d−1

2 η(d−1)/2 + 4η(d−1)

)
, because connection of new edges to constructed set of span-

ning trees is carried out for each pair of paths from C2
m = m(m−1)

2 such pairs on corresponding
items 2.1–2.6 of Step 2 as follows:

— firstly, each of d−1
2 inner vertices of one half of a path connected by shortest edge to each of d−1

2
inner vertices of half of another path;

— secondly, each end vertex of each path is connected by shortest edge to one of d− 1 inner vertices
of another path.

The multiplier 4 arises since inner vertices from two halves of one path are connected by shortest
edges with inner vertices from two halves of another path for each pair of paths in items 2.1–2.4.
In items 2.5–2.6, corresponding shortest edges connects 4 end vertices with inner vertices of con-
sidered paths.

W3 = m(n−m(d+ 1))η(d−1), since each vertex over n−m(d+ 1) vertices of set V ′ is connected
by shortest edge to inner vertex of the m paths Ps, 1 � s � m on Step 3 considering (d− 1) inner
vertices of each path.

Remark 2. It must be noted that for even d:

W1 = m
d′∑
k=1

ηk, W2 = C2
m

(
4
d′ − 1

2
η(d′−1)/2 + 4η(d′−1)

)
, W3 = m

(
n−m(d′ + 1)

)
η(d′−1),

where d′ = d− 1 � 3. Thus, replacing d by d′ in all cases it is possible to accomplish probability
analysis and prove all the proposed statements.

Hereafter we pass from random variables η, ηk to normalized random variables ξ = η−an
βn

, ξk =

ηk−an
βn

, respectively, where βn =

⎧⎪⎨⎪⎩
bn − an for UNI(an; bn);
λn for EXP(an, λn);
σn for NORM(an, σn).
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Let us consider random variables W1,W2,W3:

W1 = m
d∑
k=1

ηk = m
d∑
k=1

(βnξk + an) = mdan + βnm
d∑
k=1

ξk = mdan + βnW
′
1,

W2 = C2
m

(
4
d− 1

2
η(d−1)/2 + 4η(d−1)

)
= C2

m

(
4
d− 1

2

(
βnξ(d−1)/2 + an

)
+ 4

(
βnξ(d−1) + an

))
= m(m− 1)(d + 1)an + βnm(m− 1)

(
(d− 1)ξ(d−1)/2 + 2ξ(d−1)

)
=
(
m2(d+ 1)−md−m

)
an + βnW

′
2,

W3 = m(n−m(d+ 1))η(d−1) = m(n−m(d+ 1))
(
βnξ(d−1) + an

)
= m(n−m(d+ 1))an + βnm(n−m(d+ 1))ξ(d−1) =

(
mn−m2(d+ 1)

)
an + βnW

′
3,

where W ′
1, W

′
2, W

′
3 are normalized random variables for W1, W2, W3 respectively, and βn is pa-

rameter of corresponding distribution.

So the following relation is obtained for the sum of the weights of the constructed spanning
trees: WA = m(n− 1)an + βnW

′
A, where W

′
A =W ′

1 +W ′
2 +W ′

3.

Lemma 1. Algorithm A for the m-d-UMST in n-vertex complete graph with weights of edges
from probabilistic distributions (UNI(an; bn), EXP(an, λn) or NORM(an, σn)) is the algorithm with
the next estimate of relative error εn and failure probability δn:

εn =
2βn

m(n− 1)an
ÊW ′

A, δn = P
{
W̃ ′

A > ÊW ′
A
}
, (3)

where βn is parameter of corresponding distribution, ÊW ′
A is some upper bound for expected

value EW ′
A, W̃ ′

A =W ′
A − EW ′

A.

Henceforth, the following statement from theory of probability is useful for probabilistic analysis
of algorithm A.

Theorem 1 [15]. Let us consider random variables X1, . . . ,Xn. We define positive constants T
and h1, . . . , hn such that for all k = 1, . . . , n and 0 � t � T the inequality is true

EetXk � e
hkt2

2 . (4)

Let S =
n∑
k=1

Xk and H =
n∑
k=1

hk. Then

P{S > x} �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{
− x2

2H

}
, if 0 � x � HT,

exp

{
−Tx

2

}
, if x � HT.

Also the following statement will be useful for further analysis.

Statement 3. For all integers d � 3 the following inequality is correct

d∑
k=1

1

k
� ln d+

3

4
.

It is assumed that d is odd and is defined on two semiopen intervals: case 1 (lnn� d< n
lnn) and

case 2 ( n
lnn � d< n

m).
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3.1. Probability Distribution UNI(an; bn)

We pass from random variables η and ηk to normalized random variables ξ = η−an
bn−an and ξk =

ηk−an
bn−an for uniform distribution UNI(an; bn).

Lemma 2. For EW ′
A the following inequality holds

EW ′
A � m ln d+

2mn

d
.

Lemma 3. Let constants T = 1 and hk =
1

(k+1)2 are defined. Then for UNI(an; bn) and biased

random variables ξ̃k = ξk − Eξk the next inequalities are true Eetξ̃k � e
hkt2

2 in Petrov’s theorem
[15, pp. 54–55] for each 0 � t � T and 1 � k � d.

Lemma 4. In the case of lnn � d < n
m the following upper bound is correct

H � mn

d

for sums of constants hk =
1

(k+1)2
, which correspond to the added edges in the constructed trees.

Lemma 5. For the case of lnn � d < n
lnn the next inequality holds

EW ′
A � 3mn

d
= ÊW ′

A.

Lemma 6. For n
lnn � d < n

m the following inequality is true:

EW ′
A � 3m lnn = ÊW ′

A.

With help of previous lemmas, it is possible to prove the main result of this section.

Theorem 2. Let parameter d = dn is defined as lnn � d < n
m . Then algorithm A for

the m-d-UMST with weights of edges from UNI(an; bn) is asymptotically optimal with failure prob-
ability δn = n−m → 0 as n→ ∞ and the next conditions on scatter of weights of edges of graph G

bn
an

=

⎧⎪⎪⎨⎪⎪⎩
o(d), if lnn � d <

n

lnn
,

o

(
n

lnn

)
, if

n

lnn
� d <

n

m
and m < lnn.

(5)

3.2. Probability Distribution EXP(an, λn)

We pass from random variables η, ηk to normalized random variables ξ = η−an
λn

, ξk =
ηk−an
λn

respectively. In the terms of this variables, p.d.f. is Pξ(x) = 1− e−x and probability density
function is as follows (1)

p(ξ) =

{
e−ξ, if 0 � ξ <∞,

0 otherwise

for random variable ξ. For random variable ξk, p.d.f. has the following form

Pξk(x) = 1− (1−Pξ(x))
k. (6)

Lemma 7. Mathematical expectation of random variable ξk equals Eξk = 1/k.
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Lemma 8. In the case of EXP(an, λn), the next upper bound is valid for expected value of a
solution of algorithm A:

EW ′
A � m ln d+

2mn

d− 1
= ÊW ′

A.

Lemma 9. Let T = 1
2 , hk =

3
k2 . Then for all 1� k� d and 0� t�T , the conditions of Petrov’s

theorem [15, pp. 54–55] are true Eetξ̃k � e
hkt2

2 for biased random variables ξ̃k = ξk − Eξk.

Lemma 10. Let lnn � d < n
m . Then for sufficiently large n the following upper bound is correct

for the sums of constants hk =
3
k2 , which correspond to added edges in constructed trees

H � 3mn

d− 1
.

Lemma 11. In the case of lnn � d < n
lnn the next upper bound is valid

EW ′
A � 3mn

d− 1
= ÊW ′

A.

Lemma 12. For n
lnn � d < n

m the inequality holds:

EW ′
A � 5m lnn = ÊW ′

A.

Using previous lemmas we can postulate the following theorem.

Theorem 3. Let parameter d = dn be such that lnn � d < n
m . Then algorithm A for solving the

m-d-UMST with edge weights from EXP(an, λn) is asymptotically optimal with failure probability
δn = n−m → 0 as n→ ∞ under the conditions on scatter of weights of edges of graph G:

λn
an

=

⎧⎪⎪⎨⎪⎪⎩
o(d), if lnn � d <

n

lnn
,

o

(
n

lnn

)
, if

n

lnn
� d <

n

m
and m < lnn.

(7)

3.3. Probability Distribution NORM(an, σn)

For distribution NORM(an, σn), we introduce normalized random variables ξ = η−an
σn

and ξk =
ηk−an
σn

for corresponding weights of edges of graph instead of η and ηk.

For random variable ξ, the following probability density function according to (1) and p.d.f. are
true

p(ξ) =

⎧⎪⎪⎨⎪⎪⎩
√

2

π
exp

(
−ξ

2

2

)
, if 0 � ξ <∞,

0 otherwise.

F(x) =

√
2

π

x∫
0

exp

(
−u

2

2

)
du.

Definition 3. We say that p.d.f. F1(x) dominates p.d.f. F2(x), if F1(x) � F2(x) for all x.

Statement 4. The p.d.f. F(x) of normal random variable with parameter σn dominates exponen-
tial p.d.f. with parameter λn = 2σn:

F(x) � P(x/2) ∀x � 0. (8)
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Lemma 13 [16]. Let χ1, . . . , χk are independent identically distributed random variables with
p.d.f. F (x), F̂ (x) is p.d.f. of random variable χ = min

i=1,...,k
χi. Also ζ1, . . . , ζk are independent iden-

tically distributed random variables with p.d.f. G(x), analogically Ĝ(x) is p.d.f. of random variable
ζ = min

i=1,...,k
ζi. Then for all x

F (x) � G(x) ⇒ F̂ (x) � Ĝ(x).

Lemma 14 [16]. Let Pϑ, Pω, Pζ , Pχ are p.d.f.’s of random variables ϑ, ω, ζ, χ respectively, where
ϑ and ζ are independent, also ω and χ are independent too. Then

(∀x Pϑ(x) � Pω(x)) ∧ (∀y Pζ(y) � Pχ(y)) ⇒ (∀z Pϑ+ζ(z) � Pω+χ(z)).

Lemma 15 [16]. Let p.d.f.’s F (x) and P (x) such that F (x) � P (x) for all x. Then performance
guarantees (εA, δA) for algorithm A on inputs with p.d.f. F (x) are the same as for inputs with
p.d.f. P (x).

Let us put F (x) = F(x) and P (x) = P(x/2). From Statement 4 and Lemmas 13–15 the following
theorem implies for biased truncated normal distribution.

Theorem 4. Let parameter d = dn be defined as lnn � d < n
m . Then algorithm A for the

m-d-UMST in n-vertex complete undirected graph with edge weights from unbounded semiopen
interval [an;∞) according to NORM(an, σn) asymptotically optimal with failure probability
δn = n−m → 0 as n→ ∞ and the next asymptotically optimal conditions:

σn
an

=

⎧⎪⎪⎨⎪⎪⎩
o(d), if lnn � d <

n

lnn
,

o

(
n

lnn

)
, if

n

lnn
� d <

n

m
and m < lnn.

4. CONCLUSION

In this work, deterministic approximation algorithm, which solves the problem of finding several
edge-disjoint spanning trees with given diameter in edge-weighted complete undirected graph, has
been presented. This algorithm finds feasible solution in time O(n2), where n is number of vertices
in graph. The probabilistic analysis has been carried out for several probabilistic distributions of
weights of edges of graph: uniform UNI(an; bn), biased truncated exponential EXP(an, λn), and
biased truncated normal NORM(an, σn). Sufficient conditions of asymptotic optimality for this
algorithm have been obtained in the case of each considered distribution. It would be interesting to
investigate this problem on inputs with discrete probabilistic distributions. Also it would be useful
to consider the problem of finding several edge-disjoint spanning trees of maximum total weight
with given or bounded diameter.
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APPENDIX

Proof of Statement 1. Each edge-disjoint construction consists of n vertices and (n − 1) edges,
since, first of all, the (d+ 1)-vertex path is constructed on Step 1, and then all remaining vertices
are connected to it without increasing diameter of spanning tree on Step 2 and 3. At the end, m
such constructions are made presenting feasible solution for the m-d-UMST.
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Proof of Statement 2. Preliminary Step 0 requires O(n) elementary operations.

On Step 1, each path is constructed in O(d2) time, so this step is carried out completely with
time complexity O(md2) or O(nd) (because m(d+ 1) � n).

Each pair of paths (Pi, Pj), 1 � i < j � m is interconnected with O(d2) actions on items 2.1–2.4.

For all m(m−1)
2 pairs of paths, it is required O(m2d2) or O(n2) elementary operations.

Items 2.5–2.6 are carried out with time complexity O(md).

Step 3 requires O(mdn) or O(n2) time for connection of |G(V ′)| < n vertices by shortest edges
with inner vertices of path Ps in each spanning tree Ts, 1 � s � m.

Thus, total time complexity of algorithm A is equal to O(n2).

Proof of Lemma 1. Let us consider inequality (2) for performance guarantees of the quality of
the algorithm in relation to the considered case of the minimum problem.

P
{
WA −OPT (I) > εnOPT (I)

}
= P

{
WA > (1 + εn)OPT (I)

}
� P

{
WA > (1 + εn)m(n− 1)an

}
= P

{
m(n− 1)an + βnW

′
A > (1 + εn)m(n− 1)an

}
= P

{
W ′

A − EW ′
A >

εnm(n− 1)an
βn

− EW ′
A
}

= P

{
W̃ ′

A >
εnm(n− 1)an

βn
− EW ′

A
}

� P

{
W̃ ′

A >
εnm(n− 1)an

βn
− ÊW ′

A

}
= P

{
W̃ ′

A > ÊW ′
A
}
= δn,

the penultimate equality is true for εn =
2βnÊW ′

A
m(n−1)an

.

Proof of Statement 3. It is easy to understand that

d∑
k=1

1

k
� 1 +

1

2
+

1

3
+

d∫
3

dx

x
=

11

6
+ ln d− ln 3 � ln d+

3

4
.

Proof of Lemma 2. It is easy to establish that Eξk =
1
k+1 for inputs UNI(an; bn). Let us

estimate from above each of the mathematical expectations of random variables W ′
1, W

′
2, and W

′
3.

EW ′
1 =

m∑
s=1

d∑
k=1

Eξk = m
d∑
k=1

1

k + 1
� m ln d,

penultimate inequality is correct for d � 3 due to the Statement 3 and relation

d∑
k=1

1

k + 1
=

d∑
k=1

1

k
− 1 +

1

d+ 1
�

d∑
k=1

1

k
− 3

4
� ln d.

EW ′
2 = C2

m

(
4
d− 1

2
Eξ(d−1)/2 + 4Eξ(d−1)

)
=
m(m− 1)

2

(
4(d− 1)/2

(d− 1)/2 + 1
+

4

d

)
� 2m2;

EW ′
3 = m(n−m(d+ 1))Eξ(d−1) = m

n−m(d+ 1)

d
� mn

d
−m2.

Summing three inequalities and taking into account that m(d+ 1) � n, we obtain

EW ′
A = E

(
W ′

1 +W ′
2 +W ′

3

)
� m ln d+ 2m2 +

mn

d
−m2 � m ln d+

2mn

d
.
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Proof of Lemma 3. Let’s estimate Eetξk from above using formula

Eetξk =
∞∑
i=0

ti

(k + 1) · · · (k + i)

from monograph [17, pp. 129]. Introducing also the notations α = t
k+1 and

Qk,t =
(k + 1)

(k + 2)(1 − t
k+3)

� Qk,T =
(k + 1)(k + 3)

(k + 2)2
< 1

for all t � T and for all natural k, we obtain

Eetξk =
∞∑
i=0

ti

(k + 1) · · · (k + i)
� 1 + α+ α2Qk,t � 1 + α+ α2 � eα+

α2

2 = etEξke
hkt2

2 ,

since Eξk =
1

k+1 for inputs UNI(an; bn).

Consequently,

Eet(ξk−Eξk) = Eetξ̃k � e
hkt2

2 ,

where ξ̃k = ξk − Eξk.

Proof of Lemma 4. In the case of lnn � d < n
m , parameter H is equal to sum of H1, H2, and H3

according to steps of algorithm A. Taking into account the notations and estimates obtained earlier,
we arrive at the following:

H1 = m
d∑
k=1

hk = m
d∑
k=1

1

(k + 1)2
< ψm,

where ψ ≈ 0.645. Here we use Euler estimation for the sum of inverse squares 1+ 1
22
+ 1

32
+ 1

42
+. . . =

π2

6 < 1.645.

H2 = 4C2
m

(
d− 1

2
h(d−1)/2 + h(d−1)

)
� 2m2

(
(d− 1)/2

((d− 1)/2 + 1)2
+

1

d2

)
= 2m2

(
2(d− 1)

(d+ 1)2
+

1

d2

)
� 4m2 d

(d+ 1)2
.

The last inequality holds for d � 3.

H3 = m
(
n−m(d+ 1)

)
h(d−1) �

mn

d2
−m2 d

(d+ 1)2
.

Since n � m(d+ 1) and m � 2, we get

H = H1 +H2 +H3 < ψm+ 4m2 d

(d+ 1)2
+

(
mn

d2
−m2 d

(d+ 1)2

)
� mn

d

(
dψ

n
+

1

d

)
+ 3m2 d

(d+ 1)2
�
(

ψd

2(d+ 1)
+

1

d
+

3d2

(d+ 1)3

)
mn

d
.

It is easy to verify that the expression in parentheses is less than 1 for all d � 3. Then we can
obtain the next estimation H � mn

d .

Proof of Lemma 5. Taking into account that ln d � lnn and d < n
lnn , it is true that

EW ′
A � m ln d+

2mn

d
� m lnn+

2mn

d
< m

n

d
+

2mn

d
=

3mn

d
= ÊW ′

A.
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Proof of Lemma 6. Because of Lemma 2, ln d � lnn, and n
d � lnn, we get

EW ′
A � m ln d+

2mn

d
� 3m ln n = ÊW ′

A.

Proof of Theorem 2. First of all, it must be noted that in the course of the Algorithm A we
have deal with random variables of the type ξk, 1 � k � d. In the case of graphs with weights

of edges from UNI(an; bn) these biased variables satisfy the conditions Eetξ̃k � e
hkt2

2 of Petrov’s
theorem [15, pp. 54–55] for constants T = 1 and hk =

1
(k+1)2 (see Lemma 3).

We will carry out the proof of the theorem for two cases of possible semiopen intervals of
parameter d.

Case 1: lnn � d <
n

lnn
.

According to Lemma 5 and formula (3) for relative error, we obtain

εn =
2(bn − an)

m(n− 1)an
ÊW ′

A =
2(bn − an)

m(n− 1)an

3mn

d
� 6n

(n− 1)

bn/an
d

.

We can see that εn → 0 as n→ ∞, if the following conditions are satisfied on scatter of weights
of edges of graph G: bn

an
= o(dn).

Using Lemmas 1 and 5, we can estimate failure of probability:

δn = P
{
W̃ ′

A > ÊW ′
A
}
= P

{
W̃ ′

A >
3mn

d

}
.

From Lemma 4 and inequality d < n
lnn it follows that TH � mn

d < 3mn
d = x. According to

Petrov’s theorem [15, pp. 54–55], we get the next estimate of failure probability of algorithm A:

δn = P{W̃ ′
A > x} � exp

{
−Tx

2

}
.

Since lnn < n
d and Tx

2 = 3mn
2d > m lnn, then

δn = P{W̃ ′
A > x} � exp

{
−Tx

2

}
< exp(−m lnn) =

1

nm
→ 0 as n→ ∞.

Therefore, in Case 1 Algorithm A gives asymptotically optimal solution for the m-d-UMST in
graph with weights of edges from UNI(an; bn).

Case 2:
n

lnn
� d <

n

m
.

According to Lemma 6 and formula (3) we get the following equation for relative error:

εn =
2(bn − an)

(n− 1)an
ÊW ′

A =
2(bn − an)

m(n− 1)an
3m ln n � 6(bn/an) lnn

(n− 1)
.

It is clear that εn → 0 as n→ ∞, if bn
an

= o
(
n

lnn

)
.

Now using Lemmas 1 and 6, we can estimate failure probability δn = P
{
W̃ ′

A > ÊW ′
A
}
=

P
{
W̃ ′

A > 3m lnn
}
. If T = 1, d � n

lnn and bearing in mind Lemma 4, then the next inequality is

valid: TH � mn
d < 3m ln n = x. Since Tx

2 > m lnn and Petrov’s theorem [15, pp. 54–55] we obtain

the following estimate for failure probability of algorithm A: δn = P{W̃ ′
A > x} � exp

{− Tx
2

}
�

exp(−m lnn) = 1
nm → 0.
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From this it follows that in the Case 2 Algorithm A gives asymptotically optimal solution for the
problemm-d-UMST on n-vertex complete undirected graph with weights of edges from UNI(an; bn).

We conclude, that within the values of the parameter d for both cases, under conditions (5) we
have that estimates of the relative error εn → 0 and failure probability δn → 0 as n→ ∞.

Proof of Lemma 7. With reference to (6) we obtain

Eξk =

∞∫
0

xdPξk(x) =

∞∫
0

xk(1−Pξ(x))
k−1dPξ(x) =

∞∫
0

xke−kxdx

= −x e−kx
∣∣∣∞
0

+

∞∫
0

e−kxdx = −1

k
e−kx

∣∣∣∞
0

=
1

k
.

Proof of Lemma 8. Let us estimate each expected value for random variables W ′
1, W

′
2, and W

′
3:

EW ′
1 =

m∑
s=1

d∑
k=1

Eξk = m
d∑
k=1

1

k
� m

(
ln d+

3

4

)
taking into account Statement 3 and Lemma 7;

EW ′
2 = C2

m

(
4
d− 1

2
Eξ(d−1)/2 + 4Eξd−1

)
= 2m(m− 1)

(
1 +

1

d− 1

)
� 2d

d− 1
m2 − 2m;

EW ′
3 = m(n−m(d+ 1))Eξ(d−1) = m

n−m(d+ 1)

d− 1
=

mn

d− 1
− d+ 1

d− 1
m2.

Adding the left and right parts of three ratios for EW ′
1, EW ′

2, EW ′
3 and bearing in mind that

m � n
d+1 , we get

EW ′
A � m ln d− 5

4
m+

mn

d− 1
+m2 � m ln d+

mn

d− 1
+

mn

d+ 1
� m ln d+

2mn

d− 1
.

Proof of Lemma 9. The following is true for quantities Eetξk according to formula (6).

Eetξk =

∞∫
0

etxdPξk(x) =

∞∫
0

etxke−kxdx =

∞∫
0

ke−(k−t)xdx

= − k

k − t
e−(k−t)x

∣∣∣∞
0

=
1

1− t/k
=

∞∑
s=0

(
t

k

)s
� 1 +

t

k
+

(
t

k

)2 1

1− t/k
.

Taking into account the inequality t
k � 1

2 , which is true under the conditions of the lemma, we
estimate the value Eetξk from above:

Eetξk � 1 +
t

k
+ 2

(
t

k

)2

= 1 +
t

k
+

1

2

(
t

k

)2

+
3

2

(
t

k

)2

�
(
1 +

t

k
+

1

2

(
t

k

)2
)(

1 +
3

2

(
t

k

)2
)

� et/k exp

(
3

2

(
t

k

)2
)

= etEξk exp

(
hkt

2

2

)
,

because of Lemma 7 Eξk = 1
k for EXP(an, λn). Consequently the conditions Eetξ̃k � e

hkt2

2 of
Petrov’s theorem are true for constants T = 1/2, hk = 3/k2.
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Proof of Lemma 10. For lnn � d < n
m parameter H is equal to sum of quantities H1, H2, and H3

according to steps of algorithm A. Taking into account previous notation and obtained estimations,
we have

H1 = m
d∑
k=1

hk = m
d∑
k=1

3

k2
< 3(1 + ψ)m < 5m,

where ψ equals Euler estimation for the sum of inverse squares minus 1 (ψ ≈ 0.645).

H2 = 4C2
m

(
d− 1

2
h(d−1)/2 + h(d−1)

)
= 6m(m− 1)

(
2

d− 1
+

1

(d− 1)2

)
� 6m2 2d− 1

(d− 1)2
.

H3 = m
(
n−m(d+ 1)

)
h(d−1) =

3

(d− 1)2

(
mn−m2(d+ 1)

)
� 3mn

(d− 1)2
− 3m2 d+ 1

(d− 1)2
.

With n � m(d+ 1) and m � 2 we get

H = H1 +H2 +H3 < 5m+
3m2

(d− 1)2

(
(4d − 2)− (d+ 1)

)
+

3mn

(d− 1)2

= 3m

(
5

3
+

3m

d− 1

)
+

3mn

(d− 1)2

� 3n

d+ 1

(
5

3
+

3m

d− 1

)
+

3mn

(d− 1)2
� 3n

d+ 1

(
5m

6
+

3m

d− 1

)
+

3mn

(d− 1)2

=
3mn

d− 1

(
5(d− 1)

6(d+ 1)
+

3

d+ 1
+

1

d− 1

)
� 3mn

d− 1
.

The last sign of inequality is due to the fact that, when n is sufficiently large, the value in parentheses
is less than 1 since d � lnn.

Proof of Lemma 11. Taking into account ln d � lnn, d < n
lnn and Lemma 8 we obtain

EW ′
A � m ln d+

2mn

d− 1
� m

n

d
+

2mn

d− 1
� 3mn

d− 1
= ÊW ′

A.

Proof of Lemma 12. According to Lemma 8 and inequality ln d � lnn and n � d lnn we get

EW ′
A � m ln d+

2mn

d− 1
� m lnn+

2md

d− 1
lnn � 5m lnn = ÊW ′

A.

Proof of Theorem 3. First of all, let us note that random variables ξ̃k = ξk − Eξk satisfy condi-

tions Eetξ̃k � e
hkt2

2 of Petrov’s theorem for constants T = 1/2 and hk =
3
k2 (see Lemma 9).

Let’s carry out the proof of the theorem for two cases of possible semiopen intervals of the value
of the parameter d.

Case 1: lnn � d <
n

lnn
.

Bearing in mind Lemma 11 and formula (3) for relative error we obtain

εn =
2λn

m(n− 1)an

3mn

(d− 1)
� 6n

(n− 1)

λn/an
(d− 1)

.

So we can see that n→ ∞ as εn → 0, if λnan = o(dn).
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Now using Lemmas 1 and 11, we can estimate failure probability:

δn = P
{
W̃ ′

A > ÊW ′
A
}
= P

{
W̃ ′

A >
3mn

d− 1

}
= P

{
W̃ ′

A >
3mn

d− 1

}
.

For each edge with weight, which corresponds to random variable ξk, we define constants T = 1/2
and hk = 3

k2 .

From Lemma 10, it implies that TH � 3mn
2(d−1) <

3mn
d−1 = x.

According to Petrov’s theorem we get the next estimate for failure probability of algorithm A:

δn = P{W̃ ′
A > x} � exp

{
−Tx

2

}
.

Since n
d > lnn, then Tx

2 = 3mn
2(d−1) > m lnn. So we get that

δn = P{W̃ ′
A > x} � exp

{
−Tx

2

}
< exp(−m lnn) =

1

nm
→ 0 as n→ ∞.

Thus, in Case 1, Algorithm A gives asymptotically optimal solution for the m-d-UMST in n-vertex
complete undirected graph with weights of edges from EXP(an, λn).

Case 2:
n

lnn
� d <

n

m
.

Knowing Lemma 12 and formula (3) for relative error εn we get

εn =
2λn

(n− 1)an
ÊW ′

A =
2λn

m(n− 1)an
5m lnn � 10(λn/an) lnn

n− 1
.

It is clear that εn → 0 as n→ ∞, if the conditions λn
an

= o
(

n
lnn

)
are satisfied.

So using Lemmas 1 and 12, we can estimate failure probability

δn = P
{
W̃ ′

A > ÊW ′
A
}
= P

{
W̃ ′

A > 5m lnn
}
.

Putting constants hk as in the Case 1, we set T = 1/2 and x = 5m ln n.

Taking into account Lemma 10, quantities x, T , H, and d � n
lnn , we arrive at the following

inequality TH � 3mn
2d < 5m lnn = x.

Since Tx
2 > m lnn, according to Petrov’s theorem we obtain the next estimate for failure prob-

ability of Algorithm A:

δn = P
{
W̃ ′

A > x
}
� exp

{
−Tx

2

}
� exp(−m lnn) =

1

nm
→ 0 as n→ ∞.

Consequently, in Case 2, Algorithm A gives asymptotically optimal solution for the m-d-UMST
in n-vertex complete undirected graph with weights of edges from EXP(an, λn).

Therefore, for values of parameter d we have estimate of relative error εn → 0 and failure prob-
ability δn → 0 as n→ ∞ in both cases under conditions (7).

Proof of Statement 4. We present the proof of this statement, as in [18]. The difference of left
and right sides of inequality (8) is denoted as

h(x) =

√
2

π

x∫
0

e−
u2

2 du− (1− e−
x
2 ).
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It is easy to check that for function h(x) and its derivative

h′(x) =
√

2

π
e−

x2

2 − 1

2
e−

x
2

the following is correct h(0) = 0, lim
x→∞h(x) = 0, h′(x) > 0.

Since on positive positive semiaxis, the inequality h′(x) = 0 holds only in one unique point x0 =
1
2 (1 +

√
1 + 12 ln (2) − 4 ln (π) � 0, we can conclude that h(x) � 0 as x � 0, which implies the va-

lidity of the statement.
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OBITUARY

August 31, 1931—April 25, 2023

Lev Rozonoer, in full Lev Il’ich Rozonoer, was an outstanding Soviet and Russian scientist.
Unfortunately, he passed away in Newton (Boston, the USA) at the end of April 2003.

Rozonoer joined the Institute of Automation and Remote Control (IARC), the USSR Academy
of Sciences, in 1955 after graduating from Moscow Power Engineering Institute. (Nowadays, IARC
is the Trapeznikov Institute of Control Sciences, the Russian Academy of Sciences, simply called
the Institute below.) He had worked at IARC for over 40 years until he left for family reasons for
the USA (1996).

Rozonoer undoubtedly belongs to those outstanding scientists who have laid the foundations of
control theory through their research. Rozonoer became globally recognized for his investigations
on optimal control. First and foremost, he formulated and proved the correctness of a funda-
mentally new concept, subsequently developed by mathematicians from the Steklov Institute and
called Pontryagin’s maximum principle. This concept was presented by Rozonoer in his candidate’s
dissertation in 1966, and some members of the dissertation council even suggested conferring the
doctoral degree to him. The main results of that study were published in three issues of Automa-
tion and Remote Control. In 1970, Rozonoer defended his doctoral dissertation. Other significant
Rozonoer’s results at IARC were connected with thermodynamics (optimal control of thermody-
namic processes) and systems theory (information aggregation in large-scale systems and models
of biological evolution). They were published in Russia as well as in leading foreign journals.

For many years, Rozonoer was a member of the Editorial Board of Automation and Remote
Control. Dozens of his fundamental works first appeared in the journal.

Rozonoer was a brilliant teacher. Having delved into a new science, he immediately shared
accumulated knowledge with his students at the Moscow Institute of Physics and Technology or
Institute’s employees. Such lectures attracted a large audience.

Rozonoer’s uniqueness as a scientist was the breadth of his research interests rather than his
separate results (no matter how significant they were). At the Institute, he was actively involved
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in research on pattern recognition, mathematical logic, and the theory of algorithms and finite
automata. But the real breadth of thought showed up during his life in the USA. In 2018, Fizmatlit,
a famous Russian publishing house, released his book Poslednie teksty. Teoriya sistem. Fizika.
Chelovek, nauka, sotsium (Recent Writings. Systems Theory. Physics. Man, Science and Socium).
The book included only Rozonoer’s results obtained after 2000. These results have turned out
unexpected even for his colleagues at the Institute. For example, note his work entitled in the
manner of Kant: How the Science of the Spirit is Possible. It attempts to lay the foundations of
a scientific approach to studying the human spirit, a mysterious phenomenon that was previously
considered only in philosophy and religion.

However, Rozonoer considered his main result to be the hypothesis of the random flow of time
at the micro level as the cause of decoherence in quantum mechanics. Decoherence is a phase shift
that spontaneously arises in quantum mechanical systems; as a result of this shift, the laws of the
microworld turn into the laws of the macroworld. The random process-based conceptualization of
time at the micro level seems so unusual that it has caused confusion among physicists: they will
have to puzzle it out. It will be uneasy since experts in quantum mechanics are not deeply versed
in the theory of random processes.

The Institute is proud that such a huge scientist grew up and worked in it for many years!

Employees of the Trapeznikov Institute of Control Sciences, the Russian Academy of Sciences
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Abstract—The article proposes a method for creating soft sensors using identification models
obtained by associative search algorithm. The method consists in constructing an approximat-
ing hypersurface of the space of input vectors and their corresponding one-dimensional outputs
at each time instant. Case studies are presented and the advantages of the author’s method
over traditional approaches are evaluated are revealed.
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1. INTRODUCTION

Product quality is the most important parameter in the process optimization. However, quality
metrics are difficult to measure in real time because product properties can change over time due to
many factors. At modern manufacturing enterprises, various methods and means of physical and
chemical physical and chemical analysis of product samples are widely used. Nevertheless, the use
of embedded analysis systems is not always justified due to their inertia and high cost. Thats why
soft sensors have gained popularity as a low-cost alternative to complex analytical systems. Soft
sensors make predictions of product quality in MPC [1, 2]. They allow to control product properties
in real time with an acceptable accuracy at relatively modest deployment and maintenance costs.
Soft sensors can control physical and chemical properties, that cannot be controlled by conventional
analyzers. They can also be used to monitor product quality, where the use of inline analyzers is
economically feasible or technically impossible [1]. Soft sensors based on linear regression with
automatic fit of free term according to laboratory control data have performed well in practice,
but for some nonlinear objects they give inadequate prediction. The article offers a new approach
to predicting quality metrics for a wide class of processes described by non-linear models. Models
based on associative search algorithms use the knowledge base of processes to build, at each time
step, the best model by the least squares method (LSM). A case studies was conducted based on ore
grinding process data, the advantages of the proposed method in comparison with the traditional
ones are shown.

2. CLASSICAL METHODS FOR SOFT SENSORS CONSTRUCTING

Model Predictive Control (MPC) allows direct control of the products quality, that is evaluated
by soft sensors. Usually, soft sensors in MPC systems are realized in the form of simple regression
models:

Y =
N∑
1

bixi + b0, (1)

891



892 CHERESHKO

where Y is product quality, xi are the input variables, bi are the coefficients for each input variable,
b0 is the free term of linear regression.

Model (1) is developed on the basis of historical process data. Factory data often contain many
outliers, which can lead to poor modeling. It is easy to show that a least squares method (LSM)
model is highly distorted by even a few noticeable outliers. There is a so-called weighted least
squares (WLS) method, an improved method of constructing a linear regression, when individual
outliers in the data do not distort the constructed model so much.

For soft sensors of the form (1) we often use the algorithm for constructing a free linear regression
term on the basis of the laboratory control data. For this purpose, the coefficient b0 is recalculated
as follows:

b0new = b0 + k(Ylab − Ymodel), (2)

where Ylab is the laboratory quality score, Ymodel is the quality score calculated by a model,
b0new is the new value of free term b0, k is the weight coefficient of accounting for incoming labora-
tory control data. Soft sensors based on linear regression with automatic fit of free term b0 proved
to be a good solution to various practical problems. For nonlinear processes, such models may not
be satisfactory. In this case, it seems reasonable to use an approach to predicting quality metrics
based on data mining of the object functioning and formation of an inductive knowledge base for it.

3. SOFT SENSORS BASED ON INTELLIGENT ANALYSIS
OF TECHNOLOGICAL DATA

Models based on associative search algorithms use the inductive knowledge base of process to
build, at each time step, the best model by the LSM. The concept of inductive knowledge — the
regularities extracted from the data of the object functioning was introduced by V.N. Vapnik [3].
Such models are formed at each time step by the system identifier on the basis of the analysis of
the information on the process dynamics accumulated by current time instant. This information
makes possible to replenish inductive knowledge base and additionally train the system.

The model, generated by the soft sensors at a certain time instant, replenishes at each time step
the appropriate “library of models” in the knowledge base. This digital model is fully characterized
by a set of values of the following attributes: inputs, output, coefficients. Further, these models
can be used in the traditional MPC scheme.

The models can be derived using well-known identification methods, such as LSM. Prediction
with the associative search method [4] for solving control problems has high accuracy of identifica-
tion model for a wide class of nonlinear and nonstationary objects [5, 6]. In addition, pre-training
(clustering) in real time provides the algorithm with a speed gain, which may be important for a
certain class of process control problems.

The identification model is fully described by the sets of inputs and corresponding outputs of
the system, that are stored in the archive, and in this aspect, it can be considered as a digital
model. The combination of statistical data sets (feature values) gives a “digital portrait” of the
process dynamics.

4. DESCRIPTION OF THE ASSOCIATIVE SEARCH ALGORITHM

The process of inductive knowledge is reduced to the restoration (associative search) of knowl-
edge by its fragment [7, 8]. In this case knowledge can be interpreted as an associative connection
between images. As an image, we will use the vectors of inputs, that is, input variables.

The criterion of closeness of images can be formulated in different ways. In the most general
case, it can be represented as a logical function, that is, a predicate. In the particular case, when
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the sets of features are vectors in n-dimensional space, the proximity criterion may be a distance
in this space.

Associative search can be performed as a process of either restoring an image according to
partially specified features (or restoring a fragment of knowledge under conditions of incomplete
information. This process is simulated in various models of associative memory), or searching for
other images related associatively to the given one, but representing other time instants.

Various schemes of associative search are known [9]. Thus, in frame-based systems, the search
task is implemented in the form of matching frames. In semantic networks the search is performed
by matching fragments of the network and the graph-query.

The approach based on the method of verbal analysis of decisions proved effective for solving
discrete multi-criteria selection problems [10]. This approach involves decomposition of the de-
scription of objects by many criteria into their partial descriptions of smaller dimensions, which are
offered to the decision maker for comparison (under the assumption of pairwise equal evaluations
by the criteria that are not included in such descriptions).

There is a well-known model that describes the process of associative thinking as a sequential
recall based on the application of associations — pairs of images characterized by their own set
of features. This model appears to be an intermediate stage between neural network models and
logical models used in classical artificial intelligence systems.

The statement of the Y signal modeling problem is a result of operator’s influence (in general
case, nonlinear) on vector signal x1, x2, . . . , xn in discrete time [11]. At any chosen time instant a
new linear model in the neighborhood of the operating point is created (instead of approximation
of real signal in time).

The linear dynamic model has the following form:

Y =
m∑
i=1

aiyN−i +
n∑
j=1

S∑
s=1

bjsxN−j,s, ∀j ∈ 1, . . . , N, (3)

where yN is the output prediction at the moment N,xN is the input vector, m is the memory depth
for output, n is the memory depth for input, S is the length of the vector of inputs.

This model is not a classical regression model: not the entire dynamic chronological “tail” is
selected, but only certain inputs, in accordance with a given criterion. The coefficients at other
inputs are assumed to be zero.

To construct a virtual model corresponding to a certain point in time, the input vectors, close
to the current one according to the criterion, are selected from the archive. Then, based on the
classical (nonrecurrent) LSM, the value of the output at the next point in time is calculated.

Described algorithm does not create a single approximating model of the real process for all
moments of time, but builds a new model for each fixed moment t (Fig. 1). In this case each point
of the global nonlinear regression surface is formed as a result of using “local” linear models.

In contrast to classical regression models, for each fixed point in time, input vectors are selected
from the archive that are close to the current input vector according to a certain criterion rather
than in chronological order by steps backwards.

The selection criteria are called associative search criteria or associative pulses. Thus, in (3)
n represents the number of vectors from the archive (from time moment 1 to moment N) selected
by the associative search criterion. At each time interval {N − 1, N} a certain set of n vectors is
chosen, 1 � n � N .

The criterion for selecting input vectors from the archive to build a virtual model at a given
time by the current state of the object can be as follows. Let the distance in Rp between the points
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Fig. 1. The approximating hypersurface of the space of input vectors and one-dimensional output.

d        =����|x   |N,N�j 	
S

s
1
Ns d        < d  +d      < d   + DN,N�j N N

max
N N_ _

x1

d        = d  +d      < d   + DN,N�j N N
max

N N_

x2

Fig. 2. The area of input vectors acceptably close to the input vector.

of the input space of dimension P be like:

dt,t−j =
P∑
p=1

|xtp − xt−j,p| , j = 1, . . . , s, (4)

where s < t, xtp are the components of input vector on current time moment t. Suppose that for
the current input vector xt:

P∑
p=1

|xtp| = dt. (5)

To construct the approximating hypersurface xt, let us choose such vectors xt−j , j = 1, . . . , s,
from the archive of historical data, that for a given Dt the following condition is satisfied (Fig. 2):

dt,t−j � dt +
P∑
p=1

|xt−j,p| � dt +Dt, j = 1, . . . , s. (6)
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The preliminary value of Dt is determined on the basis of the knowledge of the process. If the
chosen domain does not contain enough inputs for the application of LSM, i.e., the corresponding
system of linear algebraic equations has no solution, then the given point criterion can be relaxed
by increasing the threshold value Dt.

In order to increase the speed of the identification algorithm (both at the stage of training and
at the subsequent operation of the object), one of the methods of intelligent data analysis, that
is, clustering (dynamic classification, automatic grouping of data, “learning without a teacher”), is
used. There are a lot of clustering methods, namely hierarchical algorithms, k-means algorithm,
minimum covering tree algorithm, nearest neighbor method and others. All of them determine to
which region, into which this space is divided, point in a multidimensional space belongs to.

As a result, at each time instant each investigated point in the multidimensional space can be
assigned to some group and gain special cluster label. In the associative search problem for selection
of input vectors close to the current one, the cluster label is defined according to the criterion of
associative selection of input vectors from the archive. To build soft sensors, vectors are selected
within the corresponding cluster.

For a dynamic linear model, the following algorithm is used to determine the unknown coeffi-
cients. The model is formed as:

yN =
Q∑
i=1

aix̂i, (7)

where x̂i = (x̂1, x̂2, . . . , x̂r), r = m+ nS, x̂ is extended input vector for which:

{x̂1, x̂2, . . . , x̂m} = {yN−1, yN−2, . . . , yN−m}; (8){
x̂m+1, x̂m+2, . . . , x̂m+nS

}
= {yN−1,1, yN−1,2, . . . , yN−1,S, . . . , yN−n,S}; (9)

α is an extended vector of input coefficients:

{α1, α2, . . . , αm} = {α1, α2, . . . , αm} ; (10)

{αm+1, αm+2, . . . , αm+nS} =
{
b1,1, b1,2, . . . , b1,S , . . . , bn,S

}
(11)

To build the model (7), the input vectors, which are close to the current one according to chosen
criterion, are selected from the process data archive. After vector selection, a matrix of extended
input vectors is compiled:

X̂ =

⎛⎜⎝ x̂
1
1 · · · x̂1r
...

. . .
...

x̂P1 · · · x̂Pr

⎞⎟⎠ ; P � r. (12)

To find the coefficients αi you need to solve a system of linear equations:

X̂α = ŷ, (13)

where ŷ is system output at next time step for the selected extended vectors of process inputs.

When solving the system of linear Eqs. (13), assuming that rank X̂ = r, LSM can be applied to
find the estimate α̂: (

ŷ − X̂α̂
)T (

ŷ − X̂α̂
)
= min

α

(
ŷ − X̂α

)T (
ŷ − X̂α

)
. (14)

Assuming that X̂ it is a matrix of full rank:

α̂ = (X̂T X̂)
−1
X̂T ŷ. (15)
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Fig. 3. Regulation scheme with an identifier in the feedback circuit.

α̂ is an LSM-estimate and, according to the Gauss–Markov theorem, has minimal dispersion in
the class of unbiased linear estimates of the parameter α.

For dynamic models, we have the case of poor matrix conditioning due to statistical dependence
of the components of the extended vector of inputs, so the estimation (15) may be inadequate.
In this case we propose to use the following Moore–Penrose procedure. It is proposed to search
estimation of α̂0 such that:

α̂T0 α̂0 = min α̂T α̂. (16)

According to the Moore–Penrose theorem, the estimation α̂ minimizes the left part of (14) if
and only if it is represented in the form:

α̂ = X̂+ŷ + (1− X̂+X̂)p, (17)

where p is some r-dimensional vector.

Asymptotically the normal estimation α̂0 (16) is in the form:

α̂0 = X̂+ŷ. (18)

The same procedure can be applied to form digital identification models in a closed loop control
of the process.

The associative search algorithm makes it possible to obtain models, which for each time step
are described by synchronized sets of values of inputs, outputs, control actions, coefficients, i.e.,
digital models, which are formed by the identifier in the feedback circuit of the MPC. In this case,
the identifier in the feedback circuit of the control system is a digital twin (Fig. 3), because it forms
a digital predictive model based on the current and statistical data of the process.

For non-stationary processes, as we know from [11], the associative search method also offers
a constructive solution to the identification problem, namely, wavelet transform. This approach
has demonstrated efficiency both for nonstationary input signal and in the case of impossibility of
modeling internal dynamics of the control object. To apply the associative search algorithm for the
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purpose of predicting the dynamics of nonstationary processes, it is necessary to select from the
technological archive the vectors that are close to the current one according to the criterion formed
for the coefficients of the multiple-scale wavelet decomposition.

5. CONSTRUCTION OF INTELLIGENT SOFT SENSOR
BASED ON ASSOCIATIVE MODELS

We propose the following method of developing a software and algorithmic complex for the
formation of real-time models of associative search — associative soft sensor.

It is necessary to take into account the specifics of laboratory work in production for process,
when building the model. Often the laboratory analysis of products is performed not on one-time,
but on averaged samples. Modeling should provide not only a sufficiently accurate description
of the process class, but also adequately reflect the specifics of the production situation and the
characteristics of a particular process. It is important to use all the available a priori information as
much as possible. In particular, it is necessary to take into account all the constraints, determined by
both technological regulations and expert opinions. The decision maker (operator or technologist)
acts as an expert analyzing the situation.

Thus, the following main elements are highlighted in the development of soft sensors for process.

Description of the process: its features, allowing to formalize it with the help of certain math-
ematical models; accounting for certain data of the technical documentation, in particular, the
technological regulations (or similar documents), which allows you to determine all the necessary
restrictions:

— Base of technological regulations contains (in formalized form) the description of the following
items: equipment, technological standards, rules of operations in various situations, detailed order
of process, mode rules, mode parameters;

— Database of libraries for formalized representation of processes and their mathematical
models.

The scheme of information flows of the investigated process, formed by the user of the system
using the interactive interface, which allows to formalize the description of the simulated process
in the form of differential or finite-difference equations.

Process inductive knowledge base must contain an archive of “production experience” of a
particular process: from time-synchronized inputs and their corresponding outputs to the archives
of configured models and archives of formalized situations (“coded” features and characteristics
of the current state). The main elements of the system for formation and storage of knowledge,
interpreted as patterns characterizing the process, are the following:

— Database of the functioning process;
— Data of technological equipment — actual values at specific time instants of technological pa-

rameters: consumption, pressures, temperatures, etc.; possible deviations from standard situations
(set of patterns), additional limitations;

— Base of constructed point process models (archive of constructed models): sets of values of
inputs and controls, as well as their corresponding outputs (finished products, by-products, waste)
according to monitoring data;

— Assessments of results and recommendations for management (including formalized ones),
that is, evaluations obtained by associative identification algorithms, as well as formalized values
of experts’ assessments (e.g., by means of fuzzy models).

The identifier in the feedback circuit of the automatic / automated process control system (dig-
ital twin) generates a digital model at each moment of time. Various elements of the formalized
description of both the process itself and its current state come to the input of the identifier.
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6. BUILDING AN INTELLIGENT SOFT SENSOR FOR A CONCENTRATOR
OF MINING PRODUCTION

An enrichment plant is a mining facility for the primary processing of solid minerals in order to
obtain technically valuable products suitable for industrial use. By means of various technologies
(flotation, magnetic separation and others), a concentrate is obtained from the mined ore, in which
the content of the useful component is much higher than in the original raw material. Concentrators
process enrich ores of ferrous and nonferrous metals, nonmetallic minerals, and coal.

Below we compare results of laboratory control of product quality (iron concentration) with the
quality metrics generated by soft sensors, developed on the basis of multiple linear regression and
regression with associative search. The performance quality criteria of soft sensors are the mean
absolute error (MAE) of the model and Pearson’s correlation coefficient.

Values of laboratory analysis and soft sensors predictions of different types on iron concentration
are presented on Figs. 4 and 5. Table shows the corresponding performance quality criteria of two
types of soft sensors.

The formula for the linear regression model of the iron concentration:

F = 76.34 + 0.00545D, (19)

where F — iron content in the sectional concentrate, D — drain density in hydrocyclones.

Fig. 4. Comparison of soft sensors values (multiple linear regression) with laboratory control data.

Fig. 5. Comparison of soft sensors values (regression with associative search) with laboratory control data.
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Summary table of evaluation parameters

Model quality parameter Linear regression Regression with associative search

Mean absolute error (MAE) 0.416 0.282

Mean square error (MSE) 0.285 0.129

Pearson’s correlation coefficient 0.479 0.803

Table shows that MAE and MSE for soft sensor based on associative model are smaller, and
Pearson correlation coefficient is larger in comparison with soft sensor based on regression model.
Thus, the regression model with associative search gives a more accurate prediction than the linear
regression.

7. CONCLUSION

In this work the method of building soft sensors using intelligent identification algorithm, which
forms real-time models of process by means of intelligent data analysis and machine learning is
proposed. The new algorithm of soft sensors based on regression with associative search in inductive
knowledge base is presented. Numerical simulation of the proposed methods for the process of a
concentrator of mining production was conducted. The results demonstrate the higher accuracy
and efficiency of regression model with associative search over classical regression models.
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